Múltiplos y divisores
|
|
|
- Cristina Mora Silva
- hace 9 años
- Vistas:
Transcripción
1 Múltiplos y divisores 3 1. MÚLTIPLOS DE UN NÚMERO Los múltiplos de un número son los que lo contienen un número exacto de veces. El 12 es múltiplo de 3 porque lo contiene 4 veces. El 30 es múltiplo de 5 porque lo contiene 6 veces. Los múltiplos de un número se calculan multiplicando este número por los números naturales ={0, 1, 2, 3, 4, 5, 6, 7, 8...} Los múltiplos de un número son infinitos. Múltiplos de 2={0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24...} Múltiplos de 3={0, 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33, 36...} Múltiplos de 11={0, 11, 22, 33, 44, 55, 66, 77, 88, 99, 110, 121, } 2. MÚLTIPLOS COMUNES A VARIOS NÚMEROS Calculados los conjuntos de los múltiplos de dos o más números siempre podemos encontrar múltiplos comunes. M (3) ={0, 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33, 36, 39, 42, 45, 48, 51, 54, 57, 60...} M (4) ={0, 4, 8, 12, 16, 20, 24, 28, 32, 36, 40, 42, 44, 48, 52, 56, 60, 64,...} M (8) ={0, 8, 16, 24, 32, 40, 44, 48, 56, 64, 72, 80, 88...} Múltiplos comunes de 3 y 4 ={0,12, 24, 36, 48, 60...} Múltiplos comunes de 3, 4 y 8 ={0, 24, 48...} Mínimo común múltiplo de varios números (m.c.m.).- Se llama así al múltiplo más pequeño de todos los que son comunes m.c.m.(3, 4) = 12 m.c.m.(2, 4, 8)= DIVISORES DE UN NÚMERO Divisor de un número es aquel que está contenido en él un número exacto de veces. Al dividir un número por sus divisores el resto es cero. El 5 es divisor de 15 porque lo contiene tres veces. 15 : 5 = 3 y resto 0. Observa la relación: 5 es divisor de es múltiplo de 5 Un número es divisible por otro cuando lo contiene un número exacto de veces. Un número es divisible por todos sus divisores. D (5) = {1, 5} D (6) = {1, 2, 3, 6} D (12) = {1, 2, 3, 4, 6, 12} D (20) = {1, 2, 4, 5, 10, 20}
2 4. DIVISORES COMUNES A VARIOS NÚMEROS Un número es divisor común de dos o más números si es divisor de todos ellos. D (12) = {1, 2, 3, 4, 12} D (15) = {1, 3, 5, 15} D (18) = {1, 2, 3, 6, 9, 18} D (24) = {1, 2, 3, 4, 6, 8, 12, 24} Divisores comunes de 12 y 15 = {1, 3} Divisores comunes de 18 y 24 = {1, 2, 3, 6} Máximo común divisor (m.c.d.) de dos o más números es el mayor de los divisores comunes. m.c.d. (12, 15) = 3 m.c.d. (18, 24) = 6 5. NÚMEROS PRIMOS Y NÚMEROS COMPUESTOS Números primos son aquellos que sólo son divisibles por sí mismo y por la unidad. Es decir, sólo tienen por divisores a sí mismo y a la unidad. Números compuestos son los que además de ser divisibles por sí mismos y por la unidad tienen otros divisores. Números primos = {1, 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31...} 6. CRITERIOS DE DIVISIBILIDAD Nos permiten saber de un modo sencillo cuando un número es divisible por otro. Número CRITERIO 2 Un número es divisible por 2 cuando acaba en 0 o cifra par. 3 Un número es divisible por 3 cuando la suma de sus cifras da tres o múltiplo de 3. 4 Un número es divisible por 4 cuando lo es el número formado por sus dos últimas cifras. 5 Un número es divisible por 5 cuando acaba en 0 ó en 5. 6 Un número es divisible por 6 cundo es divisible por 2 y por 3. 8 Un número es divisible por 8 cuando lo es el número formado por sus tres últimas cifras. 9 Un número es divisible por 9 cuando la suma de sus cifras da nueve o múltiplo de Un número es divisible por 10 cuando acaba en 0.
3 7. DESCOMPOSICIÓN FACTORIAL DE UN NÚMERO EN PRODUCTO DE FACTORES PRIMOS. Para descomponer un número en un producto de factores primos se procede según el ejemplo en el que vamos a descomponer paso a paso el número 60. La descomposición factorial la expresaremos de la siguiente forma: 60 = 2 x2 x 3 x 5 = 2 2 x 3 x 5 Las descomposiciones factoriales no se realizan en varias barras como en el ejemplo, sino que se hacen en una sola como en los siguientes ejemplos =2 x 2 x 2= =2 x 2 x 3= 2 2 x =2 x 5 x 5= 2x =2 x 2 x 2 x 3=2 3 x3 m.c.d. y m.c.m. A PARTIR DE LA DESCOMPOSICIÓN EN PRODUCTO DE FACTORES PRIMOS Para calcular el m.c.d. de dos o más números los descomponemos en su producto de factores primos y tomamos los factores comunes con el menor exponente. Para calcular el m.c.m. de dos o más números los descomponemos en su producto de factores primos y tomamos los factores comunes y no comunes con el mayor exponente. Utilizando las descomposiciones factoriales anteriores, observa: m.c.d. (12, 50) m.c.m (12, 50) m.c.d. (60, 50) m.c.m. (60, 50) 12 = 2 2 x3 50 = 2x = 2 2 x3 50 = 2x = 2 2 x3x5 50 = 2x = 2 2 x3x5 50 = 2x5 2 m.c.d. (12, 50) = 2 m.c.m (12, 50) = m.c.d. (60, 50) = m.c.d. (60, 50) = 2 2 x 3 x 5 2 = x 5 = x 3 x 5 2 = 300
4 Actividades: 1.- Halla cinco números que sean múltiplos de 5 y menores que Clasifica estos números en múltiplos de 5 y en múltiplos de 9: 1, 0, 5, 36, 45, 18, 100, 9, 81, 21, Completa la serie de múltiplos de 3 hasta el 30. M(3)={0, 3, 6, 9,...} - Indica los cinco números que siguen en cada serie y completa. a) 0, 2, 4, 6,... son múltiplos de... b) 0, 5, 10, 15,... son múltiplos de... c) 0, 7, 14, 21,... son múltiplos de Escribe los diez primeros múltiplos de 6. Es posible escribir todos los múltiplos de un número? 5.- Escribe 5 múltiplos de 8 mayores de Escribe 4 múltiplos de 9 mayores que De los siguientes números, di cuáles son múltiplos de 4 y por qué lo son. 32, 15, 24, 20, 12, 13, Escribe los cinco primeros múltiplos de 8, 1 y Agrupa estos números según sean múltiplos de 2, de 5 y de 7 8, 119, 6, 7, 2, 21, 195, 15, 63, 55, Calcula los múltiplos comunes de 3 y 5 menores que Señala cuales de los siguientes números son múltiplos comunes de 5 y de 7. 35, 10, 70, 14, 700, 140, Calcula el mínimo común múltiplo de los siguientes pares de números: 2 y 5 2 y 3 2 y 4 2 y a) Es 8 múltiplo de 2? Calcula el mínimo común múltiplo de 2 y de 8. b) Es 9 múltiplo de 3? Calcula el mínimo común múltiplo de 3 y de 9. c) Es 25 múltiplo de 5? Calcula el mínimo común múltiplo de 5 y de 25. d) Qué observas? 14.- Indica cual de los siguientes números no es divisor de Busca los seis divisores de Busca todos los divisores de Busca todos los divisores de 20. 2, 4, 10, 15, 30 4
5 19.- Comprueba con tres ejemplos, que cualquier número es divisible por 1 y por sí mismo Indica que números de esta lista son divisibles por Fíjate en el resultado del ejercicio anterior y, sin hacer ninguna operación, contesta estas preguntas: Pueden hacerse equipos de 4 jugadores con 28 personas sin que ninguna se quede sin jugar? Y con 52 personas? 22.- Un número comprendido entre 60 y 67 es divisible por 7. Sabes de qué número se trata? 23.- Ya sabes que 6 x 3 = 18. Sin hacer ningún cálculo completa: a) 18 es un múltiplo de... y de... b) 18 es divisible por... y de... c) 18 es un... de 3. d) 6 es un divisor de... e) 3 es un... de Comprueba cuál de estos números es divisible por 3 y por 7 a la vez Calcula los divisores comunes de 12 y Calcula los divisores comunes de 25 y Calcula los divisores comunes de 12, 20 y Teniendo en cuenta los ejercicios anteriores calcula: m.c.d. (12, 20) = m.c.d. (25, 30) = m.c.d. (12, 20, 24) = 29.- Calcula los números primos comprendidos entre el 1 y el Nº primos entre 1 y 100 ={
6 30.- Utilizando los criterios de divisibilidad completa la tabla. Divisible por: Número Realiza la descomposición factorial de los siguientes números:
7 32.- Utilizando los criterios de divisibilidad completa la tabla. Divisible por: Número Realiza la descomposición factorial de los siguientes números:
8
9 34.- Calcula por descomposición factorial el m,c.d. y el m.c.m. de los siguientes pares de números. (En el cuaderno). 121 y y y Calcula por descomposición factorial el m,c.d. y el m.c.m. de los siguientes tríos de números. (En el cuaderno). 45, 55, , 36, 54 9, 12, Juan va a visitar a su abuela cada 12 días y su prima cada 18 días. Cada cuántos días coinciden en casa de su abuela? Datos que me dan: Operaciones Datos que me piden: Solución: 37.- Un frutero tiene 180 kg de manzanas y 160 kg de naranjas. Quiere ponerlas en bolsas iguales. Cuántos kg podrá poner como máximo en cada bolsa y cuántas bolsas necesitará para cada fruta? Datos que me dan: Operaciones Datos que me piden: Solución: 38.- Un pasillo de 860 cm de largo y 240 cm de ancho se ha solado con baldosas cuadradas, de la mayor dimensión posible, para que quepa en cada lado un número exacto de ellas. a) Cuánto mide de lado cada baldosa? b) Cuántas baldosas se emplearon? Datos que me dan: Operaciones Datos que me piden: 9 Solución:
10 39.- Tres barcos salen de un puerto: el primero, cada 2 días; el segundo, cada 6; y el tercero, cada 8. Si salieron juntos el 1 de mayo, qué día volverán a salir juntos otra vez? Datos que me dan: Operaciones Datos que me piden: Solución: 40.- En un recipiente hay 120 litros de aceite de oliva y en otro 100 litros de aceite de girasol. Queremos embotellar el aceite en garrafas del tamaño mayor posible. Qué capacidad deben de tener estas garrafas si queremos embotellar los dos tipos de aceite por separado y no queremos que sobre nada? Datos que me dan: Operaciones Datos que me piden: Solución: En el salón de un hotel hay 18 personas. En otro salón hay 24 personas. Se tienen que trasladar, pero: a) Sólo existe un coche. b) En cada viaje, el coche debe ir lleno. c) No puede quedar ninguna persona en ninguno de los dos salones después del último viaje. d) El coche tiene que hacer el menor número posible de viajes. Para cuantos viajeros tiene que tener capacidad el coche? 10
MÚLTIPLOS Y DIVISORES
MÚLTIPLOS Y DIVISORES MÚLTIPLOS DE UN NÚMERO Los múltiplos de un número son los que lo contienen un número exacto de veces. El 2 es múltiplo de 3 porque lo contiene 4 veces. El 30 es múltiplo de 5 porque
Ejercicios Pendientes Matemáticas 2º ESO Curso Números Enteros Los Números Enteros
Los 1) 2) 1 3) 4) 5) 9) ) 2 11) 12) 16) 3 17) 18) 19) 4 20) 21) En qué orden se realizan las operaciones con números enteros Para resolver varias operaciones combinadas con números enteros, se debe seguir
TEMA 2 DIVISIBILIDAD 1º ESO
Alumno Fecha TEMA 2 DIVISIBILIDAD 1º ESO Si la división de un número A entre otro número B, es exacta, entonces decimos que: - El número A es divisible por el número B. Ej.: 12 : 4 = 3 12 divisible por
Un número a es múltiplo de otro b cuando es el resultado de multiplicar este último por otro número c.
DIVISIBILIDAD Múltiplos Un número a es múltiplo de otro b cuando es el resultado de multiplicar este último por otro número c. 18 = 2 9 18 es múltiplo de 2, ya que resulta de multiplicar 2 por 9. Tabla
2. Divisibilidad SOLUCIONARIO 2. NÚMEROS PRIMOS Y COMPUESTOS 1. MÚLTIPLOS Y DIVISORES PIENSA Y CALCULA
16 SOLUCIONARIO 2. Divisibilidad 1. MÚLTIPLOS Y DIVISORES Calcula mentalmente e indica, de las siguientes divisiones, cuáles son exactas o enteras: a) 125 : 5 b) 28 : 6 c) 140 : 7 d) 23400 : 100 a) 25.
2 Divisibilidad. 1. Múltiplos y divisores
2 Divisibilidad 1. Múltiplos y divisores Calcula mentalmente e indica, de las siguientes divisiones, cuáles son exactas o enteras: a) 125 : 5 b) 28 : 6 c) 140 : 7 d) 23 400 : 100 P I E N S A Y C A L C
DIVISIBILIDAD. 2º E.S.O. Un número es múltiplo de otro si se puede obtener multiplicando el segundo por otro número entero.
MULTIPLOS Y DIVISORES DIVISIBILIDAD. NÚMEROS ENTEROS. º E.S.O. Un número es múltiplo de otro si se puede obtener multiplicando el segundo por otro número entero. 8 es múltiplo de porque 8 = 9 75 es múltiplo
Tema 4: Múltiplos y Divisores
Tema 4: Múltiplos y Divisores Índice 1. Introducción. 2. Múltiplos de un número. 3. Divisores de un número. 4. Criterios de divisibilidad. 5. Números primos y números compuestos. 6. Descomposición de un
Ampliación Tema 3: Múltiplo y divisores
- Múltiplo. Divisible. Divisor Ampliación Tema 3: Múltiplo y divisores 56 8 56 es divisible por 8 0 7 56 es múltiplo de 8 Para indicar que 56 es múltiplo de 8 se escribe sobre el divisor 8 un punto :(8)
Números primos y compuestos
Divisibilidad -Números primos y compuestos. -Múltiplos. Mínimo común múltiplo. -Divisores. Máximo común divisor. -Criterios de divisibilidad. -Descomposición factorial. -Aplicaciones. 1 Números primos
1:F 2:V 3:F 4:V 5:V 6:F 7:F 8:V 9:F 10:V 11:F 12:V 13:V 14:V 15:V 16:V 17:F 18:V. 49 no es múltiplo de 9: 49:9 no es exacta
Tema 1: DIVISIBILIDAD Actividades para preparar el examen. Teoría: Contesta si son ciertas las afirmaciones: 1:F :V 3:F 4:V 5:V 6:F 7:F 8:V 9:F 10:V 11:F 1:V 13:V 14:V 15:V 16:V 17:F 18:V 19:V 0:V 1:F
TEMA 3: DIVISIBILIDAD
TEMA : DIVISIBILIDAD MÚLTIPLOS Un número es MÚLTIPLO de otro cuando es el resultado de multiplicar el segundo número por cualquier número natural. 1 es MÚLTIPLO de 4 porque 4 x = 1 DIVISIBILIDAD Existe
DIVISIBILIDAD 2 3 = 8. Es decir, el resultado de multiplicar 2 por cualquier número natural.
DIVISIBILIDAD I. Múltiplos y Divisores 1. MULTIPLOS Los múltiplos de 2 son = 2 2 1 = 4 2 2 = 6 2 3 = 8 2 4 etc Es decir, el resultado de multiplicar 2 por cualquier número natural. Múltiplo de un número
Múltiplos y divisores
Múltiplos y divisores Contenidos 1. Múltiplos y divisores Múltiplos de un número La división exacta Divisores de un número Criterios de divisibilidad Números primos Números primos y compuestos Obtención
ACTIVIDADES DE REFUERZO DE MATEMÁTICAS 1º DE E.S.O. TEMA 2 : DIVISIBILIDAD
ACTIVIDADES DE REFUERZO DE MATEMÁTICAS 1º DE E.S.O. TEMA 2 : DIVISIBILIDAD ACTIVIDAD Nº: 1 FECHA: ALUMNO/A: GRUPO: Si la división de un número A, entre otro número B, es exacta, entonces decimos que: El
Tema 1: Divisibilidad. Los Números Enteros.
Matemáticas Ejercicios Tema 1 2º ESO Bloque I: Aritmética Tema 1: Divisibilidad. Los Números Enteros. 1.- Completa con la palabra múltiplo o divisor: a) 8 es. de 4 b) 7 es. de 49 c) 5 es. de 35 d) 72 es.
Tema 2. Divisibilidad 1º de Educación Secundaria Obligatoria
Tema 2. Divisibilidad 1º de Educación Secundaria Obligatoria Contenidos 1. Múltiplos y divisores 1.1. Múltiplos y divisores 1.2. Propiedades de múltiplos y divisores 2. Números primos y compuestos 2.1.
MÚLTIPLOS Y DIVISORES DIVISIBILIDAD M.C.D. y M.C.M. Un número es múltiplo de otro si se obtiene multiplicando este último por un número natural.
MÚLTIPLOS Y DIVISORES DIVISIBILIDAD M.C.D. y M.C.M. Múltiplos de un número Un número es múltiplo de otro si se obtiene multiplicando este último por un número natural. Por ejemplo, si multiplicamos 9x2
2 Divisibilidad. 1. Múltiplos y divisores
2 Divisibilidad 1. Múltiplos y divisores Calcula mentalmente e indica, de las siguientes divisiones, cuáles son exactas o enteras: a) 125 : 5 b) 28 : 6 c) 140 : 7 d) 23 400 : 100 P I E N S A Y C A L C
Unidad 2. Divisibilidad
Ojo!!: no basta con copiar las soluciones en tu cuaderno. Las soluciones sirven para comprobar el resultado una vez que has hecho el ejercicio. Haz pues primero los ejercicios sin mirar aquí y luego comprueba
DIVISIBILIDAD. 1º relación de divisibilidad: múltiplos y divisores.
CEPA Carmen Conde Abellán Matemáticas IyII Divisibilidad DIVISIBILIDAD 1º relación de divisibilidad: múltiplos y divisores. Dos números están emparentados por la relación de divisibilidad cuando el cociente
UNITAT 1. ELS NOMBRES NATURALS.
UNITAT 1. ELS NOMBRES NATURALS. 1. Escribe en tu cuaderno los siguientes números: a) Dos millones cuatrocientos mil b) Un millón, dos mil, cinco c) Tres mil, cuatro 2. Escribe en números romanos los siguientes
Divisibilidad Actividades finales
DIVISIBILIDAD. CRITERIOS 1. El dividendo de una división es 214, el divisor es 21 y el cociente es 10. Es divisible 214 por 21? 2. El número 186 es divisible por 31. Comprueba si 2 186 y 3 186 son también
DIVIDENDO DIVISOR COCIENTE RESTO
TEMA 1. NÚMEROS NATURALES 1. Realiza las siguientes operaciones combinadas: 20 460 25 418 256 27 5 16 60 54 :9 6 4 7 (8 4) 15: 5 ( 7 2) 4 (4 6) : 84 5 (6 : 2 5) 4 10 : 5 2. Completa la tabla calculando
CEIP Mediterráneo. 1º relación de divisibilidad: múltiplos y divisores.
Melilla DIVISIBILIDAD 1º relación de divisibilidad: múltiplos y divisores. Dos números están emparentados por la relación de divisibilidad cuando el cociente entre el mayor y el menor es exacto. El mayor
MATEMÁTICAS 2º ESO. TEMA 1
MATEMÁTICAS 2º ESO. TEMA 1 1. DIVISIBILIDAD Y NÚMEROS ENTEROS 1. Los divisores son siempre menores o iguales que el número. 2. Los múltiplos siempre son mayores o iguales que el número. 3. Para saber si
IDENTIFICAR LOS MÚLTIPLOS Y DIVISORES DE UN NÚMERO
OBJETIVO IDENTIICAR LOS MÚLTIPLOS Y DIVISORES DE UN NÚMERO NOMBRE: CURSO: ECHA: Los múltiplos de un número son aquellos que se obtienen multiplicando dicho número por,,,, es decir, por los números naturales.
Continuación Números Naturales:
Continuación Números Naturales: Múltiplos y divisores de un número natural. Reglas de divisibilidad. Mínimo común múltiplo y Máximo común divisor. Ejercicios de aplicación. Continuación Números Naturales:
ACTIVIDADES DE MATEMÁTICAS SECUNDARIA Divisibilidad- mcm y mcd Hoja Nº 2
Teoría: Criterios de divisibilidad Podemos saber fácilmente si un número es divisible por otro sin necesidad de hacer la división, observando estas características: Los múltiplos de 2 terminan en 0, 2,
Ejercicios resueltos de aritmética
Ejercicios resueltos de aritmética 1) Calcula: a) 5 3 7 + 1 + 8 b) 2 3 + 4 + 1 8 + 2 c) 1 3 + 5 7 + 9 11 d) 2 + 4 6 8 + 10 12 + 14 2) Quita paréntesis: a) a + (b + c) b) a (b + c) c) a + (b c) d) a (b
TEMA 1 NÚMEROS NATURALES
TEMA 1 NÚMEROS NATURALES 1. Opera: 2. Calcula: 3. Calcula: 4. Completa los huecos en las siguientes operaciones: a) 12873 + = 47960 b) 583002 98450 = c) 77010 - = 628 5. Efectúa las siguientes multiplicaciones
DIVISIBILIDAD. 4.- Escribe todos los múltiplos de 13 que tengan dos cifras.
DIVISIBILIDAD 1.- Al dividir un número entre 38 da: 7 566 de cociente y 33 de resto. Si al dividendo le sumamos 14: a) cuánto daría de resto? b) y si le sumamos 4? c) y si le sumamos 146?, indica también
INSTITUTO DE FORMACIÓN DOCENTE DE CANELONES DIVISIBILIDAD
DIVISIBILIDAD Definición de múltiplo Dados los números naturales a y b, se dice que a es múltiplo de b, si y solo si existe un número natural k, único, tal que a = b.k El número k se dice que es el cociente
Llamamos potencia a todo producto de factores iguales. Por ejemplo: 3 4 =
1. NÚMEROS NATURALES POTENCIAS DE UN NÚMERO NATURAL Llamamos potencia a todo producto de factores iguales. Por ejemplo: 3 4 = 3 3 3 3 El factor que se repite es la base, y el número de veces que se repite
Soluciones a las actividades
Soluciones a las actividades BLOQUE I Números y medidas. Divisibilidad y números enteros 2. Fracciones y números decimales 3. Potencias y raíces 4. Medida de ángulos y de tiempo 5. Proporcionalidad 6.
Unidad 2: Ecuaciones, inecuaciones y sistemas.
Unidad 2: Ecuaciones, inecuaciones y sistemas 1 Unidad 2: Ecuaciones, inecuaciones y sistemas. 1.- Factorización de polinomios. M. C. D y m.c.m de polinomios. Un número a es raíz de un polinomio es 0.
Tema 2 Divisibilidad
1. Relación de Divisibilidad Tema 2 Divisibilidad Entre dos números a y b existe la relación de divisibilidad si al dividir a : b la división es exacta. Existe la relación de divisibilidad entre estos
Bloque 1. Aritmética y Álgebra
Bloque 1. Aritmética y Álgebra Los números naturales Los números naturales Los números naturales se definen como: N = { 0,1, 2, 3, 4, 5,...,64, 65, 66,...,1639,1640,1641,1642,... } El sistema de numeración
Tema 2. Divisibilidad. Múltiplos y submúltiplos.
Tema 2. Divisibilidad. Múltiplos y submúltiplos. En el tema 1, se ha mostrado como realizar cuentas con números naturales y enteros. Antes de conocer otras clases de números, los racionales, irracionales
Múltiplos de un número
Múltiplos de un número Rodea la opción correcta Para calcular los múltiplos de, multiplicamos por Los naturales Escribe cinco múltiplos de Cuántos kilogramos de patatas puedo comprar si los venden en bolsas
DIVISIBILIDAD. 1. - Une con flechas cada número de la primera fila con los divisores que tengan en la segunda: 18 24 49 27 15
1 DIVISIBILIDAD 1. - Une con flechas cada número de la primera fila con los divisores que tengan en la segunda: 18 24 49 27 15 2 3 4 5 6 7 8 9 2. - Escribe: múltiplo, divisor o nada, según convenga. a)
MATEMÁTICAS 5º PRIMARIA DIVISIBILIDAD: MÚLTIPLOS Y DIVISORES
MATEMÁTICAS 5º PRIMARIA DIVISIBILIDAD: MÚLTIPLOS Y DIVISORES 1 2 MÚLTIPLOS DE UN NÚMERO Un número es múltiplo de otro si se obtiene multiplicando este número por otro número natural. Ejemplo: 12 es múltiplo
Múltiplos y divisores.
Múltiplos y divisores. 1.- Completa las siguientes tablas: x 1 2 3 4 5 6 7 8 9 10 1 4 3 5 35 7 14 70 9 x 1 2 3 4 5 6 7 8 9 10 2 4 32 6 24 8 16 10 90 2.- Explica que son los múltiplos de un número y como
INSTRUCTIVO PARA TUTORÍAS
INSTRUCTIVO PARA TUTORÍAS Las tutorías corresponden a los espacios académicos en los que el estudiante del Politécnico Los Alpes puede profundizar y reforzar sus conocimientos en diferentes temas de cara
El primer día del mes es juves. Cuál es el 29 día del mes?
Divisibilidad. Para resolver juntos: Un cartel tiene 4 luces de colores Amarillo, Verde; Rojo; Blanco. Se van encendiendo, por minuto. El primer minuto, la luz amarilla, el segundo minuto la verde, el
TEMA 1 NÚMEROS NATURALES
TEMA 1 NÚMEROS NATURALES Criterios De Evaluación de la Unidad 1 Efectuar correctamente operaciones combinadas de números naturales, aplicando correctamente las reglas de prioridad y haciendo un uso adecuado
INSTITUCION EDUCATIVA DISTRITAL SIERRA MORENA
INSTITUCION EDUCATIVA DISTRITAL SIERRA MORENA Por una escuela activa, viva, planeada y proyectada al siglo XXI FEPARTAMENTO; MATEMATICAS SEDE: A JORNADA: FIN DE SEMANA Ciclo; _ II_ Asignatura; MATEMATICAS
Los números naturales
Los números naturales Los números naturales Los números naturales son aquellos que sirven para contar. Se suelen representar utilizando las cifras del 0 al 9. signo suma o resultado Suma: 9 + 12 = 21 sumandos
Matemáticas Orientadas a las Enseñanzas Aplicadas IES
Matemáticas Orientadas a las Enseñanzas Aplicadas IES Los números enteros y racionales. Contenidos 1. Números enteros. Representación y orden. Operaciones. Problemas. 2. Fracciones y decimales. Fracciones
1.- NÚMEROS NATURALES Y DECIMALES
1.- NÚMEROS NATURALES Y DECIMALES 1.1 Posición de las cifras de un número natural. Los números naturales son los números que conocemos (0, 1, 2, 3 ). Los números naturales están ordenados, lo que nos permite
Juega con los números Página 11
Página 11 Pág. 1 14 Busca el menor número de seis cifras cuya división entre 7 es exacta. Busca también el mayor. El menor número de seis cifras es 100 000. 100 000 : 7 = 14 285, El menor número de seis
DIVISIBILIDAD NÚMEROS NATURALES
DIVISIBILIDAD NÚMEROS NATURALES MÚLTIPLOS Un número a es múltiplo de otro b cuando es el resultado de multiplicarlo por otro número c. a = b c Ejemplo: 12 es múltiplo de 2, ya que resulta de multiplicar
Teoría (resumen) Por ejemplo, los múltiplos de 3 son: 3, 6, 9, 12, 15, 18, ; los múltiplos de 2 son: 2, 4, 6, 8, 10, 12, ; o sea los números pares.
1.- Divisibilidad Teoría (resumen) Múltiplos de un número. Son aquellos que se obtienen al multiplicar dicho número por los números naturales 1, 2, 3,. Por ejemplo, los múltiplos de 3 son: 3, 6, 9, 12,
UNIDAD DIDÁCTICA 4º. Temporalización. septiembre octubre noviembre diciembre enero febrero marzo abril mayo junio
UNIDAD DIDÁCTICA 4º Etapa: Educación Primaria. Ciclo: 3º Curso 6º Área del conocimiento: Matemáticas Nº UD: 4º (8 sesiones de 60 minutos; a ocho sesiones por quincena) Título: Múltiplos y divisores. Temporalización
TEMA 1: NÚMEROS NATURALES, DIVISIBILIDAD 1º ESO. MATEMÁTICAS
TEMA 1: NÚMEROS NATURALES, DIVISIBILIDAD 1º ESO. MATEMÁTICAS Los números naturales De forma intuitiva podemos definir los números naturales de la siguiente forma: DEFINICIÓN Los números naturales son aquellos
Cuando se enumeran todos los elementos que componen el conjunto. A = { 1, 2, 3, 4, 5 }
LOS NÚMEROS REALES TEMA 1 IDEAS SOBRE CONJUNTOS Partiremos de la idea natural de conjunto y del conocimiento de si un elemento pertenece (* ) o no pertenece (* ) a un conjunto. Los conjuntos se pueden
SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD
Pág. 1 PÁGINA 72 EJERCICIOS Múltiplos y divisores 1 Calcula mentalmente para indicar si existe relación de divisibilidad entre estos números: a) 50 y 200 b) 35 y 100 c) 88 y 22 d) 15 y 35 e) 15 y 60 f
MÚLTIPLOS Y DIVISORES
MÚLTIPLOS Y DIVISORES 1. MÚLTIPLOS DE UN NÚMERO. 1.1. CONCEPTO DE MÚLTIPLO. Un número es múltiplo de otro cuando lo contiene un número exacto de veces, es decir, cuando la división del primero entre el
TEMA 1.- POLINOMIOS Y FRACCIONES ALGEBRAICAS
TEMA 1.- POLINOMIOS Y FRACCIONES ALGEBRAICAS 1.- POLINOMIOS Recordemos que un monomio es una expresión algebraica (combinación de letras y números) en la que las únicas operaciones que aparecen entre las
I.E.S. VICTORIA KENT DEPARTAMENTO DE MATEMÁTICAS Pág. 1 de 9 ACTIVIDADES DE REFUERZO DE MATEMÁTICAS DE 1º DE E.S.O. UNIDAD 3: DIVISIBILIDAD
DEPARTAMENTO DE MATEMÁTICAS Pág. de 9 Ejercicio nº.- ACTIVIDADES DE REFUERZO DE MATEMÁTICAS DE º DE E.S.O. UNIDAD : DIVISIBILIDAD Responde a las preguntas y justifica tus respuestas: a) El número 8 es
LOS NÚMEROS ENTEROS. Para restar un número entero, se quita el paréntesis y se pone al número el signo contrario al que tenía.
Melilla Los números Enteros y operaciones elementales LOS NÚMEROS ENTEROS 1º LOS NÚMEROS ENTEROS. El conjunto de los números enteros Z está formado por los números naturales (enteros positivos) el cero
TEORIA DE NUMEROS (I) REGLAS DE DIVISIBILIDAD
Un número es divisible por: TEORIA DE NUMEROS (I) REGLAS DE DIVISIBILIDAD - 2 Si es PAR. - 3 Si la suma de sus cifras es divisible por 3. - 4 Si el número formado por sus dos últimas cifras es divisible
SOLUCIONES A LAS ACTIVIDADES DE CADA EPÍGRAFE
Pág. 1 PÁGINA 58 REFLEXIONA Óscar y Mónica colaboran como voluntarios en el empaquetado de medicinas. En qué contenedor embalará Óscar los analgésicos? Qué ocurriría si eligiera el que tiene forma de cubo?
Unidad 1 Números. Los números naturales son aquellos que se utilizan para contar los elementos de un conjunto.
Unidad 1 Números 1.- Números Naturales Los números naturales son aquellos que se utilizan para contar los elementos de un conjunto. El conjunto de números naturales se representa por la letra N Operaciones
UNIDAD 1: NÚMEROS NATURALES
UNIDAD 1: NÚMEROS NATURALES 1. Calcula: Ya conoces las cuatro operaciones básicas, la suma, la resta, multiplicación y división. Cuando te aparezcan varias operaciones para realizar debes saber la siguiente
1. ESQUEMA - RESUMEN Página 2 2. EJERCICIOS DE INICIACIÓN Página 8 3. EJERCICIOS DE DESARROLLO Página EJERCICIOS DE REFUERZO Página 63
1. ESQUEMA - RESUMEN Página 2 2. EJERCICIOS DE INICIACIÓN Página 8 3. EJERCICIOS DE DESARROLLO Página 38 5. EJERCICIOS DE REFUERZO Página 63 1 1. ESQUEMA - RESUMEN Página 1.1. MÚLTIPLOS Y DIVISORES DE
CONJUNTO DE LOS NÚMEROS NATURALES
República Bolivariana de Venezuela Ministerio de la Defensa Universidad Nacional Experimental de las Fuerzas Armadas Curso de Inducción Universitaria CIU Cátedra: Razonamiento Matemático CONJUNTO DE LOS
Un número natural distinto de 1 es un número primo si sólo tiene dos divisores, él mismo y la unidad.
Números primos NÚMEROS PRIMOS Un número natural distinto de es un número primo si sólo tiene dos divisores, él mismo y la unidad. Un número natural es un número compuesto si tiene otros divisores además
POTENCIAS Y RAÍZ CUADRADA
POTENCIAS Y RAÍZ CUADRADA 1.- Indica la base y el exponente de las siguientes potencias y calcula su valor: a) c) e) 10.- Completa: b) f) g) h) Potencia Base Exponente En forma de multiplicación Valor
EJERCICIOS PARA NAVIDAD (RECUPERACIÓN PRIMERA EVALUACIÓN). CURSO: Fecha de entrega: Viernes. 14 de enero. Fecha de examen: Viernes, 21 de enero.
º E.S.O. MATEMÁTICAS I.E.S. LOSADA EJERCICIOS PARA NAVIDAD (RECUPERACIÓN PRIMERA EVALUACIÓN). CURSO: 10-11 Fecha de entrega: Viernes. 1 de enero. Fecha de examen: Viernes 1 de enero. Alumno/a:. Grupo:
TRABAJO DE SEPTIEMBRE DE MATEMÁTICAS 2º ESO... NOMBRE Y APELLIDOS...
TRABAJO DE SEPTIEMBRE DE MATEMÁTICAS 2º ESO... NOMBRE Y APELLIDOS... 1ª Realizar las siguientes divisiones: a) 345,83 : 6 = b) 23 : 0, 5 = c) 0,18 : 0,12 = d) 34,15 : 5 = e) 2,16 : 1,8 = f) 13,02 : 0,25=
EJERCICIOS SOBRE : DIVISIBILIDAD
1.- Múltiplo de un número. Un número es múltiplo de otro cuando lo contiene un número exacto de veces. De otra forma sería: un número es múltiplo de otro cuando la división del primero entre el segundo
Múltiplos y divisores
Divisibilidad 1. Múltiplos y divisores. 2. Propiedades de los múltiplos. 3. Criterios de divisibilidad. 4. Números primos y compuestos. 5. Descomposición en factores primos. 6. Máximo común divisor y mínimo
1Soluciones a los ejercicios y problemas PÁGINA 34
1Soluciones a los ejercicios y problemas PÁGINA 34 Pág. 1 M últiplos y divisores 1 Encuentra cuatro parejas múltiplo-divisor entre los siguientes números: 143 12 124 364 180 31 52 13 143 y 13 124 y 31
3º ESO ÁMBITO CIENTÍFICO TECNOLÓGICO Trabajo de verano
º ESO ÁMBITO CIENTÍFICO TECNOLÓGICO Trabajo de verano MATEMÁTICAS (PARTE ). Halla el m.c.d. y el m.c.m de los números: a) 7 y Solución: y b) 560, 5 Solución: y 760 c) 60, 7 y 90 Solución: 6 y 60 d) 70,
OBJETIVO 1 COMPRENDER Y APLICAR LOS CRITERIOS DE DIVISIBILIDAD NOMBRE: CURSO: FECHA: Un atleta recorre una distancia en saltos de 2 metros.
OBJETIVO 1 COMPRENDER Y APLICAR LOS CRITERIOS DE DIVISIBILIDAD NOMBRE: CURSO: FECHA: criterios de divisibilidad EJEMPLO Un atleta recorre una distancia en saltos de 2 metros. Una rana recorre una distancia
Problemas de divisibilidad
Problemas de divisibilidad 1. Tenemos 24 botellas de agua. Queremos envasarlas en cajas que sean todas iguales sin que sobren ni falten botellas. Averigua todas las soluciones posibles. 2. En el almacén
TEMA 2: TEORÍA DE CONJUNTOS Y CONJUNTOS NUMÉRICOS.
TEMA 2: TEORÍA DE CONJUNTOS Y CONJUNTOS NUMÉRICOS. TEORÍA DE CONJUNTOS. Definiciones. Se define un conjunto como una colección de objetos o cosas, se nombran con letras mayúsculas (A, B...). Cada uno de
Operar en línea: a) 12076 5; b) 7083 6; c) 10925 4; d) 74012 7; e) 134235 8; f) 370621 3; g) 560032 9
Naturales 1 Natural 1 Para qué sirven los números naturales? Escribe con símbolos romanos los siguientes números: 1492; 449; 589; 1588; 40090 2 Cuál es el primer número natural? Una persona se fuma un
NÚMEROS NATURALES Y DIVISIBILIAD - PROBLEMAS
NÚMEROS NATURALES Y DIVISIBILIAD - PROBLEMAS 1º ESO Curso 2013/2014 NOMBRE: Nº: NOTA: FALTAS: TILDES: NOTA FINAL: 1.- El domingo salí de casa con una cierta cantidad de dinero. Pagué 860 céntimos en la
POTENCIAS. MÚLTIPLOS Y DIVISORES. MÁXIMO COMÚN DIVISOR Y MÍNIMO COMÚN MÚLTIPLO.
1. LOS NÚMEROS NATURALES POTENCIAS. MÚLTIPLOS Y DIVISORES. MÁXIMO COMÚN DIVISOR Y MÍNIMO COMÚN MÚLTIPLO. 2. LOS NÚMEROS ENTEROS. VALOR ABSOLUTO DE UN NÚMERO ENTERO. REPRESENTACIÓN GRÁFICA. OPERACIONES.
MIDDLE SCHOOL GUIA DE ESTUDIO SEGUNDO BIMESTRE Primer Grado. Expresión Algebraica Constante Variable
MIDDLE SCHOOL GUIA DE ESTUDIO SEGUNDO BIMESTRE Primer Grado MATERIA: Matemáticas 1A MAESTRO: Patricia Cornejo Ramos. I. LENGUAJE ALGEBRAICO. 1. Cuáles son las partes de una expresión algebraica? 2. Qué
Criterios de divisibilidad
ENCUENTRO # 2 TEMA: Criterios de Divisibilidad. CONTENIDOS: 1. Criterios de divisibilidad, múltiplos y divisores de un número dado. 2. Principios Fundamentales de la Divisibilidad. DESARROLLO Criterios
1 Operaciones con números naturales
Unidad 1. Números naturales, enteros y decimales 1 Operaciones con números naturales Página 11 1. Resuelve estas expresiones en el orden en que aparecen: a) 13 2 5 b) 2 + 6 (13 2 5) c) 2 + 6 (13 2 5) 7
IES LA ASUNCIÓN
MATEMÁTICAS º ESO Bloque I. Números y medidas. Tema 1: La relación de divisibilidad. TEORÍA 1. MÚLTIPLOS Y DIVISORES * Dos números a y b están emparentados por la relación de divisibilidad cuando su cociente
Números racionales e irracionales
Números racionales e irracionales. Divisibilidad Calcula mentalmente: a) M.C.D. (, 8) b) M.C.D. (, 8) c) M.C.D. (, 9, ) d) m.c.m. (, ) e) m.c.m. (, 9) f ) m.c.m. (,, ) P I E N S A Y C A L C U L A a) b)
1. a) Escribe los primeros cinco múltiplos de 16 que estén entre 75 y 150
ACTIVIDADES DE PENDIENTES DE 2º eso. UNIDADES 1, 2, 3, 4 1. a) Escribe los primeros cinco múltiplos de 16 que estén entre 75 y 150 b) Escribe todos los divisores de 54 c) Escribe todos los divisores de
PENDIENTES 1º ESO. Segundo examen DEPARTAMENTO DE MATEMÁTICAS. Preparación del segundo examen de recuperación de MATEMÁTICAS DE 1º ESO Curso
014 015 Preparación del segundo examen de recuperación de MATEMÁTICAS DE 1º ESO PENDIENTES 1º ESO Segundo examen DEPARTAMENTO DE MATEMÁTICAS 1.- Asocia un número entero a cada enunciado: NÚMEROS ENTEROS
Tema 1. Números y operaciones con números
Tema 1. Números y operaciones con números Ejercicios resueltos 1. Las 16 vacas que hay en una cuadra comen al día 112 kg de pienso y 64 kg de paja. Cada kg de pienso cuesta 9 euros y el de paja 6 euros.
Divisiones al estilo egipcio. Rectángulos. Series en la calculadora. Unidad 3. Divisibilidad. ESO Matemáticas 1. Página 45
Página 45 Divisiones al estilo egipcio 1. Divide, por el mismo procedimiento, 414 : 18. 6 18 Ä8 1 8 6 36 Ä8 2 8 6 72 Ä8 4 8 144 8 6 288 Ä8 16 8 414 23 414 : 18 = 23 Rectángulos 2. Dibuja sobre una cuadrícula
PÁGINA 19. Pág. 1. Unidad 1. Divisibilidad y números enteros
Soluciones a las actividades de cada epígrafe PÁGINA 19 Pág. 1 1 Busca, entre estos números, parejas emparentadas por la relación de divisibilidad: 13 15 18 23 81 90 91 92 225 243 13 y 91 8 91 : 13 = 7
1.1 Números naturales
1.1 1.1.1 El concepto de número natural Posiblemente en la edad de las cavernas los hombres no conocieran los números ni los sistemas de numeración. Sin embargo, eran capaces de contar. Un pastor primitivo
Nombre: 90 X 40= = Calcula el termino que falta en cada operación. Escribe el número anterior y el posterior
Calcula el termino que falta en cada operación 52.685 + = 87.652 6.753 = 6.397 + 34.476 = 56.987 39.455 = 11.247 624 X = 89.232 : 263 = 451 X 340 =294.100 144.795 : = 591 Escribe el número anterior y el
OBJETIVOS CONTENIDOS PROCEDIMIENTOS. Cálculo de los múltiplos y divisores de un número. Criterios de divisibilidad por 2, 3, 5 y 10.
_ 9-.qxd //7 9:7 Página 9 Divisibilidad INTRODUCCIÓN El concepto de divisibilidad requiere dominar la multiplicación, división y potenciación de números naturales. Es fundamental dedicar el tiempo necesario
1. TARJETAS NUMERADAS.
1. TARJETAS NUMERADAS. Alex y Bea tienen 10 tarjetas numeradas con los números 1, 2, 3,... 10. Juegan a un juego en el que uno de ellos debe usar tres tarjetas para obtener la suma que diga su compañero.
HOJA 3 DIVISIBILIDAD
Conceptos de múltiplo y divisor HOJA 3 DIVISIBILIDAD 1.- El número aba es múltiplo de 3 y de 5 cuánto valdrán entonces a y b si a,b son distintos de 0? 2.- El número aba es múltiplo de 5 y de 9 cuánto
DEPARTAMENTO DE MATEMATICAS DEPARTAMENTO DE MATEMATICAS
PARA PODER TRABAJAR EN ESTA LECCION, DEBES HABER ESTUDIADO MUY BIEN LA LECCION ANTERIOR -. Contesta a estas preguntas: 1. Qué cifra ocupa el lugar de las centenas en el número 45.782. 2. Qué cifra ocupa
3 POTENCIAS Y RAÍZ CUADRADA
EJERCICIOS PROPUESTOS 3.1 Indica la base y el exponente de las siguientes potencias y calcula su valor. a) 2 4 c) 4 3 e) 3 5 g) ( 10) 4 b) 3 4 d) 5 3 f) ( 2) 5 h) (6 2 ) a) Base 2, exponente 4; 2 4 16
