CONJUNTO DE LOS NÚMEROS NATURALES
|
|
|
- Luz Méndez Blázquez
- hace 9 años
- Vistas:
Transcripción
1 República Bolivariana de Venezuela Ministerio de la Defensa Universidad Nacional Experimental de las Fuerzas Armadas Curso de Inducción Universitaria CIU Cátedra: Razonamiento Matemático CONJUNTO DE LOS NÚMEROS NATURALES
2 CIU Razonamiento Matemático UNEFA Números Naturales 1 CONJUNTO DE LOS NÚMEROS NATURALES 1.- DEFINICIÓN DEL CONJUNTO DE LOS NÚMEROS NATURALES (Conjunto N): Un número natural es cualquier número que se puede usar para contar los elementos de un conjunto finito. Reciben ese nombre porque fueron los primeros que se utilizaron para contar objetos de la naturaleza. De esta manera, se puede representar al conjunto N como: N = { 0,1,,3,4,..., } Este es un conjunto infinito ordenado; es decir, a cada elemento le corresponde un sucesor y a cada uno, con excepción del 0, le corresponde un antecesor. Algunos matemáticos (especialmente los de Teoría de Números) prefieren no reconocer el cero como un número natural, mientras que otros, especialmente los de Teoría de Conjuntos, Lógica e Informática, tienen la postura opuesta. Existen varias razones para no considerar el cero como número natural: 1.- Si los números naturales son los que sirven para contar, se inicia a contar a partir de uno, no de cero..- Históricamente, primero surgió el uno y sus sucesores y posteriormente se descubrió el cero. 3.- La mayoría de las pruebas por inducción matemática sobre n, siendo n un número natural, inicia a partir de 1 y no de 0. naturales A pesar de todas estas razones, se incluirá al cero dentro del conjunto de los números Representación gráfica del Conjunto N: N ORDEN DE LOS NÚMEROS NATURALES El conjunto de los números naturales es infinito.
3 CIU Razonamiento Matemático UNEFA Números Naturales Esta ordenado en forma creciente. El cero (0) antecede a todos los números naturales. Todo número natural distinto de cero (0) tiene un número que le antecede y otro que le precede. 3.- SISTEMA DE NUMERACIÓN POSICIÓNAL Un sistema de numeración es un conjunto de símbolos o cifras que se utilizan de acuerdo a ciertas reglas para representar diferentes cantidades. (3.1) Principios Fundamentales de un Sistema de Numeración Posicional Un número de unidades de un orden cualquiera igual a la base forman una unidad de un orden inmediato superior. En todo tipo de sistema de numeración se pueden escribir todos los números con tantas cifras como unidades tenga la base contando el cero. Cada símbolo o cifra posee dos valores: Uno absoluto (propio del símbolo) y otro de acuerdo a su posición ocupada dentro de la cantidad (posicional relativo). El sistema de numeración más usado es el sistema de numeración decimal, se llama así, porque se basa en la agrupación de decenas. El mismo número puede usarse un número infinito de veces. (3.) Comparación de un Sistema de Numeración Posicional con Otro no Posicional En los sistemas de numeración No Posicionales no se cumple el principio de valor posicional. Por esta razón, los símbolos empleados en estos sistemas tienen el mismo valor sin importar la posición ocupada dentro de una cantidad. Observe como se escribe la cantidad mil ciento once: En el sistema decimal esta cantidad se representa así: En el sistema romano esta cantidad se representará como: MCXI. Comparando ambas expresiones, se hace notar que en el sistema decimal sólo se emplea un símbolo que toma cuatro valores distintos de acuerdo a la posición que ocupa; para escribirla en el sistema de numeración romano se tienen que usar cuatro símbolos diferentes. En resumen, el sistema de numeración decimal es un sistema posicional, y el sistema
4 CIU Razonamiento Matemático UNEFA Números Naturales 3 de numeración romano es un sistema no posicional. (3.3) Sistema de Numeración Decimal Es el sistema cuya base es 10; es decir, va aumentando o disminuyendo en diez en diez. Por ejemplo: 10 unidades forman una decena y 10 decenas forman una centena, etc Los símbolos y cifras que se utilizan son: Cifra NO Significativa Cifra Significativa Este sistema de numeración cumple el principio de valor posicional. Los símbolos o cifras empleados tienen dos valores: a) Valor Absoluto: Es el valor propio del símbolo o cifra según su figura. Ejemplo: es tres es dos 8 es ocho 5 es cinco b) Valor Relativo: Es el valor representado por un símbolo o cifra dependiendo de la posición que ocupe dentro de una cantidad. Ejemplo: unidades 5 5 decenas = 50 unidades 8 8 centenas = 80 decenas = 800 unidades 3 3 unidades de mil = 30 centenas = 300 decenas = 3000 unidades En el sistema decimal, siempre se cumple el principio aditivo, el cual enuncia que al sumar los valores posiciónales de las cifras que componen un número, se obtiene a dicho número. Ejemplo:
5 CIU Razonamiento Matemático UNEFA Números Naturales unidades = 3 u 4 decenas = 40 u 7 centenas = 700 u 6 unidades de mil = 6000 u 6743 Clases de Números Millones Miles Unidades Ordenes Ordenes Ordenes Centena de Millón Decena de Millón Unidad de millón Centena de Mil Decena de Mil Unidad de Mil Centena Decena Unidad (3.4) Redondeo de Números Naturales Para redondear números naturales, se deben seguir ciertas reglas básicas: a) Con la cifra dada, se fija mentalmente una marca en el dígito al que se desea redondear. Si la primera cifra está a la derecha del dígito marcado, corresponde a un número mayor o igual a cinco ( 5), se suma uno al número marcado. Ejemplo: Dígito Marcado - Centena Aproximadamente b) Si la cifra que esta a la derecha del dígito marcado es menor que cinco ( < 5), se conserva el digito marcado. Ejemplo: Dígito Marcado - Decena En cada uno de los casos anteriores, cada uno de los dígitos sustituidos que siguen al número marcado, se deben sustituir por un cero. 4.- OPERACIONES MATEMÁTICAS EN N (4.1) Suma de Números Naturales La suma de dos números naturales, da como resultado otro número natural. Ejemplo:
6 CIU Razonamiento Matemático UNEFA Números Naturales = 10 Propiedades de la Suma de Números Naturales: 1. Conmutativa: El lugar o posición de los sumandos no cambia el resultado de la suma total. Ejemplo: = = 10 Fórmula: Si a y b son números naturales, entonces se cumple que: a + b = b + a. Asociativa: Al agrupar los sumandos de una suma, siempre el resultado va a ser el mismo. Ejemplo: [ 3 + 4] = [ 5 + 3] = = 1 Fórmula: Si a, b y c son números naturales, se cumple que: ( b + c) = ( a + b) c a Elemento Neutro: Todo número natural que se le sume cero (0), el resultado es el mismo número. Ejemplo: = 4 (4.) Resta de Números Naturales Para restar dos números naturales, se resta el número menor del número mayor. Ejemplo: 6 - = 4 Fórmula: Si a, b y c son números naturales, se cumple que: a b = c a > b Si y sólo sí (4.3) Multiplicación de Números Naturales Propiedades de la Multiplicación de Números Naturales: 1. Conmutativa: El orden de los factores no altera el producto. Ejemplo: 4 x 5 = 5 + 4
7 CIU Razonamiento Matemático UNEFA Números Naturales 6 0 = 0 Fórmula: Si a, b y c son números naturales, se cumple que: a x b = b x a c = c. Asociativa: Al agrupar los factores de una multiplicación, no importa el orden de la agrupación, el producto va a ser el mismo. Ejemplo: [ 3 ] = [ 4 3] = 1 4 = 4 Fórmula: Si a, b y c son números naturales, se cumple que: ( b c) = ( a b) c a 3. Elemento Neutro: Todo número natural multiplicado por uno (1), da el mismo número. Ejemplo: 3 x 1 = 3 1 x 3 = 3 Fórmula: Sea a un número natural, se cumple que: a x 1 = 1 x a 4. Factor Cero: Todo número natural multiplicado por cero (0), da como resultado el valor cero. Ejemplo: 4 x 0 = 0 x 4 0 = 0 Fórmula: Sea a un número natural, se cumple que: a x 0 = 0 x a 0 = 0 5. Propiedad Distributiva con respecto a la suma y a la resta: Los números pueden distribuirse de distintas formas y siempre el resultado será el mismo. Ejemplo:
8 CIU Razonamiento Matemático UNEFA Números Naturales 7 [ 4 + ] = = = 48 [ 4 ] = = 3 16 = 16 Fórmula: Si a, b, c y d son números naturales, se cumple que: ( b + c) = a b + a c a ( b c) = a b a c a 6. Multiplicación por la Unidad Seguida de Ceros: En toda operación de multiplicación de un número cualquiera por otro número constituido por la unidad seguida de ceros, el resultado es el mismo número seguido de tantos ceros como haya. Ejemplo: 3 x 10 = 30 3 x 100 = Multiplicidad: Se llama múltiplo de un número a aquel que se obtiene al multiplicar ese número por otro cualquiera. Por ejemplo, los múltiplos de 5 son: 0, 5, 10, 15, La representación de este conjunto se realiza de la siguiente manera: 5 = { 0,5,10,15,... } A partir de esta definición se deduce que: 0 (cero) es múltiplo de cualquier número. Todo número natural es múltiplo de 1. Todo número natural es múltiplo de sí mismo. Ningún número es múltiplo de 0 (cero); Todo número natural tiene infinitos múltiplos. 0 = Φ (conjunto vacío de elementos). Para comprobar que un número natural es múltiplo de otro, basta con multiplicar uno de ellos por otro número natural, y verificar que el resultado es el segundo número natural. Por ejemplo:
9 CIU Razonamiento Matemático UNEFA Números Naturales 8 35 es múltiplo de 5? La respuesta es que si, debido a que si se multiplica 5 x 7 el resultado es es múltiplo de 4? La respuesta es que no, ya que no existe ningún otro número natural que multiplicado por 4, de cómo resultado 7. (4.4) División de Números Naturales Si dos números naturales se dividen, el resultado final será un número natural, siempre y cuando se cumpla que el dividendo sea mayor que el divisor y además, que ellos sean múltiplos entre sí. Ejemplo: 0 4 = Cumple que 0 > 4, además de cumplir que son múltiplos entre si, ya que 4 5 = 0. 5 Casos especiales de División de Números Naturales: Caso 1: Si cero se divide entre cualquier número natural diferente del mismo cero, el resultado siempre será cero. Ejemplo: 0 = Fórmula: Sea a un número natural, se cumple que: 0 0 a = 0 Caso : Todo número natural dividido entre cero, no pertenece al conjunto N. De hecho, esta operación no pertenece a ningún conjunto de números, por lo que se dice que el resultado es Indeterminado. Por ejemplo: 0 N, es Indeterminado División entre la Unidad Seguida de Ceros: En toda operación de división de un número cualquiera por otro número constituido por la unidad seguida de ceros, el resultado es el mismo número desplazando tantos espacios hacia la izquierda como ceros haya, y colocando una coma en esa posición. Ejemplo: 3 10 =, = 0,03 Como no hay más dígitos, = 0,003 se completa con ceros
10 CIU Razonamiento Matemático UNEFA Números Naturales 9 Divisibilidad: Un número natural es divisible entre otro, si la división entre ellos es exacta (el valor del residuo o resto es igual a cero). De esta manera se tiene que 48 es divisible entre 6 porque al realizar la división entre ellos el cociente es 8. Al conjunto de todos los posibles divisores de un número X, se puede expresar como X. Por ejemplo: El conjunto de los divisores de 36 es: 36 = { 1,,3,4,6,9,1,18,36 } A partir de esta definición se deduce que: Todo número, no nulo, es divisor de 0 (cero): 0 = { 1,,3,4,... } Todo número diferente de cero tiene un número finito de divisores. { 1 X } X =, Números Primos: Son los números que solo son divisibles entre ellos mismos y la unidad. Es decir:. El resto de los números que no son primos, se les llama Números Compuestos. No es fácil reconocer a los números primos, sobre todo cuando ellos son de varias cifras. Por ejemplo, el 1007 no es primo ya que: 1007 = { 1,59,173,1007 } número es primo. Algunos números primos son:, 3, 5, 7, 11, 13. Mientras que el Los números primos son, en cierto modo, como los elementos químicos. A partir de los elementos químicos se forman todos los compuestos químicos y a partir de los números primos podemos obtener el resto de los números. Criterios de Divisibilidad: Un número es DIVISIBLE entre dos () si termina en cero (0) o cifra par. Por ejemplo: 6, 38, 150. Un número es DIVISIBLE entre tres (3) si la suma de sus dígitos es múltiplo de tres (3). Por ejemplo: 7 (+7 = 9, múltiplo de 3), ( = 3, múltiplo de 3). Un número es DIVISIBLE entre cinco (5) si termina en cero (0) o cinco (5). Por ejemplo: 105, 590,
11 CIU Razonamiento Matemático UNEFA Números Naturales 10 Un número es DIVISIBLE entre siete (7) cuando al separar la última cifra de la derecha, multiplicarla por dos y restar ese producto a la cifra que queda, da como resultado cero o un múltiplo de siete. Ejemplo: En el número 49, al separar su última cifra queda 9. El 9 se multiplica por y al resultado se le resta la cifra que quedó, que en este caso es el 4 ( 9 = 18 4 = 14). El resultado de toda esta operación es 14, el cual es un número múltiplo de 7, por lo tanto, el 49 es divisible entre 7. Un número es DIVISIBLE entre once (11) cuando al sumar las cifras de los lugares pares, luego suman las cifras de los lugares impares y estos dos resultados se restan entre sí, el resultado es cero o un número múltiplo de once. Ejemplo: = - = 0 Números Primos: Son los números que solo son divisibles entre ellos mismos y la unidad. Es decir: X = { 1, X } Compuestos.. El resto de los números que no son primos, se les llama Números No es fácil reconocer a los números primos, sobre todo cuando ellos son de varias cifras. Por ejemplo, el 1007 no es primo ya que: 1007 = { 1,59,173,1007 } número es primo. Algunos números primos son:, 3, 5, 7, 11, 13. Mientras que el Los números primos son, en cierto modo, como los elementos químicos. A partir de los elementos químicos se forman todos los compuestos químicos y a partir de los números primos podemos obtener el resto de los números. (4.5) Potenciación de Números Naturales Cuando un número natural se eleva a un exponente, donde dicho exponente indica las veces en la que el número natural se va a multiplicar el mismo. El resultado será un número natural. Ejemplo: ( ) 4 = = 16 Fórmula: Sean a, b y c números pertenecientes al conjunto de los números naturales, se tiene que:
12 CIU Razonamiento Matemático UNEFA Números Naturales 11 ( a) b = a a a... a = c b veces, donde b representa al exponente Nota: Como propiedad importante, se debe hacer notar que todo número elevado a la cero potencia, debe dar como resultado uno (1). (4.6) Descomposición de Números en Factores Primos: Teorema Fundamental De La Aritmética: Todo número puede natural se puede descomponer siempre como producto de números primos y esa descomposición es única. De esta manera, para descomponer un números en sus factores primos se divide éste entre su divisor más pequeño y luego se repite lo mismo en forma sucesiva con el cociente de la división anterior hasta llegar a uno (1). Ejemplo: Es decir que el número 8 se puede expresar como: 8 =..7 =.7 (4.7) Mínimo Común Múltiplo (m.c.m.): El m.c.m. de dos o más números naturales, es el menor número natural de los múltiplos comunes a varios números. Para hallar el m.c.m. de dos o más números naturales se pueden utilizar dos métodos. 1 er Método: 1. Hallar los múltiplos de los números dados.. Tomar los múltiplos comunes de los números dados. 3. Al menor múltiplo común es al que se le llama m.c.m. Ejemplo: Calcular el mínimo común múltiplo de 5 y 3. 5 = Paso 1: { 5,10,15,0,5,30,35,... } 3 = { 3,6,9,1,15,18,1,4,7,30,33,... } Paso : Múltiplos comunes: { 15,30,45,...} Paso 3: El menor múltiplo común entre 3 y 5 es 15, por lo que m.c.m. (3,5)= 15.
13 CIU Razonamiento Matemático UNEFA Números Naturales 1 do Método: 1. Descomponer los números dados en sus factores primos y expresar el resultado en forma de potencia.. El m.c.m. será el producto de aquellos factores COMUNES Y NO COMUNES a todos los números dados con el MAYOR EXPONENTE. Ejemplo: El m.c.m. de 16, 4 y =... = 4 ; 4 =...3 = 3.3; 40 =...5 = 3.5 En este caso el único factor común es el dos () y su mayor exponente es cuatro (4) y los factores no comunes son el tres (3) y el cinco (5) cuyo mayor exponente es (1) para ambos casos, por ello: m.c.m. (16, 4, 40) = 4.3.5= ) Máximo Común Divisor (M.C.D.): Se llama M.C.D. de dos o más números naturales al mayor número capaz de dividir a todos exactamente. Para hallar el M.C.D. de dos o más números naturales se tienen dos métodos: 1 er Método: 1. Hallar los divisores de los números dados.. Tomar los divisores comunes de los números dados. 3. Al mayor divisor común de los números dados es lo que se llama M.C.D. Ejemplo: Calcular el máximo común divisor de 0 y 30. Paso 1: 0 = { 1,,4,5,10,0 } 30 = { 1,,3,5,6,10,15,30 } Paso : Divisores comunes: { 1,,5,10 } Paso 3: M.C.D.(0,30)=10. El mayor divisor común entre 0 y 30 es 10, por lo que
14 CIU Razonamiento Matemático UNEFA Números Naturales 13 do Método: 1. Descomponer los números dados en sus factores primos y expresar el resultado en forma de potencia.. El M.C.D. será el producto de aquellos factores COMUNES a todos los números dados con el MENOR EXPONENTE. Ejemplo: El M.C.D. de 16, 4 y 40 será? =... = 4 4 =...3 = =...5 = 3.5 En este caso el único factor común es el dos () y su menor exponente es tres (3) por ello: M.C.D. (16, 4, 40) = 3 = 8 Definición: Dos números son PRIMOS RELATIVOS si y sólo si el M.C.D. entre estos dos es 1. Por ejemplo, el 5 y el 1 son primos relativos ya que el M.C.D. entre ellos es 1 (Verificarlo). 5.- NÚMEROS DECIMALES Un Número Decimal o Expresión Decimal, como también se le llama, está formada por una serie de cifras separadas por una coma. Las cifras situadas a la izquierda de la coma forman la parte entera de la expresión decimal, y las cifras situadas a la derecha de la coma forman la parte decimal. Expresión Decimal 350,7 Parte Entera Parte Decimal 5.1) Orden de Números Decimales: Cuando se comparan números que tienen una parte entera y una parte decimal, se toma
15 CIU Razonamiento Matemático UNEFA Números Naturales 14 como base de comparación al Valor De Posición de sus cifras. Por lo tanto, será mayor el que posea la mayor parte entera. Por ejemplo, para ordenar las siguientes cantidades:,1; 3,5, 0,7 y 4,1 se examina la parte entera y luego se puede escribir que: 4,1 > 3,5 >,1 > 0,7 Símbolo de Mayor que Si las cantidades que se están comparando tienen la misma parte entera, se procede a comparar la parte decimal. En el siguiente ejemplo se compara a,9;,5 y,85. Como la parte entera es igual, se procede a comparar las décimas. Si estas son iguales, se comparan las centésimas y así sucesivamente. En este caso, el número mayor será el,5 porque 5 décimas es mayor que décimas. Luego, al comparar al,9 con el,85 se procede a comparar las centésimas, en donde 9 centésimas es mayor a 8 centésimas, por lo que el orden final será:,5 >,9 >,85 5.) Aproximación de los Números Decimales: Cuando un número decimal tiene muchas cifras decimales, se puede aproximar a partir de cualquiera de sus cifras. Para ilustrar esto, se tomará como ejemplo la aproximación del número 15,8316: 1. Caso 1: Aproximación a la Parte Entera: Se examina el valor de la décima y se usa el mismo criterio usado anteriormente para redondear; es decir, si esta cifra es cinco o mayor a cinco, entonces se aumenta en una unidad a la parte entera, y si no, entonces se coloca el mismo valor. Para este caso, la décima es igual a 8, que corresponde al caso 8 5, por lo que se debe aumentar un valor a la unidad, resultando: 15, Caso : Aproximación a las Décimas: En este caso se examina el valor de la centésima y se usa el mismo criterio usado en el Caso 1. Para nuestro ejemplo el valor de la centésima es 3, por lo que corresponde al caso donde 3 < 5. Por lo que la aproximación quedará: 15, ,8 3. Caso General: Siempre que se quiera aproximar una cantidad, se debe examinar la
16 CIU Razonamiento Matemático UNEFA Números Naturales 15 cifra que se encuentra a la derecha de la posición donde se quiera realizar dicha aproximación, y siempre se utiliza el criterio expresado en el caso 1 para decidir la escritura final del número. EJERCICIOS PROPUESTOS 1.- Aproxima los siguientes números, de acuerdo al número señalado entre paréntesis: a) 876 (centena). b) (unidad de mil). c) (unidad de millón). d) 45, 891 (unidad) e) 455,678 (centésima). f) 36,1 (milésima). g) 456,398 (decena). h) 56,89589 (décima)..- El número : a) Cuántas unidades de millón tiene? b) Cuántas decenas de mil tiene? c) Cuántas unidades de mil tiene? d) Cuántas unidades tiene? 3.- Aplica, verifica y efectúa la propiedad asociativa: a) 365, ,1 = b) 563, ,005 = 4.- Aplica, verifica y efectúa la propiedad distributiva: a) , ,56 = b) ,6 + 58,005 =
17 CIU Razonamiento Matemático UNEFA Números Naturales Determine el conjunto formado por los diez primeros múltiplos naturales de los siguientes números: a) b) 5 c) 9 d) 16 e) 151 f) 15 g) Determine todos los posibles divisores de cada uno de los siguientes números naturales: a) 16 b) 84 c) 3 d) 300 e) 11 f) 115 g) Determine el conjunto de los primeros veinte números primos. 8.- Identifique en cada uno de los casos si el número dado es un número primo o compuesto. Justifique su respuesta: a) 358 b) 101 c) 307 d) 4131 e) 5395 f) 115 g) Descomponer en factores primos los siguientes números primos: a) 34 b) 1188 c) 575 d) 441 e) 904 f) 840 g) Calcula el m.c.m. de los siguientes números: a) 16, 4 y 40 b) 5, 7, 10 y 14 c) 5, 50, 75 y 100 d) 94, 98 y 96 e) 648, 360, 5 y 300 f) 45, 441, 50 y Calcular el M.C.D. de los números indicados en el ejercicio anterior. 1.- Entre cuál número será siempre divisible la suma de tres números naturales consecutivos? 13.- Cuál es el valor de la suma de los divisores primos del número 199?
18 CIU Razonamiento Matemático UNEFA Números Naturales Cuál es la medida de la regla centimetrada de mayor longitud con la que se pueden medir exactamente las tres longitudes siguientes: 60cm, 10cm y 400cm? 15.- Un pedazo de alambre cuya longitud está comprendida entre 40 y 50cm, se puede doblar de modo que se puedan construir las figuras anexas. Cuánto mide el alambre si cada trozo se mide en unidades enteras? x x x y z z x y z 16.- Cuando se hace desfilar una banda de música en filas de, de 3 o de 4 músicos, siempre queda un hueco en la última fila. Sin embargo, al hacerla desfilar en filas de 5 todo cuadra perfectamente. Cuál es el número de músicos que integran la banda? 17.- La constitución de un país establece que los Diputados se eligen cada 4 años, los Senadores cada 5 años, y el Presidente cada 8 años. Si en 1980 coincidieron todas las elecciones, en qué año volverán a coincidir? 18.- Si N y n son dos números naturales tales que: N = ababab y n = ab, siendo a y b los dígitos de cada número, y n 0, entonces al dividir N entre n, cuál será el valor del cociente y del residuo en esa división?
CONJUNTO DE LOS NÚMEROS NATURALES
CONJUNTO DE LOS NÚMEROS NATURALES 1.- DEFINICIÓN DEL CONJUNTO DE LOS NÚMEROS NATURALES (Conjunto N): Un número natural es cualquier número que se puede usar para contar los elementos de un conjunto finito.
Escuela Pública Experimental Desconcentrada Nº3 Dr. Carlos Juan Rodríguez Matemática 1º Año Ciclo Básico de Secundaria Teoría Nº 1 Primer Trimestre
CONJUNTO DE LOS NÚMEROS NATURALES Los números naturales son aquellos números exactos; es decir, que no tienen parte decimal ni fraccionaria; además son todos positivos. Sistema de numeración decimal El
ESCUELA PREPARATORIA OFICIAL NO.16 MATERÍA: PENSAMIENTO NUMÉRICO Y ALGEBRAICO I
ARITMÉTICA 1. Números naturales 2. Divisibilidad 3. Números enteros 4. Números decimales 5. Fracciones y números racionales 6. Proporcionalidad 7. Sistema métrico decimal 8. Sistema sexagesimal 9. Números
TEMA 1 NÚMEROS NATURALES
TEMA 1 NÚMEROS NATURALES Criterios De Evaluación de la Unidad 1 Efectuar correctamente operaciones combinadas de números naturales, aplicando correctamente las reglas de prioridad y haciendo un uso adecuado
NÚMEROS DECIMALES. PORCENTAJES
NÚMEROS DECIMALES. PORCENTAJES E.S.O.. UNIDADES DECIMALES. SISTEMA DE NUMERACIÓN DECIMAL En los números decimales se tiene en cuenta el valor posicional de las cifras al igual que en los números naturales
Catedrático: I.S.C. Iván de J. Moscoso Navarro Contenido:
Materia: Matemáticas I Catedrático: I.S.C. Iván de J. Moscoso Navarro Contenido: UNIDAD TEMATICA II.- SISTEMAS NUMÉRICOS 2.1 Números Naturales ( N )... Introducción Propiedades de la adición de los números
UNIDAD DE APRENDIZAJE II
UNIDAD DE APRENDIZAJE II NÚMEROS RACIONALES Jerarquía de Operaciones En matemáticas una operación es una acción realizada sobre un número (en el caso de la raíz y potencia) o donde se involucran dos números
DIVISIBILIDAD NÚMEROS NATURALES
DIVISIBILIDAD NÚMEROS NATURALES MÚLTIPLOS Un número a es múltiplo de otro b cuando es el resultado de multiplicarlo por otro número c. a = b c Ejemplo: 12 es múltiplo de 2, ya que resulta de multiplicar
TEMA Nº 1. Conjuntos numéricos
TEMA Nº 1 Conjuntos numéricos Aprendizajes esperados: Utilizar y clasificar los distintos conjuntos numéricos en sus diversas formas de expresión, tanto en las ciencias exactas como en las ciencias sociales
TEMA 1: NÚMEROS NATURALES
TEMA 1: NÚMEROS NATURALES 1. NÚMEROS NATURALES Todas las civilizaciones han tenido un sistema de numeración. Estos han pasado de unos pueblos a otros y han evolucionado a lo largo del tiempo. Desde la
MATEMÁTICAS 1º DE ESO
MATEMÁTICAS 1º DE ESO LOMCE TEMA I : NÚMEROS NATURALES Sistema de numeración romano. Los números naturales. Números naturales como cardinales y ordinales. o Recta numérica. El sistema de numeración decimal.
TRABAJO DE MATEMÁTICAS. PENDIENTES DE 2º E.S.O. (1ª parte)
TRABAJO DE MATEMÁTICAS PENDIENTES DE º E.S.O. (ª parte) NÚMEROS ENTEROS.-) Realiza las operaciones siguientes () (0) (-) ( ) (-) ( -) (-) ( -) (-) () - - - -0 - - - ( -) ( ) ( -) ( ) ( ) ( - ) ( - ) (
Estándares de Contenido y Desempeño, Estándares de Ejecución y Niveles de Logro Marcado* MATEMÁTICA
Estándares de Contenido y Desempeño, Estándares de Ejecución y Niveles de Logro Marcado* MATEMÁTICA * Se distinguen con negrita en el texto. ESTÁNDAR DE CONTENIDO Y DESEMPEÑO Nº 1 Conocer la estructura
FICHAS DE TRABAJO REFUERZO
FICHAS DE TRABAJO REFUERZO DEPARTAMENTO DE MATEMATICAS CONTENIDO 1. Números naturales a. Leer y escribir números naturales b. Orden de cifras c. Descomposición polinómica d. Operaciones combinadas e. Potencias
sumando sumando sumando sumandos sumandos = 38.6 Cualquier número que se suma.
sumando sumando 33 + 4.7 + 0.9 = 38.6 sumandos sumando 33 + 4.7 + 0.9 = 38.6 sumandos Cualquier número que se suma. algoritmo Ejemplo de producto parcial algoritmo 555 x 7 35 Paso 1: Multiplicar las unidades
NÚMEROS NATURALES. DIVISIBILIDAD. NÚMEROS ENTEROS
UNIDAD 0: NÚMEROS NATURALES. DIVISIBILIDAD. NÚMEROS ENTEROS ESTRUCTURA DEL SISTEMA DE NUMERACIÓN DECIMAL Nuestro sistema de numeración es decimal y posicional. Para escribir cualquier número se utilizan
Suma. Propiedades de la suma.
Suma. La suma es la operación matemática que resulta al reunir en una sola a varias cantidades. También se conoce a la suma como adición. Las cantidades que se suman se llaman sumandos y el resultado suma
Números decimales OBJETIVOS CONTENIDOS PROCEDIMIENTOS
8 _ 0-088.qxd //0 09: Página Números decimales INTRODUCCIÓN El estudio de los números decimales comienza recordando el sistema de numeración decimal, que es la base de la expresión escrita de los números
Divisibilidad I. Nombre Curso Fecha
Matemáticas 2.º ESO Unidad 1 Ficha 1 Divisibilidad I Un número b es divisor de otro número a si al dividir a entre b la división es exacta. Se dice también que a es múltiplo de b. 1. Completa con la palabra
TEMA 1: NÚMEROS NATURALES Y DIVISIBILIDAD
TEMA 1: NÚMEROS NATURALES Y DIVISIBILIDAD 1.1 Nº NATURALES:.- Cifra: símbolo que se utiliza para construir o componer un número. Nuestro sistema de numeración tiene 10 cifras: 0, 1, 2, 3, 4, 5, 6, 7, 8
Teoría (resumen) Por ejemplo, los múltiplos de 3 son: 3, 6, 9, 12, 15, 18, ; los múltiplos de 2 son: 2, 4, 6, 8, 10, 12, ; o sea los números pares.
1.- Divisibilidad Teoría (resumen) Múltiplos de un número. Son aquellos que se obtienen al multiplicar dicho número por los números naturales 1, 2, 3,. Por ejemplo, los múltiplos de 3 son: 3, 6, 9, 12,
COLEGIO AUGUSTO WALTE INFORMACIÓN DE ASIGNATURA I PERÍOD DESCRIPCIÓN DE CONTENIDOS
COLEGIO AUGUSTO WALTE INFORMACIÓN DE ASIGNATURA I PERÍOD DESCRIPCIÓN DE CONTENIDOS GRADO: 5 ASIGNATURA: Matemática PERIODO: I PROFESOR: María Raquel Vigil. UNIDAD Nº 1 NOMBRE DE LA UNIDAD: JUGUEMOS CON
1. ESQUEMA - RESUMEN Página EJERCICIOS DE INICIACIÓN Página EJERCICIOS DE DESARROLLO Página EJERCICIOS DE AMPLIACIÓN Página 21
1. ESQUEMA - RESUMEN Página 2 2. EJERCICIOS DE INICIACIÓN Página 7 3. EJERCICIOS DE DESARROLLO Página 19 4. EJERCICIOS DE AMPLIACIÓN Página 21 5. EJERCICIOS DE REFUERZO Página 22 1 1. ESQUEMA - RESUMEN
DIVISIBILIDAD NÚMEROS NATURALES
DIVISIBILIDAD NÚMEROS NATURALES MÚLTIPLOS Un número a es múltiplo de otro b cuando es el resultado de multiplicarlo por otro número c. a = b c Ejemplo: 12 es múltiplo de 2, ya que resulta de multiplicar
Unidad didáctica 1. Operaciones básicas con números enteros
Unidad didáctica 1 Operaciones básicas con números enteros 1.- Representación y ordenación de números enteros. Para representar números enteros en una recta hay que seguir estos pasos: a) Se dibuja una
Módulo de Matemáticas Académicas II Módulo de Matemáticas Aplicadas II Nivel II de ESPAD. Unidad 0. Números naturales y enteros
Módulo de Matemáticas Académicas II Módulo de Matemáticas Aplicadas II Nivel II de ESPAD Unidad 0 Números naturales y enteros Este documento ha sido realizado por la profesora Carmen de la Fuente Blanco
evaluables - Leer y escribir (con cifras y letras) números de dos cifras.
Criterios de evaluación Bloque 2. Números (Primer Curso) 2.1. Leer, escribir y ordenar, utilizando razonamientos apropiados, distintos tipos de números (romanos, naturales, fracciones y decimales hasta
MATEMÁTICAS 1º DE ESO
MATEMÁTICAS 1º DE ESO LOE TEMA V : LOS NÚMEROS DECIMALES El Sistema de Numeración Decimal: órdenes de unidades decimales y equivalencias. Números decimales y fracciones decimales. Tipos de números decimales
UNIDAD 1. NÚMEROS. (Página 223 del libro) Nivel II. Distancia. Ámbito Científico Tecnológico.
UNIDAD 1. NÚMEROS. (Página 22 del libro) Nivel II. Distancia. Ámbito Científico Tecnológico. Clasificación de los números Números naturales son aquellos que utilizamos para contar. N = 0,1,2,,,5,6, Números
TEMA 1: LOS NÚMEROS ENTEROS. Segundo Curso de Educación Secundaria Obligatoria. I.E.S de Fuentesaúco. Manuel González de León.
TEMA 1: LOS NÚMEROS ENTEROS Segundo Curso de Educación Secundaria Obligatoria. I.E.S de Fuentesaúco. Manuel González de León. CURSO 2011-2012 1. Los Números Enteros. 2. Suma y resta de números enteros.
NUMEROS NATURALES. En esta unidad se da un repaso de los diferentes conjuntos de números que existen en matemáticas.
LOS NUMEROS En esta unidad se da un repaso de los diferentes conjuntos de números que existen en matemáticas. Un conjunto es una "colección de objetos"; Así, se puede hablar de un conjunto de personas,
Tema 05: Números Decimales, Fracciones y Porcentajes Primero de Educación Secundaria Obligatoria. I.e.s Fuentesaúco.
2009 Tema 05: Números Decimales, Fracciones y Porcentajes Primero de Educación Secundaria Obligatoria. I.e.s Fuentesaúco. Manuel González de León. mgdl 0/0/2009 INDICE: 0. UNIDADES DECIMALES: 02. DESCOMPOSICIÓN
UNIDAD DIDÁCTICA #1 CONTENIDO
UNIDAD DIDÁCTICA #1 CONTENIDO OPERACIONES CON DECIMALES MULTIPLICACION DE DECIMALES DIVISIÓN DE DECIMALES OPERACIONES COMBINADAS CON DECIMALES POTENCIACIÓN DE DECIMALES HOJA DE EVALUACIÓN BIBLIOGRAFÍA
TEMA 1. Los números enteros. Matemáticas
1 Introducción En esta unidad veremos propiedades de los números enteros, como se opera con ellos (con y sin calculadora), los números primos, máximo común divisor y mínimo común múltiplo y por últimos
UNIDAD 1 CONCEPTOS BÁSICOS. Números naturales, Números enteros, Números racionales, números irracionales y números reales. Dr. Daniel Tapia Sánchez
UNIDAD 1 CONCEPTOS BÁSICOS Números naturales, Números enteros, Números racionales, números irracionales y números reales Dr. Daniel Tapia Sánchez 1.1 Números Naturales (N) 1.1.1 Consecutividad numérica
Guía N 1 Introducción a las Matemáticas
Glosario: Guía N 1 Introducción a las Matemáticas - Aritmética: Es la rama de las matemáticas que se dedica al estudio de los números y sus propiedades bajo las operaciones de suma, resta, multiplicación
5 REPASO Y APOYO OBJETIVO 1
REPASO Y APOYO OBJETIVO 1 COMPARAR Y ORDENAR NÚMEROS DECIMALES El sistema de numeración decimal tiene dos características: 1. a Es decimal: 10 unidades de un orden forman 1 unidad del orden siguiente.
Bloque 1. Aritmética y Álgebra
Bloque 1. Aritmética y Álgebra Los números naturales Los números naturales Los números naturales se definen como: N = { 0,1, 2, 3, 4, 5,...,64, 65, 66,...,1639,1640,1641,1642,... } El sistema de numeración
INSTITUCION EDUCATIVA LA PRESENTACION
unidades de millón centenas de mil decenas de mil unidades de mil centenas decenas unidades coma decimas centésimas milésimas diezmilésimas cienmilésimas millonésimas INSTITUCION EDUCATIVA LA PRESENTACION
MINISTERIO DE EDUCACIÓN PÚBLICA DIRECCIÓN DE DESARROLLO CURRICULAR DEPARTAMENTO DE PRIMERO Y SEGUNDO CICLOS ASESORÍA NACIONAL DE MATEMÁTICA AÑO 20XX
AÑO 20XX Área matemática: Números_ Primer trimestre- FEBRERO En el mes de febrero primer año, trabajará en conceptos básicos. 1. Comparar de acuerdo con el tamaño: más grande que, más pequeño que, tan
CONJUTOS NÚMERICOS NÚMEROS NATURALES
CONJUTOS NÚMERICOS NÚMEROS NATURALES El conjunto de números naturales tiene gran importancia en la vida práctica ya que con sus elementos se pueden encontrar elementos u objetos de otros conjuntos. El
Semana 1: Números Reales y sus Operaciones
Semana 1: Números Reales y sus Operaciones Taller de Preparación para Prueba PLANEA Ing. Jonathan Quiroga Tinoco Conalep Tehuacán P.T.B. en ADMO, SOMA y EMEC UNIDAD 04 Los números enteros y sus operaciones
Matemáticas. Números naturales y operaciones
Matemáticas Departamento de Matemáticas Números naturales y operaciones 1.- Para qué sirven los números: - Para contar, para ordenar, para hacer operaciones y problemas, para medir, para expresar códigos,
NÚMEROS RACIONALES Y REPRESENTACIÓN DECIMAL. Mate 3041 Profa. Milena R. Salcedo Villanueva
NÚMEROS RACIONALES Y REPRESENTACIÓN DECIMAL Mate 3041 Profa. Milena R. Salcedo Villanueva 1 FRACCIONES Una fracción tiene dos términos: numerador y denominador Denominador indica las veces que se divide
Instituto Superior de Formación Técnica Nº 177
Instituto Superior de Formación Técnica Nº 177 Ciudad de Libertad (Merlo) Curso de Ingreso Matemática Página 1 Los números naturales también sirven para ordenar. Así, decimos que la Tierra es el tercer
TEMA 1: Los números reales. Tema 1: Los números reales 1
TEMA 1: Los números reales Tema 1: Los números reales 1 ESQUEMA DE LA UNIDAD 1.- Números naturales y enteros..- Números racionales. 3.- Números irracionales. 4.- Números reales. 5.- Jerarquía en las operaciones
CONJUNTO DE LOS NUMEROS ENTEROS
República Bolivariana de Venezuela Ministerio de la Defensa Universidad Nacional Experimental Politécnica de la Fuerza Armada Núcleo Caracas CIU Cátedra: Razonamiento Matemático CONJUNTO DE LOS NUMEROS
ESCUELA PREPARATORIA OFICIAL NO.16 MATERÍA: PENSAMIENTO NUMÉRICO Y ALGEBRAICO I
Fracción Una fracción es el cociente de dos números enteros a y b, que representamos de la siguiente forma: b a denominador, indica el número de partes en que se ha dividido la unidad. numerador, indica
NÚMEROS NATURALES PROPIEDADES DE LOS NÚMEROS NATURALES.
NÚMEROS NATURALES PROPIEDADES DE LOS NÚMEROS NATURALES. Saber cuántos animales tenía en su rebaño o el tiempo transcurrido desde un determinado momento fue una necesidad del Homo sapiens desde los albores
Números fraccionarios y decimales
Unidad didáctica Números fraccionarios y decimales .- Las fracciones. a Una fracción es un número racional, escrito en la forma, tal que b 0 y representa una parte b de un total. El denominador (el número
TEMA 1. Números Reales. Teoría. Matemáticas
1 1.- Los números reales Cuáles son los números reales? Los números reales son todos los números racionales y todos los números irracionales. El conjunto de los números reales se designa con el símbolo
OBJETIVO 1 COMPRENDER EL CONCEPTO DE NÚMERO DECIMAL NOMBRE: CURSO: FECHA: Centena Decena Unidad Décima Centésima Milésima.
OBJETIVO COMPRENDER EL CONCEPTO DE NÚMERO DECIMAL NOMBRE: CURSO: ECHA: El sistema de numeración decimal tiene dos características:. a Es decimal: unidades de un orden forman unidad del orden siguiente..
UNIDAD 6 AULA 360. Números decimales
UNIDAD 6 Números decimales 1. Números decimales. Ordenación y representación 2. Tipos de números decimales 3. Conversión de decimal a fracción 4. Operaciones con números decimales 1. Números decimales
Unidad 1 Los números de todos los días
CUENTAS ÚTILES Módulo nivel intermedio. 3ra. Edición. Primaria Unidad 1 Los números de todos los días Los números naturales son aquellos que utilizamos para contar: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11,
Unidad didáctica 1. Operaciones básicas con números enteros
Unidad didáctica 1 Operaciones básicas con números enteros 1.- Representación y ordenación de números enteros Para representar números enteros en una recta hay que seguir estos pasos: a) Se dibuja una
Ampliación Tema 3: Múltiplo y divisores
- Múltiplo. Divisible. Divisor Ampliación Tema 3: Múltiplo y divisores 56 8 56 es divisible por 8 0 7 56 es múltiplo de 8 Para indicar que 56 es múltiplo de 8 se escribe sobre el divisor 8 un punto :(8)
Decimales , 2.5, 5.25
Decimales. Al escribir un número decimal se les da a los dígitos un ordenamiento de izquierda a derecha contados a partir del punto decimal. 7.25, 2.5, 5.25 Los números decimales se les llama también fracciones
TEMA 2. Números racionales. Teoría. Matemáticas
1 1.- Números racionales Se llama número racional a todo número que puede representarse como el cociente de dos enteros, con denominador distinto de cero. Se representa por Las fracciones también pueden
Bloque 1. Aritmética y Álgebra
Bloque 1. Aritmética y Álgebra 3. Los números racionales 1. Los números racionales o fraccionarios Fracción es una o varias partes iguales en que dividimos la unidad. Las fracciones representan siempre
COMPETENCIA S Y OBJETIVOS DE M A T E M ÁTICAS DE SEXTO
1 CONSEJERÍA DE EDUCACIÓN CEIP EL ZARGAL C/ Zargal s/n; 18190 CENES DE LA VEGA Telfs. 958893177-78 ; FAX 958893179 [email protected] COMPETENCIA S Y DE M A T E M ÁTICAS DE SEXTO ÍNDICE
Tema décimas = 1 unidad, 10 unidades = 1 decena, 10 decenas = 1 centena,...
Tema 1 Sistema de numeración decimal: Nuestro sistema de numeración se llama decimal porque las unidades aumentan y disminuyen de 10 en 10, es decir, cada 10 unidades de un orden forman una unidad del
Contenidos matemáticos en el video que se trabajen en el Bloque de Números sistema numérico. Contenidos Real Decreto. Estándares a Evaluar
Contenidos matemáticos en el video que se trabajen en el Bloque de Números Números pares e impares. Contenidos Real Decreto Números naturales menores que 100. Curso Estándares a Evaluar 1º - Identifica
ÁREA: MATEMÁTICAS UNIDAD : 1 TEMPORALIZACIÓN: OCTUBRE 1ª QUINCENA OBJETIVOS CONTENIDOS CRITERIOS DE EVALUACIÓN
ÁREA: MATEMÁTICAS UNIDAD : 1 TEMPORALIZACIÓN: OCTUBRE 1ª QUINCENA Conocer los nueve primeros órdenes de unidades y las equivalencias entre ellos. Leer, escribir y descomponer números de hasta nueve cifras.
El Conjunto de los Números Naturales
Objetivos El Conjunto de los Carlos A. Rivera-Morales Álgebra Objetivos Tabla de Contenido Objetivos 1 Propiedades de los Objetivos Objetivos: Discutiremos: el conjunto de los números naturales Objetivos
Decimales , 2.5, 5.25
Decimales. Al escribir un número decimal se les da a los dígitos un ordenamiento de izquierda a derecha contados a partir del punto decimal. 7.25, 2.5, 5.25 Los números decimales se les llama también fracciones
POTENCIAS. MÚLTIPLOS Y DIVISORES. MÁXIMO COMÚN DIVISOR Y MÍNIMO COMÚN MÚLTIPLO.
1. LOS NÚMEROS NATURALES POTENCIAS. MÚLTIPLOS Y DIVISORES. MÁXIMO COMÚN DIVISOR Y MÍNIMO COMÚN MÚLTIPLO. 2. LOS NÚMEROS ENTEROS. VALOR ABSOLUTO DE UN NÚMERO ENTERO. REPRESENTACIÓN GRÁFICA. OPERACIONES.
Llamamos potencia a todo producto de factores iguales. Por ejemplo: 3 4 =
1. NÚMEROS NATURALES POTENCIAS DE UN NÚMERO NATURAL Llamamos potencia a todo producto de factores iguales. Por ejemplo: 3 4 = 3 3 3 3 El factor que se repite es la base, y el número de veces que se repite
TEMA 1 LOS NÚMEROS REALES
TEMA 1 LOS NÚMEROS REALES 1.1 LOS NÚMEROS REALES.-LA RECTA REAL Los NÚMEROS RACIONALES: Se caracterizan porque pueden expresarse: En forma de fracción, es decir, como cociente b a de dos números enteros:
CONJUNTOS NUMÉRICOS. La noción de número es tan antigua como el hombre mismo ya que son necesarios para resolver situaciones de la vida diaria.
CONJUNTOS NUMÉRICOS La noción de número es tan antigua como el hombre mismo ya que son necesarios para resolver situaciones de la vida diaria. Por ejemplo, usamos números para contar una determinada cantidad
SCUACAC026MT22-A16V1. SOLUCIONARIO Ejercitación Generalidades de números
SCUACAC026MT22-A16V1 0 SOLUCIONARIO Ejercitación Generalidades de números 1 TABLA DE CORRECCIÓN GUÍA PRÁCTICA EJERCITACIÓN GENERALIDADES DE NÚMEROS Ítem Alternativa 1 E 2 D 3 B 4 E 5 A 6 E 7 B 8 D 9 D
4 Números decimales. e CURIOSIDADES MATEMÁTICAS T T T T +3. l = = 81. l = = 83
4 Números decimales e CURIOSIDADES MATEMÁTICAS UN DECIMA DE ORO Desde la Antigüedad, el número de oro ha tenido gran importancia por su aplicación al arte en la llamada proporción áurea. El número de oro
PRIMER CURSO AÑO LECTIVO El módulo de la multiplicación es el 0 V F. 4. La división de Z si cumple la propiedad conmutativa V F
BANCO DE PREGUNTAS PRIMER SEMESTRE PRIMER CURSO AÑO LECTIVO 007-008 I. Establezca si las siguientes proposiciones son verdaderas o falsas 1. En el ejercicio 1 + 4 48 el factor común es 1 V F. Los términos
ángulo agudo ángulo agudo ángulo agudo Un ángulo que mide menos de 90º
ángulo agudo ángulo agudo ángulo Un ángulo que mide menos de 90º agudo suma suma 2 + 3 = 5 suma Combinar, poner dos o más cantidades juntas 2 + 3 = 5 sumando sumando 5 + 3 + 2 = 10 sumando sumando 5 +
Números fraccionarios y decimales
Unidad didáctica Números fraccionarios y decimales 1.- Las fracciones. a Una fracción es un número racional, escrito en la forma, tal que b 0 y representa una parte b de un total. El denominador (el número
RESUMEN DE ALGEBRA. CONCEPTO: El pensador principal del algebra es Al-Hwarizmi; es de origen árabe.
RESUMEN DE ALGEBRA CONCEPTO: El pensador principal del algebra es Al-Hwarizmi; es de origen árabe. El álgebra es la rama del conocimiento de la matemática; es decir se desprende de ella. Estudia realidades
INSTITUCION EDUCATIVA LA PRESENTACION NOMBRE ALUMNA: AREA :
INSTITUCION EDUCATIVA LA PRESENTACION NOMBRE ALUMNA: AREA : MATEMATICAS ASIGNATURA: MATEMATICAS NOTA DOCENTE: HUGO BEDOYA TIPO DE GUIA: CONCEPTUAL PERIODO: GRADO FECHA N DURACION 2 7 ABRIL 10 /2015 UNIDADES
1.1.- LA SUMA O ADICIÓN: Sumar es añadir una cantidad a otra; juntar o reunir varias cantidades en una sola.
LECCIÓN 2: OPERACIONES CON NÚMEROS ENTEROS 1.- SUMA DE NÚMEROS ENTEROS 1.1.- LA SUMA O ADICIÓN: Sumar es añadir una cantidad a otra; juntar o reunir varias cantidades en una sola. SIGNO DE LA SUMA: Es
Lección 2: Notación exponencial
GUÍA DE MATEMÁTICAS III Lección 2: Notación exponencial En la lección anterior hemos visto cómo trabajar con números reales y cómo para facilitar el trabajo con ellos es conveniente utilizar aproximaciones,
FRACCIONES. Las partes que tomamos ( 3 ó 5 ) se llaman numerador y las partes en que dividimos el queso ( 8 ) denominador.
FRACCIONES Una fracción, en general, es la expresión de una cantidad dividida por otra, y una fracción propia representa las partes que tomamos de un todo. El ejemplo clásico es el de un queso que partimos
Qué es un número decimal?
Qué es un número decimal? Un numero decimal es un numero que se compone de: Parte entera: cifras situadas a la izquierda de la coma. Es la parte mayor que la unidad: unidades, decenas, centenas Parte decimales:
2º Se lee número que hay antes de la coma, se añade la palabra coma y luego se lee la parte decimal
Qué son los decimales? Los decimales son una manera distinta de escribir fracciones con denominadores como 10, 100 y 1,000. Tanto los decimales como las fracciones indican una parte de un entero. Un decimal
El Conjunto de los Números Naturales
Objetivos El Conjunto de los Carlos A. Rivera-Morales Álgebra Objetivos Tabla de Contenido Objetivos 1 Propiedades de los Objetivos Objetivos: Discutiremos: el conjunto de los números naturales Objetivos
NÚMEROS DECIMALES. Teoría 3 er Ciclo Primaria Colegio Romareda 2011/2012 Página 28
Teoría 3 er Ciclo Primaria Colegio Romareda 20/202 Página 28 NÚMEROS DECIMALES Los números decimales nacen como una forma especial de escritura de las fracciones decimales, de manera que la coma separa
*Número natural, el que sirve para designar la cantidad de. *El cero, a veces, se excluye del conjunto de los números
*Número natural, el que sirve para designar la cantidad de elementos que tiene un cierto conjunto, y se llama cardinal de dicho conjunto. *Los números naturales son infinitos. El conjunto de todos ellos
Fracciones numéricas enteras
Números racionales Fracciones numéricas enteras En matemáticas, una fracción numérica entera expresa la división de un número entero en partes iguales. Una fracción numérica consta de dos términos: El
Tema 1 : NÚMEROS NATURALES. DIVISIBILIDAD. Primero de Educación Secundaria Obligatoria. I.e.s Fuentesaúco.
2009 Tema 1 : ÚMEROS ATURALES. DIVISIBILIDAD. Primero de Educación Secundaria Obligatoria. I.e.s Fuentesaúco. Manuel González de León mgdl 01/01/2009 Tema 01: úmeros aturales. Divisibilidad IDICE: 01.
CONOCER LA ESTRUCTURA DEL SISTEMA DE NUMERACIÓN DECIMAL
REPASO Y APOYO OBJETIVO 1 CONOCER LA ESTRUCTURA DEL SISTEMA DE NUMERACIÓN DECIMAL El sistema de numeración decimal tiene dos características: 1. a Es decimal: 10 unidades de un orden forman 1 unidad del
TEMA 2. Números racionales. Teoría. Matemáticas
1 1.- Números racionales Se llama número racional a todo número que puede representarse como el cociente de dos enteros, con denominador distinto de cero. Se representa por Las fracciones también pueden
TEMA 3: NÚMEROS DECIMALES
TEMA 3: NÚMEROS DECIMALES 1. NÚMEROS DECIMALES Para expresar cantidades comprendidas entre dos números enteros, utilizamos los números decimales. Los números decimales se componen de dos partes separadas
TEMA 1 LOS NÚMEROS REALES
TEMA 1 LOS NÚMEROS REALES 1.1 LOS NÚMEROS REALES.-LA RECTA REAL Los NÚMEROS RACIONALES: Se caracterizan porque pueden expresarse: En forma de fracción, es decir, como cociente b a de dos números enteros:
1.- FRACCIONES DECIMALES Y NÚMEROS DECIMALES Se llaman fracciones decimales a las que tienen por denominador la unidad seguida de ceros.
23069 5º de E. Primaria 1.- FRACCIONES DECIMALES Y NÚMEROS DECIMALES Se llaman fracciones decimales a las que tienen por denominador la unidad seguida de ceros. Las fracciones decimales se pueden expresar
INSTITUCIÓN EDUCATIVA JORGE ROBLEDO PLAN DE APOYO
FECHA:07-0-204 Página de 4 ÁREA/ASIGNATURA: ARITMÉTICA PARA LA PROMOCIÓN ANTICIPADA GRADO: SEXTO AÑO: 207 INSTRUCCIONES: La entrega de la solución, por escrito y bien presentada, es requisito indispensable
NÚMEROS ENTEROS. OBSERVACION: En la división se cumple la regla de los signos de la multiplicación.
NÚMEROS ENTEROS Los elementos del conjunto = {, -3,-2,-1, 0, 1, 2, } se denominan Números Enteros. OPERATORIA EN ADICIÓN Al sumar números de igual signo, se suman los valores absolutos de ellos conservando
OBJETIVO 1 EL CONCEPTO DE NÚMERO DECIMAL
COMPRENDER OBJETIVO 1 EL CONCEPTO DE NÚMERO DECIMAL NOMBRE: CURSO: ECHA: SIGNIICADO DE LOS NÚMEROS DECIMALES En nuestra vida diaria medimos, calculamos, comparamos, etc. Hablamos de cantidades que no son
Tema 22 Resumen Operaciones de cálculo y procedimientos del mismo
Tema 22 Resumen Operaciones de cálculo y procedimientos del mismo Operaciones con número naturales Cardinal obtenido al unir dos conjuntos distintos Los términos se denominan. Operación interna N. (Tª
Polinomios: Definición: Se llama polinomio en "x" de grado "n" a una expresión del tipo
Polinomios: Definición: Se llama polinomio en "x" de grado "n" a una expresión del tipo P (x) = a 0 x n + a 1 x n 1 +... + a n Donde n N (número natural) ; a 0, a 1, a 2,..., a n son coeficientes reales
LOS NÚMEROS ENTEROS. Para restar un número entero, se quita el paréntesis y se pone al número el signo contrario al que tenía.
Melilla Los números Enteros y operaciones elementales LOS NÚMEROS ENTEROS 1º LOS NÚMEROS ENTEROS. El conjunto de los números enteros Z está formado por los números naturales (enteros positivos) el cero
UNIDAD 7: NÚMEROS DECIMALES Y OPERACIONES
UNIDAD 7: NÚMEROS DECIMALES Y OPERACIONES ÍNDICE 7.1 Unidad decimal. 7.2 Escritura, lectura y descomposición de números decimales. 7.2.1 Escritura de números decimales. 7.2.2 Lectura de números decimales.
Una fracción decimal tiene por denominador la unidad. Número decimal. Es aquel que se puede expresar mediante una fracción
Fracción decimal Una fracción decimal tiene por denominador la unidad seguida de ceros. Número decimal decimal. Es aquel que se puede expresar mediante una fracción Consta de dos partes: entera y decimal.
PROGRAMACIÓN DE AULA MATEMÁTICAS 5.º CURSO
PROGRAMACIÓN DE AULA MATEMÁTICAS 5.º CURSO Página 1 UNIDAD 1: SISTEMAS DE NUMERACIÓN CEIP El Parque Conocer los nueve primeros órdenes de unidades y las equivalencias entre ellos. Leer, escribir y descomponer
