Criterios de divisibilidad y Congruencias

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Criterios de divisibilidad y Congruencias"

Transcripción

1 Criterios de divisibilidad y Congruencias Rafael F. Isaacs G. * Fecha: 9 de marzo de 2007 Cuando tenemos un número muy grande escrito en base 10 y deseamos saber si es múltiplo por ejemplo de 9 no necesitamos hacer la división, simplemente sumamos sus cifras y si el resultado es múltiplo de 9 el número original es múltiplo de 9. Este es un típico criterio de divisibilidad, que se utiliza desde la escuela primaria. Uno más sencillo es para saber si un número es par: se mira la última cifra y si ella es par todo el número es par. La justificación de estos criterios radica en el sistema de numeración que se utiliza y la demostración de su validez, que haremos aquí basándonos el la teoría de congruencias, nos proporciona elementos para formular nuevos criterios de divisibilidad. El siguiente lema, que es consecuencia inmediata de la definición de congruencia, es la razón por la que utilizaremos esta teoría para lograr nuestros objetivos. Lema 1. Un número k es divisible por c si y solo si k 0 (mód c) Demostración. (obvio). Para la lectura de este capítulo además de manejar las congruencias el lector debe estar familiarizado con los sistemas de numeración posicionales. Se aplica especialmente el Teorema fundamental de la numeración. 1. Criterios de la última cifra Algunas veces para ver si un número es divisible por otro es suficiente con observar la última cifra. Esto depende realmente de que el divisor divida la base, como cuando se trabaja en base 10 y se quiere saber si un entero es divisible por 2 o por 5. Proposición. Sea a = (a n a n 1...a 1 a 0 ) b si b 0 y solo si a 0 0 (mód c) (mód c) entonces a es divisible por c si Demostración. Sabemos que a = a 0 + a 1 b + a 2 b a n b n 1 y como b 0 (mód c), aplicando aritmética de congruencias se obtiene que a a0 (mód c), que en combinación con el lema 1 nos proporciona el resultado deseado. * Este texto es un capítulo actualizado de las notas de clase del autor tituladas Números enteros, teoría, algoritmos y divertimentos UIS,

2 Nótese que lo que se demuestra es que, en este caso, la última cifra (a 0 ) determina la clase de congruencia módulo c, a la cual pertenece el entero a. Es decir, lo que se obtiene observando la última cifra, es el residuo al dividir por c Ejemplo 1. Un número escrito en base 12 es divisible por 4 si termina en 0, 4 u 8, pues estos son los tres dígitos de la base 12 que se dejan dividir por 4. Ejemplo 2. Como ya se dijo una aplicación de la proposición 1 a la base decimal, encontramos los conocidos criterios para saber cuándo un entero es divisible por 2 o por 5. Sin embargo estos criterios no sirven cuando el número es escrito en cualquier base. Para base 15 el criterio del 2 no es válido aunque el del 5 casi. Por qué? 2. Criterios de la suma de las cifras. Otras veces la suma de las cifras indica si se es o no divisible por otro. Es el caso de los conocidos criterios para saber si un número es divisible por 3 o por 9, cuando está escrito en nuestra base decimal. La siguiente proposición justifica estos y otros casos. Proposición. Sea a = (a n a n 1...a 1 a 0 ) b si b 1 (mód c) entonces a es divisible por c si y solo si a 0 + a 1 + a a n 0 (mód c) Demostración. Sabemos que a = a 0 + a 1 b + a 2 b a n b n 1 y como b 1 (mód c), aplicando aritmética de congruencias se obtiene que a 0 a 0 (mód c) a 1 b a 1 (mód c). a n b n a n (mód c) entonces sumando estas congruencias tenemos a a a 0 + a 1 + a a n (mód c) que en combinación con el lema 1 nos proporciona el resultado deseado. Presentamos las aplicaciones de esta proposición como corolarios: Corolario. Si b es congruente con 1 módulo c y el número a está escrito en base b, entonces a es congruente con la suma de sus cifras módulo c. Corolario. Si b es congruente con 1 módulo c, entonces para saber si un número (escrito en base b) es divisible por c es suficiente saber si la suma de sus cifras lo es. Ejemplo 3. (Base decimal) La suma de las cifras del entero es 43 por tanto: (mód 3); (mód 9) Ejemplo 4. En base 4, la suma de las cifras del entero a es congruente con a módulo 3 pero no módulo 9. 2

3 3. Criterios de la suma y resta de las cifras Empecemos mostrando un ejemplo: Ejemplo 5. Para saber si un número escrito en base decimal es divisible por 11, se halla la diferencia entre la suma de cifras de lugares pares y la suma de las cifras de lugares impares; el número es múltiplo de 11, si y solo si, esta diferencia lo es. Digamos, para saber si es divisible por 11, sumamos las cifras de lugares impares: =30 ; sumamos las cifras de lugares pares: =13; hacemos la diferencia de estas dos sumas: 30-13=17. Como 17 no es múltiplo de 11 entonces no es múltiplo de 11. Es más, como se ve en la demostración de la siguiente proposición se tiene que (mód 11). Nótese que si a = (a n,a n 1,...,a 1,a 0 ) b la diferencia entre la suma de cifras de lugares pares y la suma de las cifras de lugares impares viene dada por la expresión: a 0 a 1 + a ( 1) n a n Proposición. Sea a = (a n,a n 1,...,a 1,a 0 ) b si b 1 (mód c) entonces a a 0 a 1 + a ( 1) n a n (mód c) Demostración. Ejercicio (es similar a la demostración de la proposición 2). Corolario. Sea a = (a n,a n 1,...,a 1,a 0 ) b si b 1 (mód c) entonces a es divisible por c si y solo si a 0 a 1 + a ( 1) n a n 0 (mód c) Corolario. Si b es congruente con 1 módulo c, entonces para saber si un número (escrito en base b) es divisible por c es suficiente saber si la suma de cifras de lugares pares menos la suma de las cifras de lugares impares es múltiplo de c. 4. Criterios con bloques de cifras Algunas veces es conveniente considerar las cifras de un número tomadas de dos en dos, o de tres en tres (siempre de derecha a izquierda). Aquí realmente, se está pasando el número a base b 2 o b 3, como se resalta en el siguiente lema cuyo enunciado y demostración se dejó como ejercicio en sección anterior. Lema 2. Las cifras de a escrito en base b m son las mismas que en base b pero tomadas de derecha a izquierda en bloques de m: Cada grupo de m cifras en base b corresponde a un dígito en base b m Ejemplo 6. Para pasar de base 2 a base 8 el entero ( ) 2 traducimos los bloque de 3 así: (110) 2 = 6; (001) 2 = 1; (110) 2 = 6; (101) 2 = 5; (010) 2 = 2; (10) 2 = 2; entonces las cifras en base 8 son 6, 1, 6, 5, 2, 2 (tomadas de derecha a izquierda) es decir: ( ) 2 = (225616) 8. 3

4 Si quisiéramos pasar a base 16 escogeríamos grupos de a 4 y tendríamos: y tenemos:. (1110) 2 = E; (1000) 2 = 8; (1011) 2 = B; (0010) 2 = 2; (1) 2 = 1 ( ) 2 = (12B8E) 16 Cuando la base es muy grande podríamos agotar las letras del alfabeto, entonces no se acostumbra colocar nuevas letras, sino dejar los dígitos decimales. Por ejemplo para pasar de base decimal a base 100, se necesitaría agregar 90 nuevos dígitos, mejor entender las parejas de dígitos decimales como dígitos centesimales, así: ( ) 10 = (19 : 16 : 86 : 39) Al aplicar el lema 2 con alguna de las proposiciones 1, 2 o 3, para algún m podremos conseguir y explicar otros criterios de divisibilidad, como se muestra en los siguientes ejemplos: Ejemplo 7. (Base decimal) Para saber si un entero es múltiplo de 100, todos sabemos que basta con saber si sus dos últimas cifras son exactamente 00. Claro! Cuando escribimos los números en base 100 los múltiplos de 100 son los que terminan en cero, pero este dígito se representa con dos ceros de la base decimal. Por otra parte, aplicando la proposición 1 al lema 2 obtenemos que por ejemplo, cualquier entero es congruente modulo 25 con sus dos últimas cifras ya que 25 divide a 100. Otra manera de saber si un número escrito en base 10 es divisible por 11 es hacer la suma de sus cifras tomadas de dos en dos. Por ejemplo: Compare con el ejemplo 5! = (mód 11) Ejemplo 8. Busquemos un criterio para saber si un entero escrito en base 2 es múltiplo de 3. Como 4 1 (mód 3) entonces en base 4 se puede aplicar la proposición 2 y tenemos que un número escrito en base 4 es congruente módulo 3 con la suma de sus cifras (ejemplo 4) pero según el lema 2 las cifras de base 4 son las parejas de cifras en base 2, entonces: Un número escrito en base 2 es múltiplo de 3 si y solo si la suma de sus cifras tomadas de dos es dos de derecha a izquierda es múltiplo de Separando las últimas cifras El operador quitar la última cifra, o las dos últimas, parece que no fuera un operador aritmético. Según el Teorema fundamental de la numeración, y trabajando en base decimal, si la última cifra de n es a, entonces n tendrá la forma n = 10n + a con 0 < a < 10, en donde n es precisamente lo que queda. Si lo que se quita a n son las dos últimas cifras, entonces convendrá considerar la forma de n como n = 100n + a en donde a es el valor de las dos últimas cifras (0 < a < 100) y n es lo que queda. Utilizando este sencillo operador, podemos encontrar útiles criterios de divisibilidad, que se justifican por alguna ecuación de congruencias. 1 En algunos idiomas, por ejemplo el inglés, se usa definitivamente la base cien: para decir 2019 el gringo dice veinte, diez y nueve. 4

5 Ejemplo 9. Un número escrito en base 10 es divisible por 17, si y solo si, al quitar sus dos últimas cifras y restarlas del duplo de lo que queda, el resultado es múltiplo de 17. Por ejemplo, para saber si 4767 es múltiplo de 17: quito 67 y lo que queda es 47, su duplo 94, menos 67, obtengo 27, que no es múltiplo de 17 por tanto 4767 tampoco lo es, pero si pruebo con 4267 tengo (42 2) 67 = = 17, y por tanto 4267 si es múltiplo de 17. La demostración de que este procedimiento es válido, parte de considerar n con la forma n = 100n +b, donde n es lo que queda y b es el número representado por las dos últimas cifras; debemos ver que n 0 (mód 17) si y solo si, 2n b 0 (mód 17) y esta es una equivalencia de congruencias, que se demuestra fácilmente: n = 100n + b 0 (mód 17) 15n + b 0 (mód 17) 2n + b 0 (mód 17) 2n b 0 (mód 17) 6. PREGUNTAS Y EJERCICIOS. Demostrar los siguientes criterios de divisibilidad: 1. En base diez un número es divisible por 2, si termina en cifra par. 2. En base diez un número es divisible por 5, si termina en 0 o En base diez un número es divisible por 20, si termina en 00, 20, 40, 60 ó En base 12 un número es divisible por 3, si su última cifra lo es. 5. En base 12 un número es divisible por 6, si termina en 0 ó En base 2 los múltiplos de 4 son aquellos que terminan en En base diez un número es divisible por 9, si la suma de sus cifras es divisible por En base 6 un número es divisible por 5, si la suma de sus cifras es divisible por En base diez un número es divisible por 37, si la suma de sus cifras tomadas de tres en tres, es divisible por En base 4 un número es divisible por 15, si la suma de sus cifras, tomadas de os en dos, es divisible por Si a un número que está escrito en base 10 y es múltiplo de 13, se le quita su última cifra y se le suma multiplicada por 4 a lo que queda, el resultado es múltiplo de Si a un número que está escrito en base 10 y es múltiplo de 11, se le quita su última cifra y se le suma a lo que queda, el resultado es múltiplo de Enuncie y demuestre un criterio para saber si un número escrito en base decimal es divisible por 19. 5

Teoría de Números. Orlando Ochoa Castillo 25 de septiembre de 2011

Teoría de Números. Orlando Ochoa Castillo 25 de septiembre de 2011 Teoría de Números Orlando Ochoa Castillo 25 de septiembre de 2011 1. Divisibilidad La Teoría de Números es un tema muy importante en las Olimpiadas de Matemáticas, esta área estudia el comportamiento de

Más detalles

Criterios de divisibilidad

Criterios de divisibilidad ENCUENTRO # 2 TEMA: Criterios de Divisibilidad. CONTENIDOS: 1. Criterios de divisibilidad, múltiplos y divisores de un número dado. 2. Principios Fundamentales de la Divisibilidad. DESARROLLO Criterios

Más detalles

Introducción a la Teoría de Números

Introducción a la Teoría de Números Introducción a la Teoría de Números La Teoría de Números es un área de las matemáticas que se encarga de los números primos, factorizaciones, de qué números son múltiplos de otros, etc. Aunque se inventó

Más detalles

Entrenamiento ONMAPS Guanajuato. Primaria (Teoría de Números)

Entrenamiento ONMAPS Guanajuato. Primaria (Teoría de Números) Entrenamiento ONMAPS Guanajuato Primaria (Teoría de Números) Un concepto que se usa de manera muy frecuentemente en los problemas de Olimpiada de Matemáticas es el de divisibilidad. Esto no se tratará

Más detalles

Teorema Fundamental de la Aritmética y Residuos

Teorema Fundamental de la Aritmética y Residuos Teorema Fundamental de la Aritmética y Residuos Entrenamiento #2 para 3 a etapa 12-18 de marzo de 2016 Por: Lulú Resumen En este documento podrás encontrar la información necesaria para poder resolver

Más detalles

Preparación para la XLIX Olimpiada Matemática Española (III) - Teoría

Preparación para la XLIX Olimpiada Matemática Española (III) - Teoría Preparación para la XLIX Olimpiada Matemática Española (III) - Teoría Abel Naya Forcano y Adrián Franco Rubio 1. El Principio del Palomar El Principio del Palomar es uno de los principios más sencillos

Más detalles

UN PAQUETE DE PROBLEMAS DE DIVISIBILIDAD

UN PAQUETE DE PROBLEMAS DE DIVISIBILIDAD UN PAQUETE DE PROBLEMAS DE DIVISIBILIDAD AUTORAS: PATRICIA CUELLO Y ADRIANA RABINO 1. Múltiplo de 7 A una persona cuya edad oscila entre 9 y 100 años se le pide que escriba su edad 3 veces consecutivas,

Más detalles

Álgebra I Práctica 3 - Números enteros (Parte 1)

Álgebra I Práctica 3 - Números enteros (Parte 1) Divisibilidad Álgebra I Práctica 3 - Números enteros (Parte 1 1. Decidir cuáles de las siguientes afirmaciones son verdaderas para todo a, b, c Z i a b c a c y b c, ii 4 a a, iii a b a ó b, iv 9 a b 9

Más detalles

Teoria de Números. 1. Introducción. Residuos. Olimpiada de Matemáticas en Tamaulipas

Teoria de Números. 1. Introducción. Residuos. Olimpiada de Matemáticas en Tamaulipas Teoria de Números Residuos Olimpiada de Matemáticas en Tamaulipas 1. Introducción Hasta ahora, al trabajar con números enteros siempre nos hemos estado preguntando divide el número a al número b? Al mantenernos

Más detalles

UN CRITERIO GENERAL DE DIVISIBILIDAD

UN CRITERIO GENERAL DE DIVISIBILIDAD UN CRITERIO GENERAL DE DIVISIBILIDAD Octavio Montoya Departamento de Matemáticas y Estadística Universidad del Tolima. Resumen. Se presenta un criterio de divisibilidad general y homogéneo para los números

Más detalles

Teoría de Números. Divisibilidad. Olimpiada de Matemáticas en Tamaulipas

Teoría de Números. Divisibilidad. Olimpiada de Matemáticas en Tamaulipas Teoría de Números Divisibilidad Olimpiada de Matemáticas en Tamaulipas 1. Introducción Divisibilidad es una herramienta de la aritmética que nos permite conocer un poco más la naturaleza de un número,

Más detalles

PROBLEMAS RESUELTOS DE PREPARACIÓN PARA OPOSICIONES. Problemas 02

PROBLEMAS RESUELTOS DE PREPARACIÓN PARA OPOSICIONES. Problemas 02 PROBLEMAS RESUELTOS DE PREPARACIÓN PARA OPOSICIONES Problemas 0 Salvador Pérez Gómez pies3coma14@hotmail.com 4 de abril de 007 PROBLEMA 1 Sea n un número natural. Sea A n = n + n + 3n. a) Demostrar que

Más detalles

DIVISIBILIDAD NÚMEROS NATURALES

DIVISIBILIDAD NÚMEROS NATURALES DIVISIBILIDAD NÚMEROS NATURALES MÚLTIPLOS Un número a es múltiplo de otro b cuando es el resultado de multiplicarlo por otro número c. a = b c Ejemplo: 12 es múltiplo de 2, ya que resulta de multiplicar

Más detalles

Algunos números curiosos

Algunos números curiosos Revista del Profesor de Matemáticas, RPM No.11 (2010) 41 Algunos números curiosos A la memoria de Enzo R. Gentile Sin dudas, los números primos constituyen la vedette de la Teoría de Números. Recordamos

Más detalles

ESCUELA PREPARATORIA OFICIAL NO.16 MATERÍA: PENSAMIENTO NUMÉRICO Y ALGEBRAICO I

ESCUELA PREPARATORIA OFICIAL NO.16 MATERÍA: PENSAMIENTO NUMÉRICO Y ALGEBRAICO I ARITMÉTICA 1. Números naturales 2. Divisibilidad 3. Números enteros 4. Números decimales 5. Fracciones y números racionales 6. Proporcionalidad 7. Sistema métrico decimal 8. Sistema sexagesimal 9. Números

Más detalles

Unidad didáctica 1. Operaciones básicas con números enteros

Unidad didáctica 1. Operaciones básicas con números enteros Unidad didáctica 1 Operaciones básicas con números enteros 1.- Representación y ordenación de números enteros. Para representar números enteros en una recta hay que seguir estos pasos: a) Se dibuja una

Más detalles

Números primos y compuestos

Números primos y compuestos Números primos y compuestos Jorge Tipe Villanueva Sabemos que cualquier entero positivo n tiene como divisores a 1 y n. Si asumimos que n > 1 entonces n tendrá al menos dos divisores pues 1 y n son diferentes.

Más detalles

Seminario de problemas ESO. Curso Hoja 2

Seminario de problemas ESO. Curso Hoja 2 Seminario de problemas ESO. Curso 014-15. Hoja 8. Los triángulos son equiláteros. Halla el cociente entre sus áreas. Calculamos primero el área de uno de los tres triángulos verdes 1 X = 1 (1 ) Para obtener

Más detalles

ALGEBRA I - Práctica N 4 (Primera parte) - Primer cuatrimestre de Números enteros

ALGEBRA I - Práctica N 4 (Primera parte) - Primer cuatrimestre de Números enteros ALGEBRA I - Práctica N 4 (Primera parte) - Primer cuatrimestre de 2002 Números enteros Ejercicio. Dados a, b y c números enteros, decidir cuáles de las siguientes afirmaciones son verdaderas y cuáles son

Más detalles

Clase 4: Congruencias

Clase 4: Congruencias Clase 4: Congruencias Dr. Daniel A. Jaume * 20 de agosto de 2011 1. Congruencias módulo m En 1801 Gauss, en su libro Disquisitiones Arithmeticae introdujo una notación relacionada con la noción de divisibilidad

Más detalles

Olimpiada de Matemáticas en Chiapas

Olimpiada de Matemáticas en Chiapas UNIVERSIDAD AUTÓNOMA DE CHIAPAS FACULTAD DE CIENCIAS EN FÍSICA Y MATEMÁTICAS Divisibilidad, MCD, MCM, Primos y TFA Olimpiada de Matemáticas en Chiapas Julio del 2018 Divisibilidad El conjunto de los números

Más detalles

Teoría de Números. 1. Introducción. Factorización Algebraica. Olimpiada de Matemáticas en Tamaulipas

Teoría de Números. 1. Introducción. Factorización Algebraica. Olimpiada de Matemáticas en Tamaulipas Teoría de Números Factorización Algebraica Olimpiada de Matemáticas en Tamaulipas 1. Introducción El matemático, físico y astrónomo Carl Friedrich Gauss (1777-1855) fue uno de los más importantes personajes

Más detalles

Aritmética Entera y Modular.

Aritmética Entera y Modular. Tema 5 Aritmética Entera y Modular. 5.1 Divisibilidad en Z. Definición 1. Si a, b Z, a 0, se dice que a divide a b, y se indica por a b, si existe k Z, tal que b = ak. También se dice que a es un divisor

Más detalles

Operaciones con polinomios

Operaciones con polinomios 1 Operaciones básicas Operaciones con polinomios Cuando realizamos la suma de dos o más polinomios sumamos términos semejantes con términos semejantes. El estudiante al escuchar esto puede causarle confusión

Más detalles

DIVISIBILIDAD NÚMEROS NATURALES

DIVISIBILIDAD NÚMEROS NATURALES DIVISIBILIDAD NÚMEROS NATURALES MÚLTIPLOS Un número a es múltiplo de otro b cuando es el resultado de multiplicarlo por otro número c. a = b c Ejemplo: 12 es múltiplo de 2, ya que resulta de multiplicar

Más detalles

Tema 2 Aritmética modular

Tema 2 Aritmética modular 1 Tema 2 Aritmética modular 2.1 Relaciones de equivalencia Definición 2.1 Una relación que verifique las propiedades reflexiva, simétrica y transitiva se denomina relación de equivalencia. Dos elementos

Más detalles

OPERACIONES CON NÚMEROS BINARIOS

OPERACIONES CON NÚMEROS BINARIOS OPERACIONES CON NÚMEROS BINARIOS Centro CFP/ES SUMA BINARIA La información tenemos que transformarla, compararla y procesarla. Para ello empleamos la aritmética binaria, es decir, procesos matemáticos

Más detalles

OLIMPIADA COSTARRICENSE DE MATEMÁTICA UNA - UCR - TEC - UNED - MEP - MICIT. Teoría de Números. II Nivel I Eliminatoria

OLIMPIADA COSTARRICENSE DE MATEMÁTICA UNA - UCR - TEC - UNED - MEP - MICIT. Teoría de Números. II Nivel I Eliminatoria OLIMPIADA COSTARRICENSE DE MATEMÁTICA UNA - UCR - TEC - UNED - MEP - MICIT Teoría de Números II Nivel I Eliminatoria Abril, 2015 Índice 1. Presentación 2 2. Temario 2 3. Divisibilidad 2 4. Algoritmo de

Más detalles

OCW-V.Muto Sistemas de numeración Cap. III CAPITULO III. SISTEMAS DE NUMERACION 1. REPRESENTACION DE LA INFORMACION

OCW-V.Muto Sistemas de numeración Cap. III CAPITULO III. SISTEMAS DE NUMERACION 1. REPRESENTACION DE LA INFORMACION CAPITULO III. SISTEMAS DE NUMERACION 1. REPRESENTACION DE LA INFORMACION El sistema de numeración usado habitualmente es el decimal, de base 10, que no es adecuado para ser manejado por el ordenador, fundamentalmente

Más detalles

Enunciados de los problemas (1)

Enunciados de los problemas (1) Enunciados de los problemas (1) Problema 1. El peso de tres manzanas y dos naranjas es de 255 gramos. El peso de dos manzanas y tres naranjas es de 285 gramos. Si todas las manzanas son del mismo peso

Más detalles

Gu ıa Departamento. Matem aticas U.V.

Gu ıa Departamento. Matem aticas U.V. Universidad de Valparaíso Instituto de Matemáticas 1. Determinar el cociente y el residuo de 541 y de -541al dividir por 17 391 y -391 al dividir por 17 Guía de Teoría de Números 2. Sea a Z,n N comparar

Más detalles

Algoritmos. 1 Suma. Carlos Hernández Garciadiego. 27 de enero de 2011

Algoritmos. 1 Suma. Carlos Hernández Garciadiego. 27 de enero de 2011 Algoritmos Carlos Hernández Garciadiego 27 de enero de 20 Suma 6 7 + 3 9 8 por qué funciona? Escribimos 67 = 6 0 + 7 2 = 2 0 + 67 + 3 = (6 0 + 7) + (3 0 + ) = 6 0 + 3 0+7+ = (6+3) 0 + (7 + ) = 9 0 + 8

Más detalles

Capítulo I ELEMENTOS PREVIOS

Capítulo I ELEMENTOS PREVIOS Capítulo I ELEMENTOS PREVIOS Antes de iniciar lo referente a Criterios de Divisibilidad, recordaremos algunos conceptos y propiedades previas que nos permitirán comprender de mejor manera el contenido

Más detalles

Veamos que la operación multiplicación heredada de Z m es interna:

Veamos que la operación multiplicación heredada de Z m es interna: Tema 3 El cuerpo (, +,.) (p número primo) 3.1 El grupo multiplicativo En el tema anterior se vio que (Z m, +,.) es un anillo conmutativo con elementos identidad. No preguntamos ahora para qué elementos

Más detalles

= 310 (1 + 5) : 2 2 = = = 12 ( 3) ( 5) = = 2 = ( 4) + ( 20) + 3 = = 21

= 310 (1 + 5) : 2 2 = = = 12 ( 3) ( 5) = = 2 = ( 4) + ( 20) + 3 = = 21 Unidad I, NÚMEROS NATURALES Y ENTEROS A continuación se enuncian las claves de cada pregunta hechas por mí (César Ortiz). Con esto, asumo cualquier responsabilidad, entiéndase por si alguna solución está

Más detalles

Teoría de Números. Taller 4

Teoría de Números. Taller 4 Teoría de Números. Taller 4 14 de Abril 2018 DEFINICIONES Y PROPIEDADES DE DIVISIBILIDAD Si aprendiste a dividir igual que nosotros, cuando divides 2013 entre 4 haces una casita donde metes al 2013 y dejas

Más detalles

GUIA DE EJERCICIOS MATEMATICA GENERAL POLINOMIOS. Determine, usando las definiciones correspondientes. se cumple:

GUIA DE EJERCICIOS MATEMATICA GENERAL POLINOMIOS. Determine, usando las definiciones correspondientes. se cumple: MATEMATICA GENERAL 00, HERALDO GONZALEZ SERRANO FACULTAD DE CIENCIA DMCC GUIA DE EJERCICIOS MATEMATICA GENERAL POLINOMIOS ) Considere los polinomios p ( ) = 6, ( ) = 6 R y = p ( ) q ( ) = r ( ) c i, p

Más detalles

Plan de Animación para la enseñanza de las Matemáticas

Plan de Animación para la enseñanza de las Matemáticas DIVISIBILIDAD NUMERICA Criterios de divisibilidad por 2, 3 y 5 (5 y 6 grado de primaria y educación media general) Los criterios o caracteres de divisibilidad son ciertas señales de los números que nos

Más detalles

TEMA 1. Los números enteros. Matemáticas

TEMA 1. Los números enteros. Matemáticas 1 Introducción En esta unidad veremos propiedades de los números enteros, como se opera con ellos (con y sin calculadora), los números primos, máximo común divisor y mínimo común múltiplo y por últimos

Más detalles

Tarea 2 de Álgebra Superior II

Tarea 2 de Álgebra Superior II Tarea 2 de Álgebra Superior II Divisibilidad 1. Sean a, b, c, d Z. Determine si los siguientes enunciados son verdaderos o falsos. Si son verdaderos, probar el resultado, y si son falsos, dar un contraejemplo.

Más detalles

TEMA 1 NÚMEROS NATURALES

TEMA 1 NÚMEROS NATURALES TEMA 1 NÚMEROS NATURALES Criterios De Evaluación de la Unidad 1 Efectuar correctamente operaciones combinadas de números naturales, aplicando correctamente las reglas de prioridad y haciendo un uso adecuado

Más detalles

CONJUNTO DE LOS NÚMEROS NATURALES

CONJUNTO DE LOS NÚMEROS NATURALES República Bolivariana de Venezuela Ministerio de la Defensa Universidad Nacional Experimental de las Fuerzas Armadas Curso de Inducción Universitaria CIU Cátedra: Razonamiento Matemático CONJUNTO DE LOS

Más detalles

Sistemas de Numeración

Sistemas de Numeración Sistemas de Numeración 22 de septiembre de 2017 Índice Sistemas de Numeración 2 Un sistema diferente............................. 2 Preguntas............................... 2 Sistema posicional..............................

Más detalles

Universidad De San Buenaventura CALI Guía de Métodos Numéricos Ingeniería Multimedia

Universidad De San Buenaventura CALI Guía de Métodos Numéricos Ingeniería Multimedia CONVERSIÓN DE UN NÚMERO DECIMAL A BINARIO, OCTAL Y HEXADECIMAL El sistema numérico de mayor utilización en el mundo, es el de base decimal, el cual está conformado de 10 dígitos entre el 0 y el 9 que son

Más detalles

Escuela Pública Experimental Desconcentrada Nº3 Dr. Carlos Juan Rodríguez Matemática 1º Año Ciclo Básico de Secundaria Teoría Nº 1 Primer Trimestre

Escuela Pública Experimental Desconcentrada Nº3 Dr. Carlos Juan Rodríguez Matemática 1º Año Ciclo Básico de Secundaria Teoría Nº 1 Primer Trimestre CONJUNTO DE LOS NÚMEROS NATURALES Los números naturales son aquellos números exactos; es decir, que no tienen parte decimal ni fraccionaria; además son todos positivos. Sistema de numeración decimal El

Más detalles

open green road Guía Matemática MÚLTIPLOS Y DIVISORES profesor: Nicolás Melgarejo .cl

open green road Guía Matemática MÚLTIPLOS Y DIVISORES profesor: Nicolás Melgarejo .cl Guía Matemática MÚLTIPLOS Y DIVISORES profesor: Nicolás Melgarejo.cl 1. Múltiplos y divisibilidad Se dice que un número a es divisible por otro b si al dividir a con b, el residuo o resto es cero, dicho

Más detalles

Bloque 1. Aritmética y Álgebra

Bloque 1. Aritmética y Álgebra Bloque 1. Aritmética y Álgebra Los números naturales Los números naturales Los números naturales se definen como: N = { 0,1, 2, 3, 4, 5,...,64, 65, 66,...,1639,1640,1641,1642,... } El sistema de numeración

Más detalles

Ejercicios del tema 7

Ejercicios del tema 7 U N I V E R S I D A D D E M U R C I A Ejercicios del tema 7 DEPARTAMENTO DE MATEMÁTICAS CONJUNTOS Y NÚMEROS 2013/2014. Ejercicios de aritmética y congruencias 1. Un amigo le pregunta a otro: Cuántos hijos

Más detalles

ALGUNOS TÓPICOS EN TEORÍA DE NÚMEROS: NÚMEROS MERSENNE, TEOREMA DIRICHLET, NÚMEROS FERMAT.

ALGUNOS TÓPICOS EN TEORÍA DE NÚMEROS: NÚMEROS MERSENNE, TEOREMA DIRICHLET, NÚMEROS FERMAT. Scientia et Technica Año XVI, No 48, Agosto de 2011. Universidad Tecnológica de Pereira. ISSN 0122-1701 185 ALGUNOS TÓPICOS EN TEORÍA DE NÚMEROS: NÚMEROS MERSENNE, TEOREMA DIRICHLET, NÚMEROS FERMAT. Some

Más detalles

INSTITUTO TECNOLÓGICO METROPOLITANO DECANATURA DE CIENCIAS JEFATURA DE CIENCIAS BÁSICAS

INSTITUTO TECNOLÓGICO METROPOLITANO DECANATURA DE CIENCIAS JEFATURA DE CIENCIAS BÁSICAS INSTITUTO TECNOLÓGICO METROPOLITANO DECANATURA DE CIENCIAS JEFATURA DE CIENCIAS BÁSICAS NIVELATORIO DE MATEMÁTICAS BÁSICAS Guía 3 Números Naturales y Enteros COMPETENCIA Reconoce operaciones. los conjuntos

Más detalles

Introducción a la Teoría de Números

Introducción a la Teoría de Números Introducción a la Teoría de Números Elaborado por: Jeff Maynard Guillén Eliminatoria II Julio, 2011 Introducción a la Teoría de Números A manera de repaso vamos a recordar algunos conjuntos N = {1, 2,

Más detalles

SISTEMAS DE NUMERACION

SISTEMAS DE NUMERACION SISTEMAS DE NUMERACION INTRODUCCION El número de dígitos de un sistema de numeración es igual a la base del sistema. Sistema Base Dígitos del sistema Binario 2 0,1 Octal 8 0,1,2,3,4,5,6,7 Decimal 10 0,1,2,3,4,5,6,7,8,9

Más detalles

Las demostraciones de las propiedades (1) y (2) quedan a cargo del estudiante.

Las demostraciones de las propiedades (1) y (2) quedan a cargo del estudiante. Sección II CONCEPTOS PREVIOS.. Definición.. Se dice que un número entero! es divisible por otro entero! (distinto de cero) si existe un tercer entero! tal que! =!!. Se expresa como!!, que se lee! es divisible

Más detalles

EJERCICIOS MATEMÁTICAS 1º F.P.B.

EJERCICIOS MATEMÁTICAS 1º F.P.B. EJERCICIOS MATEMÁTICAS 1º F.P.B. U3 DIVISIBILIDAD 1. MÚLTIPLOS Y DIVISORES Decimos que un número es múltiplo de otro si lo contiene un número entero de veces. El número 0 solamente tiene un múltiplo, que

Más detalles

A CONTINUACIÓN COPIAR EL SIGUIENTE TEMA Y DESARROLLAR LAS ACTIVIDADES

A CONTINUACIÓN COPIAR EL SIGUIENTE TEMA Y DESARROLLAR LAS ACTIVIDADES MÉRIDA, 7 DE ABRIL DE 2014 A CONTINUACIÓN COPIAR EL SIGUIENTE TEMA Y DESARROLLAR LAS ACTIVIDADES NÚMEROS PRIMOS Y COMPUESTOS Número primo es un número natural que solo tiene dos factores o divisores que

Más detalles

Aritmética modular. AMD Grado en Ingeniería Informática. AMD Grado en Ingeniería Informática (UM) Aritmética modular 1 / 16

Aritmética modular. AMD Grado en Ingeniería Informática. AMD Grado en Ingeniería Informática (UM) Aritmética modular 1 / 16 Aritmética modular AMD Grado en Ingeniería Informática AMD Grado en Ingeniería Informática (UM) Aritmética modular 1 / 16 Objetivos Al finalizar este tema tendréis que: Saber qué es Z n. Saber operar en

Más detalles

Divisibilidad I. Nombre Curso Fecha

Divisibilidad I. Nombre Curso Fecha Matemáticas 2.º ESO Unidad 1 Ficha 1 Divisibilidad I Un número b es divisor de otro número a si al dividir a entre b la división es exacta. Se dice también que a es múltiplo de b. 1. Completa con la palabra

Más detalles

Teoría de Números. Factorización en Primos. Olimpiada de Matemáticas en Tamaulipas

Teoría de Números. Factorización en Primos. Olimpiada de Matemáticas en Tamaulipas Teoría de Números Factorización en Primos Olimpiada de Matemáticas en Tamaulipas 1. Introducción Nota para el entrenador: A lo largo del entrenamiento estaremos trabajando únicamente con enteros positivos,

Más detalles

SOLUCIONES COMENTADAS

SOLUCIONES COMENTADAS Departamento de Matemática Aplicada Curso 14-15 Facultad de Informática, UPM Matemática Discreta I (MI) Control 1 21-10-14 SOLUCIONES COMENTADAS Ejercicio 1. (1 punto) Se trazan 18 segmentos en el plano

Más detalles

GENERALIDADES SOBRE SISTEMAS NUMÉRICOS. Transversal Programación Básica

GENERALIDADES SOBRE SISTEMAS NUMÉRICOS. Transversal Programación Básica GENERALIDADES SOBRE SISTEMAS NUMÉRICOS Transversal Programación Básica CONTENIDO I N T R O D U C C I Ó N... 2 1. S O B R E L O S S I S T E M A S N U M É R I C O S... 2 1.1. VALORES POSICIONALES... 2 2.

Más detalles

Capítulo II. Pruebas en Matemáticas

Capítulo II. Pruebas en Matemáticas Capítulo II Pruebas en Matemáticas Ahora nos concentramos en afirmaciones matemáticas y sus pruebas. Se encuentra que tratar de escribir pruebas justificando cada paso se vuelve rápidamente inmanejable,

Más detalles

FICHAS DE TRABAJO REFUERZO

FICHAS DE TRABAJO REFUERZO FICHAS DE TRABAJO REFUERZO DEPARTAMENTO DE MATEMATICAS CONTENIDO 1. Números naturales a. Leer y escribir números naturales b. Orden de cifras c. Descomposición polinómica d. Operaciones combinadas e. Potencias

Más detalles

ARITMÉTICA ENTERA LOS NÚMEROS ENTEROS. = {..., n,..., 3, 2, 1, 0, 1, 2, 3,..., n,...} (Zahlen, en alemán, números)

ARITMÉTICA ENTERA LOS NÚMEROS ENTEROS. = {..., n,..., 3, 2, 1, 0, 1, 2, 3,..., n,...} (Zahlen, en alemán, números) LOS NÚMEROS ENTEROS ARITMÉTICA ENTERA = {..., n,..., 3, 2, 1, 0, 1, 2, 3,..., n,...} (Zahlen, en alemán, números) Recordamos la estructura de sus propiedades aritméticas la relación de orden usual, compatible

Más detalles

Álgebra y Matemática Discreta

Álgebra y Matemática Discreta Álgebra y Matemática Discreta Sesión de Teoría 3 (c) 2013 Leandro Marín, Francisco J. Vera, Gema M. Díaz 23 Sep 2013-29 Sep 2013 Congruencias Definición Congruencia Módulo n Sea n 1 un número entero. Diremos

Más detalles

INSTEC PENSAMIENTO NUMERICO VARIACIONAL GUIA 1 - GRADO 11

INSTEC PENSAMIENTO NUMERICO VARIACIONAL GUIA 1 - GRADO 11 1.. LOS NUMEROS REALES CONDUCTA DE ENTRADA La figura muestra una recta real -1 0 1 Teniendo en cuenta la Figura responde en minutos a. Cuantos números Reales hay entre -1 y 1. b. Cuantos números naturales

Más detalles

CONJUNTO DE LOS NÚMEROS NATURALES

CONJUNTO DE LOS NÚMEROS NATURALES CONJUNTO DE LOS NÚMEROS NATURALES 1.- DEFINICIÓN DEL CONJUNTO DE LOS NÚMEROS NATURALES (Conjunto N): Un número natural es cualquier número que se puede usar para contar los elementos de un conjunto finito.

Más detalles

BLOQUE V. CONTROL Y PROGRAMACIÓN DE SISTEMAS AUTOMÁTICOS

BLOQUE V. CONTROL Y PROGRAMACIÓN DE SISTEMAS AUTOMÁTICOS Bloque V. Control y programación de sistemas automáticos pág. 1 Bloque V. Control y programación de sistemas automáticos pág. 2 BLOQUE V. CONTROL Y PROGRAMACIÓN DE SISTEMAS AUTOMÁTICOS 1. LA INFORMACIÓN

Más detalles

BLOQUE V. CONTROL Y PROGRAMACIÓN DE SISTEMAS AUTOMÁTICOS

BLOQUE V. CONTROL Y PROGRAMACIÓN DE SISTEMAS AUTOMÁTICOS Bloque V. Control y programación de sistemas automáticos pág. 1 BLOQUE V. CONTROL Y PROGRAMACIÓN DE SISTEMAS AUTOMÁTICOS 1. LA INFORMACIÓN BINARIA 1.1. Sistemas de numeración y códigos Def. Sistema de

Más detalles

El Conjunto de los Números Naturales

El Conjunto de los Números Naturales Objetivos El Conjunto de los Carlos A. Rivera-Morales Álgebra Objetivos Tabla de Contenido Objetivos 1 Propiedades de los Objetivos Objetivos: Discutiremos: el conjunto de los números naturales Objetivos

Más detalles

Lección 2: Notación exponencial

Lección 2: Notación exponencial GUÍA DE MATEMÁTICAS III Lección 2: Notación exponencial En la lección anterior hemos visto cómo trabajar con números reales y cómo para facilitar el trabajo con ellos es conveniente utilizar aproximaciones,

Más detalles

PUNTOS EXPLOSIVOS CAPITULO 7 SUMAS INFINITAS

PUNTOS EXPLOSIVOS CAPITULO 7 SUMAS INFINITAS PUNTOS EXPLOSIVOS CAPITULO 7 SUMAS INFINITAS En el capítulo anterior jugamos con la máquina y vimos el poder que tiene dicha máquina para hacer de la álgebra escolar avanzada algo tan natural y directo.

Más detalles

Divisibilidad y congruencias

Divisibilidad y congruencias Divisibilidad y congruencias Ana Rechtman Bulajich y Carlos Jacob Rubio Barrios Revista Tzaloa, año 1, número 2 Empecemos por explicar el significado de la palabra divisibilidad. En este texto vamos a

Más detalles

TRABAJO DE INVESTIGACION SOBRE LAS CONVERCIONES DE LOS SISTEMAS NUMERICOS JIMMY DADNOVER ROZO GUERRERO

TRABAJO DE INVESTIGACION SOBRE LAS CONVERCIONES DE LOS SISTEMAS NUMERICOS JIMMY DADNOVER ROZO GUERRERO TRABAJO DE INVESTIGACION SOBRE LAS CONVERCIONES DE LOS SISTEMAS NUMERICOS JIMMY DADNOVER ROZO GUERRERO UNISANGIL LOGICA DE PROGRAMACION INGENIERIA DE SISTEMAS CHIQUINQUIRA BOY 2015 P á g i n a 1 19 TRABAJO

Más detalles

Algoritmos en teoría de números

Algoritmos en teoría de números Algoritmos en teoría de números IIC2283 IIC2283 Algoritmos en teoría de números 1 / 92 Para recordar: aritmética modular Dados dos números a, b Z, si b > 0 entonces existen α, β Z tales que 0 β < b y a

Más detalles

Números enteros. Congruencias

Números enteros. Congruencias Capítulo 5 Números enteros. Congruencias módulo n 5.1. Principio del Buen Orden, Principio de Inducción, Algoritmo de la división Comenzamos por aceptar el Principio del buen orden. (No hay demostración)

Más detalles

Álgebra y Matemática Discreta

Álgebra y Matemática Discreta Álgebra y Matemática Discreta Sesión de Teoría 3 (c) 2013 Leandro Marín, Francisco J. Vera, Gema M. Díaz 23 Sep 2013-29 Sep 2013 Congruencias Definición Congruencia Módulo n Sea n 1 un número entero. Diremos

Más detalles

AMPLIACIÓN DE MATEMÁTICAS. a = qm + r

AMPLIACIÓN DE MATEMÁTICAS. a = qm + r AMPLIACIÓN DE MATEMÁTICAS CONGRUENCIAS DE ENTEROS. Dado un número natural m N\{0} sabemos (por el Teorema del Resto) que para cualquier entero a Z existe un único resto r de modo que con a = qm + r r {0,

Más detalles

COMPLEMENTO DEL TEÓRICO

COMPLEMENTO DEL TEÓRICO ÁLGEBRA I PRIMER CUATRIMESTRE - AÑO 2016 COMPLEMENTO DEL TEÓRICO El material de estas notas fue dictado en las clases teóricas pero no se encuentra en el texto que seguimos en las mismas ( Álgebra I -

Más detalles

GESTIÓN ACADÉMICA GUÍA DIDÁCTICA

GESTIÓN ACADÉMICA GUÍA DIDÁCTICA PÁGINA: 1 de 7 Nombres y Apellidos del Estudiante: Docente: Área: MATEMATICAS Grado: SEXTO Periodo: SEGUNDO Duración: 3 semanas y/o 15 horas GUIA 1 Asignatura: MATEMATICAS ESTÁNDAR: Resuelvo y formulo

Más detalles

OLIMPIADA COSTARRICENSE DE MATEMÁTICA UNA - UCR - TEC - UNED - MEP - MICIT. Teoría de Números. I Nivel I Eliminatoria

OLIMPIADA COSTARRICENSE DE MATEMÁTICA UNA - UCR - TEC - UNED - MEP - MICIT. Teoría de Números. I Nivel I Eliminatoria OLIMPIADA COSTARRICENSE DE MATEMÁTICA UNA - UCR - TEC - UNED - MEP - MICIT Teoría de Números I Nivel I Eliminatoria Abril, 2015 Índice 1. Presentación. 2 2. Contenidos de Teoría de Números. 3 3. Concepto

Más detalles

Scientia Et Technica ISSN: Universidad Tecnológica de Pereira Colombia

Scientia Et Technica ISSN: Universidad Tecnológica de Pereira Colombia Scientia Et Technica ISSN: 0122-1701 scientia@utp.edu.co Colombia GONZALEZ PINEDA, CAMPO ELIAS; GARCIA, SANDRA MILENA ALGUNOS TÓPICOS EN TEORÍA DE NÚMEROS: NÚMEROS MERSENNE, TEOREMA DIRICHLET, NÚMEROS

Más detalles

1. ESQUEMA - RESUMEN Página EJERCICIOS DE INICIACIÓN Página EJERCICIOS DE DESARROLLO Página EJERCICIOS DE AMPLIACIÓN Página 21

1. ESQUEMA - RESUMEN Página EJERCICIOS DE INICIACIÓN Página EJERCICIOS DE DESARROLLO Página EJERCICIOS DE AMPLIACIÓN Página 21 1. ESQUEMA - RESUMEN Página 2 2. EJERCICIOS DE INICIACIÓN Página 7 3. EJERCICIOS DE DESARROLLO Página 19 4. EJERCICIOS DE AMPLIACIÓN Página 21 5. EJERCICIOS DE REFUERZO Página 22 1 1. ESQUEMA - RESUMEN

Más detalles

Sección III CRITERIOS DE DIVISIBILIDAD I (Criterios Habituales)

Sección III CRITERIOS DE DIVISIBILIDAD I (Criterios Habituales) Sección III CRITERIOS DE I (Criterios Habituales) Las reglas de divisibilidad son criterios que sirven para saber si un número es divisible por otro sin necesidad de realizar la división. Llamaremos criterio

Más detalles

NÚMEROS REALES---AGUERRERO

NÚMEROS REALES---AGUERRERO Contenido NÚMEROS REALES... 2 IGUALDAD Y SUS PROPIEDADES... 4 NÚMEROS MÚLTIPLOS, COMPUESTOS Y PRIMOS... 4 NÚMEROS PRIMOS... 5 DESCOMPOSICIÓN DE UN NÚMERO EN SUS FACTORES PRIMOS... 7 MÁXIMO COMÚN DIVISOR...

Más detalles

Teoría de números. Herbert Kanarek Universidad de Guanajuato Enero Junio Eugenio Daniel Flores Alatorre

Teoría de números. Herbert Kanarek Universidad de Guanajuato Enero Junio Eugenio Daniel Flores Alatorre Teoría de números Herbert Kanarek Universidad de Guanajuato Enero Junio 2012 Eugenio Daniel Flores Alatorre Bibliografía The theory of numbers Ivan Nivan H. Zuckerman H. Montgomery Temario I. Divisibilidad

Más detalles

UNIDAD DE APRENDIZAJE II

UNIDAD DE APRENDIZAJE II UNIDAD DE APRENDIZAJE II NÚMEROS RACIONALES Jerarquía de Operaciones En matemáticas una operación es una acción realizada sobre un número (en el caso de la raíz y potencia) o donde se involucran dos números

Más detalles

Un tercer ejemplo: verificación de primalidad

Un tercer ejemplo: verificación de primalidad Un tercer ejemplo: verificación de primalidad Vamos a ver un algoritmo aleatorizado para verificar si un número es primo. I Este algoritmo es más eficiente que los algoritmos sin componentes aleatorias

Más detalles

Material de Apoyo. 1. Notación Usual. Q Los números racionales (fracciones). R Los números reales. ], a] El intervalo {x R : x a}.

Material de Apoyo. 1. Notación Usual. Q Los números racionales (fracciones). R Los números reales. ], a] El intervalo {x R : x a}. Material de Apoyo 1. Notación Usual N Los números naturales {1, 2, 3,...}. Z Los enteros {..., 3, 2, 1, 0, 1, 2, 3,...}. Q Los números racionales (fracciones). R Los números reales. P Los números primos

Más detalles

DIVISIBILIDAD CIENTÍFICO, MAT. 2

DIVISIBILIDAD CIENTÍFICO, MAT. 2 DIVISIBILIDAD CIENTÍFICO, MAT. 2 DIVISIÓN ENTERA Dados an, bn, b 0, existen y son únicos los números naturales q y r tales 1) q + r que: 2) r b a = dividendo b = divisor q = cociente r = resto Ejercicio

Más detalles

Clase 2: Algoritmo de Euclídes

Clase 2: Algoritmo de Euclídes Clase 2: Algoritmo de Euclídes Dr. Daniel A. Jaume, * 8 de agosto de 2011 1. Máximo común divisor Para entender que es el máximo común divisor de un par de enteros (no simultáneamente nulos). Lidearemos

Más detalles

MODELO DE RESPUESTAS. OBJ 1 PTA 1 Si la suma de dos números enteros consecutivos que son múltiplos de 7 es 175. Halla el valor de los números.

MODELO DE RESPUESTAS. OBJ 1 PTA 1 Si la suma de dos números enteros consecutivos que son múltiplos de 7 es 175. Halla el valor de los números. Universidad Nacional Abierta Vicerrectorado Académico Área de Matemática Lapso 008 - INTEGRAL MATEMÁTICA I (175-176-177) FECHA PRESENTACIÓN: 10-01-008 MODELO DE RESPUESTAS OBJ 1 PTA 1 Si la suma de dos

Más detalles

5 centenas + 2 decenas + 8 unidades, es decir: = 528

5 centenas + 2 decenas + 8 unidades, es decir: = 528 Sistemas de numeración Un sistema de numeración es un conjunto de símbolos y reglas que permiten representar datos numéricos. Los sistemas de numeración actuales son sistemas posicionales, que se caracterizan

Más detalles

Contando con dos dígitos

Contando con dos dígitos Contando con dos dígitos Marco Antonio Figueroa Ibarra 1. Alguna vez te has preguntado por qué usamos diez dígitos para escribir los números? Se podrán escribir usando más o usando menos de diez dígitos?

Más detalles

(1)Factores, Múltiplos y Divisores. (2) Números compuestos y primos

(1)Factores, Múltiplos y Divisores. (2) Números compuestos y primos 4.1-4.2 (1)Factores, Múltiplos y Divisores (2) Números compuestos y primos Factorización Cuando escribimos 12 = 6 x 2 decimos que 6 x 2 corresponde a una factorización de 12. Existen otras factorizaciones

Más detalles

MATE 3040: Teoría de Números. Solución: Aplique el Algoritmo de Euclides para obtener 8 = gcd(56, 72) = 56(4) + 72( 3).

MATE 3040: Teoría de Números. Solución: Aplique el Algoritmo de Euclides para obtener 8 = gcd(56, 72) = 56(4) + 72( 3). Solución Asignación 3. Universidad de Puerto Rico, Río Piedras Facultad de Ciencias Naturales Departamento de Matemáticas San Juan, Puerto Rico MATE 3040: Teoría de Números 1. Determine todas las soluciones

Más detalles

El Conjunto de los Números Naturales

El Conjunto de los Números Naturales Objetivos El Conjunto de los Carlos A. Rivera-Morales Álgebra Objetivos Tabla de Contenido Objetivos 1 Propiedades de los Objetivos Objetivos: Discutiremos: el conjunto de los números naturales Objetivos

Más detalles