PRÁCTICA REMOTA PÉNDULO FÍSICO AMORTIGUADO

Tamaño: px
Comenzar la demostración a partir de la página:

Download "PRÁCTICA REMOTA PÉNDULO FÍSICO AMORTIGUADO"

Transcripción

1 PRÁCTICA REMTA PÉNDUL FÍSIC AMRTIGUAD 1. BJETIV Estudio del comportamiento de un péndulo físico débilmente amortiguado. Determinación de la constante de amortiguamiento, γ, del periodo, T, de la frecuencia angular del movimiento, ω, y de la velocidad angular instantánea, θ..- FUNDAMENT TEÓRIC Se denomina péndulo físico a cualquier sólido rígido capaz de oscilar en torno a un eje horizontal. En la figura 1 se muestra un péndulo físico que puede girar verticalmente en torno a un eje horizontal que pasa por el punto. En la posición de equilibrio el Centro de Masas (C. M) está situado en la vertical que pasa por ; cuando se gira un ángulo θ con respecto al equilibrio como aparece en la figura, el peso (mg) y un momento de amortiguamiento (γvd), junto con la reacción (R) en el punto de apoyo (barra horizontal) forman pares de fuerzas que provocarán un giro en torno al eje que generará un movimiento oscilatorio. Figura 1.- Péndulo Físico La ecuación del movimiento del péndulo se puede deducir a partir de la expresión: ΣM =I α mg L senθ+γv D=-I α (1) donde, d θ D dθ d θ dθ mgl α = y v = + + senθ = 0 () dt dt dt I dt I Página 1 de 5

2 siendo I el Momento de Inercia respecto al eje de rotación, D el diámetro del eje y γ la constante de amortiguamiento. La ecuación () no tiene una solución sencilla a menos que se haga la aproximación: senθ θ, tanto más correcta cuanto más pequeñas sean las oscilaciones. En tal situación, la ecuación del movimiento quedará expresada como: d θ dθ + β + ω0θ = 0 (3) dt dt Siendo ω o la frecuencia natural de oscilación y β el parámetro de amortiguamiento. mgl ω 0 = y I β = 4I La solución a la ecuación diferencial va a tener una componente que nos define el amortiguamiento, ( θ 0e ), y una componente que nos indica que el movimiento es periódico (sen ωt): θ = θ 0 e sen ( ωt) (4) β siendo θ 0 la amplitud inicial y ω" la frecuencia del movimiento, ω = ω0 1 ω 0 Como se puede observar en la figura, el movimiento es oscilatorio amortiguado, con la amplitud disminuyendo a medida que avanza el tiempo. 0,6 0,4 Angular Position (rad) 0, 0,0-0, -0,4-0, Time (s) Figura.- scilaciones amortiguadas Página de 5

3 3.- EXPERIMENTACIÓN La práctica a realizar consiste en el estudio de las oscilaciones de una barra rectangular, que jugará el papel de péndulo físico. Para ello se separará la regla un ángulo θ 0 de su posición de equilibrio dejándola a continuación en libertad. El sistema dispone de un sensor de rotación con el que se medirá el ángulo en función del tiempo, θ(t). Entre en la página Web del departamento elija la opción Laboratorio Remoto y seleccione la aplicación Péndulo Físico Amortiguado. Introduzca el nombre de usuario y la contraseña que les han facilitado. Lea con detenimiento la página de bienvenida y seleccione en el menú de la izquierda de la página la opción Péndulo Real. Entrará así en una nueva ventana en la que podrá realizar la experiencia. Pulse en la flecha,, situada en la esquina izquierda del registro, introduzca el valor del ángulo desde donde el péndulo va a oscilar (utilicen sólo ángulos menores de 50 o ) y pulse Iniciar. En este momento el sistema comenzará la adquisición de datos a la vez que el péndulo se va desplazando hasta alcanzar el valor del ángulo que se le ha indicado, para seguidamente ser liberado comenzando las oscilaciones. Una vez que el péndulo haya cesado su movimiento pulsen Parar para que el sistema deje de registrar datos. Para realizar posteriormente el análisis del movimiento será necesario que en el experimento se hayan registrado como mínimo 5 oscilaciones. Si desea repetir de nuevo el experimento siga los pasos indicados en los párrafos anteriores. En la esquina superior derecha de la página se puede acceder a los resultados (los datos registrados son la posición angular (rad) y el tiempo (s)). Guarde estos datos en un fichero con extensión *.txt. Abra este fichero en una Hoja de Cálculo (ej. Excel), importando los datos a partir del fichero anterior y realice la representación Posición Angular = f (Tiempo). btendrá el mismo gráfico que visualizaron in situ al realizar la experiencia. Debe tener en cuenta la siguiente indicación: el tiempo comienza a registrarse en cuanto el péndulo se pone en movimiento para alcanzar el ángulo que se le ha indicado. Pero el tiempo real que debe utilizar es el que se registra cuando el péndulo se libera, cumpliéndose en ese momento θ ( t = 0) = θo. Es decir, se deben eliminar aquellos datos anteriores a la situación de posición angular máxima, y se deben sustraer a los tiempos el dato del tiempo correspondiente a dicha posición. 3.1 Cálculo de la constante de amortiguamiento, γ. Para el cálculo de la constante de amortiguamiento se tendrá en cuenta la dependencia exponencial de la amplitud en función del tiempo, es decir: Página 3 de 5

4 0 o t 4I Θ = θ e = θ e (5) siendo Θ el valor de la amplitud (posición máxima o mínima) en cada periodo de oscilación (ver figura 3). Figura 3.- Valores de las Amplitudes máximas para cada Periodo de oscilación Será pues necesario obtener los valores de Θ y los correspondientes de t. Si se utiliza la hoja de cálculo Excel esto puede hacerse fácilmente, ya que representando los datos experimentales θ=f(t), al situar el cursor en un punto se obtienen directamente sus coordenadas {x,y} (en este caso, {t, θ}). Si se toman logaritmos neperianos en la expresión (5), obtendremos: ln Θ = lnθo t (6) 4I Esto indica que lnθ es linealmente proporcional al tiempo (t), con una constante de proporcionalidad igual a (que es justamente la pendiente de la recta lnθ = f(t) y 4I cuyo valor absoluto coincide con β ). Así, al representar lnθ = f(t) se debe obtener una línea recta. Realizando un ajuste por mínimos cuadrados a la función, del valor de la pendiente se podrá obtener la constante de amortiguamiento, γ. (Este coeficiente deberá tener el mismo valor tanto si se trabaja con los puntos de amplitud máxima en coordenadas positivas como si se trabaja con los puntos de amplitud máxima en coordenadas negativas). Página 4 de 5

5 3. Cálculo de la frecuencia de vibración, ω. El valor de la frecuencia de vibración se puede conocer a partir de la medida directa del periodo, T, en la representación θ=f(t) π ω = (7) T A partir de los valores calculados γ y ω y de la amplitud inicial θ o, utilizando la ecuación del movimiento (4) y dando diferentes valores a t (tiempo), obtengan los valores correspondientes a las diferentes amplitudes. Representen conjuntamente los datos experimentales, θ=f(t), y los obtenidos a partir de los valores calculados. Discutan si existen diferencias significativas entre ambos. 3.3 Cálculo de la velocidad angular instantánea Para calcular la velocidad angular instantánea y con objeto de minimizar los errores experimentales se procederá como se describe a continuación. Utilizando únicamente 1 de cada 10 valores experimentales (θ o,t), (θ 10, t), (θ 0,t),. Se calculará la diferencia entre los valores consecutivos de las posiciones y de los tiempos θ 10(n+1) -θ 10n y t 10(n+1) -t 10n, con n = 0, 1,, para obtener la velocidad como:. θ θ = (8) t Representen la posición en función de la velocidad angular, θ=f( θ ). Analicen y discutan la forma de la gráfica, relacionándola con el hecho de estar estudiando un movimiento amortiguado. Datos: considere el péndulo como una barra rectangular de masa, m= 40.4 g y dimensiones las de la figura, siendo el espesor despreciable y la distancia entre los orificios de 9 mm. Diámetro del eje: D=6.5 mm Página 5 de 5

MOVIMIENTO ARMÓNICO AMORTIGUADO

MOVIMIENTO ARMÓNICO AMORTIGUADO MOVIMIENTO ARMÓNICO AMORTIGUADO OBJETIVO Medida experimental de la variación exponencial decreciente de la oscilación en un sistema oscilatorio de bajo amortiguamiento. FUNDAMENTO TEÓRICO A) SISTEMA SIN

Más detalles

PRÁCTICA: MOMENTOS DE INERCIA Y PÉNDULO FÍSICO

PRÁCTICA: MOMENTOS DE INERCIA Y PÉNDULO FÍSICO PRÁCTICA: MOMENTOS DE INERCIA Y PÉNDULO FÍSICO Parte I: MOMENTOS DE INERCIA Objetivo: Determinar experimentalmente el momento de inercia de un disco respecto a su centro de gravedad y respecto a distintos

Más detalles

F2 Bach. Movimiento armónico simple

F2 Bach. Movimiento armónico simple F Bach Movimiento armónico simple 1. Movimientos periódicos. Movimientos vibratorios 3. Movimiento armónico simple (MAS) 4. Cinemática del MAS 5. Dinámica del MAS 6. Energía de un oscilador armónico 7.

Más detalles

Ejercicios de M.A.S y Movimiento Ondulatorio de PAU

Ejercicios de M.A.S y Movimiento Ondulatorio de PAU 1. En el laboratorio del instituto medimos cinco veces el tiempo que un péndulo simple de 1m de longitud tarda en describir 45 oscilaciones de pequeña amplitud. Los resultados de la medición se muestran

Más detalles

5. Al simplificar. expresión se obtiene:

5. Al simplificar. expresión se obtiene: ARITMÉTICA. [ ( 7 ) 9 ( 7 )] es igual a : 5. El resultado de simplificar la expresión. 5 5 5 7 7, 6 + es igual a: 5 9 7 6 5 5. El valor de 75 6 5 5 ( 5 )( 65 ) log es igual a: 5 5 5. Al simplificar Mayo

Más detalles

Física Mecánica. Sesión de Problemas Experimento. TEMA: TEOREMA DEL TRABAJO Y LA ENERGÍA. PRINCIPIO DE CONSERVACIÓN DE LA ENERGÍA.

Física Mecánica. Sesión de Problemas Experimento. TEMA: TEOREMA DEL TRABAJO Y LA ENERGÍA. PRINCIPIO DE CONSERVACIÓN DE LA ENERGÍA. TEM: TEOREM DEL TRJO Y L ENERGÍ. PRINCIPIO DE CONSERVCIÓN DE L ENERGÍ. Problema experimento #10: Trabajo y Conservación de la energía con plano inclinado. Medir el espesor de un pequeño bloque de madera

Más detalles

CONSERVACIÓN DE LA ENERGÍA MECÁNICA (II) CAÍDA LIBRE

CONSERVACIÓN DE LA ENERGÍA MECÁNICA (II) CAÍDA LIBRE CONSERVACIÓN DE LA ENERGÍA MECÁNICA (II) CAÍDA LIBRE 1. OBJETIVO Verificar la conservación de la energía mecánica de tres objetos diferentes en caída libre. Determinar la aceleración de la gravedad, g,

Más detalles

Matemáticas 4 Enero 2016

Matemáticas 4 Enero 2016 Laboratorio #1 Vectores I.- Calcule el producto escalar de los dos vectores y el coseno del ángulo entre ellos. 1) u = 3i + 2j 4k; v = i + 5j 3k 2) u = i + 2j 3k; v = 1i 2j + 3k 3) u = 1 2 i + 1 3 j +

Más detalles

4.1. Movimiento oscilatorio: el movimiento vibratorio armónico simple.

4.1. Movimiento oscilatorio: el movimiento vibratorio armónico simple. 4.1. Movimiento oscilatorio: el movimiento vibratorio armónico simple. 4.1.1. Movimiento oscilatorio características. 4.1.2. Movimiento periódico: período. 4.1.3. Movimiento armónico simple: características

Más detalles

Movimiento armónico conceptos básicos

Movimiento armónico conceptos básicos Movimiento armónico conceptos básicos Llamamos movimiento oscilatorio cuando un móvil realiza un recorrido que se repite periódicamente, y que tiene un máximo y un mínimo respecto a un punto. Por ejemplo,

Más detalles

Estudio Temporal de Sistemas Continuos de 1 er y 2º Orden

Estudio Temporal de Sistemas Continuos de 1 er y 2º Orden niversidad Carlos III de Madrid Departamento de Ingeniería de Sistemas y Automática SEÑALES Y SISTEMAS Práctica 1 Estudio Temporal de Sistemas Continuos de 1 er y 2º Orden 1 Introducción Teórica Se denomina

Más detalles

PNF en Mecánica Vibraciones Mecánicas Prof. Charles Delgado

PNF en Mecánica Vibraciones Mecánicas Prof. Charles Delgado Vibraciones en máquinas LOS MOVIMIENTOS VIBRATORIOS en máquinas se presentan cuando sobre las partes elásticas actúan fuerzas variables. Generalmente, estos movimientos son indeseables, aun cuando en algunos

Más detalles

Ejercicios de M.A.S y Movimiento Ondulatorio de PAU

Ejercicios de M.A.S y Movimiento Ondulatorio de PAU 1. En el laboratorio del instituto medimos cinco veces el tiempo que un péndulo simple de 1m de longitud tarda en describir 45 oscilaciones de pequeña amplitud. Los resultados de la medición se muestran

Más detalles

TEMA 6 MOVIMIENTO OSCILATORIO CONSEJOS PREVIOS A LA RESOLUCIÓN DE LOS PROBLEMAS

TEMA 6 MOVIMIENTO OSCILATORIO CONSEJOS PREVIOS A LA RESOLUCIÓN DE LOS PROBLEMAS TEMA 6 MOVIMIENTO OSCILATORIO CONSEJOS PREVIOS A LA RESOLUCIÓN DE LOS PROBLEMAS Ten bien presente la diferencia entre dos clases de cantidades: las que representan propiedades físicas básicas del sistema

Más detalles

Fecha de realización:... Fecha de entrega:... Comisión:... Apellidos Nombres:...

Fecha de realización:... Fecha de entrega:... Comisión:... Apellidos Nombres:... ASIGNATURA: FÍSICA I TRABAJO PRÁCTICO Nº 1: GRÁFICOS Y ESCALAS Fecha de realización:... Fecha de entrega:... Comisión:... Apellidos Nombres:... y......... 1. Objetivo del trabajo: Construcción de gráficos,

Más detalles

CAPÍTULO III MOMENTO DE INERCIA EN ÁREAS PLANAS. Este capítulo comprende diversas propiedades geométricas de secciones (para casos

CAPÍTULO III MOMENTO DE INERCIA EN ÁREAS PLANAS. Este capítulo comprende diversas propiedades geométricas de secciones (para casos CAPÍTULO III MOMENTO DE INERCIA EN ÁREAS PLANAS Este capítulo comprende diversas propiedades geométricas de secciones (para casos prácticos, secciones de vigas) siendo la más importante el momento de inercia.

Más detalles

ONDAS ESTACIONARIAS FUNDAMENTO

ONDAS ESTACIONARIAS FUNDAMENTO ONDAS ESTACIONARIAS FUNDAMENTO Una onda estacionaria es el resultado de la superposición de dos movimientos ondulatorios armónicos de igual amplitud y frecuencia que se propagan en sentidos opuestos a

Más detalles

ECUACIÓN DE ESTADO DE LOS GASES IDEALES

ECUACIÓN DE ESTADO DE LOS GASES IDEALES ECUACIÓN DE ESTADO DE LOS GASES IDEALES Laboratorio de Física 1. OBJETIVO Se estudiará, tomando como ejemplo el aire, el comportamiento de un gas ideal cuando varían sus variables de estado, y se comprobarán

Más detalles

Sumario 1. Frecuencia una señal periódica

Sumario 1. Frecuencia una señal periódica LOGO REPÚBLICA BOLIVARIANA DE VENEZUELA UNIVERSIDAD NACIONAL EXPERIMENTAL POLITÉCNICA ANTONIO JOSÉ DE SUCRE VICE-RECTORADO PUERTO ORDAZ Departamento de Ingeniería Electrónica Tema 3 Técnicas de Modulación

Más detalles

Problemas de Física 1 o Bachillerato

Problemas de Física 1 o Bachillerato Problemas de Física 1 o Bachillerato Conservación de la cantidad de movimiento 1. Calcular la velocidad de la bola m 2 después de la colisión, v 2, según se muestra en la siguiente figura. El movimiento

Más detalles

Módulo MOVIMIENTO PENDULAR C.N. Física Lic. Orlando Chaparro Ch. 1 MOVIMIENTO PENDULAR

Módulo MOVIMIENTO PENDULAR C.N. Física Lic. Orlando Chaparro Ch. 1 MOVIMIENTO PENDULAR Módulo MOVIMIENTO PENDULAR C.N. Física Lic. Orlando Chaparro Ch. 1 MOVIMIENTO PENDULAR PÉNDULO: Es un sistema físico que puede oscilar bajo la acción gravitatoria u otra característica física y que está

Más detalles

Campo Eléctrico. Fig. 1. Problema número 1.

Campo Eléctrico. Fig. 1. Problema número 1. Campo Eléctrico 1. Cuatro cargas del mismo valor están dispuestas en los vértices de un cuadrado de lado L, tal como se indica en la figura 1. a) Hallar el módulo, dirección y sentido de la fuerza eléctrica

Más detalles

CONSERVACIÓN DE LA ENERGÍA MECÁNICA (III) Resortes Helicoidales - Ley de HOOKE

CONSERVACIÓN DE LA ENERGÍA MECÁNICA (III) Resortes Helicoidales - Ley de HOOKE CONSERVACIÓN DE LA ENERGÍA MECÁNICA (III) Resortes Helicoidales - Ley de HOOKE 1. OBJETIVO Estudiar el Principio de Conservación de la Energía Mecánica en un móvil que se desplaza impulsado por un resorte.

Más detalles

Más ejercicios y soluciones en fisicaymat.wordpress.com

Más ejercicios y soluciones en fisicaymat.wordpress.com OSCILACIONES Y ONDAS 1- Todos sabemos que fuera del campo gravitatorio de la Tierra los objetos pierden su peso y flotan libremente. Por ello, la masa de los astronautas en el espacio se mide con un aparato

Más detalles

4. Mecánica Rotacional

4. Mecánica Rotacional 4. Mecánica Rotacional Cinemática Rotacional: (Conceptos básicos) Radián Velocidad angular Aceleración angular Frecuencia y período Velocidad tangencial Aceleración tangencial Aceleración centrípeta Torca

Más detalles

ECUACIÓN DE ESTADO DE LOS GASES IDEALES

ECUACIÓN DE ESTADO DE LOS GASES IDEALES ECUACIÓN DE ESTADO DE LOS GASES IDEALES Laboratorio de Física 1. OBJETIVO Se estudiará, tomando como ejemplo el aire, el comportamiento de un gas ideal cuando varían sus variables de estado, y se comprobarán

Más detalles

Movimiento Circular Movimiento Armónico

Movimiento Circular Movimiento Armónico REPÚBLICA BOLIVARIANA DE VENEZUELA MINISTERIO DEL PODER POPULAR PARA LA EDUCACIÓN LICEO BRICEÑO MÉNDEZ S0120D0320 DPTO. DE CONTROL Y EVALUACIÓN PROFESOR: gxâw á atätá 4to Año GUIA # 9 /10 PARTE ( I ) Movimiento

Más detalles

PRÁCTICA Nº5: CIRCUITOS RESONANTES. CARACTERÍSTICAS I(ω) y Φ(ω)

PRÁCTICA Nº5: CIRCUITOS RESONANTES. CARACTERÍSTICAS I(ω) y Φ(ω) PRÁCTICA Nº5: CIRCUITOS RESONANTES. CARACTERÍSTICAS I(ω) y Φ(ω) Objetivos: utilización del osciloscopio para estudiar las características de dos circuitos resonantes (uno en serie y otro en paralelo).

Más detalles

Ecuación de la Recta

Ecuación de la Recta PreUnAB Clase # 10 Agosto 2014 Forma La ecuación de la recta tiene la forma: y = mx + n con m y n constantes reales, m 0 Elementos de la ecuación m se denomina pendiente de la recta. n se denomina intercepto

Más detalles

UNIVERSIDAD DON BOSCO DEPARTAMENTO DE CIENCIAS BÁSICAS LABORATORIO DE FÍSICA ASIGNATURA: ELECTRICIDAD Y MAGNETISMO

UNIVERSIDAD DON BOSCO DEPARTAMENTO DE CIENCIAS BÁSICAS LABORATORIO DE FÍSICA ASIGNATURA: ELECTRICIDAD Y MAGNETISMO UNIVERSIDAD DON BOSCO DEPARTAMENTO DE CIENCIAS BÁSICAS LABORATORIO DE FÍSICA ASIGNATURA: ELECTRICIDAD Y MAGNETISMO I. OBJETIVOS LABORATORIO : RESISTIVIDAD ELÉCTRICA Determinar la resistividad eléctrica

Más detalles

Curvas en paramétricas y polares

Curvas en paramétricas y polares Capítulo 10 Curvas en paramétricas y polares Introducción Después del estudio detallado de funciones reales de variable real expresadas en forma explícita y con coordenadas cartesianas, que se ha hecho

Más detalles

3.1 Representación gráfica de curvas bidimensionales.

3.1 Representación gráfica de curvas bidimensionales. Tema 3 Curvas y superficies Versión: 6 de febrero de 29 3. Representación gráfica de curvas bidimensionales. La representación gráfica de una curva en un ordenador es una linea poligonal construida uniendo

Más detalles

1. Aplique el método de inducción matemática para probar las siguientes proposiciones. e) f) es divisible por 6. a) b) c) d) e) f)

1. Aplique el método de inducción matemática para probar las siguientes proposiciones. e) f) es divisible por 6. a) b) c) d) e) f) 1. Aplique el método de inducción matemática para probar las siguientes proposiciones. a) b) c) d) e) f) es divisible por 6. g) 2. Halle la solución de las siguientes desigualdades de primer orden. g)

Más detalles

CINÉTICA DE HIDRÓLISIS DEL ACETATO DE METILO Eva Mª Talavera Rodríguez y Francisco A. Ocaña Lara

CINÉTICA DE HIDRÓLISIS DEL ACETATO DE METILO Eva Mª Talavera Rodríguez y Francisco A. Ocaña Lara CINÉTICA DE HIDRÓLISIS DEL ACETATO DE METILO Eva Mª Talavera Rodríguez y Francisco A. Ocaña Lara OBJETIVOS 1.- Estudiar la cinética de la reacción de hidrólisis ácida del acetato de metilo en disolución

Más detalles

INSTRUCCIONES PARA EL USO DEL SOFTWARE (IS)

INSTRUCCIONES PARA EL USO DEL SOFTWARE (IS) INSTRUCCIONES PARA EL USO DEL SOFTWARE (IS) Pantalla Inicial de DERIVE for Windows Teniendo instalado el programa DERIVE sobre Windows, podemos ingresar al sistema de las siguientes formas: Haciendo clic

Más detalles

Figura 3.-(a) Movimiento curvilíneo. (b) Concepto de radio de curvatura

Figura 3.-(a) Movimiento curvilíneo. (b) Concepto de radio de curvatura Componentes intrínsecas de la aceleración: Componentes tangencial y normal Alfonso Calera Departamento de Física Aplicada. ETSIA. Albacete. UCLM En muchas ocasiones el análisis del movimiento es más sencillo

Más detalles

Una de las ecuaciones más importantes en la física es la segunda ley de Newton,

Una de las ecuaciones más importantes en la física es la segunda ley de Newton, Experimento 5 SEGUNDA LEY DE NEWTON CON MASA CONSTANTE Objetivos 1. Deducir la aceleración de un carrito de laboratorio a partir de su gráfica de velocidad contra tiempo, 2. Establecer una relación de

Más detalles

ESCUELA TÉCNICA SUPERIOR DE INGENIEROS AERONÁUTICOS. Examen: Mecánica I (Probl. de Cinemática) Curso: 08/09 Fecha: 14.11.2008

ESCUELA TÉCNICA SUPERIOR DE INGENIEROS AERONÁUTICOS. Examen: Mecánica I (Probl. de Cinemática) Curso: 08/09 Fecha: 14.11.2008 ESCUELA TÉCNICA SUPERIOR DE INGENIEROS AERONÁUTICOS APELLIDOS, NOMBRE: n o Examen: Mecánica I (Probl. de Cinemática) Curso: 08/09 Fecha: 14.11.008 Sea Oxyz un sistema de referencia ligado a un sólido S

Más detalles

Ejemplo Traza la gráfica de los puntos: ( 5, 4), (3, 2), ( 2, 0), ( 1, 3), (0, 4) y (5, 1) en el plano cartesiano.

Ejemplo Traza la gráfica de los puntos: ( 5, 4), (3, 2), ( 2, 0), ( 1, 3), (0, 4) y (5, 1) en el plano cartesiano. Plano cartesiano El plano cartesiano se forma con dos rectas perpendiculares, cuyo punto de intersección se denomina origen. La recta horizontal recibe el nombre de eje X o eje de las abscisas y la recta

Más detalles

Determinación de la constante elástica, k, de un resorte. Estudio estático y dinámico.

Determinación de la constante elástica, k, de un resorte. Estudio estático y dinámico. Determinación de la constante elástica, k, de un resorte. Estudio estático y dinámico. Nombre: Manuel Apellidos: Fernandez Nuñez Curso: 2º A Fecha: 29/02/2008 Índice Introducción pag. 3 a 6 Objetivos.

Más detalles

Ejercicios resueltos

Ejercicios resueltos Ejercicios resueltos Boletín 3 Movimiento armónico simple Ejercicio Una partícula que vibra a lo largo de un segmento de 0 cm de longitud tiene en el instante inicial su máxima velocidad que es de 0 cm/s.

Más detalles

PRÁCTICA 3: MEDIDAS DE LONGITUDES, PESOS Y TIEMPOS.

PRÁCTICA 3: MEDIDAS DE LONGITUDES, PESOS Y TIEMPOS. PRÁCTICA : MEDIDAS DE LONGITUDES, PESOS Y TIEMPOS. MEDIDA DE DIMENSIONES GEOMÉTRICAS CON EL PALMER Y EL CALIRADOR. Con esta práctica se pretende que el alumno se familiarice con el manejo de distintos

Más detalles

Análisis Estructural - 2009 Trabajo práctico de dinámica estructural: Superposición modal

Análisis Estructural - 2009 Trabajo práctico de dinámica estructural: Superposición modal Análisis Estructural - 9 Enunciado Dada la estructura de la Figura, idealizada mediante un marco con vigas rígidas y columnas inextensibles, sometida a una carga armónica lateral de 8 t, se pide: ) Determinar

Más detalles

TEMA N 2 RECTAS EN EL PLANO

TEMA N 2 RECTAS EN EL PLANO 2.1 Distancia entre dos puntos1 TEMA N 2 RECTAS EN EL PLANO Sean P 1 (x 1, y 1 ) y P 2 (x 2, y 2 ) dos puntos en el plano. La distancia entre los puntos P 1 y P 2 denotada por d = esta dada por: (1) Demostración

Más detalles

Funciones de varias variables.

Funciones de varias variables. Funciones de varias variables. Definición. Hasta ahora se han estudiado funciones de la forma y = f (x), f :D Estas funciones recibían el nombre de funciones reales de variable real ya que su valor y dependía

Más detalles

MATE 3031. Dr. Pedro Vásquez UPRM. P. Vásquez (UPRM) Conferencia 1 / 77

MATE 3031. Dr. Pedro Vásquez UPRM. P. Vásquez (UPRM) Conferencia 1 / 77 MATE 3031 Dr. Pedro Vásquez UPRM P. Vásquez (UPRM) Conferencia 1 / 77 P. Vásquez (UPRM) Conferencia 2 / 77 Qué es una función? MATE 3171 En esta parte se recordará la idea de función y su definición formal.

Más detalles

3. Funciones y gráficas

3. Funciones y gráficas Componente: Procesos físicos. Funciones gráficas.1 Sistemas coordenados En la maoría de estudios es necesario efectuar medidas relacionadas con los factores que intervienen en un fenómeno. Los datos que

Más detalles

1.1. Movimiento armónico simple

1.1. Movimiento armónico simple Problemas resueltos 1.1. Movimiento armónico simple 1. Un muelle cuya constante de elasticidad es k está unido a una masa puntual de valor m. Separando la masa de la posición de equilibrio el sistema comienza

Más detalles

CÁLCULO. Ingeniería Industrial. Curso 2009-2010. Departamento de Matemática Aplicada II. Universidad de Sevilla. Lección 3. Curvas en polares.

CÁLCULO. Ingeniería Industrial. Curso 2009-2010. Departamento de Matemática Aplicada II. Universidad de Sevilla. Lección 3. Curvas en polares. CÁLCULO Ingeniería Industrial. Curso 2009-2010. Departamento de Matemática Aplicada II. Universidad de Sevilla. Lección 3. Curvas en polares. Resumen de la lección. 3.1. Gráficas en coordenadas polares.

Más detalles

Deducir la ley de Hooke a partir de la experimentación. Identificar los pasos del método científico en el desarrollo de este experimento.

Deducir la ley de Hooke a partir de la experimentación. Identificar los pasos del método científico en el desarrollo de este experimento. LABORATORIO DE FISICA I LEY DE HOOKE UNIVERSIDAD TECNOLÓGICA DE PEREIRA PEREIRA RISARALDA OBJETIVOS Verificar la existencia de fuerzas recuperadas. Identificar las características de estas fuerzas. Deducir

Más detalles

A = A < θ R = A + B + C = C+ B + A. b) RESTA O DIFERENCIA DE VECTORES ANÁLISIS VECTORIAL. Es una operación que tiene por finalidad hallar un

A = A < θ R = A + B + C = C+ B + A. b) RESTA O DIFERENCIA DE VECTORES ANÁLISIS VECTORIAL. Es una operación que tiene por finalidad hallar un ANÁLISIS VECTORIAL MAGNITUD FÍSICA Es todo aquello que se puede medir. CLASIFICACIÓN DE MAGNITUDES POR NATURALEZA MAGNITUD ESCALAR: Magnitud definida por completo mediante un número y la unidad de medida

Más detalles

k. R: B = 0,02 i +0,03 j sobre un conductor rectilíneo por el

k. R: B = 0,02 i +0,03 j sobre un conductor rectilíneo por el FUERZAS SOBRE CORRIENTES 1. Un conductor de 40 cm de largo, con una intensidad de 5 A, forma un ángulo de 30 o con un campo magnético de 0,5 T. Qué fuerza actúa sobre él?. R: 0,5 N 2. Se tiene un conductor

Más detalles

Esperamos que disfrute con este tutorial. Saludos, Equipo MecDATA

Esperamos que disfrute con este tutorial. Saludos, Equipo MecDATA 1 MecDATA le ofrece con este tutorial una manera rápida, gratuita y autodidacta para que pueda aprender el uso de un sistema CAM para el mecanizado de una figura 3D. En las siguiente páginas podrá conocer

Más detalles

Problemas de Física I CINEMÁTICA DE LA PARTÍCULA

Problemas de Física I CINEMÁTICA DE LA PARTÍCULA Problemas de Física I CINEMÁTICA DE LA PARTÍCULA (1 er Q.:prob impares, 2 do Q.:prob pares) 1. Una partícula se mueve sobre el eje x de modo que su velocidad es v = 2 + 3t 2 + 4t 3 (m/s). En el instante

Más detalles

DERIVADA GENERALIZADA DE LAS FUNCIONES SENO Y COSENO

DERIVADA GENERALIZADA DE LAS FUNCIONES SENO Y COSENO DERIVADA GENERALIZADA DE LAS FUNCIONES SENO Y COSENO Sugerencias para quien imparte el curso: Hay que privilegiar el aspecto utilitario del Cálculo, haciendo ver que ante la necesidad de resolver problemas

Más detalles

EJERCICIOS DEL CAPÍTULO 9 - ELECTROMAGNETISMO

EJERCICIOS DEL CAPÍTULO 9 - ELECTROMAGNETISMO EJERCICIOS DEL CAPÍTULO 9 - ELECTROMAGNETISMO C9. 1 Aceleramos iones de los isótopos C-12, C-13 y C-14 con una d.d.p. de 100 kv y los hacemos llegar a un espectrógrafo de masas perpendicularmente a la

Más detalles

2ª PRUEBA 26 de febrero de 2016

2ª PRUEBA 26 de febrero de 2016 2ª PRUEB 26 de febrero de 216 Problema experimental. Calibrado de un termistor. Como bien sabes, un termómetro es un dispositivo que permite medir la temperatura. Los termómetros clásicos se basan en el

Más detalles

TRABAJO DE RECUPERACIÓN PARCIAL 1 2012-2013 CURSO: TERCERO DE BACHILLERATO: NOMBRE: FECHA DE ENTREGA: Jueves, 22-11-2012

TRABAJO DE RECUPERACIÓN PARCIAL 1 2012-2013 CURSO: TERCERO DE BACHILLERATO: NOMBRE: FECHA DE ENTREGA: Jueves, 22-11-2012 TRABAJO DE RECUPERACIÓN PARCIAL 1 2012-2013 ÁREA: FÍSICA CURSO: TERCERO DE BACHILLERATO: NOMBRE: FECHA DE ENTREGA: Jueves, 22-11-2012 INSTRUCCIONES: LEA DETENIDAMENTE LOS ENUNCIADOS DE CADA UNO DE LOS

Más detalles

Prueba experimental. Determinación de la capacidad de un condensador. Pila

Prueba experimental. Determinación de la capacidad de un condensador. Pila Objetivo. Prueba experimental. Determinación de la capacidad de un condensador Se va a estudiar experimentalmente el proceso de carga de un condensador a través de una resistencia, y se deducirá la capacidad

Más detalles

1. Conocimientos previos. 1 Funciones exponenciales y logarítmicas.

1. Conocimientos previos. 1 Funciones exponenciales y logarítmicas. . Conocimientos previos. Funciones exponenciales y logarítmicas.. Conocimientos previos. Antes de iniciar el tema se deben de tener los siguientes conocimientos básicos: Intervalos y sus definiciones básicas.

Más detalles

Laboratorio de Física 1 (ByG) Guía 4: Viscosidad, empuje y oscilaciones amortiguadas

Laboratorio de Física 1 (ByG) Guía 4: Viscosidad, empuje y oscilaciones amortiguadas Laboratorio de Física 1 (ByG) Guía 4: Viscosidad, empuje y oscilaciones amortiguadas Verano 2008 Objetivos Experiencia 1: Viscosidad y Empuje En esta experiencia de laboratorio vamos a estudiar el movimiento

Más detalles

Estudio de funciones mediante límites y derivadas

Estudio de funciones mediante límites y derivadas Estudio de funciones mediante límites y derivadas Observación: La mayoría de estos ejercicios se han propuesto en las pruebas de Selectividad, en los distintos distritos universitarios españoles El precio

Más detalles

Unidad: Movimiento Circular

Unidad: Movimiento Circular Unidad: Movimiento Circular En esta clase estudiaremos el movimiento de un auto que se mueve con rapidez constante en línea recta y que entra a una órbita circular. El objetivo de la guía es entender de

Más detalles

Matemáticas Febrero 2013 Modelo A

Matemáticas Febrero 2013 Modelo A Matemáticas Febrero 0 Modelo A. Calcular el rango de 0 0 0. 0 a) b) c). Cuál es el cociente de dividir P(x) = x x + 9 entre Q(x) = x +? a) x x + x 6. b) x + x + x + 6. c) x x + 5x 0.. Diga cuál de las

Más detalles

LABORATORIO DE MECANICA Análisis Gráfico.

LABORATORIO DE MECANICA Análisis Gráfico. No 0.1 LABORATORIO DE MECANICA DEPARTAMENTO DE FISICA Y GEOLOGIA UNIVERSIDAD DE PAMPLONA FACULTAD DE CIENCIAS BÁSICAS Objetivos Objetivo General: Estudiar el uso de gráficas para la obtención de las relaciones

Más detalles

PROBLEMAS DE INDUCCIÓN MAGNÉTICA

PROBLEMAS DE INDUCCIÓN MAGNÉTICA PROBLEMAS DE INDUCCIÓN MAGNÉTICA 1.- Una varilla conductora, de 20 cm de longitud se desliza paralelamente a sí misma con una velocidad de 0,4 m/s, sobre un conductor en forma de U y de 8 Ω de resistencia.el

Más detalles

6. Un hombre de 70 kg de masa se encuentra en la cabina de un ascensor, cuya altura es de 3 m.

6. Un hombre de 70 kg de masa se encuentra en la cabina de un ascensor, cuya altura es de 3 m. 1 1. De los extremos de una cuerda que pasa por la garganta de una polea sin rozamiento y de masa despreciable, cuelgan dos masas iguales de 200 gramos cada una. Hallar la masa que habrá de añadirse a

Más detalles

Física General I. Curso 2014 - Primer semestre Turno Tarde. Contenidos de las clases dictadas

Física General I. Curso 2014 - Primer semestre Turno Tarde. Contenidos de las clases dictadas Física General I Curso 2014 - Primer semestre Turno Tarde Contenidos de las clases dictadas 14/3 - Introducción: qué es la Física, áreas de la Física y ubicación de la Mecánica Newtoniana en este contexto,

Más detalles

Universidad Icesi Departamento de Matemáticas y Estadística

Universidad Icesi Departamento de Matemáticas y Estadística Universidad Icesi Departamento de Matemáticas y Estadística Solución del examen final del curso Cálculo de una variable Grupo: Once Período: Inicial del año Prof: Rubén D. Nieto C. PUNTO. (x ) sen(x )

Más detalles

Facultad de Ciencias Curso 2010-2011 Grado de Óptica y Optometría SOLUCIONES PROBLEMAS FÍSICA. TEMA 4: CAMPO MAGNÉTICO

Facultad de Ciencias Curso 2010-2011 Grado de Óptica y Optometría SOLUCIONES PROBLEMAS FÍSICA. TEMA 4: CAMPO MAGNÉTICO SOLUCIONES PROLEMAS FÍSICA. TEMA 4: CAMPO MAGNÉTICO. Dos conductores rectilíneos, paralelos mu largos transportan corrientes de sentidos contrarios e iguales a,5 A. Los conductores son perpendiculares

Más detalles

Distribuciones bidimensionales. Regresión.

Distribuciones bidimensionales. Regresión. Temas de Estadística Práctica Antonio Roldán Martínez Proyecto http://www.hojamat.es/ Tema 5: Distribuciones bidimensionales. Regresión. Resumen teórico Resumen teórico de los principales conceptos estadísticos

Más detalles

CAPITULO 7 LUGARES GEOMETRICOS 7.1 INTRODUCCION. Z R jx X jwl, si 0 W R Z

CAPITULO 7 LUGARES GEOMETRICOS 7.1 INTRODUCCION. Z R jx X jwl, si 0 W R Z CAPITULO 7 LUGARES GEOMETRICOS 7. INTRODUCCION Si tenemos elementos que pueden variar sus valores en un circuito, ya sea una resistencia una reactancia o la frecuencia de la señal de entrada, las respuestas

Más detalles

2. Cálculo de errores. y presentación de resultados experimentales

2. Cálculo de errores. y presentación de resultados experimentales Cálculo de errores y presentación de resultados experimentales Para determinar el valor real de una magnitud física, se realizan medidas de ella, normalmente mediante la cuenta de un número de sucesos

Más detalles

Tema: Movimiento rectilíneo uniformemente variado.

Tema: Movimiento rectilíneo uniformemente variado. LABORATORIO DE FÍSICA Tema: Movimiento rectilíneo uniformemente variado. 1. Objetivo: Establecer las leyes y ecuaciones para una partícula que tiene una trayectoria rectilínea con M.R.U.V. 2. Introducción

Más detalles

Física 2 Biólogos y Geólogos. Reflexión y refracción de la luz

Física 2 Biólogos y Geólogos. Reflexión y refracción de la luz Física 2 Biólogos y Geólogos Curso de Verano 2007 Guía de laboratorio N 1 Reflexión y refracción de la luz Objetivos Estudiar experimentalmente las leyes de la reflexión y de la refracción de la luz. Determinar

Más detalles

MATEMATICAS GRADO DECIMO

MATEMATICAS GRADO DECIMO MATEMATICAS GRADO DECIMO TERCER PERIODO TEMAS Funciones Trigonométricas. Funciones trigonométricas. Son relaciones angulares; guardan relación con el estudio de la geometría de los triángulos y son de

Más detalles

Mecánica Cuestiones y Problemas PAU 2002-2009 Física 2º Bachillerato

Mecánica Cuestiones y Problemas PAU 2002-2009 Física 2º Bachillerato Mecánica Cuestiones y Problemas PAU 00009 Física º Bachillerato 1. Conteste razonadamente a las siguientes a) Si la energía mecánica de una partícula permanece constante, puede asegurarse que todas las

Más detalles

θ = θ 1 -θ 0 θ 1 = ángulo final; θ 0 = ángulo inicial. Movimiento circular uniforme (MCU) :

θ = θ 1 -θ 0 θ 1 = ángulo final; θ 0 = ángulo inicial. Movimiento circular uniforme (MCU) : Movimiento circular uniforme (MCU) : Es el movimiento de un cuerpo cuya trayectoria es una circunferencia y describe arcos iguales en tiempos iguales. Al mismo tiempo que recorremos un espacio sobre la

Más detalles

GEOMETRÍA ANALÍTICA: CÓNICAS

GEOMETRÍA ANALÍTICA: CÓNICAS GEOMETRÍA ANALÍTICA: CÓNICAS 1.- GENERALIDADES Se define lugar geométrico como el conjunto de puntos que verifican una propiedad conocida. Las cónicas que estudiaremos a continuación se definen como lugares

Más detalles

5. PÉNDULO SIMPLE. MEDIDA DE g

5. PÉNDULO SIMPLE. MEDIDA DE g 5. PÉNDULO SIMPLE. MEDIDA DE g OBJETIVO El objetivo de la práctica es medir la aceleración de la gravedad en el laboratorio, g, a partir del estudio del movimiento armónico de un péndulo simple. MATERIAL

Más detalles

MOVIMIENTOS EN UNA Y DOS DIMENSIONES

MOVIMIENTOS EN UNA Y DOS DIMENSIONES MOVIMIENTOS EN UNA Y DOS DIMENSIONES 1. Cómo se describen los movimientos? La descripción física de un fenómeno, como por ejemplo los movimientos, se hace en términos de la constancia de determinada magnitud.

Más detalles

5.1. Recta tangente, normal e intersección de curvas. Recta tangente

5.1. Recta tangente, normal e intersección de curvas. Recta tangente 5. Aplicaciones de la Derivada 5.1. Recta tangente, normal e intersección de curvas Recta tangente Desde la escuela primaria se sabe que la recta tangente en un punto de una circunferencia es aquella recta

Más detalles

PATRONES DE SOMBRA EJEMPLO DE CÁLCULO. José Carlos Martínez Tascón. V1.0 Mayo 2.013

PATRONES DE SOMBRA EJEMPLO DE CÁLCULO. José Carlos Martínez Tascón. V1.0 Mayo 2.013 PATRONES DE SOMBRA EJEMPLO DE CÁLCULO José Carlos Martínez Tascón V1.0 Mayo 2.013 INDICE 1.DISPOSICIÓN DE EDIFICACIONES...1 2.DATOS NECESARIOS...2 3.REPRESENTACIÓN DE DATOS...3 3.1.Cálculo de acimut...

Más detalles

Estudio Experimental de la Segunda Ley de Newton

Estudio Experimental de la Segunda Ley de Newton Estudio Experimental de la Segunda Ley de Newton Lilian E. Mariani Universidad Favaloro Mariela Azul González Ciudad de Bs. As. 11 de mayo de 000 Diego Saurina ( die.go@usa.net) M. Jimena Antonelli Hernán

Más detalles

TRABAJO Y ENERGIA: CURVAS DE ENERGÍA POTENCIAL:

TRABAJO Y ENERGIA: CURVAS DE ENERGÍA POTENCIAL: TRABAJO Y ENERGIA: CURVAS DE ENERGÍA POTENCIAL: Si junto con la fuerza de Van der Waals atractiva, que varía proporcionalmente a r 7, dos atómos idénticos de masa M eperimentan una fuerza repulsiva proporcional

Más detalles

Departamento de Física Laboratorio de Electricidad y Magnetismo. Alumnos que realizaron la práctica MOVIMIENTO CIRCULAR

Departamento de Física Laboratorio de Electricidad y Magnetismo. Alumnos que realizaron la práctica MOVIMIENTO CIRCULAR Departamento de Física Laboratorio de Electricidad y Magnetismo Grupo de prácticas Fecha de sesión Alumnos que realizaron la práctica Sello de control Fecha de entrega MOVIMIENTO CIRCULAR IMPORTANTE: Incluir

Más detalles

TEMA 5 COMUNICACIONES ANALÓGICAS

TEMA 5 COMUNICACIONES ANALÓGICAS TEMA 5 COMUNICACIONES ANALÓGICAS Modulaciones angulares Introducen la información exclusivamente en la fase de una portadora, manteniendo constante la amplitud y(t )= A c cos[ω c t +ϕ(t)] La potencia media,

Más detalles

9. MEDIDA DE LA DENSIDAD DE LÍQUIDOS

9. MEDIDA DE LA DENSIDAD DE LÍQUIDOS 9. MEDIDA DE LA DENSIDAD DE LÍQUIDOS OBJETIVO El objetivo de la practica es determinar la densidad de líquidos utilizando la balanza de Möhr y su aplicación a la determinación de la densidad de disoluciones

Más detalles

10 Funciones polinómicas y racionales

10 Funciones polinómicas y racionales 8966 _ 009-06.qd 7/6/08 : Página 9 0 Funciones polinómicas racionales INTRDUCCIÓN Uno de los objetivos de esta unidad es que los alumnos aprendan a hallar la ecuación de una recta dados dos puntos por

Más detalles

PROBLEMAS DE ELASTICIDAD Y RESISTENCIA DE MATERIALES GRUPO 4 CURSO 1999-2000

PROBLEMAS DE ELASTICIDAD Y RESISTENCIA DE MATERIALES GRUPO 4 CURSO 1999-2000 PROBLEMAS DE ELASTICIDAD Y RESISTENCIA DE MATERIALES GRUPO 4 CURSO 1999-2000 10.1.- Qué longitud debe tener un redondo de hierro (G = 80.000 MPa), de 1 cm de diámetro para que pueda sufrir un ángulo de

Más detalles

x = 0, la recta tangente a la gráfica de f (x)

x = 0, la recta tangente a la gráfica de f (x) CÁLCULO DIFERENCIAL JUNIO 004 1. Sea la función e y = estúdiese su monotonía, etremos relativos y asíntotas. (Solución: Es derivable en todos los puntos ecepto en =0. Creciente si < 0. No tiene asíntotas

Más detalles

EJERCICIOS DE FÍSICA

EJERCICIOS DE FÍSICA EJERCICIOS DE FÍSICA 1. El vector posición de un punto, en función del tiempo, viene dado por: r(t)= t i + (t 2 +2) j (S.I.) Calcular: a) La posición, velocidad y aceleración en el instante t= 2 s.; b)

Más detalles

PÉNDULO FÍSICO FORZADO. Estudio de las curvas de resonancia para diferentes amortiguamientos.

PÉNDULO FÍSICO FORZADO. Estudio de las curvas de resonancia para diferentes amortiguamientos. PÉNDULO FÍSICO FORZADO 1. OBJETIVO Estudio de las curvas de resonancia para diferentes amortiguamientos. 2. FUNDAMENTO TEÓRICO Se denomina péndulo físico a cualquier sólido rígido capaz de oscilar alrededor

Más detalles

Guía de Ejercicios en Aula: N 3

Guía de Ejercicios en Aula: N 3 Guía de Ejercicios en Aula: N 3 Tema: LEYES DE NEWTON Aprendizajes Esperados Opera con los Principios de Newton y da explicación de las fuerzas a las cuales están sometidos los cuerpos de un sistema proponiendo

Más detalles

ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL FACULTAD DE CIENCIAS NATURALES Y MATEMÁTICAS DEPARTAMENTO DE FÍSICA

ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL FACULTAD DE CIENCIAS NATURALES Y MATEMÁTICAS DEPARTAMENTO DE FÍSICA ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL FACULTAD DE CIENCIAS NATURALES Y MATEMÁTICAS DEPARTAMENTO DE FÍSICA SEGUNDA EVALUACIÓN DE FÍSICA A AGOSTO 26 DE 2013 COMPROMISO DE HONOR Yo,.. al firmar este compromiso,

Más detalles

FUERZAS DE UN FLUIDO EN REPOSO SOBRE SUPERFICIES PLANAS

FUERZAS DE UN FLUIDO EN REPOSO SOBRE SUPERFICIES PLANAS FUERZAS DE UN FLUIDO EN REPOSO SOBRE SUPERFICIES PLANAS En esta sección consideramos los efectos de la presión de un fluido, que actúa sobre superficies planas (lisas), en aplicaciones como las ilustradas.

Más detalles

Momento magnético de un iman

Momento magnético de un iman Momento magnético de un iman Petriella Alberto, Rodriguez Imazio Paola, Urdaniz Corina. albertopetriella@hotmail.com, paolaimazio@hotmail.com, oersted@hotmail.com Facultad de Ciencias Exactas, Laboratorio

Más detalles

El deslizamiento de un tobogán de Acuapolis, tiene la forma de un arco de. hipérbola de ecuación. como se puede apreciar en la figura siguiente:

El deslizamiento de un tobogán de Acuapolis, tiene la forma de un arco de. hipérbola de ecuación. como se puede apreciar en la figura siguiente: altura En la vida cotidiana las rectas tangentes a una curva u objeto podrán observar de muy diferentes maneras, como son el punto de contacto de la rueda de un automóvil, patineta. El deslizamiento de

Más detalles

ESTUDIO Y REPRESENTACIÓN GRÁFICA DE FUNCIONES

ESTUDIO Y REPRESENTACIÓN GRÁFICA DE FUNCIONES ESTUDIO Y REPRESENTACIÓN GRÁFICA DE FUNCIONES 1. Sea f : (0, + ) definida como f () = Ln a) Probar que la función derivada f es decreciente en todo su dominio. b) Determinar los intervalos de crecimiento

Más detalles