ECUACIONES DE DIMENSIÓN
|
|
|
- María del Rosario Ramírez Alarcón
- hace 9 años
- Vistas:
Transcripción
1 Tea 6-1 Ecuaciones de Diensión - 1 Tea 6 Curso 006/07 Departaento de Física y Quíica Aplicadas a la Técnica Aeronáutica Curso 006/07 Tea 6- Se representan las agnitudes fundaentales con letras ayúsculas: Longitud Masa Tiepo Intensidad Teperatura L M T I θ
2 Tea 6- Ecuaciones de Diensión - La diensión de cualquier otra agnitud se puede expresar en función de las fundaentales explicitando su dependencia con una ecuación que recibe el nobre de ecuación de diensión Tea 6-4 Velocidad [ v ] = [ l ] / [ t ] = L.T -1 Fuerza [ F ] = [ ] [ a ] = L.M.T - Potencia [ P ] = [ W ] / [ t ] = L.M.T -
3 Tea 6-5 Ecuaciones de Diensión - OTRAS UTILIZACIONES Coprobar la corrección diensional de las fórulas Ejeplo: El periodo de un péndulo físico viene dado por T = π I 0 ga Tea 6-6 T = π I 0 ga OTRAS UTILIZACIONES Las ecuaciones de diensión de cada una de las agnitudes que intervienen son [ T ] = T [ I O ] = L.M [ ] = M [ g ] = L.T - [ a ] = L y cobinándolas según la fórula es sencillo coprobar que se llega a una identidad.
4 Tea 6-7 Ecuaciones de Diensión - 4 OTRAS UTILIZACIONES Deducir relaciones diensionales entre agnitudes Ejeplo: Mediante experientos observaos que el periodo de un péndulo siple puede depender de la asa, la longitud y la aceleración de la gravedad. Aditiendo una relación onoia escribiríaos T = f(c,,l,g) = C. a.l b.g c Tea 6-8 OTRAS UTILIZACIONES De donde: [ T ] = L b+c.m a.t -c y coo [ T ] = T resulta a = 0 ; b+c = 0 ; -c = 1 de donde a = 0 ; b = 1/ ; c = -1/ y por lo tanto, el periodo será l T = C g
5 Tea 6-9 Ecuaciones de Diensión - 5 EJEMPLOS Departaento de Física y Quíica Aplicadas a la Técnica Aeronáutica Curso 005/06 Tea 6-10 PREUNTA DE EXAMEN Escriba la expresión ateática de la Ley de ravitación Universal, indicando el significado de cada síbolo utilizado. Se cuple para cualesquiera asas en la superficie de la Tierra o solaente para grandes asas en el Universo? Escriba la ecuación de diensiones de la constante de gravitación. Sabiendo que = 6'67E-11 unidades SI, calcular el valor de en el sistea CS y en el sistea Técnico.
6 Tea 6-11 Ecuaciones de Diensión - 6 M M F = d 1 F: FUERZA DE ATRACCIÓN ENTRE LAS MASAS M 1 Y M : CONSTANTE DE RAVITACIÓN UNIVERSAL M 1 y M : MASAS DE DOS CUERPOS CUALESQUIERA d: DISTANCIA ENTRE M 1 Y M Tea 6-1 ECUACIÓN DE DIMENSIONES M M F = d 1 [ ] = [ F ] [ d ] [ M - ] = M.L.T - L M - [ ] = M -1.L.T -
7 Tea 6-1 Ecuaciones de Diensión - 7 CAMBIO DE SISTEMA 11 6'67 10 kg s = SISTEMA CS 10 c 6 11 = 6'67 10 kg s 1 1kg 10 g 8 6'67 10 g s = c Tea 6-14 CAMBIO DE SISTEMA =6' kg s SISTEMA TÉCNICO =6' kg s 9'8 kg 1 ut =65' ut s
8 Tea 6-15 Ecuaciones de Diensión - 8 OTRO EJEMPLO 100 CV = 100 CV 75 kg/s 1CV 9'8 N 1kg * = = N '8 = 7'5 kw s
ECUACIONES DIMENSIONALES
ECUACIONES DIMENSIONALES 1. En la expresión x = k v n / a, x = distancia, v = velocidad, a = aceleración y k es una constante adimensional. Cuánto vale n para que la expresión sea dimensionalmente homogénea?
Capítulo VII CENTRO DE GRAVEDAD, CENTRO DE MASA Y CENTROIDE
Capítulo II CENTRO DE GREDD, CENTRO DE MS Y CENTROIDE 7. INTRODUCCIÓN Todo cuerpo que se halla en las inediaciones de la tierra interactúa con ella coo resultado de esta interacción actúa sore el cuerpo
CANARIAS / JUNIO 03. LOGSE / FÍSICA / EXAMEN COMPLETO
De las dos opciones propuestas, sólo hay que desarrollar una opción copleta. Cada problea correcto vale por tres puntos. Cada cuestión correcta vale por un punto. Probleas OPCIÓN A.- Un cuerpo A de asa
UNI DAD 3 ESPACIO BIDIMENSIONAL: LA RECTA
UNI DAD 3 ESPACIO BIDIMENSIONAL: LA RECTA Objetivos Geoetría analítica Introducción U 3.1. Definición de recta 91 Dos puntos sólo pueden ser unidos por una sola recta la relación ateática que satisface
CURSO CERO DE FÍSICA DINÁMICA
CURSO CERO DE ÍSICA Departaento de ísica COTEIDO. Principios fundaentales de la dináica. Priera ley de ewton: Ley de la inercia. Segunda ley de ewton: Ley fundaental de la dináica. Tercera ley de ewton:
CINEMÁTICA Y DINÁMICA. PRACTICA DE LABORATORIO No. 6 LEY DE HOOKE - MOVIMIENTO ARMÓNICO SIMPLE
1. INTRODUCCIÓN CINEMÁTICA Y DINÁMICA PRACTICA DE LABORATORIO No. 6 LEY DE HOOKE - MOVIMIENTO ARMÓNICO SIMPLE La ley de Hooe describe fenóenos elásticos coo los que exhiben los resortes. Esta ley afira
GUÍA DE PROBLEMAS F 10º
Unidad 3: Dináica de la partícula GUÍ DE PROBLEMS 1)-Una partícula de asa igual a kg esta tirada hacia arriba por una plano inclinado liso ediante una fuerza de 14,7 N. Deterinar la fuerza de reacción
Física General 1 Proyecto PMME - Curso 2008 Instituto de Física Facultad de Ingeniería UdelaR
Física General 1 Proyecto PE - Curso 008 Instituto de Física Facultad de Ingeniería UdelaR TITULO D I N Á I C A D E P A R T Í C U L A AUTORES Santiago Góez, Anthony éndez, Eduardo Lapaz INTRODUCCIÓN Analizaos
Magnitudes y Unidades. Cálculo Vectorial.
Magnitudes y Unidades. Cálculo Vectorial. 1. Se tiene las expresiones siguientes, x es posición en el eje X, en m, v la velocidad en m/s y t el tiempo transcurrido, en s. Cuáles son las dimensiones y unidades
T9. RELATIVIDAD GENERAL (I): EL PRINCIPIO DE EQUIVALENCIA DE INERCIA Y GRAVEDAD
T9. RELATIVIDAD GENERAL (I): EL PRINCIPIO DE EQUIVALENCIA DE INERCIA Y GRAVEDAD 1. Introducción 2. El principio de equivalencia A. La relatividad general B. La igualdad de masa inercial y masa gravitatoria
Análisis Dimensional. unidad 1 DIMENSIONES FÓRMULAS DIMENSIONALES BÁSICAS SISTEMA INTERNACIONAL DE UNIDADES
Análisis Dimensional F Í S I C A unidad 1 DIMENSIONES Es parte de la FÍSICA que estudia las relaciones entre las magnitudes fundamentales y derivadas, en el Sistema Internacional de Unidades, el cual considera
3.Sistemas de unidades
3.Sisteas de unidades La Física, siendo una ciencia que ha adoptado el étodo científico coo un soporte para establecer las leyes que rigen los cabios que se presentan, así coo la cuantificación de los
FÍSICA. Centro Educativo de Nivel Secundario Nº 451 Anexo Universidad Tecnológica Nacional. Dirección de Capacitación No Docente.
Centro Educativo de Nivel Secundario Nº 451 Anexo Universidad Tecnológica Nacional Dirección de Capacitación No Docente Dirección General de Cultura y Educación Provincia de Buenos Aires FÍSICA Segundo
INSTITUTO POLITECNICO NACIONAL Centro de Estudios Científicos y Tecnológicos Wilfrido Massieu Laboratorio de Física III. Alumno Grupo Equipo
NSTTUTO POTECNCO NCON Centro de Estudios Científicos y Tecnológicos Wilfrido Massieu aboratorio de Física luno Grupo Equipo Profesor de teoría Profesor de laboratorio Fecha / / Calificación.- Ubicación
Guía complementaria / PTL Guía de Ejercicios Vectores y algunas Aplicaciones.
Guía de Ejercicios Vectores y algunas plicaciones. 1 Notabene : Todas las agnitudes vectoriales se presentan en esta guía con negrita y cursiva. Por distracción, puede haberse oitido tal cosa en algún
t = Vf Vi Vi= Vf - a t Aceleración : Se le llama así al cambio de velocidad y cuánto más rápido se realice el cambio, mayor será la aceleración.
Las magnitudes físicas Las magnitudes fundamentales Magnitudes Derivadas son: longitud, la masa y el tiempo, velocidad, área, volumen, temperatura, etc. son aquellas que para anunciarse no dependen de
9a. GUÍA DE MOVIMIENTO LINEAL TIPO SSR CAGED BALL CARGA TIPO RADIAL
9a. GUÍA DE MOVIMIENTO LINEAL TIPO CAGED BALL CARGA TIPO RADIAL Bloque de oviiento LM Block lineal Placa End del extreo plate Sello End del extreo seal Riel de oviiento LM rail lineal Ball Jaula de cage
ANÁLISIS DIMENSIONAL Y SEMEJANZA EN MECÁNICA DE FLUIDOS
TEA 5 ANÁISIS DIENSIONA Y SEEJANZA EN ECÁNICA DE FUIDOS 5.1.- El Análisis Dimensional: Utilidad y Justificación 5..- os Fundamentos del Análisis Dimensional 5.3.- Otención de Parámetros Adimensionales
T-2) LA FUERZA DE LORENTZ (10 puntos)
T-2) LA FUERZA DE LORENTZ (10 puntos) Un móvil se desliza por un plano inclinado sobre el que pende el conductor cilíndrico AC a una distancia h de la línea de máxima pendiente, tal como indica la figura.
tecnun INDICE Volantes de Inercia
VOLANTES DE INERCIA INDICE 7. VOLANTES DE INERCIA... 113 7.1 INTRODUCCIÓN.... 113 7. ECUACIÓN DEL MOVIMIENTO.... 113 7.3 CÁLCULO DE UN VOLANTE DE INERCIA.... 116 Eleentos de Máquinas 11 7. VOLANTES DE
Toda cantidad física tiene unidades características. El reconocimiento de tales unidades y de sus combinaciones se conoce como análisis dimensional.
Análisis dimensional Toda cantidad física tiene unidades características. El reconocimiento de tales unidades y de sus combinaciones se conoce como análisis dimensional. Se consideran siete cantidades
INVESTIGANDO UN FENÓMENO DE LA NATURALEZA MOVIMIENTO PENDULAR
INVESTIGANDO UN FENÓMENO DE LA NATURALEZA MOVIMIENTO PENDULAR La condición general para que se repita un fenómeno es que se realice con las mismas condiciones iniciales... PRINCIPIO DE CAUSALIDAD. EXPERIENCIA
Problemas. 1. Un barco se balancea arriba y abajo y su desplazamiento vertical viene dado por la ecuación y = 1,2 cos
Probleas. Un barco se balancea arriba y abajo y su desplazaiento vertical viene dado por t π la ecuación y, cos +. Deterinar la aplitud, frecuencia angular, 6 constante de fase, frecuencia y periodo del
Tubería de calefacción local y urbana CASAFLEX
Tubería de calefacción local y urbana CASAFLEX Con la calidad de un futuro seguro N U E V O conexión optiizada O V E U N Tubería de calefacción local y urbana CASAFLEX para sisteas de calefacción local
SISTEMA INTERNACIONAL DE UNIDADES (SI) UNIDADES BÁSICAS DEL SI LONGITUD
SISTEMA INTERNACIONAL DE UNIDADES (SI) El Sistea Internacional de Unidades, abreviado SI, tabién denoinado sistea internacional de edidas, es el sistea de unidades ás extensaente usado. Junto con el antiguo
HOMOGENEIDAD DIMENSIONAL
HOMOGENEIDAD DIMENSIONAL Los observables que podemos medir se agrupan en conjuntos caracterizados por una propiedad que llamamos magnitud. Existe la magnitud tiempo, la magnitud velocidad, la magnitud
TEMA 1: CONCEPTOS BASICOS EN FISICA
La Física está dividida en bloques muy definidos, y las leyes físicas deben estar expresadas en términos de cantidades físicas. Entre dichas cantidades físicas están la velocidad, la fuerza, densidad,
1.- EL CAMPO MAGNÉTICO
1.- EL CAMPO MAGNÉTICO Las cargas en oviiento foran una corriente eléctrica I; y estas generan una nueva perturbación en el espacio que se describe por edio de una agnitud nueva llaada capo agnético B.
DINÁMICA. Son toda acción capaz de modificar el estado de movimiento del cuerpo (efecto dinámico) o producir deformaciones (efecto elástico).
DINÁMICA La Dinámica es la parte de la Física que estudia las fuerzas. 1. FUERZAS Qué son? Son toda acción capaz de modificar el estado de movimiento del cuerpo (efecto dinámico) o producir deformaciones
Mm R 2 v= mv 2 R 24 5,98 10
POBLEMAS CAMPO GAVIAOIO. FÍSICA ºBO 1. Un satélite artificial describe una órbita circular alrededor de la ierra. En esta órbita la energía mecánica del satélite es 4,5 x 10 9 J y su velocidad es 7610
TEMA 1: LA CIENCIA: LA MATERIA Y SU MEDIDA
TEMA 1: LA CIENCIA: LA MATERIA Y SU MEDIDA 1.- La ciencia. 2.- La ateria y u propiedade..- La edida..1.- Magnitud y unidad..2.- El itea internacional de unidade...- Magnitude fundaentale y derivada..4.-
I.-Instrucciones: Contesta correctamente.
I.-Instrucciones: Contesta correctamente. 1.- Enumera los planetas de nuestro sistema solar, realiza un esquema donde los representes (identifica y representa su tamaño y el valor de la gravedad) En qué
3 TRABAJO Y ENERGIA. BERNARDO ARENAS GAVIRIA Universidad de Antioquia Instituto de Física
3 TRJ Y ENERGI ERNRD RENS GVIRI Universidad de ntioquia Instituto de ísica 2010 Índice general 3. Trabajo y energía 1 3.1. Introducción.......................................... 1 3.2. Ipulso (I)...........................................
Laboratorio de Física para Ingeniería
Laboratorio de para Ingeniería 1. Al medir la longitud de un cilindro se obtuvieron las siguientes medidas: x [cm] 8,45 8,10 8,40 8,55 8,45 8,30 Al expresar la medida en la forma x = x + x resulta: (a)
VELOCIDAD Y ACELERACION. RECTA TANGENTE.
VELOCIDAD Y ACELERACION. RECTA TANGENTE. 3. Describir la trayectoria y determinar la velocidad y aceleración del movimiento descrito por las curvas siguientes: (a) r (t) = i 4t 2 j + 3t 2 k. (b) r (t)
Una fuerza es una magnitud vectorial que representa la interacción entre dos cuerpos.
1 Concepto de fuerza Una fuerza es una agnitud vectorial que representa la interacción entre dos cuerpos. La interacción entre dos cuerpos se puede producir a distancia o por contacto. or tanto las fuerzas
Física II: Termodinámica, ondas y fluidos
Física II: Terodináica, ondas y fluidos Índice 5 - MOVIMIENTO PERIÓDICO... 5.1 OSCILACIÓN: DESCRIPCIÓN Y DEFINICIÓN... 5. MOVIMIENTO ARMÓNICO SIMPLE (MAS)... 4 Ej. 5.1 Resorte sin fricción... 6 5.3 DESPLAZAMIENTO,
ced Au Au Au f Cu Cu Cu f
Probleas calorietria Ejeplo 1.- 100 g de una aleación de oro y cobre, a la teperatura de 75.5ºC se introducen en un caloríetro con 502 g de agua a 25ºC, la teperatura del equilibrio es de 25.5ºC. Calcular
Práctica 3 DETERMINACIÓN DE LA CONSTANTE DE EQUILIBRIO DEL ÁCIDO ACÉTICO MEDIANTE MEDIDAS DE CONDUCTIVIDAD
Dpto. Sisteas Físicos, Quíicos y Naturales- Área de Quíica Física Práctica 3 DETERMINACIÓN DE LA CONSTANTE DE EQUILIBRIO DEL ÁCIDO ACÉTICO MEDIANTE MEDIDAS DE CONDUCTIVIDAD Cuestiones y cálculos previos:
PROBLEMAS DE VIBRACIONES Y ONDAS
PROBLEMAS DE VBRACONES Y ONDAS º PROBLEMAS DE M.A.S. PROBLEMAS RESUELTOS º Una partícula que realiza un M.A.S. recorre una distancia total de 0 c en cada vibración copleta y su áxia aceleración es de 50
PROBLEMAS RESUELTOS FISICA Y MEDICIONES. CAPITULO 1 FISICA I CUARTA, QUINTA, SEXTA y SEPTIMA EDICION SERWAY. Raymond A. Serway
PROBLEMAS RESUELTOS FISICA Y MEDICIONES CAPITULO 1 FISICA I CUARTA, QUINTA, SEXTA y SEPTIMA EDICION SERWAY Rayond A. Serway Sección 1.1 Patrones de lonitud, asa y tiepo Sección 1. La ateria y construcción
3 Aplicaciones de primer orden
CAPÍTULO 3 Aplicaciones de prier orden 3.6 Mecánica El paracaidiso es uno de los deportes extreos que día a día cuenta con ayor núero de adeptos. Los que practican este deporte se tiran desde un avión
MOVIMIENTO ARMÓNICO SIMPLE
MOVIMIENTO ARMÓNICO SIMPLE A: JUSTIFICACIÓN Al observar la Naturaleza nos daos cuenta de que uchos eventos físicos (por ejeplo el oviiento de rotación y traslación de los planetas) son repetitivos, sucediendo
CANTABRIA / SEPTIEMBRE LOGSE / FÍSICA / EXAMEN COMPLETO
CANAIA / SEPIEE 000. LOGSE / FÍSICA / EXAEN COPLEO El aluno elegirá tres de las cinco cuestiones propuestas, así coo una de las dos opciones de probleas. Cada cuestión o problea puntúa sobre puntos. CESIONES
La Energía Mecánica. E = m v
Energía La Energía Mecánica Direos que la energía de un cuerpo o sistea de cuerpos es la capacidad que tienen para realizar trabajo. Esta definición es iperfecta pero nos alcanza para hacer una priera
PROBLEMAS DINÁMICA DE LA PARTÍCULA. 1. Ecuación básica de la dinámica en referencias inerciales y no inerciales
PRBLEMS DE DINÁMIC DE L PRTÍCUL. Ecuación básica de la dináica en referencias inerciales y no inerciales. Leyes de conservación del ipulso, del oento cinético y del trabajo 3. Fuerzas centrales 4. Gravitación
Diseño de alcantarillas (IV) El método racional
Diseño de alcantarillas (IV) El étodo racional Agua residual urbana Doéstica o sanitaria (zonas residenciales, coerciales y públicas) Industrial Infiltraciones y aportaciones incontroladas Escorrentía
ONDAS MECÁNICAS EJERCICIOS PROPUESTOS. m v = 87,444 s. m v = 109,545 s
ONDAS MECÁNICAS EJERCICIOS PROPUESTOS 1. Cuál es la velocidad de una onda transversal a lo largo de un hilo etálico soetido a la tensión de 89,0N si una bobina del iso que tiene 305,0 pesa 35,50N? v =
LEYES DE KEPLER (Johannes Kepler )
LEYES DE KEPLER (Johannes Kepler 1571-1630) ü Matemático y astrónomo alemán ü Fue colaborador de Tycho Brahe, de quien obtuvo las mediciones que le permitieron plantear sus leyes del movimiento planetario
Institución Educativa Internacional Análisis Dimensional Problemas Propuestos Profesor: Carlos Eduardo Aguilar Apaza
Institución Educativa Internacinal Análisis Dimensinal Prblemas Prpuests Prfesr: Carls Eduard Aguilar Apaa. En la frmula física indicar las unidades de Y en el sistema internacinal. Y Aw cs( wt) A; velcidad,
Movimiento armónico simple
UNIDAD Moviiento arónico siple Un trapolín ejerce una fuerza de restauración sobre la persona que salta directaente proporcional a la fuerza edia necesaria para desplazar la colchoneta. El oviiento hacia
EXAMEN FÍSICA 2º BACHILLERATO TEMA 3: ONDAS
INSTRUCCIONES GENERALES Y VALORACIÓN La prueba consiste de dos opciones, A y B, y el alumno deberá optar por una de las opciones y resolver las tres cuestiones y los dos problemas planteados en ella, sin
DETERMINACIÓN DE LAS DISTANCIAS ENTRE LOS CUERPOS CELESTES Y EL MOVIMIENTO DE LOS SATELITES ARTIFICIALES
DETERMINACIÓN DE LAS DISTANCIAS ENTRE LOS CUERPOS CELESTES Y EL MOVIMIENTO DE LOS SATELITES ARTIFICIALES Refracción Astronómica La densidad de la atmósfera aumenta al acercarse a la superficie terrestre,
Examen de TEORIA DE MAQUINAS Junio 07 Nombre...
Examen de TEORIA DE MAQUINAS Junio 07 Nombre... La figura muestra un mecanismo biela-manivela. La manivela posee masa m y longitud L, la biela masa 3 m y longitud 3 L, y el bloque masa 2m. En la posición
DOCUMENTACIÓN TÉCNICA
DOCUMENTACIÓN TÉCNICA INDICACIONES DE NEUMÁTICA Presión: Presión atosférica: Presión absoluta: Presión relativa: Es la relación entre una fuerza y la superficie sobre la cual actúa. F (N) P= = S ( ) Equivale
FISICA I Unidad N : 7 - Hidrostática
La actitud positiva debe ser un hábito, trabajado todos los días sobre todo en las situaciones adversas Profesor: Cazzaniga, Alejandro J. Física I E.T.N : 8 - República Francesa Pág. 1 de 16 Hidrostática
Unidad didáctica: Electricidad, electromagnetismo y medidas
Unidad didáctica: Electricidad, electroagnetiso y edidas CURSO 3º ESO versión 1.0 1 Unidad didáctica: Electricidad, electroagnetiso y edidas ÍNDICE 1.- Introducción..- Corriente eléctrica..1.- Corriente
PAU CASTILLA Y LEON JUNIO Y SEPTIEMBRE CAMPO GRAVITATORIO. Leyes de Kepler:
Leyes de Kepler: 1. (79-SE10) Sabiendo que la distancia media Sol Júpiter es 5,2 veces mayor que la distancia media Sol Tierra, y suponiendo órbitas circulares: a) Calcule el periodo de Júpiter considerando
III OLIMPIADA DE FÍSICA CHECOSLOVAQUIA, 1969
OLIMPID INTERNCIONL DE FÍSIC Probleas resueltos y coentados por: José Luis Hernández Pérez y gustín Lozano Pradillo III OLIMPID DE FÍSIC CHECOSLOVQUI, 1969 1.- El sistea ecánico de la figura inferior consta
5) Un satélite artificial orbita a Km. sobre la superficie terrestre. Calcula el período de rotación. (Rt = 6370 Km. g = 9,81 N/Kg.
Problemas PAU Campo Gravitatorio 1) El valor promedio del radio terrestre es 6370 Km. Calcular la intensidad del campo gravitatorio: a) En un punto situado a una altura doble del radio de la Tierra b)
MOVIMIENTO ARMÓNICO SIMPLE
4 MOVIMIENO ARMÓNICO SIMPLE 4.. MOVIMIENOS PERIÓDICOS. Conocido el período de rotación de la Luna alrededor de la ierra, y sabiendo que la Luna no eite luz propia, sino que refleja la que recibe del Sol,
GUIAS ÚNICAS DE LABORATORIO DE FÍSICA I DINÁMICA MAQUINAS SIMPLES Y POLEAS SANTIAGO DE CALI UNIVERSIDAD SANTIAGO DE CALI DEPARTAMENTO DE LABORATORIOS
GUIAS ÚNICAS DE LABORAORIO DE ÍSICA I DINÁMICA MAQUINAS SIMPLES Y POLEAS SANIAGO DE CALI UNIVERSIDAD SANIAGO DE CALI DEPARAMENO DE LABORAORIOS MÁQUINAS SIMPLES - POLEAS 1. INRODUCCIÓN. Una áquina siple
SEGUNDO TALLER DE REPASO
SEGUNDO TALLER DE REPASO ASIGNATURA: BIOFÍSICA TEMA: DINÁMICA 1. Una fuerza le proporciona a una masa de 4.5kg, una aceleración de 2.4 m/s 2. Calcular la magnitud de dicha fuerza en Newton y dinas. Respuestas:
Slide 1 / 47. Movimiento Armónico Simple Problemas de Práctica
Slide 1 / 47 Movimiento Armónico Simple Problemas de Práctica Slide 2 / 47 Preguntas de Multiopcion Slide 3 / 47 1 Un bloque con una masa M está unida a un resorte con un constante k. El bloque se somete
Índice. Introducción Capítulo 1: Magnitudes físicas, unidades y análisis dimensional.
Índice Introducción Capítulo 1: físicas, unidades y análisis dimensional. Introducción Capítulo 1:. Índice Leyes Físicas y cantidades físicas. Sistemas de unidades Análisis dimensional. La medida física.
CÁTEDRA DE FÍSICA I OSCILACIONES - PROBLEMAS RESUELTOS
CÁTEDRA DE FÍSICA I Ing. Civil, Ing. Electromecánica, Ing. Eléctrica, Ing. Mecánica OSCILACIONES - PROBLEMAS RESUELTOS PROBLEMA Nº 1 Un cuerpo oscila con movimiento armónico simple a lo largo del eje x.
Dinámica de una partícula. Leyes de Newton, fuerzas, representación vectorial
Dinámica de una partícula. Leyes de Newton, fuerzas, representación vectorial PRIMERA LEY DE NEWTON. Todo cuerpo continuará en su estado de reposo o de velocidad constante en línea recta, a menos que una
Javier Junquera. Equilibrio estático
Javier Junquera Equilibrio estático Bibliografía Física, Volumen 1, 6 edición Raymod A. Serway y John W. Jewett, Jr. Ed. Thomson ISBN: 84-9732-168-5 Capítulo 12 Definición de equilibrio El término equilibrio
PRUEBA OBJETIVA. Encierre con un círculo la letra o letras que correspondan a las alternativas válidas de entre las propuestas.
PRUEBA OBJETIVA Encierre con un círculo la letra o letras que correspondan a las alternativas válidas de entre las propuestas. 1. Capital financiero es: a) Es la edida de un bien econóico referida al oento
Física y Química 4º ESO. Dinámica 22/11/11. Tipo A Tipo B
Física y Química 4º ESO Dinámica /11/11 DEPARTAMENTO DE FÍSICA E QUÍMICA Nombre: Problemas [6 Ptos] Tipo A Tipo B 1. Se lanza horizontalmente un objeto de 400 g con una velocidad de 14,0 m/s sobre una
Tema 1 INTRODUCCIÓN. Cap. 1/1
Tema 1 INTRODUCCIÓN 1.1 Relación de la Física con la Biología 1.2 Patrones de medida y sistemas de unidades 1.3 Análisis dimensional 1.4 Leyes de escala: tamaño, forma y vida Modelo de semejanza geométrica
1. Cuánto tiempo tiene el deportivo para rebasar al sedán sin estamparse con el camión?
Examen ordinario B RESUELTO I. Un sedán va en la carretera a 80 km/h, a 50 m detrás de él, y a la misma velocidad, hay un deportivo con intenciones de rebasarlo, Sin embargo, el conductor del deportivo
Inducción electromagnética. Ecuaciones de Maxwell
Inducción electroagnética. Física II Grado en Ingeniería de Organización Industrial Prier Curso Joaquín Bernal Méndez/Ana Marco Raírez Curso 2011-2012 Departaento de Física Aplicada III Universidad de
CAMPO MAGNÉTICO FCA 07 ANDALUCÍA
1. Una cáara de niebla es un dispositivo para observar trayectorias de partículas cargadas. Al aplicar un capo agnético unifore, se observa que las trayectorias seguidas por un protón y un electrón son
EJERCICIOS A DESARROLLAR
EJERCICIOS A DESARROLLAR 1. Obtenga la resultante de los siguientes vectores: a) b) A B A B c) A B d) Utilice los vectores del ítem "a": Coloque al vector A sobre el ejc de las abscisas con punto de aplicación
Física PRUEBA DE ACCESO A LA UNIVERSIDAD 2014 BACHILLERATO FORMACIÓN PROFESIONAL CICLOS FORMATIVOS DE GRADO SUPERIOR. Examen
PRUEBA DE ACCESO A LA Física BACHILLERATO FORMACIÓN PROFESIONAL CICLOS FORMATIVOS DE GRADO SUPERIOR Examen Criterios de Corrección y Calificación ko EKAINA Azterketa honek bi aukera ditu. Haietako bati
Describe el movimiento sin atender a las causas que lo producen. Utilizaremos partículas puntuales
3. Cinemática Cinemática Describe el movimiento sin atender a las causas que lo producen Utilizaremos partículas puntuales Una partícula puntual es un objeto con masa, pero con dimensiones infinitesimales
Repaso del 1º trimestre: ondas y gravitación 11/01/08. Nombre: Elige en cada bloque una de las dos opciones.
Repaso del 1º trimestre: ondas y gravitación 11/01/08 DEPARTAMENTO DE FÍSICA E QUÍMICA Nombre: Elige en cada bloque una de las dos opciones. Bloque 1. GRAVITACIÓN. Elige un problema: puntuación 3 puntos
2.- Cuánto valen el potencial y la intensidad del campo gravitatorio creado por la Tierra en un punto de su superficie?
PROBLEMAS 1.- Con una órbita de 8000 Km de radio gira alrededor de la Tierra un satélite de 500 Kg de masa. Determina: a) su momento angular b) su energía cinética c) su energía potencial d) su energía
DETERMINACIÓN DE LA CONSTANTE UNIVERSAL DE LOS GASES
DETERMINACIÓN DE LA CONSTANTE UNIERSAL DE LOS GASES La ley general de los gases relaciona la presión P, el volumen, la temperatura T, el número de moles n, y la constante universal de los gases R, como
Formulario PSU Parte común y optativa de Física
Formulario PSU Parte común y optativa de Física I) Ondas: Sonido y Luz Frecuencia ( f ) f = oscilaciones Vector/, Unidad de medida f 1/s = 1 Hz Periodo ( T ) T = oscilaciones f = 1 T T Segundo ( s ) Longitud
RELACIÓN DE PROBLEMAS GRAVITACIÓN Y CAMPO GRAVITATORIO
RELACIÓN DE PROBLEMAS GRAVITACIÓN Y CAMPO GRAVITATORIO 1. Supongamos conocido el período y el radio de la órbita de un satélite que gira alrededor de la Tierra. Con esta información y la ayuda de las leyes
ENERGÍA (II) FUERZAS CONSERVATIVAS
NRGÍA (II) URZAS CONSRVATIVAS IS La Magdalena. Avilés. Asturias Cuando elevaos un cuerpo una altura h, la fuerza realiza trabajo positivo (counica energía cinética al cuerpo). No podríaos aplicar la definición
1.- CONCEPTO DE FUERZA. MAGNITUD VECTORIAL. TIPOS DE FUERZAS. UNIDADES.
1.- CONCEPTO DE FUERZA. MAGNITUD VECTORIAL. TIPOS DE FUERZAS. UNIDADES. a) CONCEPTO DE FUERZA La fuerza es una magnitud asociada a las interacciones entre los sistemas materiales (cuerpos). Para que se
VECTORES. también con letras sobre las cuales se coloca una flechita ( a ). A = módulo de A. modulo o magnitud, dirección y sentido. vector.
VECTORES Según su naturaleza las cantidades físicas se clasifican en magnitudes escalares y magnitudes vectoriales Las magnitudes como el tiempo, la temperatura, la masa y otras, son magnitudes escalares
UNITATS LEGALS DE MESURA
UNITATS LEGALS DE MESURA REAL DECRETO 1317/1989, de 27 de octubre, por el que se establecen las Unidades Legales de Medida. Con la corrección de errores BOE 24/01/90 REAL DECRETO ÍNDICE ANEXO CAPÍTULO
BLOQUE 1: MAGNITUDES Y VECTORES
BLOQUE 1: MAGNITUDES Y VECTORES Sistemas de unidades BLOQUE 1: Magnitudes y vectores Sistemas de Unidades Sistemas tradicionales Sistema Internacional (SI) Análisis dimensional BLOQUE 1: Magnitudes y vectores
Motores de corriente continua
Motores de corriente continua Contenidos: Partes y principio de funcionamiento del motor de corriente continua (CC). Fuerza contraelectromotriz (f.c.e.m.). Par útil y electromagnético. Balance de potencias
ASIGNATURA GAIA MECÁNICA DE FLUIDOS NOMBRE IZENA FECHA DATA 18/1/ mm L = 0,5 m 1V1. 10 mm L = 0,5 m. 8 mm
SIGNUR GI MECÁNIC DE FLUIDOS CURSO KURSO NOMBRE IZEN FECH D 8//00 0 L 0, V B 8 L 0V 0V 0 L 0, ubería de retorno al tanque 0 L 0Z B 0Z M 0 8 L Esquea de fijación del cilindro y vástago S El circuito hidráulico
LAS FUERZAS GRAVITATORIAS
LAS LEYES DE KEPLE El astrónoo y ateático Johannes Kepler (1571 1630) enunció tres leyes que escriben el oviiento planetario a partir el estuio e una gran cantia e atos aportaos por el astrónoo anés Tycho
Fuerzas de Rozamiento
Fuerzas de Rozamiento Universidad Nacional General San Martín. Escuela de Ciencia y Tecnología. Baldi, Romina [email protected] Viale, Tatiana [email protected] Objetivos Estudio de las fuerzas
