ESCUELA TÉCNICA SUPERIOR DE INGENIEROS AERONÁUTICOS. Examen: Mecánica I (Probl. de Cinemática) Curso: 08/09 Fecha:

Tamaño: px
Comenzar la demostración a partir de la página:

Download "ESCUELA TÉCNICA SUPERIOR DE INGENIEROS AERONÁUTICOS. Examen: Mecánica I (Probl. de Cinemática) Curso: 08/09 Fecha: 14.11.2008"

Transcripción

1 ESCUELA TÉCNICA SUPERIOR DE INGENIEROS AERONÁUTICOS APELLIDOS, NOMBRE: n o Examen: Mecánica I (Probl. de Cinemática) Curso: 08/09 Fecha: Sea Oxyz un sistema de referencia ligado a un sólido S que se mueve en el seno de una referencia fija O 1 x 1 y 1 z 1. Se pretende describir el movimiento de S manejando su campo de velocidades a través de v O la velocidad de su origen O y de su velocidad angular ω. Las condiciones que definen dicho movimiento son las siguientes: la aceleración de O corta en todo instante al eje O 1 z 1 la hodógrafa de O está contenida en un plano paralelo al O 1 x 1 y 1 la aceleración tangencial de O es nula el vector a = i + k mantiene una dirección fija la aceleración angular de S es nula ( α = 0) en el instante inicial, (t =0), el punto O está situado en (a, 0, 0) y su velocidad es v O 0 = aω(0, 1, 1), siendo a y ω constantes. Además, los versores ( i, j, k) de los ejes cuerpo coinciden con los versores ( t, n, b) del triedro intrínseco de la trayectoria seguida por O y la velocidad angular de S es ω 0 = ω k 1 Se pide: 1. Analizar razonadamente si la trayectoria de O está contenida en el cilindro r = a. Determinar las ecuaciones horarias del movimiento de O 3. Determinar la velocidad angular ω de S 4. Hallar el eje instantáneo de rotación y mínimo deslizamiento del movimiento de S respecto a O 1 x 1 y 1 z 1 5. Axoides, fija y móvil, del movimiento de S 6. Determinar completamente la trayectoria del punto A de coordenadas (a, 0, 0) en ejes Oxyz. Hallar su aceleración tangencial, su aceleración normal y el radio y centro de curvatura de su trayectoria NOTA: la valoración, aproximada u orientativa, de las preguntas es Las respuestas se darán, forzosamente, en el dorso de esta hoja, en los espacios reservados para tal fin. Se adjuntarán hojas adicionales donde se hayan desarrollado explicaciones y/o cálculos pertinentes. Cuando se proporcionen datos vectoriales, debe especificarse la referencia que se está usando. SOLO SE CORREGIRÁN LAS PREGUNTAS QUE SE HAYAN CONTESTADO EN EL DORSO DE ESTA HOJA

2 1) Analizar razonadamente si la trayectoria de O está contenida en el cilindro r = a ) Determinar las ecuaciones horarias del movimiento de O, (ξ, η, ζ) ξ =, η =, ζ = 3) Velocidad angular ω = p i + q j + r k p =, q =, r = 4) Hallar el eje instantáneo de rotación y mínimo deslizamiento del movimiento de S respecto a O 1 x 1 y 1 z 1. (Se dará mediante un punto H y un vector de su dirección u). Punto H: Vector u: 5) Axoides, fija y móvil, del movimiento de S 6) Trayectoria de A(x A 1,y A 1,z A 1 ) x A 1 =, y A 1 =, z A 1 = Aceleración tangencial: Aceleración normal: Radio de curvatura: Centro de curvatura:

3 J. Peláez 3 Solución: 1) Analizar razonadamente si la trayectoria de O está contenida en el cilindro r = a Se irán imponiendo secuencialmente las condiciones que el enunciado indica. Sean (r, θ, z 1 ) las coordenadas cilíndricas del origen O de los ejes cuerpo. Si la aceleración de O corta en todo instante al eje O 1 z 1 se anulará el producto mixto [ k 1, r, γ], siendo γ: γ =( r r θ ) u r + 1 r d dt (r θ) uθ + z u z1, k1 u z1 la aceleración del origen O. Se tiene así: [ k 1, r, γ] =0 r 0 z 1 r r θ =0 d 1 d dt (r θ) =0 r θ = c, r dt (r θ), z1 donde c es una constante que depende de las condiciones iniciales. Nótese que en el instante inicial es r 0 = a, θ 0 =0y z 10 =0;además, u r i 1, u θ j 1 ; puesto que v O 0 = aω(0, 1, 1), por tanto será: ṙ 0 =0, r 0 θ0 = aω, ż 10 = aω. Así el valor de la constante c resulta ser: c = r 0 θ 0 = a ω Si la hodógrafa de O está contenida en un plano paralelo al O 1 x 1 y 1, ese plano será, de acuerdo con las condiciones iniciales: ż 1 = ż 10 = aω. Si la aceleración tangencial de O es nula entonces: 1) la velocidad de O tiene módulo constante v = v 0 = aω y ) toda su aceleración es aceleración normal: γ = γ n n siendo n el vector unitario según la normal principal. Puesto que ż 1 es constante y v es constante, el ángulo que el vector velocidad forma con el eje O 1 z 1 es constante; en efecto, si se llama α a dicho ángulo se tendrá: cos α = ż1 v = aω = aω α =45 Por otra parte, al ser ż 1 = aω, esto es, constante, será z 1 =0. En consecuencia, la aceleración de O es un vector contenido en el plano O 1 x 1 y 1, y dado que z 1 =0y r θ = c sólo tiene componente radial: γ = γ r u r. Como consecuencia se tendrá: { n = ± ur γ = γ n n = γ r u r γ n = ±γ r Nótese que una posible solución es γ n = γ r =0. En este caso, la aceleración γ = 0 es nula y la trayectoria que sigue el origen es la recta de ecuaciones: x = a, y = aωt, z = aωt El vector velocidad v sería constante: v = v 0 = aω(0, 1, 1) y la hodógrafa se reduciría a un punto. No se considera esta solución pues nos dicen que la hodógrafa es una curva contenida en un plano paralelo al O 1 x 1 y 1. La otra posibilidad es que sea: n = ± u r. Se considerará el caso en que n = u r = cos θ i 1 sin θ j 1.En tal caso el vector unitario tangente será de la forma: t =sinα u θ +cosα u z1 = Se puede plantear así la ecuación vectorial: v = v 0 t =ṙ u r + r θ u θ +ż 1 u z1 ( u θ + u z1 ) b = t n = ṙ =0 r θ = v 0 = aω ż 1 = v 0 = aω ( u θ + u z1 )

4 J. Peláez 4 que permite hacer una integración trivial para dar: r = a, θ = ωt, z 1 = aωt una vez que se han impuesto las condiciones iniciales. La solución es pues una hélice que se envuelve a derechas en el cilindro circular de ecuación r = a. Si se hubiese tomado la solución n =+ u r se habría obtenido la misma hélice circular pero se habría seleccionado el vector unitario n según la normal principal de una forma que no es habitual en curvas alabeadas (con el sentido opuesto al sentido del vector curvatura). No se considerará esta solución. ) Determinar las ecuaciones horarias del movimiento de O Las ecuaciones horarias son triviales y se deducen como un simple cambio de coordenadas cilíndricas a coordenadas cartesianas (ξ,η,ζ) =(r cos θ, r sin θ, z 1 )=(a cos ωt,asin ωt,aωt) 3) Determinar la velocidad angular ω de S El vector a = i + k es un vector constante del sólido S (sólido 0); si el enunciado dice que mantiene una dirección fija debe ser una dirección fija en los ejes fijos O 1 x 1 y 1 z 1 (sólido 1) pues en el sólido S es evidente que es un vector fijo. Por tanto, aplicando el teorema de Coriolis, se tendrá: 0 0 d a d a dt = dt (1) + ω a = 0 ω a = 0 ω = λ(t) a (0) Si la aceleración angular de S es nula se tendrá: En consecuencia será: α = d ω dt = 0 0 d a λ a + λ dt = 0 λ =0 λ = cte Como en el instante inicial el valor de ω es conocido: ω 0 = ω k 1 = λ a(0) λ = ω, a(0) = k 1 En resumen, el vector velocidad angular resulta ser constante y su valor es: ω = ω k 1 = ω a a(t) = k 1 4) Hallar el eje instantáneo de rotación y mínimo deslizamiento del movimiento de S respecto a O 1 x 1 y 1 z 1 El punto H será del eje instantáneo si verifica la relación: OH ω vo = ω = 1 i1 j1 k1 ω aω sin ωt cos ωt 1 = a(cos ωt i 1 +sinωt j 1 ) Nótese que el punto H está sobre el eje O 1 z 1 pues: O 1 H = O 1 O + OH = a(cos ωt i 1 +sinωt j 1 + ωt k 1 ) a(cos ωt i 1 +sinωt j 1 )=aωt k 1 Así pues, y dado que ω = ω k 1, el eje instantáneo de rotación coincide con el eje O 1 z 1.

5 J. Peláez 5 5) Axoides, fija y móvil, del movimiento de S El eje instantáneo es la recta que pasa por H y lleva la dirección de ω. Vistodesdeelsólidofijo,eleje instantáneo coincide con el eje O 1 z 1 y la axoide fija degenera en una recta, el propio eje O 1 z 1. Aunque el problema no lo pide, se va a determinar la evolución temporal de los versores ( i, j, k) de los ejes cuerpo. Para ello se plantean las ecuaciones: d i dt = ω i = ω a i = ω j (1) d j dt = ω j = ω a j = ω ( k i) () d k dt = ω k = ω a k = ω j (3) Si se deriva respecto del tiempo la ecuación () y se tienen en cuenta las ecuaciones (1-3) se obtiene: d j dt + ω j = 0 ecuación que se integra de inmediato para dar: j = A cos ωt+ B sin ωt (4) donde A y B son constantes de integración (vectoriales) que dependen de las condiciones iniciales (en breve se determinarán). La ecuación () y la relación a = k 1 proporcionan las relaciones: k i = ( A sin ωt+ B cos ωt) (5) k + i = k1 (6) que, sumado y restando adecuadamente, permiten obtener los valores de i y k; resultan ser: i = (+ A sin ωt B cos ωt+ k 1 ) (7) k = ( A sin ωt+ B cos ωt+ k 1 ) (8) Nótese que en el instante inicial los versores ( i, j, k) coinciden con los versores ( t, n, b) del triedro intrínseco. Estos últimos resultan ser: t(0) = ( j 1 + k 1 ), n(0) = i 1, b(0) = ( j 1 + k 1 ) por tanto se deben verificar las ecuaciones: ( B + k 1 )= ( j 1 + k 1 ) i 1 = A ( B + k 1 )= ( j 1 + k 1 ) A = i1, B = j1 Se obtiene así la solución: i = ( sin ωt i 1 +cosωt j 1 + k 1 ) (9) j = cos ωt i1 sin ωt j 1 (10) k = (sin ωt i 1 cos ωt j 1 + k 1 ) (11) Como el lector puede comprobar, los versores ( i, j, k) coinciden, en todo instante, con los versores del triedro intrínseco ( t, n, b) de la trayectoria recorrida por O.

6 J. Peláez 6 6) Determinar completamente la trayectoria del punto A de coordenadas (a, 0, 0) en ejes Oxyz. Hallar su aceleración tangencial, su aceleración normal y el radio y centro de curvatura de su trayectoria EnlosejesfijosO 1 x 1 y 1 z 1, el vector posición del punto A resulta ser: x A = O 1 O + a i = a(cos ωt i 1 +sinωt j 1 + ωt k 1 )+a ( sin ωt i 1 +cosωt j 1 + k 1 ) Las ecuaciones horarias resultan ser: x A 1 = a(cos ωt sin ωt) y1 A = a(sin ωt+ cos ωt) z1 A = a(ωt+ ) y a partir de ellas se pueden obtener los resultados que se piden (demuestre el lector que es una hélice circular). Resulta más sencillo, no obstante, trabajar como sigue: v A = v O + a ω i = v 0 i + aω j = aω ( i + j) 10 La velocidad de A es, por tanto, un vector de módulo constante v A = aω. El vector tangente unitario de la trayectoria descrita por A será t A 5 = 5 ( i + j). La aceleración de A será: γ A = aω ( d i dt + d j dt )= 1 aω ( i + j + k) donde se han tenido en cuenta las relaciones (1-3). Su aceleración tangencia resulta ser: γ A t = γ A t A =0 resultado que se deduce trivialmente del hecho de ser v A 10 un vector de módulo constante v A = aω.luego la aceleración de A es toda ella aceleración normal. Además se deduce que el vector normal unitario de la trayectoria de A es: n A = 1 ( i + j + k) 6 Así pues, se tendrá: γ A = γ A 6 = aω =(v A ) κ siendo κ la curvatura de la trayectoria de A. Despejando se obtiene: κ = γa (v A ) = a ρ = 1 κ = a siendo ρ el radio de curvatura de la trayectoria de A (resulta ser constante). El centro de curvatura de la trayectoria de A será el punto C dado por: AC = ρ n A = 5 3 a ( i + j + k)

Expresiones de velocidad y aceleración en distintas coordenadas

Expresiones de velocidad y aceleración en distintas coordenadas Apéndice B Expresiones de velocidad y aceleración en distintas coordenadas Índice B.1. Coordenadas cartesianas............... B.1 B.2. Coordenadas cilíndricas y polares......... B.2 B.3. Coordenadas esféricas................

Más detalles

Figura 3.-(a) Movimiento curvilíneo. (b) Concepto de radio de curvatura

Figura 3.-(a) Movimiento curvilíneo. (b) Concepto de radio de curvatura Componentes intrínsecas de la aceleración: Componentes tangencial y normal Alfonso Calera Departamento de Física Aplicada. ETSIA. Albacete. UCLM En muchas ocasiones el análisis del movimiento es más sencillo

Más detalles

Problemas de Física I CINEMÁTICA DE LA PARTÍCULA

Problemas de Física I CINEMÁTICA DE LA PARTÍCULA Problemas de Física I CINEMÁTICA DE LA PARTÍCULA (1 er Q.:prob impares, 2 do Q.:prob pares) 1. Una partícula se mueve sobre el eje x de modo que su velocidad es v = 2 + 3t 2 + 4t 3 (m/s). En el instante

Más detalles

ÁLGEBRA LINEAL Y GEOMETRÍA ANALÍTICA (0250)

ÁLGEBRA LINEAL Y GEOMETRÍA ANALÍTICA (0250) Universidad Central de Venezuela Facultad de Ingeniería Ciclo Básico Departamento de Matemática Aplicada ÁLGEBRA LINEAL Y GEOMETRÍA ANALÍTICA (0250) Semestre 1-2011 Mayo 2011 Álgebra Lineal y Geometría

Más detalles

Superficies. Conceptos generales

Superficies. Conceptos generales Repaso Superficies. Conceptos generales Dpto. Matemática Aplicada I E.T.S. de Arquitectura Universidad de Sevilla Curso 2005 2006 REPASO: Superficies. Conceptos generales 1. Conceptos generales Definición

Más detalles

Cinemática en 2D: Movimiento Circular.

Cinemática en 2D: Movimiento Circular. Cinemática en 2D: Movimiento Circular. Movimiento circular uniforme Otro caso particular de movimiento en dos dimensiones es el de una partícula que se mueve describiendo una trayectoria circular, con

Más detalles

MOVIMIENTOS EN UNA Y DOS DIMENSIONES

MOVIMIENTOS EN UNA Y DOS DIMENSIONES MOVIMIENTOS EN UNA Y DOS DIMENSIONES 1. Cómo se describen los movimientos? La descripción física de un fenómeno, como por ejemplo los movimientos, se hace en términos de la constancia de determinada magnitud.

Más detalles

P. A. U. LAS PALMAS 2005

P. A. U. LAS PALMAS 2005 P. A. U. LAS PALMAS 2005 OPCIÓN A: J U N I O 2005 1. Hallar el área encerrada por la gráfica de la función f(x) = x 3 4x 2 + 5x 2 y la rectas y = 0, x = 1 y x = 3. x 3 4x 2 + 5x 2 es una función polinómica

Más detalles

Autor: Antonio Rivero Cuesta, Tutor C.A. Palma de Mallorca

Autor: Antonio Rivero Cuesta, Tutor C.A. Palma de Mallorca Ejercicio: 4. 4. El intervalo abierto (,) es el conjunto de los números reales que verifican: a). b) < . - Intervalo abierto (a,b) al conjunto de los números reales, a < < b. 4. El intervalo

Más detalles

f (x) (1+[f (x)] 2 ) 3 2 κ(x) =

f (x) (1+[f (x)] 2 ) 3 2 κ(x) = MATEMÁTICAS II - EXAMEN PRIMER PARCIAL - 4/11/11 Grado: Ing. Electrónica Rob. y Mec. Ing. Energía Ing. Organización Ind. Nombre y Apellidos: Ejercicio 1. La curvatura de una función f en un punto x viene

Más detalles

Momento de un vector deslizante respecto a un punto. Momento de un vector deslizante respecto a un eje

Momento de un vector deslizante respecto a un punto. Momento de un vector deslizante respecto a un eje Magnitudes escalares y vectoriales Tipos de vectores Operaciones con vectores libres Momento de un vector deslizante respecto a un punto Momento de un vector deslizante respecto a un eje Magnitudes escalares

Más detalles

La cinemática es la parte de la física que se encarga del estudio del movimiento sin importar las causas que lo originan.

La cinemática es la parte de la física que se encarga del estudio del movimiento sin importar las causas que lo originan. CINEMATICA La cinemática es la parte de la física que se encarga del estudio del movimiento sin importar las causas que lo originan. SISTEMA DE REFERENCIA Lo primero que hacemos para saber que un cuerpo

Más detalles

θ = θ 1 -θ 0 θ 1 = ángulo final; θ 0 = ángulo inicial. Movimiento circular uniforme (MCU) :

θ = θ 1 -θ 0 θ 1 = ángulo final; θ 0 = ángulo inicial. Movimiento circular uniforme (MCU) : Movimiento circular uniforme (MCU) : Es el movimiento de un cuerpo cuya trayectoria es una circunferencia y describe arcos iguales en tiempos iguales. Al mismo tiempo que recorremos un espacio sobre la

Más detalles

1. Determinar las ecuaciones paramétricas y la ecuación continua de las rectas que pasan por el punto A y con el vector de dirección dado:

1. Determinar las ecuaciones paramétricas y la ecuación continua de las rectas que pasan por el punto A y con el vector de dirección dado: CAPÍTULO. GEOMETRÍA AFÍN.. Problemas. Determinar las ecuaciones paramétricas y la ecuación continua de las rectas que pasan por el punto A y con el vector de dirección dado: a) A(,, ), v = (,, ) ; b) A(0,

Más detalles

Movimiento armónico conceptos básicos

Movimiento armónico conceptos básicos Movimiento armónico conceptos básicos Llamamos movimiento oscilatorio cuando un móvil realiza un recorrido que se repite periódicamente, y que tiene un máximo y un mínimo respecto a un punto. Por ejemplo,

Más detalles

Matemáticas 4 Enero 2016

Matemáticas 4 Enero 2016 Laboratorio #1 Vectores I.- Calcule el producto escalar de los dos vectores y el coseno del ángulo entre ellos. 1) u = 3i + 2j 4k; v = i + 5j 3k 2) u = i + 2j 3k; v = 1i 2j + 3k 3) u = 1 2 i + 1 3 j +

Más detalles

Problemas de Física 1 o Bachillerato

Problemas de Física 1 o Bachillerato Problemas de Física 1 o Bachillerato Conservación de la cantidad de movimiento 1. Calcular la velocidad de la bola m 2 después de la colisión, v 2, según se muestra en la siguiente figura. El movimiento

Más detalles

Cinemática de la partícula

Cinemática de la partícula Cinemática de la partícula Física I Grado en Ingeniería de Organización Industrial Primer Curso Ana Mª Marco Ramírez Curso 2013/2014 Dpto.Física Aplicada III Universidad de Sevilla Índice Introducción

Más detalles

Unidad: Movimiento Circular

Unidad: Movimiento Circular Unidad: Movimiento Circular En esta clase estudiaremos el movimiento de un auto que se mueve con rapidez constante en línea recta y que entra a una órbita circular. El objetivo de la guía es entender de

Más detalles

CINEMÁTICA. Cinemática del punto

CINEMÁTICA. Cinemática del punto CINEMÁTICA La Cinemática es la parte de la Mecánica que estudia el movimiento de los cuerpos, prescindiendo de las causas que lo producen El objetivo de la cinemática es averiguar en cualquier instante

Más detalles

Decimos que la superficie esférica es el conjunto de los puntos del espacio tridimensional que equidistan de un punto fijo llamado centro.

Decimos que la superficie esférica es el conjunto de los puntos del espacio tridimensional que equidistan de un punto fijo llamado centro. 8 LAS SUPERFICES COMO LUGARES GEOMÉTRICOS Como hemos dicho en la página del presente capítulo, los planos, la superficie esférica, los cilindros los conos pueden tratarse con relativa facilidad en el espacio

Más detalles

Diseño Mecánico (Engranajes) Juan Manuel Rodríguez Prieto Ing. M.Sc. Ph.D.

Diseño Mecánico (Engranajes) Juan Manuel Rodríguez Prieto Ing. M.Sc. Ph.D. Diseño Mecánico (Engranajes) Juan Manuel Rodríguez Prieto Ing. M.Sc. Ph.D. Engranajes 1. Tipos de engranaje 2. Nomenclatura 3. Acción conjugada 4. Propiedades de la involuta 5. Fundamentos 6. Relación

Más detalles

4. Mecánica Rotacional

4. Mecánica Rotacional 4. Mecánica Rotacional Cinemática Rotacional: (Conceptos básicos) Radián Velocidad angular Aceleración angular Frecuencia y período Velocidad tangencial Aceleración tangencial Aceleración centrípeta Torca

Más detalles

EL MOVIMIENTO Y SU DESCRIPCIÓN

EL MOVIMIENTO Y SU DESCRIPCIÓN 1. EL VECTOR VELOCIDAD EL MOVIMIENTO Y SU DESCRIPCIÓN Se van a tener dos tipos de magnitudes: Magnitudes escalares Magnitudes vectoriales Las magnitudes escalares son aquellas que quedan perfectamente

Más detalles

3. Cinemática de la partícula: Sistemas de referencia

3. Cinemática de la partícula: Sistemas de referencia 3. Cinemática de la partícula: Sistemas de referencia 3.1.- Cinemática de la partícula 3.2.- Coordenadas intrínsecas y polares 3.3.- Algunos casos particulares de especial interés 3.1.- Cinemática de la

Más detalles

Ejercicios resueltos

Ejercicios resueltos Ejercicios resueltos Boletín 3 Movimiento armónico simple Ejercicio Una partícula que vibra a lo largo de un segmento de 0 cm de longitud tiene en el instante inicial su máxima velocidad que es de 0 cm/s.

Más detalles

EJERCICIOS BLOQUE III: GEOMETRÍA

EJERCICIOS BLOQUE III: GEOMETRÍA EJERCICIOS BLOQUE III: GEOMETRÍA (00-M-A-4) (5 puntos) Determina el centro y el radio de la circunferencia que pasa por el origen de coordenadas, tiene su centro en el semieje positivo de abscisas y es

Más detalles

Veamos sus vectores de posición: que es la ecuación vectorial de la recta:

Veamos sus vectores de posición: que es la ecuación vectorial de la recta: T.5: ECUACIONES DE LA RECTA 5.1 Ecuación vectorial de la recta Una recta queda determinada si se conoce un vector que lleve su dirección (de entre todos los vectores proporcionales), llamado vector director,

Más detalles

INTRODUCCIÓN AL MOVIMIENTO PLANO

INTRODUCCIÓN AL MOVIMIENTO PLANO NTRODUCCÓN AL MOVMENTO PLANO Índice. ntroducción al movimiento plano.. Definición cinemática de movimiento plano..................... Caso de Traslación pura........................... Caso de Rotación

Más detalles

MATEMÁTICAS II Geometría diferencial Curso de las curvas en el espacio

MATEMÁTICAS II Geometría diferencial Curso de las curvas en el espacio 1.- a) Se denomina cicloide a la curva descrita por un punto P de una circunferencia que rueda, sin deslizar, a lo largo de una recta. Si P está inicialmente en el origen O(,) y a es el radio de la circunferencia,

Más detalles

EJERCICIOS BLOQUE III: GEOMETRÍA

EJERCICIOS BLOQUE III: GEOMETRÍA EJERCICIOS BLOQUE III: GEOMETRÍA (00-M-A-4) (5 puntos) Determina el centro y el radio de la circunferencia que pasa por el origen de coordenadas, tiene su centro en el semieje positivo de abscisas y es

Más detalles

INTRODUCCIÓN AL MOVIMIENTO PLANO

INTRODUCCIÓN AL MOVIMIENTO PLANO INTRODUCCIÓN AL MOVIMIENTO PLANO Índice 1. Introducción al movimiento plano 2 1.1. Definición cinemática de movimiento plano..................... 2 1.1.1. Caso de Traslación pura...........................

Más detalles

Curvas en paramétricas y polares

Curvas en paramétricas y polares Capítulo 10 Curvas en paramétricas y polares Introducción Después del estudio detallado de funciones reales de variable real expresadas en forma explícita y con coordenadas cartesianas, que se ha hecho

Más detalles

3. 2. Pendiente de una recta. Definición 3. 3.

3. 2. Pendiente de una recta. Definición 3. 3. 3.. Pendiente de una recta. Definición 3. 3. Se llama Angulo de Inclinación α de una recta L, al que se forma entre el eje en su dirección positiva y la recta L, cuando esta se considera dirigida hacia

Más detalles

PROBLEMAS DE HOMOTECIAS Y SEMEJANZAS EN EL ESPACIO

PROBLEMAS DE HOMOTECIAS Y SEMEJANZAS EN EL ESPACIO PROBLEMAS DE HOMOTECIAS Y SEMEJANZAS EN EL ESPACIO 82 Sea T una transformación afín definida por sus ecuaciones: = 2+ 2x y ' = 2+ 2y z' = 2+ 2z a) Clasificar T y hallar sus elementos característicos b)

Más detalles

Segundo Sumario de la Cinemática del Cuerpo Rígido.

Segundo Sumario de la Cinemática del Cuerpo Rígido. Segundo Sumario de la Cinemática del Cuerpo Rígido. José María Rico Martínez. jrico@ugto.mx Departamento de Ingeniería Mecánica División de Ingenierías, Campus Irapuato-Salamanca. Universidad de Guanajuato.

Más detalles

Universidad Alonso de Ojeda. Facultad de Ingeniería GUIA DE ESTUDIO ALGEBRA LINEAL.

Universidad Alonso de Ojeda. Facultad de Ingeniería GUIA DE ESTUDIO ALGEBRA LINEAL. UNIDAD IV: VECTORES EN R2 Y R3 VECTOR Se puede considerar un vector como un segmento de recta con una flecha en uno de sus extremos. De esta forma lo podemos distinguir por cuatro partes fundamentales:

Más detalles

GEOMETRÍA: ESPACIO AFÍN

GEOMETRÍA: ESPACIO AFÍN GEOMETRÍA: ESPACIO AFÍN.- ECUACIONES DE LA RECTA EN EL PLANO..- Ecuación vectorial Sea Pab (, ) un punto de la recta r, v = ( v, v) dirección que r, y, sea (, ) en el siguiente dibujo: un vector, no nulo,

Más detalles

RELACION DE PROBLEMAS DE GEOMETRIA. Problemas propuestos para la prueba de acceso del curso 1996/97.

RELACION DE PROBLEMAS DE GEOMETRIA. Problemas propuestos para la prueba de acceso del curso 1996/97. RELACION DE PROBLEMAS DE GEOMETRIA Problemas propuestos para la prueba de acceso del curso 996/97. º. - Explica cómo se puede hallar el área de un triángulo, a partir de sus coordenadas, en el espacio

Más detalles

Matemáticas II - Geometría

Matemáticas II - Geometría PAU Matemáticas II - Geometría 2008.SEPTIEMBRE.1.- Dados los dos planos π 1 : x + y + z = 3 y π 2 : x + y αz = 0, se pide que calculeis razonadamente: a) El valor de α para el cual los planos π 1 y π 2

Más detalles

10.14 ENGRANAJES PARA EJES ALABEADOS:

10.14 ENGRANAJES PARA EJES ALABEADOS: 0.4 ENGRANAJES PARA EJES ALABEADOS: Nos referimos a ruedas dentadas que transmiten movimiento entre ejes que ni se cortan ni son paralelos, (se denominan ejes alabeados), la posición de estos ejes es invariable,

Más detalles

Apuntes de Mecánica Newtoniana Cinemática de la Partícula

Apuntes de Mecánica Newtoniana Cinemática de la Partícula Apuntes de Mecánica Newtoniana Cinemática de la Partícula Ariel Fernández Daniel Marta Introducción. En este capítulo se introducirán los elementos necesarios para la descripción del movimiento de una

Más detalles

Dicho punto fijo se llama centro, a la distancia de cualquier punto de la circunferencia al centro se acostumbra a llamar radio.

Dicho punto fijo se llama centro, a la distancia de cualquier punto de la circunferencia al centro se acostumbra a llamar radio. GEOMETRIA ANALITICA Capítulo 9 La Circunferencia 9.1. Definición Se llama circunferencia al lugar geométrico de los puntos de un plano que equidistan de un punto fijo del mismo plano. Dicho punto fijo

Más detalles

Capítulo 8. Geometría euclídea. 8.1 Problemas métricos

Capítulo 8. Geometría euclídea. 8.1 Problemas métricos Capítulo 8 Geometría euclídea 81 Problemas métricos Espacios vectoriales El plano: R 2 = { (x,y : x,y R } El espacio: R 3 = { (x,y, z : x, y, z R } Si u = λv para algún λ 0 diremos que son proporcionales:

Más detalles

TEMA 5. GEOMETRÍA ANALÍTICA

TEMA 5. GEOMETRÍA ANALÍTICA TEMA 5. GEOMETRÍA ANALÍTICA 6.1. Ecuaciones de la recta. - Vector director. - Ecuación vectorial. - Ecuaciones paramétricas. - Ecuación contínua. - Ecuación general. - Ecuación punto-pendiente. - Ecuación

Más detalles

El espacio que es objeto de nuestra atención es el espacio puntual o euclídeo.

El espacio que es objeto de nuestra atención es el espacio puntual o euclídeo. Capítulo 4 CINEMÁTICA 4.1. Introducción La cinemática es la parte de la mecánica que estudia el movimiento de los cuerpos, sin atender a las causas que lo producen. De otra forma diremos que estudia la

Más detalles

Tema 4: Movimiento en 2D y 3D

Tema 4: Movimiento en 2D y 3D Tema 4: Movimiento en 2D y 3D FISICA I, 1º Grado en Ingeniería Electrónica, Robótica y Mecatrónica Departamento de Física Aplicada III Escuela Técnica Superior de Ingeniería Universidad de Sevilla Índice

Más detalles

TEMA 6 Ejercicios / 3

TEMA 6 Ejercicios / 3 TEMA 6 Ejercicios / 1 TEMA 6: RECTAS Y PLANOS EN EL ESPACIO 1. Ecuaciones de los planos cartesianos en forma vectorial, paramétrica e implícita. Ecuaciones del plano XY: Punto del plano P 0, 0, 0 Vectores

Más detalles

UNIVERSIDAD LOS ANGELES DE CHIMBOTE

UNIVERSIDAD LOS ANGELES DE CHIMBOTE UNIVERSIDAD LOS ANGELES DE CHIMBOTE PROFESOR: EDWAR HERRERA FARFAN ALUMNO: MARTIN GUEVARA GRANDA 1.- UNIDAD II: I. CINEMATICA II. Objetivos y Conceptos III. Elementos IV. Leyes M.R.U V. Tipos de Movimiento

Más detalles

INSTRUCCIONES GENERALES Y VALORACIÓN

INSTRUCCIONES GENERALES Y VALORACIÓN UNIVERSIDADES P ÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS OFICIALES DE GRADO 215-216 MATERIA: MATEMÁTICAS II MODELO INSTRUCCIONES GENERALES Y VALORACIÓN Después

Más detalles

Tema 2 Campo de velocidades del sólido rígido

Tema 2 Campo de velocidades del sólido rígido Mecánica Clásica Tema Campo de velocidades del sólido rígido EIAE 5 de septiembre de 011 Velocidad de un punto del sólido. Deducción matricial.................................. Tensor velocidad angular......................................................

Más detalles

Tema 4: Movimiento en 2D y 3D

Tema 4: Movimiento en 2D y 3D Tema 4: Movimiento en 2D y 3D FISICA I, 1º Grado en Civil Escuela Técnica Superior de Ingeniería Universidad de Sevilla Física I, GIC, Dpto. Física Aplicada III, ETSI, Universidad de Sevilla, 2017/18 1

Más detalles

PRÁCTICA: MOMENTOS DE INERCIA Y PÉNDULO FÍSICO

PRÁCTICA: MOMENTOS DE INERCIA Y PÉNDULO FÍSICO PRÁCTICA: MOMENTOS DE INERCIA Y PÉNDULO FÍSICO Parte I: MOMENTOS DE INERCIA Objetivo: Determinar experimentalmente el momento de inercia de un disco respecto a su centro de gravedad y respecto a distintos

Más detalles

GEOMETRÍA (Selectividad 2014) 1 ALGUNOS PROBLEMAS DE GEOMETRÍA PROPUESTOS EN LAS PRUEBAS DE SELECTIVIDAD DE 2014

GEOMETRÍA (Selectividad 2014) 1 ALGUNOS PROBLEMAS DE GEOMETRÍA PROPUESTOS EN LAS PRUEBAS DE SELECTIVIDAD DE 2014 GEOMETRÍA (Selectividad 014) 1 ALGUNOS PROBLEMAS DE GEOMETRÍA PROPUESTOS EN LAS PRUEBAS DE SELECTIVIDAD DE 014 1 Aragón, junio 014 Dados el punto P (1, 1, 0), y la recta: x+ z 1= 0 s : 3x y 3= 0 Ax + By

Más detalles

2. CURVAS PLANAS, ECUACIONES PARAMÉTRICAS Y COORDENADAS POLARES

2. CURVAS PLANAS, ECUACIONES PARAMÉTRICAS Y COORDENADAS POLARES 2. CURVAS PLANAS, ECUACIONES PARAMÉTRICAS Y COORDENADAS POLARES INDICE 2.1. Curvas planas y ecuaciones paramétricas...2 2.2. Ecuaciones paramétricas de algunas curvas y su representación grafica 3 2.3.

Más detalles

Resumen de Física. Cinemática. Juan C. Moreno-Marín, Antonio Hernandez Escuela Politécnica - Universidad de Alicante

Resumen de Física. Cinemática. Juan C. Moreno-Marín, Antonio Hernandez Escuela Politécnica - Universidad de Alicante Resumen de Física Cinemática, Antonio Hernandez D.F.I.S.T.S. La Mecánica se ocupa de las relaciones entre los movimientos de los sistemas materiales y las causas que los producen. Se divide en tres partes:

Más detalles

CINEMÁTICA DEL PUNTO

CINEMÁTICA DEL PUNTO CINEMÁTICA DEL PUNTO Índice 1. Mecánica y sistemas materiales 2 1.1. Sistemas objeto de estudio............................... 2 2. Objeto de la Cinemática 2 2.1. Definición de Cinemática................................

Más detalles

Geometría Diferencial

Geometría Diferencial 1.- a) Se denomina cicloide a la curva descrita por un punto P de una circunferencia que rueda, sin deslizar, a lo largo de una recta. Si P está inicialmente en el origen O(,) y a es el radio de la circunferencia,

Más detalles

Proyecciones. Producto escalar de vectores. Aplicaciones

Proyecciones. Producto escalar de vectores. Aplicaciones Proyecciones La proyección de un punto A sobre una recta r es el punto B donde la recta perpendicular a r que pasa por A corta a la recta r. Con un dibujo se entiende muy bien. La proyección de un segmento

Más detalles

VECTORES vector Vector posición par ordenado A(a, b) representa geométricamente segmento de recta dirigido componentes del vector

VECTORES vector Vector posición par ordenado A(a, b) representa geométricamente segmento de recta dirigido componentes del vector VECTORES Un vector (Vector posición) en el plano es un par ordenado de números reales A(a, b). Se representa geométricamente por un segmento de recta dirigido, cuyo punto inicial es el origen del sistema

Más detalles

CAPITULO 7 LUGARES GEOMETRICOS 7.1 INTRODUCCION. Z R jx X jwl, si 0 W R Z

CAPITULO 7 LUGARES GEOMETRICOS 7.1 INTRODUCCION. Z R jx X jwl, si 0 W R Z CAPITULO 7 LUGARES GEOMETRICOS 7. INTRODUCCION Si tenemos elementos que pueden variar sus valores en un circuito, ya sea una resistencia una reactancia o la frecuencia de la señal de entrada, las respuestas

Más detalles

5. APLICACIONES DE LAS LEYES DE NEWTON

5. APLICACIONES DE LAS LEYES DE NEWTON 5. APLICACIONES DE LAS LEYES DE NEWTON En este capítulo extenderemos las leyes de Newton al estudio del movimiento en trayectorias curvas e incluiremos los efectos cuantitativos del rozamiento Rozamiento

Más detalles

Ecuación de la Recta en el Espacio

Ecuación de la Recta en el Espacio PreUnAB Clase # 21 Octubre 2014 Definición Un sistema de coordenadas rectangulares en el espacio está determinado por tres planos mutuamente perpendiculares, Los ejes generalmente son identificados por

Más detalles

8.- GEOMETRÍA ANÁLITICA

8.- GEOMETRÍA ANÁLITICA 8.- GEOMETRÍA ANÁLITICA 1.- PROBLEMAS EN EL PLANO 1. Dados los puntos A = (1, 2), B = (-1, 3), C = (3, 4) y D = (1, 0) halla las coordenadas de los vectores AB, BC, CD, DA y AC. Solución: AB = (-2, 1),

Más detalles

UNIVERSIDAD NACIONAL DE ASUNCIÓN FACULTAD DE INGENIERÍA CURSO PREPARATORIO DE INGENIERÍA (CPI) EJERCITARIO PRÁCTICO DE GEOMETRÍA ANALÍTICA

UNIVERSIDAD NACIONAL DE ASUNCIÓN FACULTAD DE INGENIERÍA CURSO PREPARATORIO DE INGENIERÍA (CPI) EJERCITARIO PRÁCTICO DE GEOMETRÍA ANALÍTICA UNIVERSIDAD NACIONAL DE ASUNCIÓN FACULTAD DE INGENIERÍA CURSO PREPARATORIO DE INGENIERÍA (CPI) EJERCITARIO PRÁCTICO DE GEOMETRÍA ANALÍTICA AÑO 014 CURSO PREPARATORIO DE INGENIERÍA CPI-014 TRASLACIÓN Y/O

Más detalles

que se conocen como ecuaciones cartesianas implícitas de la curva.

que se conocen como ecuaciones cartesianas implícitas de la curva. CAPÍTULO 9: INTRODUCCIÓN A CURVAS 9.1- Definición, expresiones analíticas. Sea R = {O; ı, ȷ, k } una referencia afín en A 3 siendo B = {ı, ȷ, k } una base ortonormal. Diremos que una curva es una aplicación

Más detalles

EJERCICIOS RESUELTOS DE GEOMETRÍA ANALÍTICA

EJERCICIOS RESUELTOS DE GEOMETRÍA ANALÍTICA MATEMÁTICAS EJERCICIOS RESUELTOS DE GEOMETRÍA ANALÍTICA GEOMETRÍA ANALÍTICA A Introducción teórica A Módulo y argumento de un vector A Producto escalar A3 Punto medio de un segmento A4 Ecuaciones de la

Más detalles

Pero no debemos olvidar que también hay objetos que giran con movimiento circular variado, ya sea acelerado o decelerado.

Pero no debemos olvidar que también hay objetos que giran con movimiento circular variado, ya sea acelerado o decelerado. Movimiento Circular. Se define como movimiento circular aquél cuya trayectoria es una circunferencia. El movimiento circular, llamado también curvilíneo, es otro tipo de movimiento sencillo. Estamos rodeados

Más detalles

Cinemática del Punto. e Problema 2.3 de [1]

Cinemática del Punto. e Problema 2.3 de [1] Capítulo 2 Cinemática del Punto Problema 2.1 Se considera una esfera de radio R centro O. Sean ABC las intersecciones de las esfera con tres ejes rectangulares que pasan por O. Un punto M está situado

Más detalles

TRABAJO Y ENERGIA: CURVAS DE ENERGÍA POTENCIAL:

TRABAJO Y ENERGIA: CURVAS DE ENERGÍA POTENCIAL: TRABAJO Y ENERGIA: CURVAS DE ENERGÍA POTENCIAL: Si junto con la fuerza de Van der Waals atractiva, que varía proporcionalmente a r 7, dos atómos idénticos de masa M eperimentan una fuerza repulsiva proporcional

Más detalles

TEMA 8: LA DESCRIPCION DE LOS MOVIMIENTOS: CINEMÁTICA.

TEMA 8: LA DESCRIPCION DE LOS MOVIMIENTOS: CINEMÁTICA. CURSO 2012/2013 DEPARTAMENTO DE CIENCIAS DE LA NATURALEZA FÍSICA Y QUIMICA 1º BACHILLERATO CIENCIAS Y TECNOLOGÍA Profesor: José Criado Ferrándiz TEMA 8: LA DESCRIPCION DE LOS MOVIMIENTOS: CINEMÁTICA. 1.

Más detalles

MATEMÁTICAS II PROBLEMAS DE GEOMETRÍA PAU ANDALUCÍA

MATEMÁTICAS II PROBLEMAS DE GEOMETRÍA PAU ANDALUCÍA 1 MATEMÁTICAS II PROBLEMAS DE GEOMETRÍA PAU ANDALUCÍA Ejercicio 1. (Junio 2006-A) Considera el plano π de ecuación 2x + y z + 2 = 0 y la recta r de ecuación x 5 z 6 = y =. 2 m (a) [1 punto] Halla la posición

Más detalles

F1 Mecánica del Vuelo

F1 Mecánica del Vuelo 29.4.8 Miguel Ángel Gómez G Tierno DVA/ETSIA Madrid, 8 octubre 28 ETSIA-UPM ÍNDICE Sistemas de referencia más importantes Ángulos entre los ejes cuerpo y los ejes horizonte local Ángulos entre los ejes

Más detalles

GEOMETRÍA ANALÍTICA: CÓNICAS

GEOMETRÍA ANALÍTICA: CÓNICAS GEOMETRÍA ANALÍTICA: CÓNICAS 1.- GENERALIDADES Se define lugar geométrico como el conjunto de puntos que verifican una propiedad conocida. Las cónicas que estudiaremos a continuación se definen como lugares

Más detalles

UNIVERSIDAD CENTRAL DE VENEZUELA FACULTAD DE INGENIERÍA ESCUELA BÁSICA DEPARTAMENTO DE MATEMÁTICA

UNIVERSIDAD CENTRAL DE VENEZUELA FACULTAD DE INGENIERÍA ESCUELA BÁSICA DEPARTAMENTO DE MATEMÁTICA 0 TIPO DE 0 er PROPÓSITO Con este curso, ubicado en el tercer semestre del plan de estudios, se da continuidad a la formación básica obtenida con los cursos iniciales. En el mismo, se tratan contenidos

Más detalles

1. Usando la definición correspondiente demostrar que la función. z = f(x, y) = 3x xy 2

1. Usando la definición correspondiente demostrar que la función. z = f(x, y) = 3x xy 2 1. Usando la definición correspondiente demostrar que la función es diferenciable en todo R 2. z = f(x, y = 3x xy 2 Se debe verificar que para todo (a, b en R 2, existen funciones, de = x y k = y, ɛ 1

Más detalles

I Unidad Vectores. http://tchefonsecalfaro.wordpress.com/

I Unidad Vectores. http://tchefonsecalfaro.wordpress.com/ I Unidad Vectores http://tchefonsecalfaro.wordpress.com/ Contenido 3 1 2 3 4 5 Vectores como desplazamiento Operaciones con vectores Componentes de un vector Producto escalar vectorial de dos vectores

Más detalles

Boletín de Geometría Analítica

Boletín de Geometría Analítica Boletín de Geometría Analítica 1) Si las coordenadas de los vectores a y b son (3,5) y (-2,1) respectivamente, obtén las coordenadas de: a) -2 a + 1/2 b b) 1/2 ( a +b ) - 2/3 ( a -b ) 2) Halla el vector

Más detalles

Escuela Universitaria de Ingeniería Técnica Aeronáutica Expresión Gráfica en la Ingeniería INGENIERÍA GRÁFICA

Escuela Universitaria de Ingeniería Técnica Aeronáutica Expresión Gráfica en la Ingeniería INGENIERÍA GRÁFICA Escuela Universitaria de Ingeniería Técnica Aeronáutica Expresión Gráfica en la Ingeniería INGENIERÍA GRÁFICA 4. DISEÑO TÉCNICO. 4.1 Diseño mecánico. 4.1.1 Definición y representación de Ejes y Árboles.

Más detalles

A = A < θ R = A + B + C = C+ B + A. b) RESTA O DIFERENCIA DE VECTORES ANÁLISIS VECTORIAL. Es una operación que tiene por finalidad hallar un

A = A < θ R = A + B + C = C+ B + A. b) RESTA O DIFERENCIA DE VECTORES ANÁLISIS VECTORIAL. Es una operación que tiene por finalidad hallar un ANÁLISIS VECTORIAL MAGNITUD FÍSICA Es todo aquello que se puede medir. CLASIFICACIÓN DE MAGNITUDES POR NATURALEZA MAGNITUD ESCALAR: Magnitud definida por completo mediante un número y la unidad de medida

Más detalles

13. GEOMETRÍA ANALÍTICA EN R 3

13. GEOMETRÍA ANALÍTICA EN R 3 ESCUELA TÉCNICA SUPERIOR DE NÁUTICA Y MÁQUINAS NAVALES / NAUTIKAKO ETA ITSASONTZI MAKINETAKO GOI ESKOLA TEKNIKOA 13. GEOMETRÍA ANALÍTICA EN R 3 I. Generalidades sobre Geometría analítica en R 3 - II. Ecuaciones

Más detalles

MOVIMIENTO RECTILINEO VARIADO O ACELERADO (MRV - A)

MOVIMIENTO RECTILINEO VARIADO O ACELERADO (MRV - A) MOVIMIENTO RECTILINEO VARIADO O ACELERADO (MRV - A) Cinemática La cinemática es la parte de la mecánica clásica que estudia las leyes del movimiento de los cuerpos sin tener en cuenta las causas que lo

Más detalles

Actividad 12: Lectura Capítulo 7

Actividad 12: Lectura Capítulo 7 Actividad 12: Lectura Capítulo 7 Fecha de inicio Fecha de Cierre 17/OCT/13 00:00 09/NOV/13 23:55 La recta De las figuras geométricas la más sencilla es la recta, ya que los parámetros que la caracterizan

Más detalles

Tema 3: Cinemática del punto

Tema 3: Cinemática del punto Tema 3: Cinemática del punto FISICA I, 1º Grado en Ingeniería Civil Escuela Técnica Superior de Ingeniería Universidad de Sevilla 1 Índice Introducción Ecuaciones de una curva Velocidad y aceleración Movimientos

Más detalles

Ejercicios resueltos.

Ejercicios resueltos. E.T.S. Arquitectura Curvas y super cies. Ejercicios resueltos.. Sea la curva intersección de la super cie z = xy con el cilindro parabólico y = x. Se pide: (a) En el punto P de coordenadas (0; 0; 0), obtener

Más detalles

Cinemática del sólido rígido, ejercicios comentados

Cinemática del sólido rígido, ejercicios comentados Ejercicio 4, pag.1 Planteamiento Se sueldan tres varillas a una rótula para formar la pieza de la Figura 1. El extremo de la varilla OA se mueve sobre el plano inclinado perpendicular al plano xy mientras

Más detalles

Prof. Jorge Rojo Carrascosa CINEMÁTICA

Prof. Jorge Rojo Carrascosa CINEMÁTICA CINEMÁTICA La cinemática estudia el movimiento de los cuerpos sin tener en cuenta las causas que los producen. Por tanto, tan sólo se ocupa de los aspectos externos como son el desplazamiento, el espacio

Más detalles

k. R: B = 0,02 i +0,03 j sobre un conductor rectilíneo por el

k. R: B = 0,02 i +0,03 j sobre un conductor rectilíneo por el FUERZAS SOBRE CORRIENTES 1. Un conductor de 40 cm de largo, con una intensidad de 5 A, forma un ángulo de 30 o con un campo magnético de 0,5 T. Qué fuerza actúa sobre él?. R: 0,5 N 2. Se tiene un conductor

Más detalles

2. Determine el área del triángulo cuyos vértices son los extremos de los vectores u, v y w u = (1,0,-2) v = (-1,1,0) w = (2,-1,1)

2. Determine el área del triángulo cuyos vértices son los extremos de los vectores u, v y w u = (1,0,-2) v = (-1,1,0) w = (2,-1,1) 2011 ÁLGEBRA II (L. S. I. P. I.) Guíía de Trabajjos Prácttiicos Nºº 4 Facultad de Ciencias Exactas y Tecnologías UNIVERSIDAD NACIONAL DE SANTIAGO DEL ESTERO Prroducctto Veeccttorriiall.. Reecctta.. Pllano

Más detalles

Mecánica del Vuelo del Avión

Mecánica del Vuelo del Avión Mecánica del Vuelo del Avión Parte I: Actuaciones del Avión Sergio Esteban Roncero Francisco Gavilán Jiménez Departamento de Ingeniería Aeroespacial y Mecánica de Fluidos Escuela Superior de Ingenieros

Más detalles

1.1. Movimiento armónico simple

1.1. Movimiento armónico simple Problemas resueltos 1.1. Movimiento armónico simple 1. Un muelle cuya constante de elasticidad es k está unido a una masa puntual de valor m. Separando la masa de la posición de equilibrio el sistema comienza

Más detalles

TEMA N 2 RECTAS EN EL PLANO

TEMA N 2 RECTAS EN EL PLANO 2.1 Distancia entre dos puntos1 TEMA N 2 RECTAS EN EL PLANO Sean P 1 (x 1, y 1 ) y P 2 (x 2, y 2 ) dos puntos en el plano. La distancia entre los puntos P 1 y P 2 denotada por d = esta dada por: (1) Demostración

Más detalles

Rectas y Parábolas. Sistemas de coordenadas rectangulares (Plano Cartesiano)

Rectas y Parábolas. Sistemas de coordenadas rectangulares (Plano Cartesiano) Rectas y Parábolas Prof. Gabriel Rivel Pizarro Sistemas de coordenadas rectangulares (Plano Cartesiano) El sistemas de coordenadas rectangulares se representa en un plano, mediante dos rectas perpendiculares.

Más detalles

Coordenadas polares en el plano. Coordenadas ciĺındricas y esféricas en el espacio. Coordenadas... Coordenadas... Coordenadas...

Coordenadas polares en el plano. Coordenadas ciĺındricas y esféricas en el espacio. Coordenadas... Coordenadas... Coordenadas... En el estudio de los conjuntos y las funciones es fundamental el sistema que se utilize para representar los puntos. Estamos acostumbrados a utilizar la estructura de afín o de vectorial de R n, utilizando

Más detalles

TEMA 1 CINEMATICA MOVIMIENTOS EN DOS DIMENSIONES MOVIMIENTO CIRCULAR

TEMA 1 CINEMATICA MOVIMIENTOS EN DOS DIMENSIONES MOVIMIENTO CIRCULAR TEMA 1 CINEMATICA MOVIMIENTOS EN DOS DIMENSIONES MOVIMIENTO CIRCULAR CONTENIDOS REPASO DEL ÁLGEBRA VECTORIAL Proyección, componentes y módulo de un vector Operaciones: suma, resta, producto escalar y producto

Más detalles

Física General I. Curso 2014 - Primer semestre Turno Tarde. Contenidos de las clases dictadas

Física General I. Curso 2014 - Primer semestre Turno Tarde. Contenidos de las clases dictadas Física General I Curso 2014 - Primer semestre Turno Tarde Contenidos de las clases dictadas 14/3 - Introducción: qué es la Física, áreas de la Física y ubicación de la Mecánica Newtoniana en este contexto,

Más detalles

CURSO BÁSICO DE MATEMÁTICAS PARA ESTUDIANTES DE ECONÓMICAS Y EMPRESARIALES. Unidad didáctica 4. Números reales y números complejos

CURSO BÁSICO DE MATEMÁTICAS PARA ESTUDIANTES DE ECONÓMICAS Y EMPRESARIALES. Unidad didáctica 4. Números reales y números complejos CONCEPTOS NÚMEROS COMPLEJOS En el conjunto de los números reales, una ecuación tan sencilla como x + = 0 no se puede resolver ya que es equivalente a x = - y no existe ningún número real cuyo cuadrado

Más detalles

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA AERONÁUTICA Y DEL ESPACIO FÍSICA I

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA AERONÁUTICA Y DEL ESPACIO FÍSICA I ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA AERONÁUTICA Y DEL ESPACIO FÍSICA I PROBLEMAS PROPUESTOS 2.- CINEMÁTICA DE LA PARTÍCULA 2 Cinemática de la partícula PROBLEMA PROPUESTO 2.1. Para la curva de ecuación

Más detalles

PRÁCTICA REMOTA PÉNDULO FÍSICO AMORTIGUADO

PRÁCTICA REMOTA PÉNDULO FÍSICO AMORTIGUADO PRÁCTICA REMTA PÉNDUL FÍSIC AMRTIGUAD 1. BJETIV Estudio del comportamiento de un péndulo físico débilmente amortiguado. Determinación de la constante de amortiguamiento, γ, del periodo, T, de la frecuencia

Más detalles