DIVISIBILIDAD: Resultados
|
|
|
- María José Quintana Gallego
- hace 9 años
- Vistas:
Transcripción
1 DIVISIBILIDAD: Resultados Página 1 de 9
2 Se enumeran a continuación, como referencia, ciertos resultados sobre divisibilidad. 1.1 Definición. Dados los enteros a y b, se dice que a divide a b (Notación: a b) si existe un entero q tal que aq = b. Si a no divide a b, entonces existen enteros q, r tales que b = aq + r, con 0 r < a, q y r únicos. 1.2 Todo número es divisor de sí mismo ; 1 es divisor de cualquier número ; 0 es divisible por cualquier número. 1.3 Todo número compuesto tiene al menos un divisor primo ( en efecto, si N es compuesto, tiene un divisor n, distinto de N y de 1, que no es mayor que cualquier otro divisor. Este divisor debe ser primo, porque de lo contrario, tendría un divisor menor que él mismo y mayor que 1 que también sería divisor de N, y esto es imposible por la manera como se ha elegido n ). Página 2 de 9
3 1.4 La sucesión de números primos es ilimitada (Primer teorema de Euclides) En efecto, dado cualquier número primo p, construímos el número siguiente, multiplicando todos los números primos hasta p, inclusive, y sumando 1 al producto: N = p + 1 Este número, o bien es primo, en cuyo caso hemos terminado, o en caso contrario admite un divisor primo, que es mayor que p porque N da resto 1 al ser dividido por todos los números primos 2,3,, p. 1.5 La descomposición de un número en producto de potencias de factores primos es única. 1.6 (Segundo teorema de Euclides) Si un número divide a un producto de dos factores y es primo con uno de ellos, entonces divide al otro factor. Página 3 de 9
4 1.7 Propiedades del máximo común divisor y del mínimo común múltiplo : Notación : m.c.d., (a,b) ; m.c.m., [a, b]. (a, a) = a [a, a] = a (a, b) = (b, a) [a, b] = [b, a] (a, (b, c)) = ((a, b), c) [a, [b, c]] = [[a, b], c] [(a, b), a] = a ([a, b], a) = a k (a, b) = (ka, kb) k [a, b] = [ka, kb] [(a, b), c] = ([a, c], [a, c]) ([a, b], c) = [(a, b), (a, c)] El producto de dos números es igual al de su m.c.d. por su m.c.m. ab = (a, b) [a, b] Si se dividen dos números por su m.c.d., los cocientes obtenidos son primos entre sí. Todo divisor de 2 ó varios números es divisor de su m.c.d. Todo múltiplo de 2 ó varios números lo es de su m.c.m. Para todo entero x, (a, b) = (a, b + ax) Si (a, m) = (b, m) = 1, entonces (ab, m) = 1. Para todos a, k enteros no simultáneamente nulos, (a, a + k) k. Página 4 de 9
5 Algoritmo de Euclides para calcular el m.c.d. de dos números. Sean a > b los enteros cuyo m.c.d. se desea determinar. Entonces a = bq 1 + r 1 ; b > r 1 b = r 1 q 2 + r 2 ; r 1 > r 2 r 1 = r 2 q 3 + r 3 ; r 2 > r 3 La sucesión decreciente de enteros positivos b > r 1 > r 2 > r 3 > 0 tiene que ser finita; aparecerá un resto igual a 0; entonces si r n+1 = 0 el proceso termina con r n 2 = r n 1 q n + r n ; r n 1 = r n q n+1. y el máximo común divisor de a y b es r n (el último resto distinto de cero); cuando r n = 1, a y b son primos entre sí. 1.8 Teorema de Bézout Si a y b son primos entre sí, existen enteros x, y tales que ax + by = 1 Página 5 de 9
6 (Basta sustituir hacia atrás en las igualdades que dan el algoritmo de Euclides) Una observación menos obvia de lo que parece: Dos números enteros consecutivos son primos entre sí La función parte entera Si x R, la parte entera de x (Notaciones : [x], x, E (x)) es el mayor entero que es menor o igual que x. Si x, y son enteros, con x = qy + r, 0 r < y, entonces [x/y] = q. Propiedades de la parte entera : i) Para x R, son equivalentes : [x] x [x] + 1 x 1 < [x] x 0 x [x] < 1 x 1 < [ x] x ii) Si m es entero, [x + m] = [x] + m Página 6 de 9
7 iii) Se verifican las relaciones [x] + [y] [x + y] [x] + [y] + 1 [x y] [x] [y] [x y] + 1 iv) Si m es natural y x R, entonces [ ] [x] [ x =. m m] En efecto, sean x = n + a, 0 a < 1; n = qm + r, 0 r m 1 Entonces se tiene : por un lado, [x/m] = [(qm + r + a) /m] = q + [(r + a) /m] = q porque 0 r + a < m. Por otra parte, [[x] ] [ n = = m m] v) [x] [y] [xy] [ q + r ] = q pues r < m. m vi) [ x + 1 2] es el entero más próximo a x. Si dos enteros son igualmente próximos a x, se conviene en que es el mayor de los dos. vii) x [x] es la parte decimal o mantisa de x. Notación : {x} Página 7 de 9
8 viii) Si n 1, n 2, n 3, (en número finito) son enteros cualesquiera cuya suma es s y a es cualquier número entero, entonces [ s [ n1 ] [ n2 ] + + (la suma es finita) a] a a ix) Máxima potencia de un primo que divide a un factorial Si p es un número primo, y p k es la mayor potencia de p que divide a n!, entonces el valor del exponente k se puede calcular mediante [ ] [ ] [ ] n n n k = p p 2 p 3 En efecto : la suma es finita porque alguna potencia de p es mayor que n y a partir de ese momento los términos de la suma son 0; y además, de los números 1, 2,, n, hay [n/p] que son divisibles por p, hay [ n/p 2] que son divisibles por p 2, y así sucesivamente. La propiedad iv) acorta el trabajo para calcular el mayor exponente de un primo p en n! : [400/5] = 80, [80/5] = 16, [16/5] = 3 ; = 99 ceros en que termina 400! Página 8 de 9
9 x) Si n, k, r son enteros positivos, con r k 1, entonces [ n k ] es el número de múltiplos positivos de k que son menores o iguales que n [ ] n + r es el número de enteros positivos, menores o iguales que n, k que dan resto k r al ser divididos por k Ejemplo, [41/10] = 4, número de enteros menores o iguales que 37 que dan resto 6 al ser divididos por 10. Ir a la sección de Ir a la sección de Página 9 de 9
Aritmética entera. AMD Grado en Ingeniería Informática. AMD Grado en Ingeniería Informática (UM) Aritmética entera 1 / 15
Aritmética entera AMD Grado en Ingeniería Informática AMD Grado en Ingeniería Informática (UM) Aritmética entera 1 / 15 Objetivos Al finalizar este tema tendréis que: Calcular el máximo común divisor de
Ampliación Tema 3: Múltiplo y divisores
- Múltiplo. Divisible. Divisor Ampliación Tema 3: Múltiplo y divisores 56 8 56 es divisible por 8 0 7 56 es múltiplo de 8 Para indicar que 56 es múltiplo de 8 se escribe sobre el divisor 8 un punto :(8)
OLIMPIADA COSTARRICENSE DE MATEMÁTICA UNA - UCR - TEC - UNED - MEP - MICIT. Teoría de Números. II Nivel I Eliminatoria
OLIMPIADA COSTARRICENSE DE MATEMÁTICA UNA - UCR - TEC - UNED - MEP - MICIT Teoría de Números II Nivel I Eliminatoria Abril, 2015 Índice 1. Presentación 2 2. Temario 2 3. Divisibilidad 2 4. Algoritmo de
mcd y mcm Máximo Común Divisor y Mínimo Común múltiplo www.math.com.mx José de Jesús Angel Angel [email protected]
mcd y mcm Máximo Común Divisor y Mínimo Común múltiplo www.math.com.mx José de Jesús Angel Angel [email protected] MathCon c 2007-2008 Contenido 1. Divisores de un número entero 2 2. Máximo común divisor
ALGEBRA I, ALGEBRA Y TRIGONOMETRIA , Segundo Semestre CAPITULO 6: POLINOMIOS.
ALGEBRA I, ALGEBRA Y TRIGONOMETRIA 520135, 522115 Segundo Semestre CAPITULO 6: POLINOMIOS. DEPARTAMENTO DE INGENIERIA MATEMATICA Facultad de Ciencias Físicas y Matemáticas 1 Definición: Polinomio Sea K
INSTITUTO DE FORMACIÓN DOCENTE DE CANELONES DIVISIBILIDAD
DIVISIBILIDAD Definición de múltiplo Dados los números naturales a y b, se dice que a es múltiplo de b, si y solo si existe un número natural k, único, tal que a = b.k El número k se dice que es el cociente
TEMA 1 NÚMEROS NATURALES
TEMA 1 NÚMEROS NATURALES Criterios De Evaluación de la Unidad 1 Efectuar correctamente operaciones combinadas de números naturales, aplicando correctamente las reglas de prioridad y haciendo un uso adecuado
1. NÚMEROS PRIMOS Y COMPUESTOS.
. NÚMEROS PRIMOS Y COMPUESTOS. De acuerdo a las propiedades ya vistas de los divisores, sabemos que: todo natural no nulo es divisor de sí mismo es divisor de todo número natural. Ahora: el natural tiene
Llamamos potencia a todo producto de factores iguales. Por ejemplo: 3 4 =
1. NÚMEROS NATURALES POTENCIAS DE UN NÚMERO NATURAL Llamamos potencia a todo producto de factores iguales. Por ejemplo: 3 4 = 3 3 3 3 El factor que se repite es la base, y el número de veces que se repite
ALGEBRA 1- GRUPO CIENCIAS- TURNO TARDE- Enteros
Resumen teoría Prof. Alcón ALGEBRA 1- GRUPO CIENCIAS- TURNO TARDE- Z = N {0} N Enteros Las operaciones + y. son cerradas en Z, es decir la suma de dos números enteros es un número entero y el producto
Continuación Números Naturales:
Continuación Números Naturales: Múltiplos y divisores de un número natural. Reglas de divisibilidad. Mínimo común múltiplo y Máximo común divisor. Ejercicios de aplicación. Continuación Números Naturales:
PROBLEMAS RESUELTOS DE PREPARACIÓN PARA OPOSICIONES. Problemas 02
PROBLEMAS RESUELTOS DE PREPARACIÓN PARA OPOSICIONES Problemas 0 Salvador Pérez Gómez [email protected] 4 de abril de 007 PROBLEMA 1 Sea n un número natural. Sea A n = n + n + 3n. a) Demostrar que
Capítulo 3: El anillo de los números enteros
Capítulo 3: El anillo de los números enteros Miguel Ángel Olalla Acosta [email protected] Departamento de Álgebra Universidad de Sevilla Noviembre de 2014 Olalla (Universidad de Sevilla) El anillo de
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) RESOLUCIÓN MCD (A; B) = C SEMANA 10 MCD - MCM. q = MCM( A;B) MCD ( A,B) = 7 1 MCD A,B = 7 1
SEMANA MCD - MCM. La suma de dos números A y B es 65, el cociente entre su MCM y su MCD es 8. Halle (A - B). A) 8 B) 6 C) 7 D) 48 E) 48 MCD (A; B) C A dq B dq Donde q y q son números primos entre sí. Luego:
Un número a es múltiplo de otro b cuando es el resultado de multiplicar este último por otro número c.
DIVISIBILIDAD Múltiplos Un número a es múltiplo de otro b cuando es el resultado de multiplicar este último por otro número c. 18 = 2 9 18 es múltiplo de 2, ya que resulta de multiplicar 2 por 9. Tabla
Teoría elemental de números
Teoría elemental de números Matemática discreta 1 Resultados previos Axioma: todo subconjunto no vacío de N tiene mínimo, con el orden usual en N. Toda sucesión decreciente en N converge. 2 Divisibilidad
CURSOSO. Aritmética: Númerosnaturalesyenteros. Númerosracionalesyfraciones. MATEMÁTICAS. AntonioF.CostaGonzález
CURSOSO CURSOSO MATEMÁTICAS Aritmética: Númerosnaturalesyenteros. Númerosracionalesyfraciones. AntonioF.CostaGonzález DepartamentodeMatemáticasFundamentales FacultaddeCiencias Índice 1 Introducción y objetivos
Criterios de divisibilidad
ENCUENTRO # 2 TEMA: Criterios de Divisibilidad. CONTENIDOS: 1. Criterios de divisibilidad, múltiplos y divisores de un número dado. 2. Principios Fundamentales de la Divisibilidad. DESARROLLO Criterios
DIVISIBILIDAD 2 3 = 8. Es decir, el resultado de multiplicar 2 por cualquier número natural.
DIVISIBILIDAD I. Múltiplos y Divisores 1. MULTIPLOS Los múltiplos de 2 son = 2 2 1 = 4 2 2 = 6 2 3 = 8 2 4 etc Es decir, el resultado de multiplicar 2 por cualquier número natural. Múltiplo de un número
Sucesiones y Suma Finita
Sucesiones y Suma Finita Hermes Pantoja Carhuavilca Centro Pre-Universitario CEPRE-UNI Universidad Nacional de Ingeniería Algebra Hermes Pantoja Carhuavilca 1 de 21 CONTENIDO Convergencia de una sucesión
MÚLTIPLOS Y DIVISORES DIVISIBILIDAD M.C.D. y M.C.M. Un número es múltiplo de otro si se obtiene multiplicando este último por un número natural.
MÚLTIPLOS Y DIVISORES DIVISIBILIDAD M.C.D. y M.C.M. Múltiplos de un número Un número es múltiplo de otro si se obtiene multiplicando este último por un número natural. Por ejemplo, si multiplicamos 9x2
MATEMÁTICAS 2º ESO. TEMA 1
MATEMÁTICAS 2º ESO. TEMA 1 1. DIVISIBILIDAD Y NÚMEROS ENTEROS 1. Los divisores son siempre menores o iguales que el número. 2. Los múltiplos siempre son mayores o iguales que el número. 3. Para saber si
TEMA 1.- POLINOMIOS Y FRACCIONES ALGEBRAICAS
TEMA 1.- POLINOMIOS Y FRACCIONES ALGEBRAICAS 1.- POLINOMIOS Recordemos que un monomio es una expresión algebraica (combinación de letras y números) en la que las únicas operaciones que aparecen entre las
DIVISIBILIDAD NÚMEROS NATURALES
DIVISIBILIDAD NÚMEROS NATURALES MÚLTIPLOS Un número a es múltiplo de otro b cuando es el resultado de multiplicarlo por otro número c. a = b c Ejemplo: 12 es múltiplo de 2, ya que resulta de multiplicar
Tema 2 Divisibilidad
1. Relación de Divisibilidad Tema 2 Divisibilidad Entre dos números a y b existe la relación de divisibilidad si al dividir a : b la división es exacta. Existe la relación de divisibilidad entre estos
El primer día del mes es juves. Cuál es el 29 día del mes?
Divisibilidad. Para resolver juntos: Un cartel tiene 4 luces de colores Amarillo, Verde; Rojo; Blanco. Se van encendiendo, por minuto. El primer minuto, la luz amarilla, el segundo minuto la verde, el
Ejercicios Pendientes Matemáticas 2º ESO Curso Números Enteros Los Números Enteros
Los 1) 2) 1 3) 4) 5) 9) ) 2 11) 12) 16) 3 17) 18) 19) 4 20) 21) En qué orden se realizan las operaciones con números enteros Para resolver varias operaciones combinadas con números enteros, se debe seguir
Tema 2. Divisibilidad. Múltiplos y submúltiplos.
Tema 2. Divisibilidad. Múltiplos y submúltiplos. En el tema 1, se ha mostrado como realizar cuentas con números naturales y enteros. Antes de conocer otras clases de números, los racionales, irracionales
Factorización de polinomios FACTORIZACIÓN DE POLINOMIOS
FACTORIZACIÓN DE POLINOMIOS 1. Polinomios Un monomio es el producto de un número real por una o más letras que pueden estar elevadas a exponentes que sean números naturales. La suma de los exponentes de
CONJUNTO DE LOS NÚMEROS NATURALES
República Bolivariana de Venezuela Ministerio de la Defensa Universidad Nacional Experimental de las Fuerzas Armadas Curso de Inducción Universitaria CIU Cátedra: Razonamiento Matemático CONJUNTO DE LOS
= 310 (1 + 5) : 2 2 = = = 12 ( 3) ( 5) = = 2 = ( 4) + ( 20) + 3 = = 21
Unidad I, NÚMEROS NATURALES Y ENTEROS A continuación se enuncian las claves de cada pregunta hechas por mí (César Ortiz). Con esto, asumo cualquier responsabilidad, entiéndase por si alguna solución está
POLINOMIOS Y FRACCIONES ALGEBRAICAS
POLINOMIOS Y FRACCIONES ALGEBRAICAS Monomio: Monomio es una expresión algebraica en la que las únicas operaciones que aparecen entre las variables son el producto y la potencia de exponente natural. 2x
ALGEBRA y ALGEBRA LINEAL. Primer Semestre CAPITULO 6. POLINOMIOS DE UNA VARIABLE.
ALGEBRA y ALGEBRA LINEAL 520142 Primer Semestre CAPITULO 6. POLINOMIOS DE UNA VARIABLE. DEPARTAMENTO DE INGENIERIA MATEMATICA Facultad de Ciencias Físicas y Matemáticas 1 Definición: Polinomio Sea K (Q,
POTENCIAS. MÚLTIPLOS Y DIVISORES. MÁXIMO COMÚN DIVISOR Y MÍNIMO COMÚN MÚLTIPLO.
1. LOS NÚMEROS NATURALES POTENCIAS. MÚLTIPLOS Y DIVISORES. MÁXIMO COMÚN DIVISOR Y MÍNIMO COMÚN MÚLTIPLO. 2. LOS NÚMEROS ENTEROS. VALOR ABSOLUTO DE UN NÚMERO ENTERO. REPRESENTACIÓN GRÁFICA. OPERACIONES.
TEORIA DE NUMEROS (I) REGLAS DE DIVISIBILIDAD
Un número es divisible por: TEORIA DE NUMEROS (I) REGLAS DE DIVISIBILIDAD - 2 Si es PAR. - 3 Si la suma de sus cifras es divisible por 3. - 4 Si el número formado por sus dos últimas cifras es divisible
ESTALMAT-Andalucía Actividades 06/07 Sesión: 19 Fecha: 14/04/07 Título: Aritmética modular Segundo Curso. Aritmética modular
Recordando... Aritmética modular División entera (o euclídea). División exacta Definición.- Dados dos numeros naturales a (dividendo) y b 0 (divisor), llamamos división entera entre ellos a la operación
El Teorema Fundamental del Álgebra
El Teorema Fundamental del Álgebra 1. Repaso de polinomios Definiciones básicas Un monomio en una indeterminada x es una expresión de la forma ax n que representa el producto de un número, a, por una potencia
MATEMÁTICAS 5º PRIMARIA DIVISIBILIDAD: MÚLTIPLOS Y DIVISORES
MATEMÁTICAS 5º PRIMARIA DIVISIBILIDAD: MÚLTIPLOS Y DIVISORES 1 2 MÚLTIPLOS DE UN NÚMERO Un número es múltiplo de otro si se obtiene multiplicando este número por otro número natural. Ejemplo: 12 es múltiplo
Tema 6: Fracciones. Fracciones
Fracciones Un quebrado o número fraccionario se expresa por dos números naturales, el denominador que indica en cuántas partes se ha dividido la unidad y el numerador, que indica cuántas partes de esta
POLINOMIOS Y FRACCIONES ALGEBRAICAS
POLINOMIOS Y FRACCIONES ALGEBRAICAS Definición de monomio. Expresión algebraica formada por el producto de un número finito de constantes y variables con exponente natural. Al producto de las constantes
MÚLTIPLOS Y DIVISORES
MÚLTIPLOS Y DIVISORES 1. MÚLTIPLOS DE UN NÚMERO. 1.1. CONCEPTO DE MÚLTIPLO. Un número es múltiplo de otro cuando lo contiene un número exacto de veces, es decir, cuando la división del primero entre el
Números Naturales. Cero elemento neutro: = 12 Sucesión fundamental : se obtiene el siguiente número = 9
Números Naturales Cuando comenzamos a contar los objetos, los años, etc, nos hemos encontrado con los números de forma natural; por eso a este conjunto de números así aprendidos se les denomina números
Polinomios Primero que todo vamos a definirlos como aquella expresión algebraica de la forma: P(x) = a n x n + a n - 1 x n - 1 + a n - 2 x n - 2 +...
Polinomios Primero que todo vamos a definirlos como aquella expresión algebraica de la forma: P(x) = a n x n + a n - 1 x n - 1 + a n - 2 x n - 2 +... + a 1 x 1 + a 0 Siendo a n, a n -1... a 1, a o números,
Los números naturales
Los números naturales Los números naturales Los números naturales son aquellos que sirven para contar. Se suelen representar utilizando las cifras del 0 al 9. signo suma o resultado Suma: 9 + 12 = 21 sumandos
RESUMEN ALGEBRA BÁSICA
RESUMEN ALGEBRA BÁSICA TERMINO ALGEBRAICO: Es una expresión matemática que consta de un producto (o cociente) de un número con una variable elevado a un exponente (o con varias variables). TÉRMINO ALGEBRAICO
Bloque 1. Aritmética y Álgebra
Bloque 1. Aritmética y Álgebra Los números naturales Los números naturales Los números naturales se definen como: N = { 0,1, 2, 3, 4, 5,...,64, 65, 66,...,1639,1640,1641,1642,... } El sistema de numeración
DIVISIBILIDAD SOLUCIÓN:
DIVISIBILIDAD 1. Si a, b y c son números naturales tales que c = a. b, se dice: a) c es divisor de a y de b. b) c es múltiplo de a y de b. c) a y b son múltiplos de c. Todo número descompuesto en un producto
Problema 3 Sea ABC un triángulo acutángulo con circuncentro O. La recta AO corta al lado BC en D. Se sabe que OD = BD = 1 y CD = 1+
PRIMER NIVEL PRIMER DÍA Problema 1 a) Es posible dividir un cuadrado de lado 1 en 30 rectángulos de perímetro? b) Supongamos que un cuadrado de lado 1 está dividido en 5 rectángulos de perímetro p. Hallar
Tema 1 : NÚMEROS NATURALES. DIVISIBILIDAD. Primero de Educación Secundaria Obligatoria. I.e.s Fuentesaúco.
2009 Tema 1 : ÚMEROS ATURALES. DIVISIBILIDAD. Primero de Educación Secundaria Obligatoria. I.e.s Fuentesaúco. Manuel González de León mgdl 01/01/2009 Tema 01: úmeros aturales. Divisibilidad IDICE: 01.
TEMA 2 DIVISIBILIDAD 1º ESO
Alumno Fecha TEMA 2 DIVISIBILIDAD 1º ESO Si la división de un número A entre otro número B, es exacta, entonces decimos que: - El número A es divisible por el número B. Ej.: 12 : 4 = 3 12 divisible por
Teoría (resumen) Por ejemplo, los múltiplos de 3 son: 3, 6, 9, 12, 15, 18, ; los múltiplos de 2 son: 2, 4, 6, 8, 10, 12, ; o sea los números pares.
1.- Divisibilidad Teoría (resumen) Múltiplos de un número. Son aquellos que se obtienen al multiplicar dicho número por los números naturales 1, 2, 3,. Por ejemplo, los múltiplos de 3 son: 3, 6, 9, 12,
DIVISIBILIDAD. 2º E.S.O. Un número es múltiplo de otro si se puede obtener multiplicando el segundo por otro número entero.
MULTIPLOS Y DIVISORES DIVISIBILIDAD. NÚMEROS ENTEROS. º E.S.O. Un número es múltiplo de otro si se puede obtener multiplicando el segundo por otro número entero. 8 es múltiplo de porque 8 = 9 75 es múltiplo
AMPLIACIÓN DE MATEMÁTICAS. REPASO DE MATEMÁTICAS DISCRETA. CONGRUENCIAS. En el conjunto de los números enteros
AMPLIACIÓN DE MATEMÁTICAS REPASO DE MATEMÁTICAS DISCRETA. CONGRUENCIAS. En el conjunto de los números enteros Z = {..., n,..., 2, 1, 0, 1, 2, 3,..., n, n + 1,...} tenemos definidos una suma y un producto
SCUACAC026MT22-A16V1. SOLUCIONARIO Ejercitación Generalidades de números
SCUACAC026MT22-A16V1 0 SOLUCIONARIO Ejercitación Generalidades de números 1 TABLA DE CORRECCIÓN GUÍA PRÁCTICA EJERCITACIÓN GENERALIDADES DE NÚMEROS Ítem Alternativa 1 E 2 D 3 B 4 E 5 A 6 E 7 B 8 D 9 D
Conjuntos Los conjuntos se emplean en muchas áreas de las matemáticas, de modo que es importante una comprensión de los conjuntos y de su notación.
NÚMEROS REALES Conjuntos Los conjuntos se emplean en muchas áreas de las matemáticas, de modo que es importante una comprensión de los conjuntos y de su notación. Un conjunto es una colección bien definida
TEMA 2: POTENCIAS Y RAÍCES. Matemáticas 3º de la E.S.O.
TEMA 2: POTENCIAS Y RAÍCES Matemáticas 3º de la E.S.O. 1. Potencias con exponente entero Potencias de exponente negativo a n = 1 a n Las potencias de exponente negativo cumplen las mismas propiedades que
b) Sea una relación de equivalencia en A y una operación en A. Decimos que y son compatibles si a b a c b c y c a c b para todo a, b, c A
APENDICE Relaciones y Operaciones Compatibles 1 Definición: a) Sea A un conjunto y una relación entre elementos de A. Decimos que es una relación de equivalencia si es: i Reflexiva: a A, a a. ii Simétrica:
TEMA 4: ECUACIONES Y SISTEMAS DE ECUACIONES
TEMA 4: ECUACIONES Y SISTEMAS DE ECUACIONES 1. ECUACIONES. Una ecuación es una igualdad entre dos expresiones algebraicas. Las variables en este caso se denominan incógnitas. Las soluciones de una ecuación
REPASO NÚMEROS NATURALES Y NÚMEROS ENTEROS
SUMA REPASO NÚMEROS NATURALES Y NÚMEROS ENTEROS NÚMEROS NATURALES (N) 1. Características: Axiomas de Giuseppe Peano (*): El 1 es un número natural. Si n es un número natural, entonces el sucesor (el siguiente
Matemática I. Mínimo Común Múltiplo. Ing. Santiago Figueroa Lorenzo Correo:
Matemática I Mínimo Común Múltiplo Ing. Santiago Figueroa Lorenzo Correo: [email protected] Temas Primera Unidad: Elementos Algebraicos Tema 3: Mínimo Común Múltiplo Mínimo Común Múltiplo
Se dice que dos monomios son semejantes cuando tienen la misma parte literal
Expresiones algebraicas 1 MONOMIOS Conceptos Un monomio es una expresión algebraica en la que las únicas operaciones que aparecen entre las variables son el producto y la potencia de exponente natural.
UNIDAD: NÚMEROS Y PROPORCIONALIDAD. Los elementos del conjunto IN = {1, 2, 3, 4, 5, 6, 7,...} se denominan números
GUÍA Nº 2 UNIDAD: NÚMEROS Y PROPORCIONALIDAD NÚMEROS ENTEROS NÚMEROS NATURALES (ln) Los elementos del conjunto IN = {1, 2, 3, 4, 5, 6, 7,...} se denominan números naturales NÚMEROS ENTEROS (Z) Los elementos
SUBDIRECCION DE EDUCACION DEPARTAMENTO COLEGIOS LICEO CAMPESTRE CAFAM GUIA DE APRENDIZAJE No. 1 AREA: MATEMATICAS
SUBDIRECCION DE EDUCACION DEPARTAMENTO COLEGIOS LICEO CAMPESTRE CAFAM GUIA DE APRENDIZAJE No. 1 AREA: MATEMATICAS ASIGNATURA: Matemáticas TEMA: Números Naturales GRADO: Quinto PERIODO: Primero PROFESOR:
GUÍA NÚMERO 1. Saint Gaspar College MISIONEROS DE LA PRECIOSA SANGRE Formando Personas Íntegras Departamento de Matemática RESUMEN PSU MATEMATICA
Saint Gaspar College MISIONEROS DE LA PRECIOSA SANGRE Formando Personas Íntegras Departamento de Matemática RESUMEN PSU MATEMATICA GUÍA NÚMERO 1 NÚMEROS NATURALES Y CARDINALES ( IN, IN 0 ) Los elementos
Cuando p(a) = 0 decimos que el valor a, que hemos sustituido, es una raíz del polinomio.
Regla de Ruffini Teorema del resto Polinomios y fracciones algebraicas Dividir un polinomio por -a Regla de Ruffini Factorización de polinomios Divisibilidad de polinomios Fracciones algebraicas Operaciones
BLOQUE 1. LOS NÚMEROS
BLOQUE 1. LOS NÚMEROS Números naturales, enteros y racionales. El número real. Intervalos. Valor absoluto. Tanto el Cálculo como el Álgebra que estudiaremos en esta asignatura, descansan en los números
Hoja de problemas. nº 2 2003, 2011, 2017,
Hoja de problemas nº 2 2, 3, 5, 7, 11, 13,11, 2003, 2011, 2017, Hojas de Problemas La Divisibilidad Hoja nº 2 Divisibilidad A. Ariza/A. Sánchez/R. Trigueros 1. Calcular todos los divisores de 60. 2. Calcular
TEMA 2: TEORÍA DE CONJUNTOS Y CONJUNTOS NUMÉRICOS.
TEMA 2: TEORÍA DE CONJUNTOS Y CONJUNTOS NUMÉRICOS. TEORÍA DE CONJUNTOS. Definiciones. Se define un conjunto como una colección de objetos o cosas, se nombran con letras mayúsculas (A, B...). Cada uno de
ACTIVIDADES DE MATEMÁTICAS SECUNDARIA Divisibilidad- mcm y mcd Hoja Nº 2
Teoría: Criterios de divisibilidad Podemos saber fácilmente si un número es divisible por otro sin necesidad de hacer la división, observando estas características: Los múltiplos de 2 terminan en 0, 2,
TEMA 1 CONJUNTOS NUMÉRICOS
TEMA 1 CONJUNTOS NUMÉRICOS. Objetivos / Criterios de evaluación O.1.1 Realizar correctamente operaciones con fracciones: Suma, resta, producto, cociente, potencia y radicación. O.1.2 Resolver operaciones
Apuntes de matemáticas 2º ESO Curso 2013-2014. Lenguaje algebraico.
Lenguaje algebraico. Expresiones algebraicas Trabajar en álgebra consiste en manejar relaciones numéricas en las que una o más cantidades son desconocidas. Estas cantidades se llaman variables, incógnitas
Álgebra de Boole. Retículos.
CAPÍTULO 4. Álgebra de Boole. Retículos. Este capítulo introduce dos estructuras algebraicas muy importantes : la estructura de álgebra de Boole y la de retículo. Estas estructuras constituyen una parte
RESUMEN DE CONCEPTOS
RESUMEN DE CONCEPTOS 1º ESO MATEMÁTICAS NÚMEROS NATURALES (1) Múltiplo de un número: Un número es múltiplo de otro si el segundo está contenido en el primero un número exacto de veces. Ejemplo: 16 es múltiplo
DESARROLLO. a r a s = ar s
ENCUENTRO # 11 TEMA:Operaciones con polinomios CONTENIDOS: 1. División de polinomios. DESARROLLO Ejercicio Reto 1. El resultado de n 4 n 1 es: A) 1 B) 1 n 1 B)4 n 1 D) 4 E) 1 4 4 4 4 4 n 1 4 2. Si para
Tema 4: Múltiplos y Divisores
Tema 4: Múltiplos y Divisores Índice 1. Introducción. 2. Múltiplos de un número. 3. Divisores de un número. 4. Criterios de divisibilidad. 5. Números primos y números compuestos. 6. Descomposición de un
Unidad 1 Números. Los números naturales son aquellos que se utilizan para contar los elementos de un conjunto.
Unidad 1 Números 1.- Números Naturales Los números naturales son aquellos que se utilizan para contar los elementos de un conjunto. El conjunto de números naturales se representa por la letra N Operaciones
lasmatemáticas.eu Pedro Castro Ortega materiales de matemáticas
1. Fracciones Una fracción es una expresión del tipo a b, donde a y b son números naturales llamados numerador y denominador, respectivamente. 1.1. Interpretación de una fracción a) Fracción como parte
Anillo de polinomios con coeficientes en un cuerpo
Capítulo 2 Anillo de polinomios con coeficientes en un cuerpo En el conjunto Z se ha visto cómo la relación ser congruente módulo m para un entero m > 1, es compatible con las operaciones suma y producto.
CEIP Mediterráneo. 1º relación de divisibilidad: múltiplos y divisores.
Melilla DIVISIBILIDAD 1º relación de divisibilidad: múltiplos y divisores. Dos números están emparentados por la relación de divisibilidad cuando el cociente entre el mayor y el menor es exacto. El mayor
TEMA 1 Números enteros y racionales *
TEMA Números enteros y racionales * Números enteros: Se denominan números naturales (también llamados enteros positivos) a los números que nos sirven para contar objetos:,2,3,4,5,... El conjunto de los
Teoría de Números. 22 de julio de 2012
Teoría de Números Naoi Sato 22 de julio de 2012 Resumen Estas notas sobre teoría de números fueron originariamente escritas en 1995 para estudiantes de nivel OIM. Cubre sólo
Una matriz es un arreglo rectangular de elementos. Por ejemplo:
1 MATRICES CONCEPTOS BÁSICOS Definición: Matriz Una matriz es un arreglo rectangular de elementos. Por ejemplo: es una matriz de 3 x 2 (que se lee 3 por 2 ) pues es un arreglo rectangular de números con
MATEMÁTICAS 1º DE ESO
MATEMÁTICAS 1º DE ESO LOMCE TEMA IV : LAS FRACCIONES. OPERACIONES Los siginificados de una fracción. Fracciones propias e impropias. Equivalencias de fracciones. Amplificación y simplificación. Fracción
4 Operaciones. con polinomios. 1. Operaciones con polinomios. Desarrolla mentalmente: a) (x + 1) 2 b)(x 1) 2 c) (x + 1)(x 1)
4 Operaciones con polinomios 1. Operaciones con polinomios Desarrolla mentalmente: a) ( + 1) 2 b)( 1) 2 c) ( + 1)( 1) P I E N S A Y C A L C U L A a) 2 + 2 + 1 b) 2 2 + 1 c) 2 1 1 Dados los siguientes polinomios:
Algebra lineal y conjuntos convexos
Apéndice A Algebra lineal y conjuntos convexos El método simplex que se describirá en el Tema 2 es de naturaleza algebraica y consiste en calcular soluciones de sistemas de ecuaciones lineales y determinar
Criterios de divisibilidad y Congruencias
Criterios de divisibilidad y Congruencias Rafael F. Isaacs G. * Fecha: 9 de marzo de 2007 Cuando tenemos un número muy grande escrito en base 10 y deseamos saber si es múltiplo por ejemplo de 9 no necesitamos
Calculemos inicialmente el logaritmo en base 10 de las siguientes potencias de 10:
Logarítmos en base diez: El 10 se omite como base; es decir: log 10 a = log a. Clase-1 Calculemos inicialmente el logaritmo en base 10 de las siguientes potencias de 10: (a) log 10.000 = (f) log 0,1 =
(x ) (x ) = x 2 + px + q. ( + ) = p = q: El método de completamiento de cuadrado aplicado al polinomio. P (x) = ax 2 + bx + c. P (x) = a x + b 2.
PROBLEMAS CUADRÁTICOS DE OLIMPIADAS Francisco Bellot Rosado Presentamos a continuación una serie de problemas de Olimpiadas con la característica común de hacer intervenir en ellos, en mayor o menor medida,
Un número natural distinto de 1 es un número primo si sólo tiene dos divisores, él mismo y la unidad.
Números primos NÚMEROS PRIMOS Un número natural distinto de es un número primo si sólo tiene dos divisores, él mismo y la unidad. Un número natural es un número compuesto si tiene otros divisores además
Expresiones Algebraicas Racionales en los Números Reales
en los Números Reales Carlos A. Rivera-Morales Álgebra Tabla de Contenido Contenido cional nales Algebraica Racional ales : Contenido Discutiremos: qué es una expresión algebraica racional : Contenido
Polinomios y fracciones algebraicas
UNIDAD Polinomios y fracciones algebraicas U n polinomio es una expresión algebraica en la que las letras y los números están sometidos a las operaciones de sumar, restar y multiplicar. Los polinomios,
Tutorial MT-b1. Matemática Tutorial Nivel Básico. Elementos básicos de Aritmética
12345678901234567890 M ate m ática Tutorial MT-b1 Matemática 2006 Tutorial Nivel Básico Elementos básicos de Aritmética Matemática 2006 Tutorial Algunos elementos básicos de Aritmética Marco teórico: 1.
POLINOMIOS Y FRACCIONES ALGEBRAICAS
POLINOMIOS Y FRACCIONES ALGEBRAICAS Página 66 PARA EMPEZAR, REFLEXIONA Y RESUELVE Múltiplos y divisores. Haz la división: 4 + 5 0 + 5 A la vista del resultado, di dos divisores del polinomio 4 + 5 0. (
MODULO DE LOGARITMO. 1 log 2 4 16. log N x b N N se llama antilogaritmo, b > 0 y b 1. Definición de Logaritmo. Liceo n 1 Javiera Carrera 2011
MODULO DE LOGARITMO Nombre:.. Curso : Medio Los aritmos están creados para facilitar los cálculos numéricos. Por aritmo podemos convertir los productos en sumas, los cocientes en restas, las potencias
Unidad 2: Ecuaciones, inecuaciones y sistemas.
Unidad 2: Ecuaciones, inecuaciones y sistemas 1 Unidad 2: Ecuaciones, inecuaciones y sistemas. 1.- Factorización de polinomios. M. C. D y m.c.m de polinomios. Un número a es raíz de un polinomio es 0.
TEMA 6: DIVISIÓN DE POLINOMIOS RAÍCES MATEMÁTICAS 3º ESO
TEMA 6: DIVISIÓN DE POLINOMIOS RAÍCES MATEMÁTICAS 3º ESO 1. División de polinomios Dados dos polinomios P (el dividendo) y D (el divisor), dividir P entre D es encontrar dos polinomios Q (el cociente)
Divisibilidad en Z. 2.1. División euclídea en Z. Máximo común divisor
Capítulo 2 Divisibilidad en Z 2.1. División euclídea en Z. Máximo común divisor Definición 2.1 Dados dos números enteros a y b, con b 0, se dice que b divide a a o que a es múltiplo de b o que b es divisor
Desempolvando métodos matemáticos sobre la divisibilidad de números naturales
Desempolvando métodos matemáticos sobre la divisibilidad de números naturales Lic. Ramón Rodríguez Águila Lic. Mireya de los Ángeles Falcón Vega Lic. Inés María Trotman González RESUMEN En este material
LOGARITMOS. El logaritmo de un número es, entonces, el exponente a que debe elevarse otro número que llamado base, para que dé el primer número.
LOGARITMOS A. DEFINICIONES La función y=2 x se puede representar gráficamente. Para ello se debe tabular de la siguiente forma. X - -4-3 -2-1 0 1 2 3 Y=2 x 0.0625.125.25.5 1 2 4 8 La gráfica sería esta:
