DIVISIBILIDAD NÚMEROS NATURALES

Tamaño: px
Comenzar la demostración a partir de la página:

Download "DIVISIBILIDAD NÚMEROS NATURALES"

Transcripción

1 DIVISIBILIDAD NÚMEROS NATURALES MÚLTIPLOS Un número a es múltiplo de otro b cuando es el resultado de multiplicarlo por otro número c. a = b c Ejemplo: 12 es múltiplo de 2, ya que resulta de multiplicar 2 por = 2 6 Para calcular múltiplos de un número multiplicamos ese número por cualquier número natural. Ejemplo: Múltiplos de 2. Se puede anotar de la siguiente forma = 0 ; 2 1 = 2 ; 2 2 = 4 ; 2 3 = 6 ; 2 15 = 30 Consideraciones sobre los múltiplos de un número a.-todo número a (distinto de cero) es múltiplo de sí mismo y de la unidad. b.- El cero es múltiplo de todos los números. c.- Todo número, distinto de cero, tiene infinitos múltiplos. d.- Si a es múltiplo de b, al dividir a entre b la división es exacta. (NIVEL II,III) e.- La suma de varios múltiplos de un número es otro múltiplo de dicho número. Ejemplo: el 2 y el 4 son múltiplos de 2, 2+4= 6, el 6 es múltiplo de 2 f.- La diferencia de dos múltiplos de un número es otro múltiplo de dicho número. Ejemplo: 9 y 3 son múltiplos de 3, 9-3 = 6, 6 es múltiplo de 3 g.- Si un número es múltiplo de otro, y éste lo es de un tercero, el primero es múltiplo del tercero. Ejemplo: 12 es múltiplo de 4, y 4 es múltiplo de 2 ; 12 es múltiplo de 2. h.- Si un número es múltiplo de otro, todos los múltiplos del primero lo son también del segundo. Ejemplo: 8 es múltiplo de 4, por tanto todos los 8 = 0,8, 16, 24,... son múltiplos de 4

2 DIVISORES Un número b es un divisor de otro a cuando lo divide exactamente. Ejemplo: 4 es divisor de 12; 12 : 4 = 3 resto = 0 A los divisores también se les llama factores. Consideraciones sobre los divisores de un número a.- El 1 es divisor de todos los números. b.- Todo número es múltiplo y divisor de sí mismo. c.- Todo divisor de un número distinto de cero es menor o igual a él, por tanto el número de divisores es finito. Criterios de divisibilidad Un número es divisible por: 2, si termina en cero o número par. 3, si la suma de sus dígitos nos da múltiplo de 3. 5, si termina en cero o cinco. 7, si la división es exacta (no aplicaremos ninguna regla, aunque la hay). Un número es divisible por: Otros criterios de divisibilidad (NIVEL II,III) 11, si la diferencia entre la suma de las cifras que ocupan los lugares pares y la de los impares es múltiplo de 11 ( recuerda que el cero también es múltiplo de cualquier número) 4, si sus dos últimas cifras son ceros o múltiplo de 4. 6, si es divisible por 2 y por 3. 8, si sus tres últimas cifras son ceros o múltiplo de 8. 9, si la suma de sus dígitos nos da múltiplo de 9. 10, si la cifra de las unidades es 0. 25, si sus dos últimas cifras son ceros o múltiplo de , si sus tres últimas cifras son ceros o múltiplo de 125.

3 Número de divisores de un número (NIVEL III) Se obtiene sumando la unidad a los exponentes y multiplicando los resultados obtenidos: 2520 = Número de divisores de = (3 + 1) (2 + 1) (1 + 1) (1 + 1) = 48 Formación de todos los divisores de un número (NIVEL III) Ejemplo: Formación de todos los divisores de = Se escribe una primera fila formada por la unidad y todas las potencias del primer factor, se traza una línea horizontal. Se escribe una segunda fila, con los productos del segundo factor por la fila anterior. Si el segundo factor se ha elevado a exponentes superiores a la unidad, por cada unidad del exponente se escribe otra fila. Se traza otra línea horizontal Se escriben ahora otras filas con los productos del tercer factor (con las potencias correspondientes) por todos los números obtenidos hasta el momento

4 Se continúa de igual modo con otros posibles factores El último divisor obtenido debe coincidir con el número. Número primo Un número es primo si sólo tiene dos divisores: él mismo y la unidad. Los primeros números primos son ( tienes que aprendértelos) : 1, 2, 3, 5, 7, 11, 13, 17, 19, 23, 29 - (NIVEL II,III) Para averiguar si un número es primo, se divide ordenadamente por todos los números primos menores que él. Cuando, sin resultar divisiones exactas, llega a obtenerse un cociente menor o igual al divisor, se dice que el número es primo. Ejemplo: Es primo es 173? Empezamos a dividirlo en orden entre los números primos ( si encontramos una división exacta el número ya no es primo).

5 Entre 2, no es divisible ( no acaba en cifra par) Entre 3, no es divisible ( la suma de sus cifras no es múltiplo de =11 Entre 5, no es divisible,no acaba en 0 ni en 5 Entre 7, (dividimos) 173: 7 = 24 resto= 5, no es divisible. Entre 11, dividimos o usamos el criterio 7 -(1+3) = 3, 3 no es múltiplo de 11 Entre 13, dividimos 173:13 = 13 resto= 4, no es divisible Ya no es necesario seguir dividiendo pues el cociente (13) es igual al divisor (13). No hemos encontrado ningún divisor por tanto el 173 es un número primo. Número compuesto Es aquél que posee más de dos divisores. 12, 72, 144. Son números compuestos Los números compuestos, se pueden expresar como productos de potencias de números primos, a dicha expresión se le llama descomposición de un número en factores primos. 70 = Factorizar Factorizar o descomponer un número en factores primos es expresar el número como un producto de números primos. Para factorizar un número efectuamos sucesivas divisiones entre sus divisores primos hasta obtener un 1 como cociente. Para realizar las divisiones utilizaremos una barra vertical, a la derecha escribimos los divisores primos y a la izquierda los cocientes. Ejemplo: =

6 Máximo común divisor El máximo común divisor, m.c.d., de dos o más números es el mayor número que divide a todos exactamente. Cálculo del m.c.d 1. Se descomponen los números en factores primos. 2. Se toman los factores comunes con menor exponente. Ejemplo: Hallar el m. c. d. de: 72, 108 y = = = m. c. d. (72, 108, 60) = = es el mayor número que divide a 72, 108 y 60. Cálculo del m.c.d. con El algoritmo de Euclides (NIVEL II,III) El algoritmo de Euclides es un procedimiento para calcular el m. c. d. de dos números. Los pasos son: 1. Se divide el número mayor entre menor. Si: a. La división es exacta, el divisor es el m. c. d. b. La división no es exacta, dividimos el divisor entre el resto obtenido y se continúa de esta forma hasta obtener una división exacta, siendo el último divisor el m. c. d. Ejemplo: m.c.d. (72,60) m.c.d. (72,60) =

7 Mínimo común múltiplo Es el menor de todos múltiplos comunes a varios números, excluido en cero. Cálculo del m.c.m 1. Se descomponen los números en factores primos. 2. Se toman los factores comunes y no comunes con mayor exponente. Ejemplo: Hallar el m. c. m. ( 72, 108 y 60). Y hemos descompuesto los números en factores primos en el ejemplo del cálculo del m.c.d. 72 = = = m. c. m. (72, 108, 60) = = es el menor múltiplo de: 72, 108 y 60. Relación entre el m. c. d. y m. c. m. (NIVEL III). m. c. d. (a, b) m. c. m. (a, b) = a b m. c. d. (12, 16) = 4 m. c. m. (12, 16) = = = 192

DIVISIBILIDAD NÚMEROS NATURALES

DIVISIBILIDAD NÚMEROS NATURALES DIVISIBILIDAD NÚMEROS NATURALES MÚLTIPLOS Un número a es múltiplo de otro b cuando es el resultado de multiplicarlo por otro número c. a = b c Ejemplo: 12 es múltiplo de 2, ya que resulta de multiplicar

Más detalles

DIVISIBILIDAD NÚMEROS NATURALES

DIVISIBILIDAD NÚMEROS NATURALES DIVISIBILIDAD NÚMEROS NATURALES MÚLTIPLOS Un número a es múltiplo de otro b cuando es el resultado de multiplicarlo por otro número c. a = b c Ejemplo: 12 es múltiplo de 2, ya que resulta de multiplicar

Más detalles

Un número a es múltiplo de otro b cuando es el resultado de multiplicar este último por otro número c.

Un número a es múltiplo de otro b cuando es el resultado de multiplicar este último por otro número c. DIVISIBILIDAD Múltiplos Un número a es múltiplo de otro b cuando es el resultado de multiplicar este último por otro número c. 18 = 2 9 18 es múltiplo de 2, ya que resulta de multiplicar 2 por 9. Tabla

Más detalles

ESCUELA PREPARATORIA OFICIAL NO.16 MATERÍA: PENSAMIENTO NUMÉRICO Y ALGEBRAICO I

ESCUELA PREPARATORIA OFICIAL NO.16 MATERÍA: PENSAMIENTO NUMÉRICO Y ALGEBRAICO I ARITMÉTICA 1. Números naturales 2. Divisibilidad 3. Números enteros 4. Números decimales 5. Fracciones y números racionales 6. Proporcionalidad 7. Sistema métrico decimal 8. Sistema sexagesimal 9. Números

Más detalles

MÚLTIPLOS Y DIVISORES DE UN NÚMERO (Apuntes Tema 2 y parte del Tema 3)

MÚLTIPLOS Y DIVISORES DE UN NÚMERO (Apuntes Tema 2 y parte del Tema 3) . Múltiplos de un número MÚLTIPLOS Y DIVISORES DE UN NÚMERO (Apuntes Tema y parte del Tema ) Un número es múltiplo de otro número cuando es el resultado de multiplicar el segundo por cualquier número natural

Más detalles

Ampliación Tema 3: Múltiplo y divisores

Ampliación Tema 3: Múltiplo y divisores - Múltiplo. Divisible. Divisor Ampliación Tema 3: Múltiplo y divisores 56 8 56 es divisible por 8 0 7 56 es múltiplo de 8 Para indicar que 56 es múltiplo de 8 se escribe sobre el divisor 8 un punto :(8)

Más detalles

MATEMÁTICAS 2º DE ESO LOE

MATEMÁTICAS 2º DE ESO LOE MATEMÁTICAS 2º DE ESO LOE TEMA I: NÚMEROS ENTEROS (parte 3/3) Los divisores de un número entero. Descomposición factorial de un número entero. Máximo común divisor (m.c.d.) de dos o más números enteros.

Más detalles

Tema 2 Divisibilidad

Tema 2 Divisibilidad 1. Relación de Divisibilidad Tema 2 Divisibilidad Entre dos números a y b existe la relación de divisibilidad si al dividir a : b la división es exacta. Existe la relación de divisibilidad entre estos

Más detalles

DIVISIBILIDAD 2 3 = 8. Es decir, el resultado de multiplicar 2 por cualquier número natural.

DIVISIBILIDAD 2 3 = 8. Es decir, el resultado de multiplicar 2 por cualquier número natural. DIVISIBILIDAD I. Múltiplos y Divisores 1. MULTIPLOS Los múltiplos de 2 son = 2 2 1 = 4 2 2 = 6 2 3 = 8 2 4 etc Es decir, el resultado de multiplicar 2 por cualquier número natural. Múltiplo de un número

Más detalles

INSTITUTO TECNOLÓGICO METROPOLITANO DECANATURA DE CIENCIAS JEFATURA DE CIENCIAS BÁSICAS

INSTITUTO TECNOLÓGICO METROPOLITANO DECANATURA DE CIENCIAS JEFATURA DE CIENCIAS BÁSICAS INSTITUTO TECNOLÓGICO METROPOLITANO DECANATURA DE CIENCIAS JEFATURA DE CIENCIAS BÁSICAS NIVELATORIO DE MATEMÁTICAS BÁSICAS Guía 3 Números Naturales y Enteros COMPETENCIA Reconoce operaciones. los conjuntos

Más detalles

TEORÍA DE DIVISIBILIDAD

TEORÍA DE DIVISIBILIDAD TEORÍA DE DIVISIBILIDAD MÚLTIPLOS Y DIVISORES.- Dados dos números naturales a y b, con a b, se dice que a es divisible por b o que a es múltiplo de b o que b es divisor de a, si la división de a : b es

Más detalles

Divisibilidad I. Nombre Curso Fecha

Divisibilidad I. Nombre Curso Fecha Matemáticas 2.º ESO Unidad 1 Ficha 1 Divisibilidad I Un número b es divisor de otro número a si al dividir a entre b la división es exacta. Se dice también que a es múltiplo de b. 1. Completa con la palabra

Más detalles

Un número natural distinto de 1 es un número primo si sólo tiene dos divisores, él mismo y la unidad.

Un número natural distinto de 1 es un número primo si sólo tiene dos divisores, él mismo y la unidad. Números primos NÚMEROS PRIMOS Un número natural distinto de es un número primo si sólo tiene dos divisores, él mismo y la unidad. Un número natural es un número compuesto si tiene otros divisores además

Más detalles

UNIDAD 2. MÚLTIPLOS Y DIVISORES

UNIDAD 2. MÚLTIPLOS Y DIVISORES UNIDAD. MÚLTIPLOS Y DIVISORES. MÚLTIPLOS DE UN NÚMERO.. DIVISORES DE UN NÚMERO. 3. NÚMEROS PRIMOS Y NÚMEROS COMPUESTOS. 4. CRITERIOS DE DIVISIBILIDAD. 5. MÍNIMO COMÚN MÚLTIPLO. 6. MÁXIMO COMÚN DIVISOR..

Más detalles

TEMA 2: DIVISIBILIDAD. Estudiaremos conceptos relacionados con la división: múltiplos y divisores, números primos. 28 es divisible entre 4

TEMA 2: DIVISIBILIDAD. Estudiaremos conceptos relacionados con la división: múltiplos y divisores, números primos. 28 es divisible entre 4 Alonso Fernández Galián TEMA : DIVISIBILIDAD Estudiaremos conceptos relacionados con la división: múltiplos y divisores, números primos. LA RELACIÓN DE DIVISIBILIDAD. MÚLTIPLOS Y DIVISORES La divisibilidad

Más detalles

MÚLTIPLOS Y DIVISORES DIVISIBILIDAD M.C.D. y M.C.M. Un número es múltiplo de otro si se obtiene multiplicando este último por un número natural.

MÚLTIPLOS Y DIVISORES DIVISIBILIDAD M.C.D. y M.C.M. Un número es múltiplo de otro si se obtiene multiplicando este último por un número natural. MÚLTIPLOS Y DIVISORES DIVISIBILIDAD M.C.D. y M.C.M. Múltiplos de un número Un número es múltiplo de otro si se obtiene multiplicando este último por un número natural. Por ejemplo, si multiplicamos 9x2

Más detalles

DIVISIBILIDAD. El cero es múltiplo de cualquier número. El producto de cualquier número por 0 es igual a 0

DIVISIBILIDAD. El cero es múltiplo de cualquier número. El producto de cualquier número por 0 es igual a 0 DIVISIBILIDAD MÚLTIPLOS DE UN NÚMERO Definición: Un número es múltiplo de otro cuando lo contiene un número exacto de veces, es decir, cuando la división del primero entre el segundo es exacta. 10 es múltiplo

Más detalles

Tema 2. Divisibilidad. Múltiplos y submúltiplos.

Tema 2. Divisibilidad. Múltiplos y submúltiplos. Tema 2. Divisibilidad. Múltiplos y submúltiplos. En el tema 1, se ha mostrado como realizar cuentas con números naturales y enteros. Antes de conocer otras clases de números, los racionales, irracionales

Más detalles

TEMA 1 NÚMEROS NATURALES

TEMA 1 NÚMEROS NATURALES TEMA 1 NÚMEROS NATURALES Criterios De Evaluación de la Unidad 1 Efectuar correctamente operaciones combinadas de números naturales, aplicando correctamente las reglas de prioridad y haciendo un uso adecuado

Más detalles

MATEMÁTICAS 5º PRIMARIA DIVISIBILIDAD: MÚLTIPLOS Y DIVISORES

MATEMÁTICAS 5º PRIMARIA DIVISIBILIDAD: MÚLTIPLOS Y DIVISORES MATEMÁTICAS 5º PRIMARIA DIVISIBILIDAD: MÚLTIPLOS Y DIVISORES 1 2 MÚLTIPLOS DE UN NÚMERO Un número es múltiplo de otro si se obtiene multiplicando este número por otro número natural. Ejemplo: 12 es múltiplo

Más detalles

Tema 4: Múltiplos y Divisores

Tema 4: Múltiplos y Divisores Tema 4: Múltiplos y Divisores Índice 1. Introducción. 2. Múltiplos de un número. 3. Divisores de un número. 4. Criterios de divisibilidad. 5. Números primos y números compuestos. 6. Descomposición de un

Más detalles

POTENCIAS. MÚLTIPLOS Y DIVISORES. MÁXIMO COMÚN DIVISOR Y MÍNIMO COMÚN MÚLTIPLO.

POTENCIAS. MÚLTIPLOS Y DIVISORES. MÁXIMO COMÚN DIVISOR Y MÍNIMO COMÚN MÚLTIPLO. 1. LOS NÚMEROS NATURALES POTENCIAS. MÚLTIPLOS Y DIVISORES. MÁXIMO COMÚN DIVISOR Y MÍNIMO COMÚN MÚLTIPLO. 2. LOS NÚMEROS ENTEROS. VALOR ABSOLUTO DE UN NÚMERO ENTERO. REPRESENTACIÓN GRÁFICA. OPERACIONES.

Más detalles

DIVISIBILIDAD. - DIVISOR DE UN NÚMERO: Un número es divisor de un número dado, cuando al dividir el número entre el divisor, nos da resultado exacto.

DIVISIBILIDAD. - DIVISOR DE UN NÚMERO: Un número es divisor de un número dado, cuando al dividir el número entre el divisor, nos da resultado exacto. DIVISIBILIDAD La divisibilidad es la parte de las matemáticas que nos enseña la relación entre los números, sus múltiplos y divisores. Lo primero que hemos de conocer es por tanto qué es un múltiplo o

Más detalles

Números Enteros. Introducción

Números Enteros. Introducción Números Enteros Introducción Todos los conjuntos de números fueron de alguna manera "descubiertos" o sugeridos en conexión con problemas planteados en problemas físicos o en el seno de la matemática elemental

Más detalles

TEMA 1: NÚMEROS NATURALES Y DIVISIBILIDAD

TEMA 1: NÚMEROS NATURALES Y DIVISIBILIDAD TEMA 1: NÚMEROS NATURALES Y DIVISIBILIDAD 1.1 Nº NATURALES:.- Cifra: símbolo que se utiliza para construir o componer un número. Nuestro sistema de numeración tiene 10 cifras: 0, 1, 2, 3, 4, 5, 6, 7, 8

Más detalles

DIVISIBILIDAD. 2º E.S.O. Un número es múltiplo de otro si se puede obtener multiplicando el segundo por otro número entero.

DIVISIBILIDAD. 2º E.S.O. Un número es múltiplo de otro si se puede obtener multiplicando el segundo por otro número entero. MULTIPLOS Y DIVISORES DIVISIBILIDAD. NÚMEROS ENTEROS. º E.S.O. Un número es múltiplo de otro si se puede obtener multiplicando el segundo por otro número entero. 8 es múltiplo de porque 8 = 9 75 es múltiplo

Más detalles

Criterios de divisibilidad

Criterios de divisibilidad ENCUENTRO # 2 TEMA: Criterios de Divisibilidad. CONTENIDOS: 1. Criterios de divisibilidad, múltiplos y divisores de un número dado. 2. Principios Fundamentales de la Divisibilidad. DESARROLLO Criterios

Más detalles

MÚLTIPLOS Y DIVISORES

MÚLTIPLOS Y DIVISORES MÚLTIPLOS Y DIVISORES 1. MÚLTIPLOS DE UN NÚMERO. 1.1. CONCEPTO DE MÚLTIPLO. Un número es múltiplo de otro cuando lo contiene un número exacto de veces, es decir, cuando la división del primero entre el

Más detalles

TRABAJO DE MATEMÁTICAS. PENDIENTES DE 2º E.S.O. (1ª parte)

TRABAJO DE MATEMÁTICAS. PENDIENTES DE 2º E.S.O. (1ª parte) TRABAJO DE MATEMÁTICAS PENDIENTES DE º E.S.O. (ª parte) NÚMEROS ENTEROS.-) Realiza las operaciones siguientes () (0) (-) ( ) (-) ( -) (-) ( -) (-) () - - - -0 - - - ( -) ( ) ( -) ( ) ( ) ( - ) ( - ) (

Más detalles

UNIDAD 1. NÚMEROS. (Página 223 del libro) Nivel II. Distancia. Ámbito Científico Tecnológico.

UNIDAD 1. NÚMEROS. (Página 223 del libro) Nivel II. Distancia. Ámbito Científico Tecnológico. UNIDAD 1. NÚMEROS. (Página 22 del libro) Nivel II. Distancia. Ámbito Científico Tecnológico. Clasificación de los números Números naturales son aquellos que utilizamos para contar. N = 0,1,2,,,5,6, Números

Más detalles

TEMA 1: LOS NÚMEROS ENTEROS. Segundo Curso de Educación Secundaria Obligatoria. I.E.S de Fuentesaúco. Manuel González de León.

TEMA 1: LOS NÚMEROS ENTEROS. Segundo Curso de Educación Secundaria Obligatoria. I.E.S de Fuentesaúco. Manuel González de León. TEMA 1: LOS NÚMEROS ENTEROS Segundo Curso de Educación Secundaria Obligatoria. I.E.S de Fuentesaúco. Manuel González de León. CURSO 2011-2012 1. Los Números Enteros. 2. Suma y resta de números enteros.

Más detalles

OPERACIONES CON MONOMIOS Y POLINOMIOS. Suma de monomios

OPERACIONES CON MONOMIOS Y POLINOMIOS. Suma de monomios OPERACIONES CON MONOMIOS Y POLINOMIOS Suma de monomios Sólo podemos sumar monomios semejantes. La suma de los monomios es otro monomio que tiene la misma parte literal y cuyo coeficiente es la suma de

Más detalles

TEMA 2. Números racionales. Teoría. Matemáticas

TEMA 2. Números racionales. Teoría. Matemáticas 1 1.- Números racionales Se llama número racional a todo número que puede representarse como el cociente de dos enteros, con denominador distinto de cero. Se representa por Las fracciones también pueden

Más detalles

TEMA 1. Los números enteros. Matemáticas

TEMA 1. Los números enteros. Matemáticas 1 Introducción En esta unidad veremos propiedades de los números enteros, como se opera con ellos (con y sin calculadora), los números primos, máximo común divisor y mínimo común múltiplo y por últimos

Más detalles

Bloque 1. Aritmética y Álgebra

Bloque 1. Aritmética y Álgebra Bloque 1. Aritmética y Álgebra Los números naturales Los números naturales Los números naturales se definen como: N = { 0,1, 2, 3, 4, 5,...,64, 65, 66,...,1639,1640,1641,1642,... } El sistema de numeración

Más detalles

FICHAS DE TRABAJO REFUERZO

FICHAS DE TRABAJO REFUERZO FICHAS DE TRABAJO REFUERZO DEPARTAMENTO DE MATEMATICAS CONTENIDO 1. Números naturales a. Leer y escribir números naturales b. Orden de cifras c. Descomposición polinómica d. Operaciones combinadas e. Potencias

Más detalles

4.- Raíces cuadradas.

4.- Raíces cuadradas. 4.- Raíces cuadradas. DEFINICIÓN La raíz cuadrada exacta de un número entero es otro número entero cuyo cuadrado coincide con el primer número, es decir: 2 a = b b = a No todos los enteros tienen raíz

Más detalles

MÚLTIPLOS, DIVISORES Y DIVISIBILIDAD

MÚLTIPLOS, DIVISORES Y DIVISIBILIDAD MÚLTIPLOS, DIVISORES Y DIVISIBILIDAD 1 DIVISIBILIDAD La divisibilidad es una parte de la teoría de los números que analiza cada una de las condiciones que debe tener un número para que sea divisible por

Más detalles

TEMA 2 DIVISIBILIDAD 1º ESO

TEMA 2 DIVISIBILIDAD 1º ESO Alumno Fecha TEMA 2 DIVISIBILIDAD 1º ESO Si la división de un número A entre otro número B, es exacta, entonces decimos que: - El número A es divisible por el número B. Ej.: 12 : 4 = 3 12 divisible por

Más detalles

DIVISIBILIDAD CRITERIOS DE DIVISIBILIDAD

DIVISIBILIDAD CRITERIOS DE DIVISIBILIDAD DIVISIBILIDAD CRITERIOS DE DIVISIBILIDAD Un número es divisible por 2 si acaba en cero o cifra par. Ejemplos: 38, porque acaba en 8. 20, porque acaba en 0. Un número es divisible por 3 si la suma de sus

Más detalles

MÚLTIPLOS Y DIVISORES. MÚLTIPLOS

MÚLTIPLOS Y DIVISORES. MÚLTIPLOS MÚLTIPLOS Y DIVISORES. MÚLTIPLOS Los múltiplos de un número son los que lo contienen un número exacto de veces. El 2 es múltiplo de 3 porque lo contiene 4 veces. 3 x 4= 2 El 30 es múltiplo de 5 porque

Más detalles

Factorización ecuación identidad condicional término coeficiente monomio binomio trinomio polinomio grado ax3

Factorización ecuación identidad condicional término coeficiente monomio binomio trinomio polinomio grado ax3 Factorización Para entender la operación algebraica llamada factorización es preciso repasar los siguientes conceptos: Cualquier expresión que incluya la relación de igualdad (=) se llama ecuación. Una

Más detalles

Continuación Números Naturales:

Continuación Números Naturales: Continuación Números Naturales: Múltiplos y divisores de un número natural. Reglas de divisibilidad. Mínimo común múltiplo y Máximo común divisor. Ejercicios de aplicación. Continuación Números Naturales:

Más detalles

CONJUNTO DE LOS NÚMEROS NATURALES

CONJUNTO DE LOS NÚMEROS NATURALES República Bolivariana de Venezuela Ministerio de la Defensa Universidad Nacional Experimental de las Fuerzas Armadas Curso de Inducción Universitaria CIU Cátedra: Razonamiento Matemático CONJUNTO DE LOS

Más detalles

Teoría (resumen) Por ejemplo, los múltiplos de 3 son: 3, 6, 9, 12, 15, 18, ; los múltiplos de 2 son: 2, 4, 6, 8, 10, 12, ; o sea los números pares.

Teoría (resumen) Por ejemplo, los múltiplos de 3 son: 3, 6, 9, 12, 15, 18, ; los múltiplos de 2 son: 2, 4, 6, 8, 10, 12, ; o sea los números pares. 1.- Divisibilidad Teoría (resumen) Múltiplos de un número. Son aquellos que se obtienen al multiplicar dicho número por los números naturales 1, 2, 3,. Por ejemplo, los múltiplos de 3 son: 3, 6, 9, 12,

Más detalles

CONJUNTO DE LOS NÚMEROS NATURALES

CONJUNTO DE LOS NÚMEROS NATURALES CONJUNTO DE LOS NÚMEROS NATURALES 1.- DEFINICIÓN DEL CONJUNTO DE LOS NÚMEROS NATURALES (Conjunto N): Un número natural es cualquier número que se puede usar para contar los elementos de un conjunto finito.

Más detalles

DIVISIBILIDAD: Resultados

DIVISIBILIDAD: Resultados DIVISIBILIDAD: Resultados Página 1 de 9 Se enumeran a continuación, como referencia, ciertos resultados sobre divisibilidad. 1.1 Definición. Dados los enteros a y b, se dice que a divide a b (Notación:

Más detalles

CEIP Mediterráneo. 1º relación de divisibilidad: múltiplos y divisores.

CEIP Mediterráneo. 1º relación de divisibilidad: múltiplos y divisores. Melilla DIVISIBILIDAD 1º relación de divisibilidad: múltiplos y divisores. Dos números están emparentados por la relación de divisibilidad cuando el cociente entre el mayor y el menor es exacto. El mayor

Más detalles

MATEMÁTICAS 2º ESO. TEMA 1

MATEMÁTICAS 2º ESO. TEMA 1 MATEMÁTICAS 2º ESO. TEMA 1 1. DIVISIBILIDAD Y NÚMEROS ENTEROS 1. Los divisores son siempre menores o iguales que el número. 2. Los múltiplos siempre son mayores o iguales que el número. 3. Para saber si

Más detalles

Objetivos. Antes de empezar

Objetivos. Antes de empezar Objetivos En esta quincena aprenderás a: Saber si un número es múltiplo de otro. Reconocer las divisiones exactas. Hallar todos los divisores de un número. Reconocer los números primos. Descomponer un

Más detalles

EJERCICIOS DE REPASO 1 E.S.O. SEGUNDO TRIMESTRE

EJERCICIOS DE REPASO 1 E.S.O. SEGUNDO TRIMESTRE EJERCICIOS DE REPASO 1 E.S.O. SEGUNDO TRIMESTRE , OPERACIONES CON NUMEROS ENTEROS - 1o ESO SUMAS Y RESTAS 1. Calcula: a) 4-5 = b)-1+8= e) - 3-6 = d) 9-11 = e) 1-9 = f) - 2 + 4 = g) - 7-9 = h) + 5 + 6 =

Más detalles

Mínimo común múltiplo

Mínimo común múltiplo Mínimo común múltiplo El número más pequeño (no cero) que es múltiplo de dos o más números. El nombre de mínimo común múltiplo está hecho de las partes mínimo, común y múltiplo: Qué es un "múltiplo"? Los

Más detalles

Llamamos potencia a todo producto de factores iguales. Por ejemplo: 3 4 =

Llamamos potencia a todo producto de factores iguales. Por ejemplo: 3 4 = 1. NÚMEROS NATURALES POTENCIAS DE UN NÚMERO NATURAL Llamamos potencia a todo producto de factores iguales. Por ejemplo: 3 4 = 3 3 3 3 El factor que se repite es la base, y el número de veces que se repite

Más detalles

Ejercicios Pendientes Matemáticas 2º ESO Curso Números Enteros Los Números Enteros

Ejercicios Pendientes Matemáticas 2º ESO Curso Números Enteros Los Números Enteros Los 1) 2) 1 3) 4) 5) 9) ) 2 11) 12) 16) 3 17) 18) 19) 4 20) 21) En qué orden se realizan las operaciones con números enteros Para resolver varias operaciones combinadas con números enteros, se debe seguir

Más detalles

Un número natural a es múltiplo de otro número b si la división a : b es una división exacta.

Un número natural a es múltiplo de otro número b si la división a : b es una división exacta. Divisibilidad en MÚLTIPLOS DE UN NÚMERO Un número natural a es múltiplo de otro número b si la división a : b es una división exacta Ejemplo: 60 es múltiplo de 4 porque la división 60 : 4 = 5 es exacta

Más detalles

Objetivos. Criterios de evaluación. Contenidos. Actitudes. Conceptos. Procedimientos

Objetivos. Criterios de evaluación. Contenidos. Actitudes. Conceptos. Procedimientos P R O G R A M A C I Ó N D E L A U N I D A D Objetivos 1 Identificar relaciones de divisibilidad entre números naturales y reconocer si un número es múltiplo o divisor de otro número dado. 2 Utilizar los

Más detalles

1. NÚMEROS PRIMOS Y COMPUESTOS.

1. NÚMEROS PRIMOS Y COMPUESTOS. . NÚMEROS PRIMOS Y COMPUESTOS. De acuerdo a las propiedades ya vistas de los divisores, sabemos que: todo natural no nulo es divisor de sí mismo es divisor de todo número natural. Ahora: el natural tiene

Más detalles

Fracciones numéricas enteras

Fracciones numéricas enteras Números racionales Fracciones numéricas enteras En matemáticas, una fracción numérica entera expresa la división de un número entero en partes iguales. Una fracción numérica consta de dos términos: El

Más detalles

Ejemplos: a) 15 si es múltiplo de 5 ; 15 si contiene a 5 tres veces. b) 20 no es múltiplo de 7 ; 20 no contiene a 7 un número entero de veces.

Ejemplos: a) 15 si es múltiplo de 5 ; 15 si contiene a 5 tres veces. b) 20 no es múltiplo de 7 ; 20 no contiene a 7 un número entero de veces. Clase-02 Continuación Números Naturales: Múltiplos: Si n IN ; múltiplo de un número n es todo número natural que contiene a n un número entero de veces. Ejemplos: a) 15 si es múltiplo de 5 ; 15 si contiene

Más detalles

CURSO CERO DE MATEMATICAS. Apuntes elaborados por Domingo Pestana Galván. y José Manuel Rodríguez García

CURSO CERO DE MATEMATICAS. Apuntes elaborados por Domingo Pestana Galván. y José Manuel Rodríguez García INGENIEROS INDUSTRIALES Y DE TELECOMUNICACIONES CURSO CERO DE MATEMATICAS Apuntes elaborados por Domingo Pestana Galván y José Manuel Rodríguez García UNIVERSIDAD CARLOS III DE MADRID Escuela Politécnica

Más detalles

3. DIVISIBILIDAD. a es divisible por b si al dividir a entre b, el resto de la división es 0. Es decir :

3. DIVISIBILIDAD. a es divisible por b si al dividir a entre b, el resto de la división es 0. Es decir : 3. DIVISIBILIDAD a es divisible por b si al dividir a entre b, el resto de la división es 0. Es decir : Si a es divisible por b, diremos que: a es múltiplo de b b es divisor de a Un número es primo si

Más detalles

INSTITUTO DE FORMACIÓN DOCENTE DE CANELONES DIVISIBILIDAD

INSTITUTO DE FORMACIÓN DOCENTE DE CANELONES DIVISIBILIDAD DIVISIBILIDAD Definición de múltiplo Dados los números naturales a y b, se dice que a es múltiplo de b, si y solo si existe un número natural c, único, tal que a = b.c El número c se dice que es el cociente

Más detalles

MATEMÁTICAS 1º DE ESO

MATEMÁTICAS 1º DE ESO MATEMÁTICAS 1º DE ESO LOMCE TEMA IV : LAS FRACCIONES. OPERACIONES Los siginificados de una fracción. Fracciones propias e impropias. Equivalencias de fracciones. Amplificación y simplificación. Fracción

Más detalles

Bloque 1. Tema 3 Divisibilidad, máximo común divisor y mínimo común múltiplo. Potencias y raíces.

Bloque 1. Tema 3 Divisibilidad, máximo común divisor y mínimo común múltiplo. Potencias y raíces. ÍNDICE Bloque 1. Tema 3 Divisibilidad, máximo común divisor y mínimo común múltiplo. 1. Divisibilidad 1.1. Múltiplos de un número natural 1.2. Divisores de un número natural 1.2.1. Cálculo de los divisores

Más detalles

TEMA: MULTIPLOS- DIVISORES CRITERIOS DE DIVISIBILIDAD PRIMOS- COMPUESTO

TEMA: MULTIPLOS- DIVISORES CRITERIOS DE DIVISIBILIDAD PRIMOS- COMPUESTO TEMA: MULTIPLOS- DIVISORES CRITERIOS DE DIVISIBILIDAD PRIMOS- COMPUESTO Los múltiplos de un número natural son los números naturales que resultan de multiplicar ese número por otros números naturales.

Más detalles

TEMA 3: DIVISIBILIDAD

TEMA 3: DIVISIBILIDAD TEMA : DIVISIBILIDAD MÚLTIPLOS Un número es MÚLTIPLO de otro cuando es el resultado de multiplicar el segundo número por cualquier número natural. 1 es MÚLTIPLO de 4 porque 4 x = 1 DIVISIBILIDAD Existe

Más detalles

UNIDAD 1: NÚMEROS NATURALES

UNIDAD 1: NÚMEROS NATURALES UNIDAD 1: NÚMEROS NATURALES 1. Calcula: Ya conoces las cuatro operaciones básicas, la suma, la resta, multiplicación y división. Cuando te aparezcan varias operaciones para realizar debes saber la siguiente

Más detalles

UNIDAD 1 CONCEPTOS BÁSICOS. Números naturales, Números enteros, Números racionales, números irracionales y números reales. Dr. Daniel Tapia Sánchez

UNIDAD 1 CONCEPTOS BÁSICOS. Números naturales, Números enteros, Números racionales, números irracionales y números reales. Dr. Daniel Tapia Sánchez UNIDAD 1 CONCEPTOS BÁSICOS Números naturales, Números enteros, Números racionales, números irracionales y números reales Dr. Daniel Tapia Sánchez 1.1 Números Naturales (N) 1.1.1 Consecutividad numérica

Más detalles

1. ESQUEMA - RESUMEN Página EJERCICIOS DE INICIACIÓN Página EJERCICIOS DE DESARROLLO Página EJERCICIOS DE AMPLIACIÓN Página 21

1. ESQUEMA - RESUMEN Página EJERCICIOS DE INICIACIÓN Página EJERCICIOS DE DESARROLLO Página EJERCICIOS DE AMPLIACIÓN Página 21 1. ESQUEMA - RESUMEN Página 2 2. EJERCICIOS DE INICIACIÓN Página 7 3. EJERCICIOS DE DESARROLLO Página 19 4. EJERCICIOS DE AMPLIACIÓN Página 21 5. EJERCICIOS DE REFUERZO Página 22 1 1. ESQUEMA - RESUMEN

Más detalles

Los números naturales

Los números naturales Los números naturales Los números naturales Los números naturales son aquellos que sirven para contar. Se suelen representar utilizando las cifras del 0 al 9. signo suma o resultado Suma: 9 + 12 = 21 sumandos

Más detalles

OLIMPIADA COSTARRICENSE DE MATEMÁTICA UNA - UCR - TEC - UNED - MEP - MICIT. Teoría de Números. I Nivel I Eliminatoria

OLIMPIADA COSTARRICENSE DE MATEMÁTICA UNA - UCR - TEC - UNED - MEP - MICIT. Teoría de Números. I Nivel I Eliminatoria OLIMPIADA COSTARRICENSE DE MATEMÁTICA UNA - UCR - TEC - UNED - MEP - MICIT Teoría de Números I Nivel I Eliminatoria Abril, 2015 Índice 1. Presentación. 2 2. Contenidos de Teoría de Números. 3 3. Concepto

Más detalles

TEMA 1.- POLINOMIOS Y FRACCIONES ALGEBRAICAS

TEMA 1.- POLINOMIOS Y FRACCIONES ALGEBRAICAS TEMA 1.- POLINOMIOS Y FRACCIONES ALGEBRAICAS 1.- POLINOMIOS Recordemos que un monomio es una expresión algebraica (combinación de letras y números) en la que las únicas operaciones que aparecen entre las

Más detalles

Matemáticas. Números naturales y operaciones

Matemáticas. Números naturales y operaciones Matemáticas Departamento de Matemáticas Números naturales y operaciones 1.- Para qué sirven los números: - Para contar, para ordenar, para hacer operaciones y problemas, para medir, para expresar códigos,

Más detalles

Tema 1 Conjuntos numéricos

Tema 1 Conjuntos numéricos Tema 1 Conjuntos numéricos En este tema: 1.1 Números naturales. Divisibilidad 1.2 Números enteros 1.3 Números racionales 1.4 Números reales 1.5 Potencias y radicales 1.7 Logaritmos decimales 1.1 NÚMEROS

Más detalles

IDENTIFICAR LOS MÚLTIPLOS Y DIVISORES DE UN NÚMERO

IDENTIFICAR LOS MÚLTIPLOS Y DIVISORES DE UN NÚMERO OBJETIVO IDENTIICAR LOS MÚLTIPLOS Y DIVISORES DE UN NÚMERO NOMBRE: CURSO: ECHA: Los múltiplos de un número son aquellos que se obtienen multiplicando dicho número por,,,, es decir, por los números naturales.

Más detalles

El Conjunto de los Números Naturales

El Conjunto de los Números Naturales Objetivos El Conjunto de los Carlos A. Rivera-Morales Álgebra Objetivos Tabla de Contenido Objetivos 1 Propiedades de los Objetivos Objetivos: Discutiremos: el conjunto de los números naturales Objetivos

Más detalles

Unidad 1 Números. Los números naturales son aquellos que se utilizan para contar los elementos de un conjunto.

Unidad 1 Números. Los números naturales son aquellos que se utilizan para contar los elementos de un conjunto. Unidad 1 Números 1.- Números Naturales Los números naturales son aquellos que se utilizan para contar los elementos de un conjunto. El conjunto de números naturales se representa por la letra N Operaciones

Más detalles

POLINOMIOS Y FRACCIONES ALGEBRAICAS

POLINOMIOS Y FRACCIONES ALGEBRAICAS POLINOMIOS Y FRACCIONES ALGEBRAICAS Monomio: Monomio es una expresión algebraica en la que las únicas operaciones que aparecen entre las variables son el producto y la potencia de exponente natural. 2x

Más detalles

(1)Factores, Múltiplos y Divisores. (2) Números compuestos y primos

(1)Factores, Múltiplos y Divisores. (2) Números compuestos y primos 4.1-4.2 (1)Factores, Múltiplos y Divisores (2) Números compuestos y primos Factorización Cuando escribimos 12 = 6 x 2 decimos que 6 x 2 corresponde a una factorización de 12. Existen otras factorizaciones

Más detalles

MATEMÁTICAS 6. º CURSO UNIDAD 1: NÚMEROS NATURALES. OPERACIONES

MATEMÁTICAS 6. º CURSO UNIDAD 1: NÚMEROS NATURALES. OPERACIONES MATEMÁTICAS 6. º CURSO UNIDAD 1: NÚMEROS NATURALES. OPERACIONES OBJETIVOS Conocer los seis primeros órdenes de unidades y las equivalencias entre ellos. Leer, escribir y descomponer números de hasta seis

Más detalles

NÚMEROS ENTEROS. OBSERVACION: En la división se cumple la regla de los signos de la multiplicación.

NÚMEROS ENTEROS. OBSERVACION: En la división se cumple la regla de los signos de la multiplicación. NÚMEROS ENTEROS Los elementos del conjunto = {, -3,-2,-1, 0, 1, 2, } se denominan Números Enteros. OPERATORIA EN ADICIÓN Al sumar números de igual signo, se suman los valores absolutos de ellos conservando

Más detalles

Tema 2 Algebra. Expresiones algebraicas Índice

Tema 2 Algebra. Expresiones algebraicas Índice Tema 2 Algebra. Expresiones algebraicas Índice 1. Expresiones algebraicas comunes... 2 2. Valor numérico de una expresión algebraica... 2 3. Tipos de expresiones algebraicas... 2 4. Monomios... 2 4.1.

Más detalles

Conjunto de Números Racionales.

Conjunto de Números Racionales. Conjunto de Números Racionales. El conjunto de los números racionales está formado por: el conjunto de los números enteros (-2, -1, 0, 1, 2, ) y los números fraccionarios y se representan con una Q. Números

Más detalles

CEPA Rosalía de Castro. Fundamentos de Matemáticas Tema 4: Expresiones algebraicas

CEPA Rosalía de Castro. Fundamentos de Matemáticas Tema 4: Expresiones algebraicas TEMA 4. Expresiones algebraicas: 1. Una expresión algebraica es una expresión formada por operadores algebraicos que combinan operandos que pueden ser letras o números. Las letras se llaman variables y

Más detalles

TEMA 1: DIVISIBILIDAD Y NÚMEROS ENTEROS.

TEMA 1: DIVISIBILIDAD Y NÚMEROS ENTEROS. TEMA : DIVISIBILIDAD Y NÚMEROS ENTEROS.. La relación de divisibilidad Ejemplos de multiplos y divisores: Determina si las siguientes parejas de números son múltiplos o divisores: a) 5 y 25 Lo primero será

Más detalles

Tema 1 : NÚMEROS NATURALES. DIVISIBILIDAD. Primero de Educación Secundaria Obligatoria. I.e.s Fuentesaúco.

Tema 1 : NÚMEROS NATURALES. DIVISIBILIDAD. Primero de Educación Secundaria Obligatoria. I.e.s Fuentesaúco. 2009 Tema 1 : ÚMEROS ATURALES. DIVISIBILIDAD. Primero de Educación Secundaria Obligatoria. I.e.s Fuentesaúco. Manuel González de León mgdl 01/01/2009 Tema 01: úmeros aturales. Divisibilidad IDICE: 01.

Más detalles

Tema 2. Divisibilidad 1º de Educación Secundaria Obligatoria

Tema 2. Divisibilidad 1º de Educación Secundaria Obligatoria Tema 2. Divisibilidad 1º de Educación Secundaria Obligatoria Contenidos 1. Múltiplos y divisores 1.1. Múltiplos y divisores 1.2. Propiedades de múltiplos y divisores 2. Números primos y compuestos 2.1.

Más detalles

TEMA 1: NÚMEROS REALES

TEMA 1: NÚMEROS REALES TEMA 1: NÚMEROS REALES 1. INTRODUCCIÓN El conjunto formado por los números racionales e irracionales es el conjunto de los números reales, se designa por Con los números reales podemos realizar todas las

Más detalles

El Conjunto de los Números Naturales

El Conjunto de los Números Naturales Objetivos El Conjunto de los Carlos A. Rivera-Morales Álgebra Objetivos Tabla de Contenido Objetivos 1 Propiedades de los Objetivos Objetivos: Discutiremos: el conjunto de los números naturales Objetivos

Más detalles

Desempolvando métodos matemáticos sobre la divisibilidad de números naturales

Desempolvando métodos matemáticos sobre la divisibilidad de números naturales Desempolvando métodos matemáticos sobre la divisibilidad de números naturales Lic. Ramón Rodríguez Águila Lic. Mireya de los Ángeles Falcón Vega Lic. Inés María Trotman González RESUMEN En este material

Más detalles

TEMA 1. Números Reales. Teoría. Matemáticas

TEMA 1. Números Reales. Teoría. Matemáticas 1 1.- Los números reales Cuáles son los números reales? Los números reales son todos los números racionales y todos los números irracionales. El conjunto de los números reales se designa con el símbolo

Más detalles

MÚLTIPLOS Y DIVISORES

MÚLTIPLOS Y DIVISORES MÚLTIPLOS Y DIVISORES MÚLTIPLOS DE UN NÚMERO Los múltiplos de un número son los que lo contienen un número exacto de veces. El 2 es múltiplo de 3 porque lo contiene 4 veces. El 30 es múltiplo de 5 porque

Más detalles

UNIDAD DE APRENDIZAJE II

UNIDAD DE APRENDIZAJE II UNIDAD DE APRENDIZAJE II NÚMEROS RACIONALES Jerarquía de Operaciones En matemáticas una operación es una acción realizada sobre un número (en el caso de la raíz y potencia) o donde se involucran dos números

Más detalles

MANEJO DE ESPACIOS Y CANTIDADES ALGEBRA

MANEJO DE ESPACIOS Y CANTIDADES ALGEBRA MANEJO DE ESPACIOS Y CANTIDADES ALGEBRA ALGEBRA: es el nombre que identifica a una rama de la Matemática que emplea números, letras y signos para poder hacer referencia a múltiples operaciones aritméticas.

Más detalles

Introducción a la Teoría de Números

Introducción a la Teoría de Números Introducción a la Teoría de Números La Teoría de Números es un área de las matemáticas que se encarga de los números primos, factorizaciones, de qué números son múltiplos de otros, etc. Aunque se inventó

Más detalles

4 ESO. Mat B. Polinomios y fracciones algebraicas

4 ESO. Mat B. Polinomios y fracciones algebraicas «El que pregunta lo que no sabe es ignorante un día. El que no lo pregunta será ignorante toda la vida» 4 ESO Mat B Polinomios y fracciones algebraicas ÍNDICE: 0. EL LENGUAJE SIMBÓLICO O ALGEBRAICO 1.

Más detalles

Múltiplos y divisores

Múltiplos y divisores Múltiplos y divisores 3 1. MÚLTIPLOS DE UN NÚMERO Los múltiplos de un número son los que lo contienen un número exacto de veces. El 12 es múltiplo de 3 porque lo contiene 4 veces. El 30 es múltiplo de

Más detalles

RESUMEN DE CONCEPTOS

RESUMEN DE CONCEPTOS RESUMEN DE CONCEPTOS 1º ESO MATEMÁTICAS NÚMEROS NATURALES (1) Múltiplo de un número: Un número es múltiplo de otro si el segundo está contenido en el primero un número exacto de veces. Ejemplo: 16 es múltiplo

Más detalles

Factorización de polinomios FACTORIZACIÓN DE POLINOMIOS

Factorización de polinomios FACTORIZACIÓN DE POLINOMIOS FACTORIZACIÓN DE POLINOMIOS 1. Polinomios Un monomio es el producto de un número real por una o más letras que pueden estar elevadas a exponentes que sean números naturales. La suma de los exponentes de

Más detalles