5. PÉNDULO SIMPLE. MEDIDA DE g
|
|
|
- Inés Aguilar Marín
- hace 9 años
- Vistas:
Transcripción
1 5. PÉNDULO SIMPLE. MEDIDA DE g OBJETIVO El objetivo de la práctica es medir la aceleración de la gravedad en el laboratorio, g, a partir del estudio del movimiento armónico de un péndulo simple. MATERIAL Péndulo Cronómetro Dispositivo para variar la longitud del péndulo Regla graduada 1
2 FUNDAMENTO TEÓRICO El péndulo simple está formado por una masa m, suspendida de un punto fijo O por medio de un hilo inextensible de masa despreciable y longitud l, que oscila alrededor de otro punto fijo en la misma vertical que O. Se trata de un sistema que transforma la energía potencial (relativa a su altura vertical) en energía cinética (relativa a su velocidad) y viceversa, debido a la acción de la fuerza gravitatoria mg que ejerce la Tierra sobre la masa m (más concretamente, a la componente de esta fuerza perpendicular al hilo, también llamada restauradora porque se dirige hacia la posición de equilibrio del péndulo; la otra componente, en la dirección del hilo, tiene igual módulo pero con sentido opuesto a la tensión que el hilo produce sobre la masa, por lo que no interviene en el movimiento del péndulo). El movimiento oscilatorio resultante queda caracterizado por los siguientes parámetros: Oscilación completa o ciclo: es el desplazamiento de la esfera desde uno de sus extremos más alejados de la posición de equilibrio hasta su punto simétrico (pasando por la posición de equilibrio) y desde este punto de nuevo hasta la posición inicial, es decir, dos oscilaciones sencillas. Periodo: es el tiempo empleado por la esfera en realizar un ciclo u oscilación completa. Frecuencia: es el número de ciclos realizados en la unidad de tiempo. Amplitud: es el máximo valor de la elongación o distancia hasta el punto de equilibrio, que depende del ángulo α entre la vertical y el hilo. Para pequeñas amplitudes (senα α), el movimiento oscilatorio del péndulo es armónico simple, y el periodo de oscilación T viene dado por la fórmula: T l = π [5-1] g Es decir, el tiempo de oscilación no depende ni de la masa m ni (para amplitudes pequeñas) de la amplitud inicial, por lo que puede calcularse g a partir de medidas de tiempos ( T ) y longitudes ( l ): g l T = 4π [5-] El valor de g disminuye con la profundidad (hacia el interior de la Tierra) y con la altura (hacia el espacio exterior) tomando su valor máximo para un radio igual al terrestre. En la superficie terrestre, g varía con la latitud (la tierra no es esférica sino que posee una forma más irregular denominada geoide): el valor de g es menor en el ecuador que en los polos (g e = m/s ; g p = m/s ). También g varía con la altitud respecto al nivel del mar y con las anomalías de densidad de la corteza terrestre.
3 La fuerza centrífuga también varía el módulo y la dirección de la aceleración de la gravedad a distintas latitudes (es máxima en el ecuador, donde ω R 0.03 m/s ). El péndulo simple, además de servir para calcular el valor de g con una considerable precisión, tiene muchas otras aplicaciones. Se utiliza generalmente en la fabricación de relojes para la medición del tiempo. Pero también sirve, puesto que un péndulo oscila en un plano fijo, como prueba efectiva de la rotación de la Tierra, aunque estuviera siempre cubierta de nubes: En 1851 Jean Leon Foucault colgó un péndulo de 67 metros de largo de la cúpula de los Inválidos en Paris (latitud 49º). Un recipiente que contenía arena estaba sujeto al extremo libre; el hilo de arena que caía del cubo mientras oscilaba el péndulo señalaba la trayectoria: demostró experimentalmente que el plano de oscilación del péndulo giraba 11º 15 cada hora 1, y por tanto que la Tierra rotaba. MÉTODO Se mide la longitud l del péndulo, esto es, desde el extremo fijo O al centro de masa de la esfera. Observa las irregularidades de tu esfera y traslada el centro de masa estimado de la esfera a la escala vertical milimetrada. Procura observar la esfera perpendicularmente al plano de la escala milimetrada para evitar efectos de paralaje, y comprueba si existe algún error de cero en el punto fijo del péndulo. Se separa el péndulo de su posición de equilibrio y se deja oscilar libremente, procurando que el movimiento se produzca en un plano. Cuando la oscilación sea de amplitud pequeña, se cronometra la duración t de 40 oscilaciones completas (ida y vuelta). El periodo experimental T vendrá dado por: T = t / 40. [5-3] Sobre la precisión de los aparatos de que dispones, establece la incertidumbre de tu medida personal para cronometrar tiempos y precisar la longitud del péndulo. (Recuerda que solo debes usar una cifra significativa para el valor de la incertidumbre). Se realizarán 10 medidas de t para otras tantas longitudes diferentes, modificando la longitud l del péndulo con ayuda de los ganchos de la escala (dispuestos de 10 cm en 10 cm aproximadamente). Anota en la tabla adjunta las medidas obtenidas, expresando los valores de t y de l que mides de forma concordante a las incertidumbres t y l establecidas para tus correspondientes medidas directas. Para cada par de valores de longitud y periodo, calcula los correspondientes valores de T y T y, utilizando la ecuación [5-], el respectivo valor de g. Los valores de las diferentes incertidumbres indirectas T, T y g las calcularás posteriormente. Dibuja en el papel milimetrado que se te adjunta una gráfica de T en función de la longitud del péndulo l, en la que se reflejen tus resultados experimentales. Utiliza en la gráfica una escala conveniente y unidades adecuadas en sus ejes. Comprueba que tus datos experimentales guardan una relación lineal, ya que teóricamente: T = (4π /g) l. Observa si algún punto se desvía de esa tendencia, o si su valor calculado para g difiere considerablemente del resto. Si es así prueba a repetir el experimento para la longitud correspondiente. 1 La fuerza de Coriolis es la responsable de la rotación del plano del péndulo de Foucault, la circulación del aire alrededor de los centros de baja o alta presión, la desviación de la trayectoria de proyectiles de largo alcance, la rotación del agua cuando sale por el desagüe de la bañera, etc. Ver simulación en: 3
4 Nombre Curso Fecha : Apellidos Grupo Letra de prácticas Tabla (5.1): DATOS EXPERIMENTALES APARATO DE MEDIDA Precisión del aparato Incertidumbre de la medida (variable a medir) Cronómetro (t) t = t = Escala milimetrada (l) l = l = Longitud del péndulo, L Tiempo de 40 oscilaciones, t i 1 Periodo de una oscilación, T Cuadrado del periodo, T Valor experimental de g Medidas repetidas 4
5 Nombre Curso Fecha : Apellidos Grupo Letra de prácticas RESUMEN DE RESULTADOS (A) Deduce las expresiones generales de las incertidumbres de medida indirecta T, T y g, a partir de su dependencia de las medidas directas realizadas. T = FÓRMULAS GENÉRICAS T = g = Calcula numéricamente T y, para cada par de valores de longitud y periodo, las incertidumbres T i y g, i sin redondear a una cifra significativa e indicando las unidades respectivas en los paréntesis. T = I T i g i Expresa, para cada par de valores de longitud y periodo, los valores obtenidos en las medidas indirectas de la tabla (5.1) en concordancia decimal con las incertidumbres de medida indirecta T, T i y g i, a su vez redondeadas a una sola cifra significativa. Indica las unidades utilizadas en cada caso. Tabla (5.): Longitud del péndulo, (l ± l) unidades Tiempo de 40 oscilaciones, (t ± t) unidades i 1 Periodo de una oscilación, (T ± T) unidades Cuadrado del periodo, (T ± T ) unidades Valor experimental de la gravedad, (g ± g) unidades
6 (B) Ajusta a una recta por el método de la regresión lineal los valores experimentales obtenidos para el cuadrado del periodo, T, en función de la longitud del péndulo, l. Rellena en los respectivos paréntesis las unidades que asignas a las variables X i e Y i, teniendo en cuenta que T = (4π /g) l. i 1 Y i X i X i Y i X i Σ Calcula los valores de la pendiente de ajuste, m, y de la ordenada en el origen, c, con sus respectivas unidades: Variable Valor Unidades m c Representa en el papel milimetrado la recta de ajuste dándole valores a la ecuación de la recta obtenida. Es coherente tu valor de c? Por qué? A partir del valor de la pendiente m de la recta de ajuste y=mx+c, calcula el valor de la gravedad g m, con sus unidades, que se obtiene comparando la regresión lineal con la fórmula T = (4π /g) l. g m = (C) Compara críticamente todos los valores de g obtenidos (los g i obtenidos a partir de las medidas individuales y el calculado a partir de la pendiente, g m ) con el valor teórico de 9.8 m/s. 6
7 CUESTIONES Por qué no es conveniente medir directamente el periodo midiendo el tiempo de una sola oscilación, en vez de medir el tiempo de 40 oscilaciones? Observando los datos, se ve alguna dependencia de la incertidumbre de medida indirecta g i respecto a la longitud del péndulo, l? Afectaría al periodo de un péndulo que su masa variase mientras oscila, como en la experiencia de Foucault? Usando la ecuación [5.), indica qué efectos producirían los siguientes viajes sobre un reloj de péndulo que funcione correctamente a nuestras latitudes: un viaje al polo norte, al Ecuador, una ascensión en globo y un descenso a grandes profundidades. Razona, con ayuda de los siguientes textos sobre los estudios gravimétricos, si la corrección lunisolar hubiera afectado a la precisión de tus medidas experimentales de g. [...] no podemos abrir de forma sistemática y hasta sus más recónditas entrañas nuestro planeta, pero sí medir parámetros físicos que, de forma indirecta, nos permitan deducir su estructura, composición, actividad, etc. La densidad es uno de estos parámetros y precisamente del que trata la gravimetría. Observamos que la aceleración de la gravedad, g, depende: de un valor constante (constante de gravitación); de un valor conocido en cada lugar de la tierra (el radio); y de la masa de la Tierra. La masa es, a su vez, función del volumen de la tierra (también constante) y de la densidad. Luego las variaciones de g, una vez realizadas todas las correcciones y tratamientos que no creemos necesario detallar ahora, son en definitiva función de las variaciones de la densidad que se derivan de las distintas composiciones o estructuras que constituyen nuestro planeta. Son, por tanto, indicadores de zonas de alta y baja densidad, con rápido o suave paso de unas a otras, de heterogeneidades profundas (de gran longitud de onda) o superficiales (generalmente de corta longitud). Su posterior trasposición a información geológica, nos permite deducir situación de cuencas sedimentarias; intrusiones volcánicas, cuerpos mineralizados, fallas, zonas de subducción, etc. [...] Para ello los gravímetros tienen que alcanzar elevados niveles de precisión. Las variaciones de g a detectar son de unas pocas unidades (o incluso décimas o centésimas) de las aproximadamente en que se convierte los 9.8 m/seg clásicos si los expresamos en milésimas de cm/seg. Al cm/seg se le denomina gal, en honor a Galileo, y las unidades de trabajo son, por tanto, los miligales, y sus correspondientes submúltiplos [...] Corrección por marea lunisolar: Esta corrección es debida a la atracción que ejercen el Sol y la Luna sobre el punto de estación en el momento de efectuar la medida, depende del lugar, hora y fecha de observación, no es lineal, y según la precisión de las medidas deberá tenerse en cuenta ya que alcanza valores de hasta 0.30 mgal. 7
PRÁCTICA: MOMENTOS DE INERCIA Y PÉNDULO FÍSICO
PRÁCTICA: MOMENTOS DE INERCIA Y PÉNDULO FÍSICO Parte I: MOMENTOS DE INERCIA Objetivo: Determinar experimentalmente el momento de inercia de un disco respecto a su centro de gravedad y respecto a distintos
Módulo MOVIMIENTO PENDULAR C.N. Física Lic. Orlando Chaparro Ch. 1 MOVIMIENTO PENDULAR
Módulo MOVIMIENTO PENDULAR C.N. Física Lic. Orlando Chaparro Ch. 1 MOVIMIENTO PENDULAR PÉNDULO: Es un sistema físico que puede oscilar bajo la acción gravitatoria u otra característica física y que está
MOVIMIENTO ARMÓNICO AMORTIGUADO
MOVIMIENTO ARMÓNICO AMORTIGUADO OBJETIVO Medida experimental de la variación exponencial decreciente de la oscilación en un sistema oscilatorio de bajo amortiguamiento. FUNDAMENTO TEÓRICO A) SISTEMA SIN
Problemas de Física 1 o Bachillerato
Problemas de Física 1 o Bachillerato Conservación de la cantidad de movimiento 1. Calcular la velocidad de la bola m 2 después de la colisión, v 2, según se muestra en la siguiente figura. El movimiento
Fecha de realización:... Fecha de entrega:... Comisión:... Apellidos Nombres:...
ASIGNATURA: FÍSICA I TRABAJO PRÁCTICO Nº 1: GRÁFICOS Y ESCALAS Fecha de realización:... Fecha de entrega:... Comisión:... Apellidos Nombres:... y......... 1. Objetivo del trabajo: Construcción de gráficos,
Con la ayuda de el dinamómetro implementamos el segundo método de aplicación y medición de fuerzas.
EXPERIMENTO # 1: LEY DE HOOKE MEDICIÓN DE FUERZAS Objetivo: Estudios de las propiedades de un dinamómetro mediante la aplicación de fuerza conocidas. Fundamento Teórico: El concepto de fuerza es definido
8. DETERMINACIÓN DE LA DENSIDAD DE UN SÓLIDO
8. DETERMINACIÓN DE LA DENSIDAD DE UN SÓLIDO OBJETIVO El objetivo de la práctica es determinar la densidad de un sólido. Para ello vamos a utilizar dos métodos: Método 1 : Cálculo de la densidad de un
9. MEDIDA DE LA DENSIDAD DE LÍQUIDOS
9. MEDIDA DE LA DENSIDAD DE LÍQUIDOS OBJETIVO El objetivo de la practica es determinar la densidad de líquidos utilizando la balanza de Möhr y su aplicación a la determinación de la densidad de disoluciones
PRÁCTICA 3: MEDIDAS DE LONGITUDES, PESOS Y TIEMPOS.
PRÁCTICA : MEDIDAS DE LONGITUDES, PESOS Y TIEMPOS. MEDIDA DE DIMENSIONES GEOMÉTRICAS CON EL PALMER Y EL CALIRADOR. Con esta práctica se pretende que el alumno se familiarice con el manejo de distintos
Más ejercicios y soluciones en fisicaymat.wordpress.com
OSCILACIONES Y ONDAS 1- Todos sabemos que fuera del campo gravitatorio de la Tierra los objetos pierden su peso y flotan libremente. Por ello, la masa de los astronautas en el espacio se mide con un aparato
Ejercicios de M.A.S y Movimiento Ondulatorio de PAU
1. En el laboratorio del instituto medimos cinco veces el tiempo que un péndulo simple de 1m de longitud tarda en describir 45 oscilaciones de pequeña amplitud. Los resultados de la medición se muestran
2. Un sistema de masa-resorte realiza 50 oscilaciones completas en 10 segundos. Cuál es el período y la frecuencia de las oscilaciones?
Movimiento armónico simple Problemas del capítulo 1. Un sistema de masa-resorte realiza 20 oscilaciones completas en 5 segundos. Cuál es el período y la frecuencia de las oscilaciones? 2. Un sistema de
Movimiento armónico conceptos básicos
Movimiento armónico conceptos básicos Llamamos movimiento oscilatorio cuando un móvil realiza un recorrido que se repite periódicamente, y que tiene un máximo y un mínimo respecto a un punto. Por ejemplo,
Ejercicios de M.A.S y Movimiento Ondulatorio de PAU
1. En el laboratorio del instituto medimos cinco veces el tiempo que un péndulo simple de 1m de longitud tarda en describir 45 oscilaciones de pequeña amplitud. Los resultados de la medición se muestran
Campo Eléctrico. Fig. 1. Problema número 1.
Campo Eléctrico 1. Cuatro cargas del mismo valor están dispuestas en los vértices de un cuadrado de lado L, tal como se indica en la figura 1. a) Hallar el módulo, dirección y sentido de la fuerza eléctrica
F2 Bach. Movimiento armónico simple
F Bach Movimiento armónico simple 1. Movimientos periódicos. Movimientos vibratorios 3. Movimiento armónico simple (MAS) 4. Cinemática del MAS 5. Dinámica del MAS 6. Energía de un oscilador armónico 7.
Movimiento Circular Movimiento Armónico
REPÚBLICA BOLIVARIANA DE VENEZUELA MINISTERIO DEL PODER POPULAR PARA LA EDUCACIÓN LICEO BRICEÑO MÉNDEZ S0120D0320 DPTO. DE CONTROL Y EVALUACIÓN PROFESOR: gxâw á atätá 4to Año GUIA # 9 /10 PARTE ( I ) Movimiento
4.1. Movimiento oscilatorio: el movimiento vibratorio armónico simple.
4.1. Movimiento oscilatorio: el movimiento vibratorio armónico simple. 4.1.1. Movimiento oscilatorio características. 4.1.2. Movimiento periódico: período. 4.1.3. Movimiento armónico simple: características
7. PÉNDULO DE TORSIÓN
7. PÉNDULO DE TORSÓN OBJETVO El objetivo de la práctica es comprobar la dependencia del momento de inercia de un objeto respecto a la distancia al centro de rotación y realizar la medición del momento
Física Mecánica. Sesión de Problemas Experimento. TEMA: TEOREMA DEL TRABAJO Y LA ENERGÍA. PRINCIPIO DE CONSERVACIÓN DE LA ENERGÍA.
TEM: TEOREM DEL TRJO Y L ENERGÍ. PRINCIPIO DE CONSERVCIÓN DE L ENERGÍ. Problema experimento #10: Trabajo y Conservación de la energía con plano inclinado. Medir el espesor de un pequeño bloque de madera
PRÁCTICA 1. Mediciones
PRÁCTICA 1 Mediciones Objetivo General El alumno determinará la incertidumbre de las mediciones. Objetivos particulares 1. El alumno determinará las incertidumbres a partir de los instrumentos de medición..
2. Cálculo de errores. y presentación de resultados experimentales
Cálculo de errores y presentación de resultados experimentales Para determinar el valor real de una magnitud física, se realizan medidas de ella, normalmente mediante la cuenta de un número de sucesos
Medidas y errores. Introducción teórica: Recordemos que medir es comparar una magnitud con otra de la misma especie que
Medidas y errores. Introducción teórica: Recordemos que medir es comparar una magnitud con otra de la misma especie que se toma como unidad. El proceso de medida se puede realizar comparando directamente
Péndulo de Foucault. Péndulo de Foucault
M E C Á N I C A Péndulo de Foucault Péndulo de Foucault M E C Á N I C A En 1851 Leon Foucault, físico francés nacido en París en 1819, realiza uno de los experimentos más espectaculares de la historia
PRUEBA ESPECÍFICA PRUEBA 2011
PRUEBA DE ACCESO A LA UNIVERSIDAD MAYORES PRUEBA ESPECÍFICA PRUEBA 2011 PRUEBA SOLUCIONARIO Aclaraciones previas Tiempo de duración de la prueba: 1 hora Contesta 4 de los 5 ejercicios propuestos (Cada
k. R: B = 0,02 i +0,03 j sobre un conductor rectilíneo por el
FUERZAS SOBRE CORRIENTES 1. Un conductor de 40 cm de largo, con una intensidad de 5 A, forma un ángulo de 30 o con un campo magnético de 0,5 T. Qué fuerza actúa sobre él?. R: 0,5 N 2. Se tiene un conductor
Medición de g con péndulo simple
Laboratorio de Mecánica, Práctica 3, Equipo 3 (015) Medición de con péndulo simple S. R, Cabrera Fajardo 1, C, Caudillo Ortea 1, L. R, Flores Gómez 1, I. N, Ramírez Montiel 1, D. L, Zaraoza Vázquez 1.
UNIDAD 13: EL MOVIMIENTO Y LAS FUERZAS
UNIDAD 13: EL MOVIMIENTO Y LAS FUERZAS Lee atentamente: 1. EL MOVIMIENTO Decimos que un cuerpo se mueve cuando cambia de posición respecto a un sistema de referencia que se considera fijo. Por ejemplo:
La materia es todo aquello que nos rodea, ocupa un lugar en el espacio y tiene masa.
Todo es materia Cuando estudiamos el Universo describimos una serie de elementos que forman parte de él, como los cuerpos grandes y pequeños, las sustancias que lo componen, etcétera. Qué es? Todos ellos
Mecánica Cuestiones y Problemas PAU 2002-2009 Física 2º Bachillerato
Mecánica Cuestiones y Problemas PAU 00009 Física º Bachillerato 1. Conteste razonadamente a las siguientes a) Si la energía mecánica de una partícula permanece constante, puede asegurarse que todas las
Deducir la ley de Hooke a partir de la experimentación. Identificar los pasos del método científico en el desarrollo de este experimento.
LABORATORIO DE FISICA I LEY DE HOOKE UNIVERSIDAD TECNOLÓGICA DE PEREIRA PEREIRA RISARALDA OBJETIVOS Verificar la existencia de fuerzas recuperadas. Identificar las características de estas fuerzas. Deducir
CAMPO GRAVITATORIO. 9. Define el concepto de momento angular. Deduce el teorema de conservación del mismo.
1. A qué altura sobre la superficie de la Tierra colocaremos un satélite para que su órbita sea geoestacionaria sobre el un punto del Ecuador? RT = 6370 Km (R h= 36000 Km) 2. La Luna en su movimiento uniforme
Ejercicios resueltos
Ejercicios resueltos Boletín 3 Movimiento armónico simple Ejercicio Una partícula que vibra a lo largo de un segmento de 0 cm de longitud tiene en el instante inicial su máxima velocidad que es de 0 cm/s.
LOS CUESTIONARIOS TIENEN RELACIÓN CON LOS CAPITULOS XX Y XXI DEL TEXTO GUÍA (FÍSCA PRINCIPIOS CON APLICACIONES SEXTA EDICIÓN DOUGLAS C.
LOS CUESTIONARIOS TIENEN RELACIÓN CON LOS CAPITULOS XX Y XXI DEL TEXTO GUÍA (FÍSCA PRINCIPIOS CON APLICACIONES SEXTA EDICIÓN DOUGLAS C. Giancoli AL DESARROLLAR LOS CUESTIONARIOS, TENER EN CUENTA LOS PROCESOS
PLANO INCLINADO. Para la realización de esta práctica el alumno deberá venir al laboratorio provisto con hojas de papel milimetrado.
PLANO INCLINADO Para la realización de esta práctica el alumno deberá venir al laboratorio provisto con hojas de papel milimetrado. Objetivo: Verificar experimentalmente la descomposición de fuerzas en
GUIA DE ESTUDIO TEMA: DINAMICA
GUIA DE ESTUDIO TEMA: DINAMICA A. PREGUNTAS DE TIPO FALSO O VERDADERO A continuación se presentan una serie de proposiciones que pueden ser verdaderas o falsas. En el paréntesis de la izquierda escriba
v m 2 d 4 m d 4 FA FCP m k
Concepto de campo: Se define un campo como una zona del espacio en la que se deja sentir una magnitud; a cada punto del espacio se le puede dar un valor de esa magnitud en un instante determinado. Los
Ley de Gravitación Universal
Física y Química 1º Bachillerato LOMCE FyQ 1 IES de Castuera 2015 2016 Tema 9.2 Rev 01 Ley de Gravitación Universal Ley de Gravitación Universal 1 El Movimiento de los Planetas. Leyes de Kepler Johannes
María Paula Coluccio y Patricia Picardo Laboratorio I de Física para Biólogos y Geólogos Depto. de Física, FCEyN, UBA 1999
María Paula Coluccio y Patricia Picardo Laboratorio I de Física para Biólogos y Geólogos Depto. de Física, FCEyN, UBA 1999 En el presente trabajo nos proponemos estimar el valor de la aceleración de la
Momento magnético de un iman
Momento magnético de un iman Petriella Alberto, Rodriguez Imazio Paola, Urdaniz Corina. [email protected], [email protected], [email protected] Facultad de Ciencias Exactas, Laboratorio
6. Un hombre de 70 kg de masa se encuentra en la cabina de un ascensor, cuya altura es de 3 m.
1 1. De los extremos de una cuerda que pasa por la garganta de una polea sin rozamiento y de masa despreciable, cuelgan dos masas iguales de 200 gramos cada una. Hallar la masa que habrá de añadirse a
23. MICROSCOPIO COMPUESTO: DETERMINACIÓN DE SU AUMENTO y MEDIDA DE ÁREAS MICROSCÓPICAS
23. MICROSCOPIO COMPUESTO: DETERMINACIÓN DE SU AUMENTO y MEDIDA DE ÁREAS MICROSCÓPICAS OBJETIVO El objetivo de la práctica es familiarizarse con el uso del microscopio, determinar el aumento lineal de
/Ejercicios de Campo Eléctrico
/Ejercicios de Campo Eléctrico 1-Determine la fuerza total actuante sobre q2 en el sistema de la figura. q 1 = 12 µ C q 2 = 2.0 µ C q 3 = 12 µ C a= 8,0 cm b= 6,0 cm 2-Determine la fuerza total actuante
CONCEPTOS - VIBRACIÓN:
TEMA: EL SONIDO CONCEPTOS MOVIMIENTO: - OSCILATORIO O VIBRATORIO: - CONCEPTO - ELEMENTOS - ONDULATORIO: - CONCEPTO - ELEMENTOS - ONDAS LONGITUDINALES Y TRANSVERSALES EL SONIDO: - CONCEPTO - CARACTERÍSTICAS
Prueba experimental. Determinación de la capacidad de un condensador. Pila
Objetivo. Prueba experimental. Determinación de la capacidad de un condensador Se va a estudiar experimentalmente el proceso de carga de un condensador a través de una resistencia, y se deducirá la capacidad
Respecto a la fuerza neta que actúa sobre un cuerpo, es correcto afirmar que
Guía práctica Dinámica I: fuerza y leyes de Newton Física Estándar Anual Nº Ejercicios PSU Para esta guía considere que la magnitud de la aceleración de gravedad (g) es 10 1. 2. GUICES016CB32-A16V1 m.
UNIDAD 2: DINÁMICA. LAS FUERZAS Y SUS EFECTOS.
UNIDAD 2: DINÁMICA. LAS FUERZAS Y SUS EFECTOS. 1. FUERZAS Y SUS EFECTOS. La Dinámica es una parte de la Física que estudia el movimiento de los cuerpos, atendiendo a las causas que lo producen. Son las
EXTRAPOLACIÓN DESDE EL PLANO INCLINADO A LA CAÍDA LIBRE
RETOMANDO A GALILEO: MEDIDA DE LA GRAVEDAD POR EXTRAPOLACIÓN DESDE EL PLANO INCLINADO A LA CAÍDA LIBRE 1.- INTRODUCCIÓN El presente trabajo de investigación nace de una pregunta de clase: Un cuerpo más
Valor evaluación = 70 % Fecha de entrega: Agosto 20 de 2012. Valor presentación taller = 30% Fecha de evaluación: a partir de agosto 20 de 2012.
COLEGIO NACIONAL LOPERENA FISICA GRADO UNDECIMO PLAN DE RECUPERACION DE FISICA (SEGUNDO PERIODO) TEMPERATURA CALOR MOVIMIENTO PERIÓDICO MOVIMIENTO ARMÓNICO SIMPLE MOVIMIENTO PENDULAR. NOTA: Desarrolla
El sonido dejará de ser audible cuando su intensidad sea menor o igual a la intensidad umbral:
P.A.U. MADRID JUNIO 2005 Cuestión 1.- El nivel de intensidad sonora de la sirena de un barco es de 60 db a 10 m de distancia. Suponiendo que la sirena es un foco emisor puntual, calcule: a) El nivel de
Guía de ejercicios. Supletorio. Segundo IB
Guía de ejercicios. Supletorio. Segundo IB 1. Cuando un gas en un recipiente en forma cilíndrica se comprime a temperatura constante por un pistón, la presión del gas se incrementa. Considere los siguientes
A = A < θ R = A + B + C = C+ B + A. b) RESTA O DIFERENCIA DE VECTORES ANÁLISIS VECTORIAL. Es una operación que tiene por finalidad hallar un
ANÁLISIS VECTORIAL MAGNITUD FÍSICA Es todo aquello que se puede medir. CLASIFICACIÓN DE MAGNITUDES POR NATURALEZA MAGNITUD ESCALAR: Magnitud definida por completo mediante un número y la unidad de medida
Estimación de la gravedad mediante
Estimación de la gravedad mediante métodos experimentales. Padilla Robles Emiliano, González Amador María Fernanda, Cabrera Segoviano Diego : UMDI-Juriquilla, UNAM En esta práctica se utilizarán conocimientos
Ejercicios resueltos de tiro oblicuo
Ejercicios resueltos de tiro oblicuo 1) Un arquero dispara una flecha cuya velocidad de salida es de 100m/s y forma un ángulo de 30º con la horizontal. Calcula: a) El tiempo que la flecha está en el aire.
2 (6370 + 22322) 10 = 2.09 10 J
OPCIÓN A 1. La Agencia Espacial Europea lanzó el pasado 27 de Marzo dos satélites del Sistema de Navegación Galileo. Dichos satélites de masa 1,5 toneladas cada uno, orbitan ya a 22 322 km sobre la superficie
1.1. Movimiento armónico simple
Problemas resueltos 1.1. Movimiento armónico simple 1. Un muelle cuya constante de elasticidad es k está unido a una masa puntual de valor m. Separando la masa de la posición de equilibrio el sistema comienza
LABORATORIO DE MECANICA LEY DE HOOKE
No 6 LABORATORIO DE MECANICA LEY DE HOOKE DEPARTAMENTO DE FISICA Y GEOLOGIA UNIVERSIDAD DE PAMPLONA FACULTAD DE CIENCIAS BÁSICAS Objetivos Objetivo general: Estudiar experimentalmente el comportamiento
Tema: Movimiento rectilíneo uniformemente variado.
LABORATORIO DE FÍSICA Tema: Movimiento rectilíneo uniformemente variado. 1. Objetivo: Establecer las leyes y ecuaciones para una partícula que tiene una trayectoria rectilínea con M.R.U.V. 2. Introducción
TEMA 1 CINEMATICA MOVIMIENTOS EN DOS DIMENSIONES MOVIMIENTO CIRCULAR
TEMA 1 CINEMATICA MOVIMIENTOS EN DOS DIMENSIONES MOVIMIENTO CIRCULAR CONTENIDOS REPASO DEL ÁLGEBRA VECTORIAL Proyección, componentes y módulo de un vector Operaciones: suma, resta, producto escalar y producto
Definición de vectores
Definición de vectores Un vector es todo segmento de recta dirigido en el espacio. Cada vector posee unas características que son: Origen O también denominado Punto de aplicación. Es el punto exacto sobre
TRABAJO DE RECUPERACIÓN PARCIAL 1 2012-2013 CURSO: TERCERO DE BACHILLERATO: NOMBRE: FECHA DE ENTREGA: Jueves, 22-11-2012
TRABAJO DE RECUPERACIÓN PARCIAL 1 2012-2013 ÁREA: FÍSICA CURSO: TERCERO DE BACHILLERATO: NOMBRE: FECHA DE ENTREGA: Jueves, 22-11-2012 INSTRUCCIONES: LEA DETENIDAMENTE LOS ENUNCIADOS DE CADA UNO DE LOS
I - ACCIÓN DEL CAMPO SOBRE CARGAS MÓVILES
I - ACCIÓN DEL CAMPO SOBRE CARGAS MÓVILES 1.- Un conductor rectilíneo indefinido transporta una corriente de 10 A en el sentido positivo del eje Z. Un protón que se mueve a 2 105 m/s, se encuentra a 50
PRÁCTICA REMOTA PÉNDULO FÍSICO AMORTIGUADO
PRÁCTICA REMTA PÉNDUL FÍSIC AMRTIGUAD 1. BJETIV Estudio del comportamiento de un péndulo físico débilmente amortiguado. Determinación de la constante de amortiguamiento, γ, del periodo, T, de la frecuencia
INTERACCIÓN ELÉCTRICA
INTERACCIÓN ELÉCTRICA 1. La carga eléctrica. 2. La ley de Coulomb. 3. El campo eléctrico. 4. La energía potencial. 5. El potencial electroestático. 6. El campo eléctrico uniforme. 7. El flujo de campo
Un sistema de referencia se representa mediante unos EJES DE COORDENADAS (x,y), en cuyo origen estaría situado el observador.
UD6 FUERZAS Y MOVIMIENTO EL MOVIMIENTO DE LOS CUERPOS Un cuerpo está en movimiento si cambia de posición con respecto al sistema de referencia; en caso contrario, está en reposo. Sistema de referencia
MOVIMIENTOS EN UNA Y DOS DIMENSIONES
MOVIMIENTOS EN UNA Y DOS DIMENSIONES 1. Cómo se describen los movimientos? La descripción física de un fenómeno, como por ejemplo los movimientos, se hace en términos de la constancia de determinada magnitud.
INVESTIGANDO UN FENÓMENO DE LA NATURALEZA MOVIMIENTO PENDULAR
INVESTIGANDO UN FENÓMENO DE LA NATURALEZA MOVIMIENTO PENDULAR La condición general para que se repita un fenómeno es que se realice con las mismas condiciones iniciales... PRINCIPIO DE CAUSALIDAD. EXPERIENCIA
Pontificia Universidad Javeriana. Depto. Física. Periodo 1210. Sesión de problemas.
1. Problema experimento sobre medición e incertidumbre Objetivo: Medir la constante de elasticidad de un resorte por dos métodos: El método de la deformación (MD) y el método de movimiento armónico simple
Determinación de la constante elástica, k, de un resorte. Estudio estático y dinámico.
Determinación de la constante elástica, k, de un resorte. Estudio estático y dinámico. Nombre: Manuel Apellidos: Fernandez Nuñez Curso: 2º A Fecha: 29/02/2008 Índice Introducción pag. 3 a 6 Objetivos.
FÍSICA Y QUÍMICA 4º ESO. OBJETIVOS, CONTENIDOS Y CRITERIOS DE EVALUACIÓN. 1ª Evaluación
FÍSICA Y QUÍMICA 4º ESO. OBJETIVOS, CONTENIDOS Y CRITERIOS DE EVALUACIÓN. 1ª Evaluación Unidad 1: El movimiento de los cuerpos i. Objetivos Observar las distintas magnitudes físicas que se ponen de manifiesto
Electrostática. Procedimientos
Electrostática. Procedimientos 1. Calcula a qué distancia tendrían que situarse un electrón y un protón de manera que su fuerza de atracción eléctrica igualase al peso del protón. 0,12 m 2. Recuerdas la
1.- OBJETIVOS 2.- MATERIALES. Péndulo con goniómetro Cinta métrica Regla graduada Vernier Cronómetro 3.- TEORÍA
1 1.- OBJETIVOS a) Medir indirectamente el valor de la aceleración de gravedad g, midiendo los períodos de oscilación de un péndulo. b) Comprobar la relación entre la longitud de un péndulo y su período
FUNDAMENTOS FÍSICOS DE LA INGENIERÍA CUARTA SESIÓN DE PRÁCTICAS
DEPARTAMENTO DE FÍSICA APLICADA ESCUELA TÉCNICA SUPERIOR DE INGENIEROS AGRÓNOMOS Y DE MONTES UNIVERSIDAD DE CÓRDOBA FUNDAMENTOS FÍSICOS DE LA INGENIERÍA CUARTA SESIÓN DE PRÁCTICAS 6.- Principio de Arquímedes.
Mercedes López Quelle (Compañero: Luis García Pérez) (autores) 27 de Septiembre de 2010 (fecha)
Un título: El tiempo de reacción humano frente a un estímulo visual Otro título: Tiempo de reacción visual de una persona (título: palabras clave) Mercedes López Quelle (Compañero: Luis García Pérez) (autores)
www.matesxronda.net José A. Jiménez Nieto
NÚMEROS REALES 1. NÚMEROS IRRACIONALES: CARACTERIZACIÓN. En el tema correspondiente a números racionales hemos visto que estos números tienen una característica esencial: su expresión decimal es exacta
ESTÁTICA. Objetivos: Material: Introducción: 1. Suma y descomposición de fuerzas.
ESTÁTICA Objetivos: 1. Sumar y descomponer fuerzas (analizando su carácter vectorial) 2. Medir fuerzas resultantes y momentos resultantes de fuerzas paralelas y no paralelas. Analizar el equilibrio mecánico
2ª PRUEBA 26 de febrero de 2016
2ª PRUEB 26 de febrero de 216 Problema experimental. Calibrado de un termistor. Como bien sabes, un termómetro es un dispositivo que permite medir la temperatura. Los termómetros clásicos se basan en el
PRÁCTICA: PÉNDULO SIMPLE.
PRÁCTICA: PÉNDULO SIMPLE. OBJETIVO Observar y analizar el efecto de las variables sobre el movimiento del péndulo al ser controladas y modificadas. FUNDAMENTO Se denomina péndulo simple (o péndulo matemático)
HOMOGENEIDAD DIMENSIONAL
HOMOGENEIDAD DIMENSIONAL Los observables que podemos medir se agrupan en conjuntos caracterizados por una propiedad que llamamos magnitud. Existe la magnitud tiempo, la magnitud velocidad, la magnitud
INSTRUMENTOS DE MEDIDAS Y TEORÍA DEL ERROR
INSTRUMENTOS DE MEDIDAS Y TEORÍA DEL ERROR Adaptación del Experimento Nº1 de la Guía de Ensayos y Teoría del Error del profesor Ricardo Nitsche, página 36-42. Autorizado por el Autor. Materiales: Cilindros
Fundamentos Físicos de la Ingeniería. Ingeniería Industrial. Prácticas de Laboratorio
Fundamentos Físicos de la Ingeniería Ingeniería Industrial Prácticas de Laboratorio Práctica 16 Ley de Hooke 1 Objetivos El objetivo fundamental de esta práctica es medir la constante elástica de un muelle.
Física General I. Curso 2014 - Primer semestre Turno Tarde. Contenidos de las clases dictadas
Física General I Curso 2014 - Primer semestre Turno Tarde Contenidos de las clases dictadas 14/3 - Introducción: qué es la Física, áreas de la Física y ubicación de la Mecánica Newtoniana en este contexto,
GUIA DIDACTICA FISICA 4to INTERACCIONES MECANICAS
UNIDAD EDUCATIVA COLEGIO LOS PIRINEOS DON BOSCO INSCRITO EN EL M.P.P.L N S2991D2023 RIF: J-09009977-8 GUIA DIDACTICA FISICA 4to INTERACCIONES MECANICAS Asignatura: Física Año Escolar: 2014-2015 Lapso:
3. Funciones y gráficas
Componente: Procesos físicos. Funciones gráficas.1 Sistemas coordenados En la maoría de estudios es necesario efectuar medidas relacionadas con los factores que intervienen en un fenómeno. Los datos que
1.- LENTES. OBJETIVOS: MATERIAL:
1.- LENTES. OBJETIVOS: - Comprobar experimentalmente el mecanismo de formación de imágenes con una lente convergente. - Identificar en el laboratorio los conceptos básicos de la óptica geométrica: lentes,
EL PÉNDULO SIMPLE. 1. Objetivo de la práctica. 2. Material. Laboratorio de Física de Procesos Biológicos. Fecha: 13/12/2006
Laboratorio de Física de Procesos Bioógicos EL PÉNDULO SIMPLE Fecha: 13/12/2006 1. Objetivo de a práctica Estudio de pénduo simpe. Medida de a aceeración de a gravedad, g. 2. Materia Pénduo simpe con transportador
Analizando el principio de un reloj de péndulo
Analizando el principio de un reloj de péndulo Introducción: Se han preguntado bajo qué condiciones los relojes de péndulo tienen movimientos periódicos? Por qué el reloj de péndulo es confiable? Por el
Física 2 Biólogos y Geólogos. Reflexión y refracción de la luz
Física 2 Biólogos y Geólogos Curso de Verano 2007 Guía de laboratorio N 1 Reflexión y refracción de la luz Objetivos Estudiar experimentalmente las leyes de la reflexión y de la refracción de la luz. Determinar
TEMA 9. MOVIMIENTO ARMÓNICO SIMPLE
TEMA 9. MOVIMIENTO ARMÓNICO SIMPLE Un movimiento periódico es aquel que describe una partícula cuando las variables posición, velocidad y aceleración de su movimiento toman los mismos valores después de
BLOQUE I - CUESTIONES Opción A Calcula el cociente entre la energía potencial y la energía cinética de un satélite en orbita circular.
El alumno realizará una opción de cada uno de los bloques La puntuación máxima de cada problema es de puntos, y la de cada cuestión es de 1,5 puntos. LOQUE I - CUESTIONES Calcula el cociente entre la energía
5. Campo gravitatorio
5. Campo gravitatorio Interacción a distancia: concepto de campo Campo gravitatorio Campo de fuerzas Líneas de campo Intensidad del campo gravitatorio Potencial del campo gravitatorio: flujo gravitatorio
CURSO BÁSICO DE MATEMÁTICAS PARA ESTUDIANTES DE ECONÓMICAS Y EMPRESARIALES. Unidad didáctica 3. Trigonometría
TRIGONOMETRÍA La trigonometría se inicia estudiando la relación entre los ángulos y los lados de un triángulo, surgiendo las razones trigonométricas de un ángulo y a partir de ellas las funciones trigonométricas.
Determinación de la aceleración de la gravedad en la UNAH utilizando el péndulo simple
Universidad Nacional Autónoma de Honduras Facultad de Ciencias Escuela de Física Determinación de la aceleración de la gravedad en la UNAH utilizando el péndulo simple Objetivos. Obtener el valor de la
Práctica No. Bloque: LEY DE NEWTON. Objeto de Aprendizaje: Leyes de la dinámica. Desempeño del estudiante al concluir la práctica:
Bloque: III Práctica No. 10 LEY DE NEWTON Objeto de Aprendizaje: Leyes de la dinámica Desempeño del estudiante al concluir la práctica: Aplica las Leyes de la dinámica de Newton, en la solución y explicación
Seminario de Física. 2º bachillerato LOGSE. Unidad 3. Campo magnético e Inducción magnética
A) Interacción Magnética sobre cargas puntuales. 1.- Determina la fuerza que actúa sobre un electrón situado en un campo de inducción magnética B = -2 10-2 k T cuando su velocidad v = 2 10 7 i m/s. Datos:
Estudio Experimental de la Segunda Ley de Newton
Estudio Experimental de la Segunda Ley de Newton Lilian E. Mariani Universidad Favaloro Mariela Azul González Ciudad de Bs. As. 11 de mayo de 000 Diego Saurina ( [email protected]) M. Jimena Antonelli Hernán
PRÁCTICA DE LABORATORIO II-05 PÉNDULO DE TORSIÓN
PRÁCTICA DE LABORATORIO II-05 PÉNDULO DE TORSIÓN OBJETIVOS Determinar la constante de torsión de un péndulo. Estudiar la dependencia del período de oscilación con el momento de inercia. Determinar experimentalmente
