Sección III CRITERIOS DE DIVISIBILIDAD I (Criterios Habituales)

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Sección III CRITERIOS DE DIVISIBILIDAD I (Criterios Habituales)"

Transcripción

1 Sección III CRITERIOS DE I (Criterios Habituales) Las reglas de divisibilidad son criterios que sirven para saber si un número es divisible por otro sin necesidad de realizar la división. Llamaremos criterio de divisibilidad a toda regla u operación que nos permita conocer si un número es múltiplo (o divisible) entre otro dado. Para conocer si un número es múltiplo de otro, es decir para averiguar si es divisible por ese otro, no siempre es necesario hacer la división para ver si el cociente es exacto, pues se conocen ciertas características que deben poseer los números para ser múltiplos de otros determinados. Ahora veremos algunos criterios de divisibilidad. Al conjunto de condiciones que debe cumplir un número cualquiera para ser divisible por otro determinado, se le llama criterio de divisibilidad por este último número. A continuación se enuncian los criterios de divisibilidad más utilizados. Saber si un determinado número es divisible por otro, es muy importante. Sobre todo, es importante saber si un determinado número natural es divisible por un determinado número primo. Por qué es tan importante? Pues porque los números que no son primos, es decir, los compuestos, se pueden descomponer en producto de primos y esta descomposición factorial es muy necesaria para resolver múltiples problemas numéricos o algebraicos. En este capítulo trabajaremos con aquellos criterios de divisibilidad que involucran a números primos, es decir, estableceremos las condiciones necesarias para que cierto primo divida a otro número o de otro modo, que el número sea un múltiplo del número primo CRITERIOS DE DIVISIVILIDAD Criterio de divisibilidad por 2 Un número es divisible por 2, es decir, un número es múltiplo por 2, si y sólo sí el dígito de las unidades es par. 31

2 Demostración. Sea un entero divisible por 2 es decir: 2 y Así es par. Sea un entero donde su último dígito es par decir: Luego, por teorema 2.1. página 15, se tiene que 2, es decir, es divisible por 2(4). Ejemplos 1) 764 es divisible por 2 (764 es múltiplo de 2), dado que termina en 4 y 4 es un número par ya que Recuerda que todo número par es de la forma 2. 2) 588 es divisible por 2 (588 es múltiplo de 2), dado que termina en 8 y 8 es un número par ya que Recuerda que todo número par es de la forma 2. 3) 250 es divisible por 2 (250 es múltiplo de 2), dado que termina en 0. 4 Revisar bibliografía [9] 32

3 Contra-ejemplos 1) 867 no es divisible por 2 (867 no es múltiplo de 2), dado que 867 termina en 7 y 7 no es un número par. 2) 295 no es divisible por 2 (295 no es múltiplo de 2), dado que 295 termina en 5 y 5 no es un número par. 3) 641 no es divisible por 2 (641 no es múltiplo de 2), dado que 641 termina en 1 y 1 no es un número par Criterio de divisibilidad por 3 Un número entero es divisible por 3 si y sólo sí la suma de sus dígitos es múltiplo de 3. La demostración se hará para un entero de 4 dígitos, no obstante la demostración no pierde generalidad pues la demostración se puede implementar análogamente para cualquier otro numero entero. Demostración. Sea un entero de cuatro dígitos divisible por 3, es decir 3 y ( ) + (99 + 1) + (9 + 1) (Conmutando y asociando) ( ) ( ) ( ) Luego tenemos que: ( ) Dada esta igualdad, podemos notar que la expresión ( ) corresponde a la suma de los dígitos del número. Luego se cumple que la suma de los dígitos un número es múltiplo de 3 si éste es divisible por 3. 33

4 Sea un entero de 4 dígitos, donde ( ) + (99 + 1) + (9 + 1) ( ) ( ) ( ) ("# "ó"#$#) Luego, por teorema 2.1. página 15, se tiene que 3, es decir, es divisible por 3. Por lo tanto, se cumple que un número es divisible por 3 si la suma de sus dígitos es múltiplo de 3. Ejemplos 1) 312 es divisible por 3 (312 es múltiplo de 3), dado que al sumar los dígitos que lo forman: y 6 es múltiplo de 3. 2) 165 es divisible por 3 (165 es múltiplo de 3), dado que al sumar los dígitos que lo forman: y 12 es múltiplo de 3. 3) 477 es divisible por 3 (477 es múltiplo de 3), dado que al sumar los dígitos que lo forman: y 18 es múltiplo de 3. Contra-ejemplos 1) 857 no es divisible por 3 (857 no es múltiplo de 3), que al sumar los dígitos que lo forman: y 20 no es múltiplo de 3. 2) 641 no es divisible por 3 (641 no es múltiplo de 3), que al sumar los dígitos que lo forman: y 11 no es múltiplo de 3. 3) 976 no es divisible por 3 (976 no es múltiplo de 3), que al sumar los dígitos que lo forman: y 22 no es múltiplo de 3. 34

5 Criterio de divisibilidad por 5 Un entero es divisible por 5 si el dígito de las unidades es 5 o 0. Demostración. Sea un entero positivo de donde: 10 + ; 0 < 10 donde representa el dígito de las unidades Así, con es múltiplo de 5, tenemos que los únicos múltiplos de 5 comprendidos entre 0 y 9 son 0 y 5, es decir; 0 ó 5. Si el dígito de las unidades es 0 ó 5, entonces 10 + con 0 ó 5, así ó , así 5(2) o 5(2 + 1), en cualquier caso es divisible por 5. Ejemplos 1) 765 es divisible por 5 (765 es múltiplo de 5), dado que termina en 5. 2) 480 es divisible por 5 (480 es múltiplo de 5), dado que termina en 0. 3) 985 es divisible por 5 (985 es múltiplo de 5), dado que termina en 5. Contra-ejemplos 1) 867 no es divisible por 5 (867 no es múltiplo de 5), dado que 867 termina en 7 y 7 no 5 ni 0. 2) 921 no es divisible por 5 (921 no es múltiplo de 5), dado que 921 termina en 1 y 1 no 5 ni 0. 3) 378 no es divisible por 5 (378 no es múltiplo de 5), dado que 378 termina en 8 y 8 no 5 ni 0. 35

6 Criterio de divisibilidad por 6 Un entero es divisible por 6, si y sólo síes divisible por 2 y por 3 a la vez. Demostración. Trivial. Dado que si es divisible por 2, entonces 2 y si es divisible por 3, entonces 3 h, luego por propiedad 4 de divisibilidad página 15, 6. Ejemplos 1) 864 es divisible por 6 (864 es múltiplo de 6), dado que su último dígito es par, lo que implica que es divisible por 2 y la suma de los dígitos del número: forman un múltiplo de 3, lo que implica que es divisible por 3 también. Como es divisible por ambos números a la vez, también es divisible por 6. 2) 756 es divisible por 6 (756 es múltiplo de 6), dado que su último dígito es par, lo que implica que es divisible por 2 y la suma de los dígitos del número: forman un múltiplo de 3, lo que implica que es divisible por 3 también. Como es divisible por ambos números a la vez, también es divisible por 6. 3) 912 es divisible por 6 (912 es múltiplo de 6), dado que su último dígito es par, lo que implica que es divisible por 2 y la suma de los dígitos del número: forman un múltiplo de 3, lo que implica que es divisible por 3 también. Como es divisible por ambos números a la vez, también es divisible por 6. Contra- ejemplos 1) 862 no es divisible por 6 (862 no es múltiplo de 6), ya que, aunque si bien es cierto que su ultimo dígito es par, y por lo tanto es divisible por 2, la suma de sus dígitos: no forman un múltiplo de 3, lo que implica que falta una de las condiciones necesarias para ser divisible por 6 y por lo tanto no es divisible por 6. 2) 825 no es divisible por 6 (825 no es múltiplo de 6), ya que, aunque si bien es cierto que la suma de sus dígitos: forman un múltiplo de 3, su ultimo dígito no es par, y por lo tanto no es divisible por 2, lo que implica que falta 36

7 una de las condiciones necesarias para ser divisible por 6 y por lo tanto no es divisible por 6. 3) 793 no es divisible por 6 (793 no es múltiplo de 6), ya que su ultimo dígitono es par, y por lo tanto no es divisible por 2 y la suma de sus dígitos: no forman un múltiplo de 3, lo que implica que no cumple con ni una de las dos condiciones necesarias para ser divisible por 6 y por lo tanto no es divisible por Criterio de divisibilidad por 9 Un entero es divisible por 9 si y sólo si la suma de todos sus dígitos es divisible por 9 (El criterio de divisibilidad por 9 es del todo similar al criterio de divisibilidad por 3). Sin pérdida de generalidad, se hará la demostración para un entero de 4 dígitos. Demostración. Por teorema 2.1. página 23, se tiene que 9, es decir, es divisible por 9. Luego podemos generalizar para un entero de dígitos, por lo tanto, se cumple que un número es divisible por 9 si la suma de sus dígitos es múltiplo de 9. Sea un entero positivo de cuatro dígitos divisible por 9, es decir 9 y ( ) ( ) ( ) ( ) Luego, por teorema 2.1. página 15, tenemos que la suma de los dígitos que forman el número es múltiplo de 9. 37

8 Sea un entero positivo de 4 dígitos, donde Luego, tenemos que ( ) + (99 + 1) + (9 + 1) ( ) ( ) ( ) ("# "ó"#$#) Luego, está demostrado el criterio. Ejemplos 1) es divisible por 3 (312 es múltiplo de 3), dado que al sumar los dígitos que lo forman: y 27 es múltiplo de 9. 2) es divisible por 9 (1.665 es múltiplo de 9), dado que al sumar los dígitos que lo forman: y 18 es múltiplo de 9. 3) 477 es divisible por 9 (477 es múltiplo de 9), dado que al sumar los dígitos que lo forman: y 18 es múltiplo de 9. Contra-ejemplos 1) 857 no es divisible por 9 (857 no es múltiplo de 9), que al sumar los dígitos que lo forman: y 20 no es múltiplo de 9. 2) no es divisible por 3 (6.410 no es múltiplo de 9), que al sumar los dígitos que lo forman: y 11 no es múltiplo de 9. 3) no es divisible por 9 (9.076 no es múltiplo de 9), que al sumar los dígitos que lo forman: y 22 no es múltiplo de 9. 38

9 Criterio de divisibilidad por 10 Un entero es divisible por 10 si y sólo si el dígito de las unidades es 0. Demostración. Sea un entero de cuatro dígitos divisible por 10 es decir: 10 y ( ) ( ) + Luego, por teorema 2.1. página 15, tenemos que en la igualdad múltiplo de 10, pero el único múltiplo de 10 comprendido entre 0 y 9 es 0. es Sea un entero de 4 dígitos, donde y por hipótesis 0 Luego ( ) Luego, 10, es decir, es divisible por 10. Por lo tanto, se cumple que un número es divisible por 10 si el dígito de las unidades es cero. Ejemplos 1) 760 es divisible por 10 (760 es múltiplo de 10), dado que el dígito de las unidades es 0. 39

10 2) 480 es divisible por 10 (480 es múltiplo de 10), dado que el dígito de las unidades es 0. 3) es divisible por 10 (1.290 es múltiplo de 10), dado que el dígito de las unidades es 0. Contra-ejemplos 1) 867 no es divisible por 10 (867 no es múltiplo de 10), dado que el dígito de las unidades es 7. 2) 921 no es divisible por 10 (921 no es múltiplo de 10), dado que el dígito de las unidades es 1. 3) 378 no es divisible por 10 (378 no es múltiplo de 10), dado que el dígito de las unidades es EJERCICIOS RESUELTOS 1) Un número de tres cifras, divisible por 2, 3 y 6 tiene sus cifras iguales. Calcular la suma de las cifras de dicho número. Solución. Si el número de 3 cifras, las tiene todas iguales, nuestras opciones son: 111, 222, 333, 444, 555, 666, 777, 888, 999 De estos descartamos todos los que no son divisibles por 2, es decir, que no terminen en dígito par. Luego tenemos 222, 444, 666, 888 Y luego, descartamos todos los que no son divisibles por 3, es decir, que al sumar sus dígitos no resulte un múltiplo de 3, luego tenemos 666 y como el criterio de divisibilidad de 6 requiere que sea divisible por 2 y 3 a la vez, el número pedido es

11 2) Sin tener que dividir, indicar si es divisible por 2, 3 y 5. Solución. Por 2: es par; por tanto, es divisible por 2. Por 3:la suma de sus cifras 4,1, 5 y 8 es18,que es un múltiplo de 3; por tanto, es divisible por 3. Por 5: no termina ni en 0 ni en 5; por tanto, no es divisible por 5. 3) Hallar el valor de x en el número 326x15, si se sabe que éste es divisible por 9. Solución. Si es divisible por 9, se tiene el criterio de que donde 0 9, luego, 1 dado que 9 18, además para cualquier otro valor de el criterio no se cumple. 4) Hallar + ; si ", siendo "# y siendo " donde,, dígitos entre. Solución. Si 45 "# 5 "# 9 "# Si 5 "# 0 ó 5. Además 8 " 0. Luego, 8 5 Si 9 "# Por lo tanto, ) Se llama capicúa a un número que se lee igual de izquierda a derecha y viceversa, como por ejemplo 212. Cuántos números capicúas de 4 cifras son divisibles por 15? Solución. Si 15 "" 3 "" 5 "" 41

12 Si 5 "" 0 ó 5, "#$ 0, ya que en ese caso el número sería de 3 cifras. Luego 5. Si 3 "" Luego 1 ó 4. Luego los números capicúas son y Por lo tanto hay 2 números EJERCICIOS PROPUESTOS 1) Determinar: a) Un número de tres de cifras que sea divisible por 2 y por 3. b) Un número de cinco cifras que sea divisible por 5 y por 3, pero no por 2. 2) Determinar si las siguientes afirmaciones son verdaderas o falsas: a) Todos los números terminados en 3 son múltiplos de 3. b) Todos los números divisibles por 2 son divisibles entre 4. c) Todos los números divisibles por 4 son divisibles entre 2. d) Existen números que terminan en 4 y son divisibles entre 5. e) Todos los números divisibles entre 10 lo son entre 2 y 5. 3) Marta ha vendido papeletas de 3 para una rifa. Al contar el dinero recaudado, comprueba que tiene 124. Por qué sabe, sin hacer ninguna división, que le falta o le sobra dinero? 4) Sea un entero. Muestre que es divisible por 15 si, y sólo si, es divisible por 3 y por 5. 5) Encontrar la cifra p, para que 274p sea divisible por 2, 3 y 5. 6) Cuántos números de 5 cifras que terminan en 44 son divisibles entre 9? 7) Cuál es el valor de ( + + ), si se sabe que ". 8) Determinar un número de cuatro cifras divisible por 5 y 9, donde la primera y la última cifra son iguales. 9) Cuántos números capicúas de 5 cifras son divisibles por 6? 10) Sea un entero. Demostrar que es divisible por 15 si, y sólo si, es divisible por 3 y por 5. 42

UNIDAD: NÚMEROS Y PROPORCIONALIDAD. Los elementos del conjunto IN = {1, 2, 3, 4, 5, 6, 7,...} se denominan números

UNIDAD: NÚMEROS Y PROPORCIONALIDAD. Los elementos del conjunto IN = {1, 2, 3, 4, 5, 6, 7,...} se denominan números GUÍA Nº 2 UNIDAD: NÚMEROS Y PROPORCIONALIDAD NÚMEROS ENTEROS NÚMEROS NATURALES (ln) Los elementos del conjunto IN = {1, 2, 3, 4, 5, 6, 7,...} se denominan números naturales NÚMEROS ENTEROS (Z) Los elementos

Más detalles

TEMA 1 NÚMEROS NATURALES

TEMA 1 NÚMEROS NATURALES TEMA 1 NÚMEROS NATURALES Criterios De Evaluación de la Unidad 1 Efectuar correctamente operaciones combinadas de números naturales, aplicando correctamente las reglas de prioridad y haciendo un uso adecuado

Más detalles

DIVISIBILIDAD: Resultados

DIVISIBILIDAD: Resultados DIVISIBILIDAD: Resultados Página 1 de 9 Se enumeran a continuación, como referencia, ciertos resultados sobre divisibilidad. 1.1 Definición. Dados los enteros a y b, se dice que a divide a b (Notación:

Más detalles

1. ESQUEMA - RESUMEN Página EJERCICIOS DE INICIACIÓN Página EJERCICIOS DE DESARROLLO Página EJERCICIOS DE AMPLIACIÓN Página 21

1. ESQUEMA - RESUMEN Página EJERCICIOS DE INICIACIÓN Página EJERCICIOS DE DESARROLLO Página EJERCICIOS DE AMPLIACIÓN Página 21 1. ESQUEMA - RESUMEN Página 2 2. EJERCICIOS DE INICIACIÓN Página 7 3. EJERCICIOS DE DESARROLLO Página 19 4. EJERCICIOS DE AMPLIACIÓN Página 21 5. EJERCICIOS DE REFUERZO Página 22 1 1. ESQUEMA - RESUMEN

Más detalles

Continuación Números Naturales:

Continuación Números Naturales: Continuación Números Naturales: Múltiplos y divisores de un número natural. Reglas de divisibilidad. Mínimo común múltiplo y Máximo común divisor. Ejercicios de aplicación. Continuación Números Naturales:

Más detalles

El Conjunto de los Números Naturales

El Conjunto de los Números Naturales Objetivos El Conjunto de los Carlos A. Rivera-Morales Álgebra Objetivos Tabla de Contenido Objetivos 1 Propiedades de los Objetivos Objetivos: Discutiremos: el conjunto de los números naturales Objetivos

Más detalles

EJERCICIOS DE POLINOMIOS

EJERCICIOS DE POLINOMIOS EJERCICIOS DE POLINOMIOS NOMBRE:... Nº:... º....- Escribe el grado, el número de términos y el nombre (monomio, binomio, trinomio, polinomio) que recibe cada una de las siguientes expresiones algebraicas:

Más detalles

Criterios de divisibilidad

Criterios de divisibilidad ENCUENTRO # 2 TEMA: Criterios de Divisibilidad. CONTENIDOS: 1. Criterios de divisibilidad, múltiplos y divisores de un número dado. 2. Principios Fundamentales de la Divisibilidad. DESARROLLO Criterios

Más detalles

Tema 2. Divisibilidad. Múltiplos y submúltiplos.

Tema 2. Divisibilidad. Múltiplos y submúltiplos. Tema 2. Divisibilidad. Múltiplos y submúltiplos. En el tema 1, se ha mostrado como realizar cuentas con números naturales y enteros. Antes de conocer otras clases de números, los racionales, irracionales

Más detalles

FICHAS DE TRABAJO REFUERZO

FICHAS DE TRABAJO REFUERZO FICHAS DE TRABAJO REFUERZO DEPARTAMENTO DE MATEMATICAS CONTENIDO 1. Números naturales a. Leer y escribir números naturales b. Orden de cifras c. Descomposición polinómica d. Operaciones combinadas e. Potencias

Más detalles

Divisibilidad I. Nombre Curso Fecha

Divisibilidad I. Nombre Curso Fecha Matemáticas 2.º ESO Unidad 1 Ficha 1 Divisibilidad I Un número b es divisor de otro número a si al dividir a entre b la división es exacta. Se dice también que a es múltiplo de b. 1. Completa con la palabra

Más detalles

Ampliación Tema 3: Múltiplo y divisores

Ampliación Tema 3: Múltiplo y divisores - Múltiplo. Divisible. Divisor Ampliación Tema 3: Múltiplo y divisores 56 8 56 es divisible por 8 0 7 56 es múltiplo de 8 Para indicar que 56 es múltiplo de 8 se escribe sobre el divisor 8 un punto :(8)

Más detalles

El Conjunto de los Números Naturales

El Conjunto de los Números Naturales Objetivos El Conjunto de los Carlos A. Rivera-Morales Álgebra Objetivos Tabla de Contenido Objetivos 1 Propiedades de los Objetivos Objetivos: Discutiremos: el conjunto de los números naturales Objetivos

Más detalles

Tema 4: Múltiplos y Divisores

Tema 4: Múltiplos y Divisores Tema 4: Múltiplos y Divisores Índice 1. Introducción. 2. Múltiplos de un número. 3. Divisores de un número. 4. Criterios de divisibilidad. 5. Números primos y números compuestos. 6. Descomposición de un

Más detalles

Polinomios Primero que todo vamos a definirlos como aquella expresión algebraica de la forma: P(x) = a n x n + a n - 1 x n - 1 + a n - 2 x n - 2 +...

Polinomios Primero que todo vamos a definirlos como aquella expresión algebraica de la forma: P(x) = a n x n + a n - 1 x n - 1 + a n - 2 x n - 2 +... Polinomios Primero que todo vamos a definirlos como aquella expresión algebraica de la forma: P(x) = a n x n + a n - 1 x n - 1 + a n - 2 x n - 2 +... + a 1 x 1 + a 0 Siendo a n, a n -1... a 1, a o números,

Más detalles

Tema 3. Polinomios y fracciones algebraicas

Tema 3. Polinomios y fracciones algebraicas Tema. Polinomios y fracciones algebraicas. Monomios.. Definiciones.. Operaciones con monomios. Polinomios.. Definiciones.. Operaciones con polinomios. Factorización de un polinomio.. Teorema del resto.

Más detalles

Tema 2. Polinomios y fracciones algebraicas

Tema 2. Polinomios y fracciones algebraicas Tema. Polinomios y fracciones algebraicas. Polinomios.... Definiciones.... Operaciones con polinomios.... Factorización de un polinomio.... Teorema del resto. Criterio de divisibilidad por -a.... Propiedades

Más detalles

Enteros (Z):..., -3, -2, -1, 0, 1, 2, 3,... Números enteros (positivos o negativos), sin decimales. Incluye a los naturales.

Enteros (Z):..., -3, -2, -1, 0, 1, 2, 3,... Números enteros (positivos o negativos), sin decimales. Incluye a los naturales. Tema 1: Números Reales 1.1 Conjunto de los números Naturales (N): 0, 1, 2, 3. Números positivos sin decimales. Sirven para contar. Enteros (Z):..., -3, -2, -1, 0, 1, 2, 3,... Números enteros (positivos

Más detalles

Tema 2 Divisibilidad

Tema 2 Divisibilidad 1. Relación de Divisibilidad Tema 2 Divisibilidad Entre dos números a y b existe la relación de divisibilidad si al dividir a : b la división es exacta. Existe la relación de divisibilidad entre estos

Más detalles

Ejercicios Pendientes Matemáticas 2º ESO Curso Números Enteros Los Números Enteros

Ejercicios Pendientes Matemáticas 2º ESO Curso Números Enteros Los Números Enteros Los 1) 2) 1 3) 4) 5) 9) ) 2 11) 12) 16) 3 17) 18) 19) 4 20) 21) En qué orden se realizan las operaciones con números enteros Para resolver varias operaciones combinadas con números enteros, se debe seguir

Más detalles

DIVISIBILIDAD NÚMEROS NATURALES

DIVISIBILIDAD NÚMEROS NATURALES DIVISIBILIDAD NÚMEROS NATURALES MÚLTIPLOS Un número a es múltiplo de otro b cuando es el resultado de multiplicarlo por otro número c. a = b c Ejemplo: 12 es múltiplo de 2, ya que resulta de multiplicar

Más detalles

TEMA 6: DIVISIÓN DE POLINOMIOS RAÍCES MATEMÁTICAS 3º ESO

TEMA 6: DIVISIÓN DE POLINOMIOS RAÍCES MATEMÁTICAS 3º ESO TEMA 6: DIVISIÓN DE POLINOMIOS RAÍCES MATEMÁTICAS 3º ESO 1. División de polinomios Dados dos polinomios P (el dividendo) y D (el divisor), dividir P entre D es encontrar dos polinomios Q (el cociente)

Más detalles

INSTITUTO DE FORMACIÓN DOCENTE DE CANELONES DIVISIBILIDAD

INSTITUTO DE FORMACIÓN DOCENTE DE CANELONES DIVISIBILIDAD DIVISIBILIDAD Definición de múltiplo Dados los números naturales a y b, se dice que a es múltiplo de b, si y solo si existe un número natural k, único, tal que a = b.k El número k se dice que es el cociente

Más detalles

= 310 (1 + 5) : 2 2 = = = 12 ( 3) ( 5) = = 2 = ( 4) + ( 20) + 3 = = 21

= 310 (1 + 5) : 2 2 = = = 12 ( 3) ( 5) = = 2 = ( 4) + ( 20) + 3 = = 21 Unidad I, NÚMEROS NATURALES Y ENTEROS A continuación se enuncian las claves de cada pregunta hechas por mí (César Ortiz). Con esto, asumo cualquier responsabilidad, entiéndase por si alguna solución está

Más detalles

Teoría de Números. Divisibilidad. Olimpiada de Matemáticas en Tamaulipas

Teoría de Números. Divisibilidad. Olimpiada de Matemáticas en Tamaulipas Teoría de Números Divisibilidad Olimpiada de Matemáticas en Tamaulipas 1. Introducción Divisibilidad es una herramienta de la aritmética que nos permite conocer un poco más la naturaleza de un número,

Más detalles

Instrucciones. 1. Revisión de conceptos asociados a los números enteros. 2. Desarrollo de ejemplos en pizarra.

Instrucciones. 1. Revisión de conceptos asociados a los números enteros. 2. Desarrollo de ejemplos en pizarra. Colegio Antil Mawida Departamento de Matemática Profesora: Nathalie Sepúlveda Guía nº1 Taller PSU Refuerzo Contenido y Aprendizaje N Fecha Tiempo 2 Horas Nombre: Unidad Nº Núcleos temáticos de la Guía

Más detalles

PROBLEMAS RESUELTOS DE PREPARACIÓN PARA OPOSICIONES. Problemas 02

PROBLEMAS RESUELTOS DE PREPARACIÓN PARA OPOSICIONES. Problemas 02 PROBLEMAS RESUELTOS DE PREPARACIÓN PARA OPOSICIONES Problemas 0 Salvador Pérez Gómez pies3coma14@hotmail.com 4 de abril de 007 PROBLEMA 1 Sea n un número natural. Sea A n = n + n + 3n. a) Demostrar que

Más detalles

RECONOCER EL GRADO, EL TÉRMINO Y LOS COEFICIENTES DE UN POLINOMIO

RECONOCER EL GRADO, EL TÉRMINO Y LOS COEFICIENTES DE UN POLINOMIO OBJETIVO RECONOCER EL GRADO, EL TÉRMINO Y LOS COEICIENTES DE UN POLINOMIO NOMBRE: CURSO: ECHA: Un polinomio es una expresión algebraica formada por la suma de monomios, que son los términos del polinomio.

Más detalles

Multiplicación División

Multiplicación División Aritmética CAPÍTULO V Multiplicación División 01. Calcule m + n + p + r, si mnpr 27 tiene como suma de sus productos parciales 3946. A) 13 B) 15 C) 16 D) 12 E) 11 02. En una multiplicación al multiplicando

Más detalles

UNIDAD 2. MÚLTIPLOS Y DIVISORES

UNIDAD 2. MÚLTIPLOS Y DIVISORES UNIDAD. MÚLTIPLOS Y DIVISORES. MÚLTIPLOS DE UN NÚMERO.. DIVISORES DE UN NÚMERO. 3. NÚMEROS PRIMOS Y NÚMEROS COMPUESTOS. 4. CRITERIOS DE DIVISIBILIDAD. 5. MÍNIMO COMÚN MÚLTIPLO. 6. MÁXIMO COMÚN DIVISOR..

Más detalles

Prácticas para Resolver PROBLEMAS MATEMÁTICOS

Prácticas para Resolver PROBLEMAS MATEMÁTICOS Prácticas para Resolver PROBLEMAS MATEMÁTICOS 1 Prólogo El presente manual está dirigido a los estudiantes de las facultades de físico matemáticas de las Escuelas Normales Superiores que estudian la especialidad

Más detalles

Unidad 2: Ecuaciones, inecuaciones y sistemas.

Unidad 2: Ecuaciones, inecuaciones y sistemas. Unidad 2: Ecuaciones, inecuaciones y sistemas 1 Unidad 2: Ecuaciones, inecuaciones y sistemas. 1.- Factorización de polinomios. M. C. D y m.c.m de polinomios. Un número a es raíz de un polinomio es 0.

Más detalles

TEMA 2. POLINOMIOS Y FRACCIONES ALGEBRAICAS

TEMA 2. POLINOMIOS Y FRACCIONES ALGEBRAICAS TEMA. POLINOMIOS Y FRACCIONES ALGEBRAICAS.. Repaso de polinomios - Epresión algebraica. Valor numérico - Polinomios. Operaciones con polinomios.. Identidades notables - Cuadrado de una suma de una diferencia

Más detalles

TEMA 1.- POLINOMIOS Y FRACCIONES ALGEBRAICAS

TEMA 1.- POLINOMIOS Y FRACCIONES ALGEBRAICAS TEMA 1.- POLINOMIOS Y FRACCIONES ALGEBRAICAS 1.- POLINOMIOS Recordemos que un monomio es una expresión algebraica (combinación de letras y números) en la que las únicas operaciones que aparecen entre las

Más detalles

ALGEBRA 1- GRUPO CIENCIAS- TURNO TARDE- Enteros

ALGEBRA 1- GRUPO CIENCIAS- TURNO TARDE- Enteros Resumen teoría Prof. Alcón ALGEBRA 1- GRUPO CIENCIAS- TURNO TARDE- Z = N {0} N Enteros Las operaciones + y. son cerradas en Z, es decir la suma de dos números enteros es un número entero y el producto

Más detalles

CONCRECIÓN DE LOS CRITERIOS DE EVALUACIÓN Curso: PRIMERO de BACHILLERATO CIENCIAS Asignatura: MATEMÁTICAS I Profesor: ALFONSO BdV

CONCRECIÓN DE LOS CRITERIOS DE EVALUACIÓN Curso: PRIMERO de BACHILLERATO CIENCIAS Asignatura: MATEMÁTICAS I Profesor: ALFONSO BdV CONCRECIÓN DE LOS CRITERIOS DE EVALUACIÓN Curso: PRIMERO de BACHILLERATO CIENCIAS Asignatura: MATEMÁTICAS I Profesor: ALFONSO BdV 1. Números reales. Aritmética y álgebra 1.1. Operar con fracciones de números

Más detalles

Este material es producido por José Arturo Barreto, M,A,, en Caracas, Venezuela,

Este material es producido por José Arturo Barreto, M,A,, en Caracas, Venezuela, Este material es producido por José Arturo Barreto, M,A,, en Caracas, Venezuela, mailto:josearturobarreto@yahoo,com Octubre 29/2002 Prueba de Aptitud Académica. Habilidad Numérica. Guía # 2. Relación entre

Más detalles

Los números naturales

Los números naturales Los números naturales Los números naturales Los números naturales son aquellos que sirven para contar. Se suelen representar utilizando las cifras del 0 al 9. signo suma o resultado Suma: 9 + 12 = 21 sumandos

Más detalles

DIVISIBILIDAD 2 3 = 8. Es decir, el resultado de multiplicar 2 por cualquier número natural.

DIVISIBILIDAD 2 3 = 8. Es decir, el resultado de multiplicar 2 por cualquier número natural. DIVISIBILIDAD I. Múltiplos y Divisores 1. MULTIPLOS Los múltiplos de 2 son = 2 2 1 = 4 2 2 = 6 2 3 = 8 2 4 etc Es decir, el resultado de multiplicar 2 por cualquier número natural. Múltiplo de un número

Más detalles

Se desea estudiar el comportamiento de una función a medida independiente x se aproxima a un valor específico.

Se desea estudiar el comportamiento de una función a medida independiente x se aproxima a un valor específico. Tema: Límites de las funciones Objetivos: Comprender el concepto de límite de una función y las propiedades de los límites. Calcular el límite de una función algebraica utilizando las propiedades de los

Más detalles

TEMA 1 CONJUNTOS NUMÉRICOS

TEMA 1 CONJUNTOS NUMÉRICOS TEMA 1 CONJUNTOS NUMÉRICOS. Objetivos / Criterios de evaluación O.1.1 Realizar correctamente operaciones con fracciones: Suma, resta, producto, cociente, potencia y radicación. O.1.2 Resolver operaciones

Más detalles

Un número a es múltiplo de otro b cuando es el resultado de multiplicar este último por otro número c.

Un número a es múltiplo de otro b cuando es el resultado de multiplicar este último por otro número c. DIVISIBILIDAD Múltiplos Un número a es múltiplo de otro b cuando es el resultado de multiplicar este último por otro número c. 18 = 2 9 18 es múltiplo de 2, ya que resulta de multiplicar 2 por 9. Tabla

Más detalles

Desigualdades o inecuaciones lineales en una variable. Prof. Caroline Rodriguez Departamento de Matemáticas UPR - Arecibo

Desigualdades o inecuaciones lineales en una variable. Prof. Caroline Rodriguez Departamento de Matemáticas UPR - Arecibo Desigualdades o inecuaciones lineales en una variable Prof. Caroline Rodriguez Departamento de Matemáticas UPR - Arecibo Desigualdades Una desigualdad o inecuación usa símbolos como ,, para representar

Más detalles

MÓDULO 8: VECTORES. Física

MÓDULO 8: VECTORES. Física MÓDULO 8: VECTORES Física Magnitud vectorial. Elementos. Producto de un vector por un escalar. Operaciones vectoriales. Vector unitario. Suma de vectores por el método de componentes rectangulares. UTN

Más detalles

SCUACAC026MT22-A16V1. SOLUCIONARIO Ejercitación Generalidades de números

SCUACAC026MT22-A16V1. SOLUCIONARIO Ejercitación Generalidades de números SCUACAC026MT22-A16V1 0 SOLUCIONARIO Ejercitación Generalidades de números 1 TABLA DE CORRECCIÓN GUÍA PRÁCTICA EJERCITACIÓN GENERALIDADES DE NÚMEROS Ítem Alternativa 1 E 2 D 3 B 4 E 5 A 6 E 7 B 8 D 9 D

Más detalles

RADICACIÓN EN LOS REALES

RADICACIÓN EN LOS REALES RADICACIÓN EN LOS REALES La raíz n ésima de un número real es otro número real tal que: n a b si y solo si b n Donde el signo se llama radical, n es el índice, a es el radicando y b es la raíz. En la radicación

Más detalles

TEORIA DE NUMEROS (I) REGLAS DE DIVISIBILIDAD

TEORIA DE NUMEROS (I) REGLAS DE DIVISIBILIDAD Un número es divisible por: TEORIA DE NUMEROS (I) REGLAS DE DIVISIBILIDAD - 2 Si es PAR. - 3 Si la suma de sus cifras es divisible por 3. - 4 Si el número formado por sus dos últimas cifras es divisible

Más detalles

TEMA 2 DIVISIBILIDAD 1º ESO

TEMA 2 DIVISIBILIDAD 1º ESO Alumno Fecha TEMA 2 DIVISIBILIDAD 1º ESO Si la división de un número A entre otro número B, es exacta, entonces decimos que: - El número A es divisible por el número B. Ej.: 12 : 4 = 3 12 divisible por

Más detalles

MÚLTIPLOS Y DIVISORES

MÚLTIPLOS Y DIVISORES MÚLTIPLOS Y DIVISORES 1. MÚLTIPLOS DE UN NÚMERO. 1.1. CONCEPTO DE MÚLTIPLO. Un número es múltiplo de otro cuando lo contiene un número exacto de veces, es decir, cuando la división del primero entre el

Más detalles

Conjuntos Numéricos I

Conjuntos Numéricos I Conjuntos Numéricos I En el pasado las matemáticas eran consideradas como la ciencia de la cantidad, referida a las magnitudes (como en la geometría), a los números (como en la aritmética), o a la generalización

Más detalles

Colegio Decroly Americano Matemática 7th Core, Contenidos I Período

Colegio Decroly Americano Matemática 7th Core, Contenidos I Período Matemática 7th Core, 2015-2016 Contenidos I Período 1. Sentido Numérico a. Identificar y escribir patrones. b. Escribir números en forma de exponentes. c. Escribir cantidades en notación científica. d.

Más detalles

Operaciones básicas con números enteros y con fracciones

Operaciones básicas con números enteros y con fracciones Curso de Acceso CFGS Operaciones básicas con números enteros y con fracciones OPEACIONES CON NÚMEOS ENTEOS Suma de números enteros Cuando tienen el mismo signo Se suman los valores y se deja el signo que

Más detalles

Criterios de divisibilidad y Congruencias

Criterios de divisibilidad y Congruencias Criterios de divisibilidad y Congruencias Rafael F. Isaacs G. * Fecha: 9 de marzo de 2007 Cuando tenemos un número muy grande escrito en base 10 y deseamos saber si es múltiplo por ejemplo de 9 no necesitamos

Más detalles

DIVISIBILIDAD. 2º E.S.O. Un número es múltiplo de otro si se puede obtener multiplicando el segundo por otro número entero.

DIVISIBILIDAD. 2º E.S.O. Un número es múltiplo de otro si se puede obtener multiplicando el segundo por otro número entero. MULTIPLOS Y DIVISORES DIVISIBILIDAD. NÚMEROS ENTEROS. º E.S.O. Un número es múltiplo de otro si se puede obtener multiplicando el segundo por otro número entero. 8 es múltiplo de porque 8 = 9 75 es múltiplo

Más detalles

MATEMÁTICAS 5º PRIMARIA DIVISIBILIDAD: MÚLTIPLOS Y DIVISORES

MATEMÁTICAS 5º PRIMARIA DIVISIBILIDAD: MÚLTIPLOS Y DIVISORES MATEMÁTICAS 5º PRIMARIA DIVISIBILIDAD: MÚLTIPLOS Y DIVISORES 1 2 MÚLTIPLOS DE UN NÚMERO Un número es múltiplo de otro si se obtiene multiplicando este número por otro número natural. Ejemplo: 12 es múltiplo

Más detalles

Objetivos. Criterios de evaluación. Contenidos. Actitudes. Conceptos. Procedimientos

Objetivos. Criterios de evaluación. Contenidos. Actitudes. Conceptos. Procedimientos P R O G R A M A C I Ó N D E L A U N I D A D Objetivos 1 Identificar relaciones de divisibilidad entre números naturales y reconocer si un número es múltiplo o divisor de otro número dado. 2 Utilizar los

Más detalles

ALGEBRA I, ALGEBRA Y TRIGONOMETRIA , Segundo Semestre CAPITULO 6: POLINOMIOS.

ALGEBRA I, ALGEBRA Y TRIGONOMETRIA , Segundo Semestre CAPITULO 6: POLINOMIOS. ALGEBRA I, ALGEBRA Y TRIGONOMETRIA 520135, 522115 Segundo Semestre CAPITULO 6: POLINOMIOS. DEPARTAMENTO DE INGENIERIA MATEMATICA Facultad de Ciencias Físicas y Matemáticas 1 Definición: Polinomio Sea K

Más detalles

RESUMEN DE CONCEPTOS

RESUMEN DE CONCEPTOS RESUMEN DE CONCEPTOS 1º ESO MATEMÁTICAS NÚMEROS NATURALES (1) Múltiplo de un número: Un número es múltiplo de otro si el segundo está contenido en el primero un número exacto de veces. Ejemplo: 16 es múltiplo

Más detalles

Múltiplos y divisores

Múltiplos y divisores Múltiplos y divisores 3 1. MÚLTIPLOS DE UN NÚMERO Los múltiplos de un número son los que lo contienen un número exacto de veces. El 12 es múltiplo de 3 porque lo contiene 4 veces. El 30 es múltiplo de

Más detalles

Num eros Racionales. Clase # 1. Universidad Andrés Bello. Junio 2014

Num eros Racionales. Clase # 1. Universidad Andrés Bello. Junio 2014 UniV(>r.:ild-td Andr ::i Bello Num'eros Rac1onai(>S Numéros Racionales Clase # 1 Junio 2014 Conjunto de los números naturales N Definición Son los números desde el 1 al infinito positivo. N = {1, 2,

Más detalles

1. Definir e identificar números primos y números compuestos.

1. Definir e identificar números primos y números compuestos. 1. Divisibilidad 1. Definir e identificar números primos y números compuestos. 2. Manejar con soltura el vocabulario propio de la divisibilidad: a es múltiplo/ divisor de b, a es divisible por b, a divide

Más detalles

MEDIDAS DE ÁNGULOS. Los ángulos se miden en Grados (º), Minutos (') y Segundos (") se lee 24 grados 23 minutos y 18 segundos

MEDIDAS DE ÁNGULOS. Los ángulos se miden en Grados (º), Minutos (') y Segundos () se lee 24 grados 23 minutos y 18 segundos MEDIDAS DE ÁNGULOS La unidad de medida de un ángulo es el Grado Sexagesimal, el cual se denota del valor seguido del símbolo º, siendo su unidadd de medida internacional. Por ejemplo 45 grados se escriben

Más detalles

Unidad 2. Divisibilidad

Unidad 2. Divisibilidad Ojo!!: no basta con copiar las soluciones en tu cuaderno. Las soluciones sirven para comprobar el resultado una vez que has hecho el ejercicio. Haz pues primero los ejercicios sin mirar aquí y luego comprueba

Más detalles

POLINOMIOS En esta unidad aprenderás a:

POLINOMIOS En esta unidad aprenderás a: POLINOMIOS En esta unidad aprenderás a: Reconocer polinomios y calcular su valor numérico Realizar operaciones con polinomios. Manejar la regla de Ruffini y el teorema del resto para encontrar las raíces

Más detalles

CONJUNTO DE LOS NÚMEROS NATURALES

CONJUNTO DE LOS NÚMEROS NATURALES República Bolivariana de Venezuela Ministerio de la Defensa Universidad Nacional Experimental de las Fuerzas Armadas Curso de Inducción Universitaria CIU Cátedra: Razonamiento Matemático CONJUNTO DE LOS

Más detalles

Comunidad de Madrid CÁLCULO MENTAL 2º EP

Comunidad de Madrid CÁLCULO MENTAL 2º EP CÁLCULO MENTAL 2º EP 1 er TRIMESTRE Sumar dos números de una cifra. 8 + 2 (10) 6 + 4 (10) 7 + 3 (10) 5 + 5 (10) 9 + 1 (10) 7 + 5 (12) 9 + 3 (12) 6 + 5 (11) 7 + 6 (13) 8 + 7 (15) Sumar un número de dos

Más detalles

ECUACIONES EN Q (NÚMEROS RACIONALES)

ECUACIONES EN Q (NÚMEROS RACIONALES) Echa un vistazo a esta situación. ECUACIONES EN Q (NÚMEROS RACIONALES) El domingo, Leonardo caminó 4 unidades. El lunes, Leonardo caminó un tercio de lo que caminó el martes. El caminó un total de 12 unidades

Más detalles

1. EXPRESIONES ALGEBRAICAS.

1. EXPRESIONES ALGEBRAICAS. TEMA 3: POLINOMIOS 1. EXPRESIONES ALGEBRAICAS. Trabajar en álgebra consiste en manejar relaciones numéricas en las que una o más cantidades son desconocidas. Estas cantidades se llaman variables, incógnitas

Más detalles

UNIDAD 1: NÚMEROS NATURALES OBJETIVOS

UNIDAD 1: NÚMEROS NATURALES OBJETIVOS UNIDAD 1: NÚMEROS NATURALES Realizar las operaciones con números naturales (suma, resta, multiplicación y división) y operaciones combinadas de las anteriores. Diferenciar entre división exacta y entera,

Más detalles

Espacios Vectoriales Asturias: Red de Universidades Virtuales Iberoamericanas 1

Espacios Vectoriales Asturias: Red de Universidades Virtuales Iberoamericanas 1 Espacios Vectoriales 201 6Asturias: Red de Universidades Virtuales Iberoamericanas 1 Índice 1 Espacios Vectoriales... 4 1.1 Definición de espacio vectorial... 4 1.2 Definición de subespacio vectorial...

Más detalles

Divisibilidad Actividades finales

Divisibilidad Actividades finales DIVISIBILIDAD. CRITERIOS 1. El dividendo de una división es 214, el divisor es 21 y el cociente es 10. Es divisible 214 por 21? 2. El número 186 es divisible por 31. Comprueba si 2 186 y 3 186 son también

Más detalles

POLINOMIOS. (Versión Preliminar) Un polinomio en la variable x es una expresión de la forma. p(x) = a n x n + a n 1 x n

POLINOMIOS. (Versión Preliminar) Un polinomio en la variable x es una expresión de la forma. p(x) = a n x n + a n 1 x n POLINOMIOS (Versión Preliminar) Estas notas deben ser complementadas con ejercicios de la guía o de algun texto. En esta sección denotaremos por N al conjunto de los números naturales incluido el cero.

Más detalles

UNIDAD DIDÁCTICA #1 CONTENIDO

UNIDAD DIDÁCTICA #1 CONTENIDO UNIDAD DIDÁCTICA #1 CONTENIDO OPERACIONES CON DECIMALES MULTIPLICACION DE DECIMALES DIVISIÓN DE DECIMALES OPERACIONES COMBINADAS CON DECIMALES POTENCIACIÓN DE DECIMALES HOJA DE EVALUACIÓN BIBLIOGRAFÍA

Más detalles

CONJUNTOS NUMÉRICOS. La noción de número es tan antigua como el hombre mismo ya que son necesarios para resolver situaciones de la vida diaria.

CONJUNTOS NUMÉRICOS. La noción de número es tan antigua como el hombre mismo ya que son necesarios para resolver situaciones de la vida diaria. CONJUNTOS NUMÉRICOS La noción de número es tan antigua como el hombre mismo ya que son necesarios para resolver situaciones de la vida diaria. Por ejemplo, usamos números para contar una determinada cantidad

Más detalles

Matemática I. Mínimo Común Múltiplo. Ing. Santiago Figueroa Lorenzo Correo:

Matemática I. Mínimo Común Múltiplo. Ing. Santiago Figueroa Lorenzo Correo: Matemática I Mínimo Común Múltiplo Ing. Santiago Figueroa Lorenzo Correo: urural.ingenierosantiago@gmail.com Temas Primera Unidad: Elementos Algebraicos Tema 3: Mínimo Común Múltiplo Mínimo Común Múltiplo

Más detalles

Colectivo Graca. Sitio web mantenido por Maicoliv desde el 25 de enero de 2009

Colectivo Graca. Sitio web mantenido por Maicoliv desde el 25 de enero de 2009 Colectivo Graca Sitio web mantenido por Maicoliv desde el 25 de enero de 2009 Los múltiplos de un número. Definición (de múltiplo de un número) Un número natural, b, diremos que es múltiplo de otro número

Más detalles

2º Se lee número que hay antes de la coma, se añade la palabra coma y luego se lee la parte decimal

2º Se lee número que hay antes de la coma, se añade la palabra coma y luego se lee la parte decimal Qué son los decimales? Los decimales son una manera distinta de escribir fracciones con denominadores como 10, 100 y 1,000. Tanto los decimales como las fracciones indican una parte de un entero. Un decimal

Más detalles

COMPLEMENTO DEL TEÓRICO

COMPLEMENTO DEL TEÓRICO ÁLGEBRA I PRIMER CUATRIMESTRE - AÑO 2016 COMPLEMENTO DEL TEÓRICO El material de estas notas fue dictado en las clases teóricas pero no se encuentra en el texto que seguimos en las mismas ( Álgebra I -

Más detalles

TEMA 1. Números Reales. Teoría. Matemáticas

TEMA 1. Números Reales. Teoría. Matemáticas 1 1.- Los números reales Cuáles son los números reales? Los números reales son todos los números racionales y todos los números irracionales. El conjunto de los números reales se designa con el símbolo

Más detalles

Los números enteros Z = {,-3, -2, -1, 0, 1, 2, 3, }

Los números enteros Z = {,-3, -2, -1, 0, 1, 2, 3, } Los números enteros La unión de los números naturales y los enteros negativos forma el conjunto de los números enteros, que se designa con la palabra Z. Está constituido por infinitos elementos y se representan

Más detalles

TEMA 2. Números racionales. Teoría. Matemáticas

TEMA 2. Números racionales. Teoría. Matemáticas 1 1.- Números racionales Se llama número racional a todo número que puede representarse como el cociente de dos enteros, con denominador distinto de cero. Se representa por Las fracciones también pueden

Más detalles

Factorización ecuación identidad condicional término coeficiente monomio binomio trinomio polinomio grado ax3

Factorización ecuación identidad condicional término coeficiente monomio binomio trinomio polinomio grado ax3 Factorización Para entender la operación algebraica llamada factorización es preciso repasar los siguientes conceptos: Cualquier expresión que incluya la relación de igualdad (=) se llama ecuación. Una

Más detalles

Calculemos inicialmente el logaritmo en base 10 de las siguientes potencias de 10:

Calculemos inicialmente el logaritmo en base 10 de las siguientes potencias de 10: Logarítmos en base diez: El 10 se omite como base; es decir: log 10 a = log a. Clase-1 Calculemos inicialmente el logaritmo en base 10 de las siguientes potencias de 10: (a) log 10.000 = (f) log 0,1 =

Más detalles

Aritmética entera. AMD Grado en Ingeniería Informática. AMD Grado en Ingeniería Informática (UM) Aritmética entera 1 / 15

Aritmética entera. AMD Grado en Ingeniería Informática. AMD Grado en Ingeniería Informática (UM) Aritmética entera 1 / 15 Aritmética entera AMD Grado en Ingeniería Informática AMD Grado en Ingeniería Informática (UM) Aritmética entera 1 / 15 Objetivos Al finalizar este tema tendréis que: Calcular el máximo común divisor de

Más detalles

4.1. Polinomios y teoría de ecuaciones

4.1. Polinomios y teoría de ecuaciones CAPÍTULO 4 Polinomios y teoría de ecuaciones 4.1. Polinomios y teoría de ecuaciones Un polinomio real en x, o simplemente polinomio en x es una expresión algebraica de la forma a n x n + a n 1 x n 1 +

Más detalles

Potencias y raíces Matemáticas 1º ESO

Potencias y raíces Matemáticas 1º ESO ÍNDICE Potencias y raíces Matemáticas 1º ESO 1. Potencias 2. Propiedades de potencias 3. Cuadrados perfectos 4. Raíces cuadradas 1. POTENCIAS Una potencia es una multiplicación en la que todos los factores

Más detalles

FICHAS REPASO 3º ESO. Para restar números enteros, se suma al minuendo el opuesto del sustraendo y después se aplican las reglas de la suma.

FICHAS REPASO 3º ESO. Para restar números enteros, se suma al minuendo el opuesto del sustraendo y después se aplican las reglas de la suma. FICHAS REPASO º ESO OPERACIONES CON NÚMEROS ENTEROS El valor absoluto de un número entero es el número natural que resulta al prescindir del signo. Por ejemplo, el valor absoluto de es y el valor absoluto

Más detalles

Productos notables. Se les llama productos notables (también productos especiales) precisamente porque son muy utilizados en los ejercicios.

Productos notables. Se les llama productos notables (también productos especiales) precisamente porque son muy utilizados en los ejercicios. Productos notables Sabemos que se llama producto al resultado de una multiplicación. También sabemos que los valores que se multiplican se llaman factores. Se llama productos notables a ciertas expresiones

Más detalles

UNIDAD 5: LA DIVISIÓN.

UNIDAD 5: LA DIVISIÓN. UNIDAD 5: LA DIVISIÓN. ÍNDICE 5.1 Repaso de la división de números naturales. 5.1.1 Términos de la división 5.1.2 Palabras clave de la división 5.1.3 Prueba de la división 5.1.4 Tipos de divisiones según

Más detalles

Matemáticas UNIDAD 3 CONSIDERACIONES METODOLÓGICAS. Material de apoyo para el docente. Preparado por: Héctor Muñoz

Matemáticas UNIDAD 3 CONSIDERACIONES METODOLÓGICAS. Material de apoyo para el docente. Preparado por: Héctor Muñoz CONSIDERACIONES METODOLÓGICAS Material de apoyo para el docente UNIDAD 3 Preparado por: Héctor Muñoz Diseño Gráfico por: www.genesisgrafica.cl MÚLTIPLOS Y DIVISORES DE NÚMEROS NATURALES 1. DESCRIPCIÓN

Más detalles

ALGEBRA y ALGEBRA LINEAL. Primer Semestre CAPITULO I LOGICA Y CONJUNTOS.

ALGEBRA y ALGEBRA LINEAL. Primer Semestre CAPITULO I LOGICA Y CONJUNTOS. ALGEBRA y ALGEBRA LINEAL 520142 Primer Semestre CAPITULO I LOGICA Y CONJUNTOS. DEPARTAMENTO DE INGENIERIA MATEMATICA Facultad de Ciencias Físicas y Matemáticas Universidad de Concepción 1 La lógica es

Más detalles

Primaria Sexto Grado Matemáticas (con QuickTables)

Primaria Sexto Grado Matemáticas (con QuickTables) Primaria Sexto Grado Matemáticas (con QuickTables) Este curso cubre los conceptos mostrados a continuación. El estudiante navega por trayectos de aprendizaje basados en su nivel de preparación. Usuarios

Más detalles

2. EXPRESIONES ALGEBRAICAS

2. EXPRESIONES ALGEBRAICAS 2. EXPRESIONES ALGEBRAICAS Tales como, 2X 2 3X + 4 ax + b Se obtienen a partir de variables como X, Y y Z, constantes como -2, 3, a, b, c, d y cobinadas utilizando la suma, resta, multiplicación, división

Más detalles

TEMA 1. MATRICES, DETERMINANTES Y APLICACIÓN DE LOS DETERMINANTES. CONCEPTO DE MATRIZ. LA MATRIZ COMO EXPRESIÓN DE TABLAS Y GRAFOS.

TEMA 1. MATRICES, DETERMINANTES Y APLICACIÓN DE LOS DETERMINANTES. CONCEPTO DE MATRIZ. LA MATRIZ COMO EXPRESIÓN DE TABLAS Y GRAFOS. TEMA 1. MATRICES, DETERMINANTES Y APLICACIÓN DE LOS DETERMINANTES. 1. MATRICES. CONCEPTO DE MATRIZ. LA MATRIZ COMO EXPRESIÓN DE TABLAS Y GRAFOS. DEFINICIÓN: Las matrices son tablas numéricas rectangulares

Más detalles

Tutorial MT-b1. Matemática Tutorial Nivel Básico. Elementos básicos de Aritmética

Tutorial MT-b1. Matemática Tutorial Nivel Básico. Elementos básicos de Aritmética 12345678901234567890 M ate m ática Tutorial MT-b1 Matemática 2006 Tutorial Nivel Básico Elementos básicos de Aritmética Matemática 2006 Tutorial Algunos elementos básicos de Aritmética Marco teórico: 1.

Más detalles

Chapter Audio Summary for McDougal Littell Pre-Algebra

Chapter Audio Summary for McDougal Littell Pre-Algebra Chapter Audio Summary for McDougal Littell Pre-Algebra Chapter 5 Rational Numbers and Equations En el capítulo 5 aprendiste a escribir, comparar y ordenar números racionales. Después aprendiste a sumar

Más detalles

Materia: Matemática de séptimo Tema: El Concepto de Fracciones

Materia: Matemática de séptimo Tema: El Concepto de Fracciones Materia: Matemática de séptimo Tema: El Concepto de Fracciones Una mañana, en el barco de buceo, Cameron comenzó a hablar con otro niño llamado Chet. Chet y su familia eran de Colorado y Chet era apenas

Más detalles

1. NÚMEROS PRIMOS Y COMPUESTOS.

1. NÚMEROS PRIMOS Y COMPUESTOS. . NÚMEROS PRIMOS Y COMPUESTOS. De acuerdo a las propiedades ya vistas de los divisores, sabemos que: todo natural no nulo es divisor de sí mismo es divisor de todo número natural. Ahora: el natural tiene

Más detalles

Procedimiento para usar la Tabla 1 (Tabla de Logaritmos)

Procedimiento para usar la Tabla 1 (Tabla de Logaritmos) Procedimiento para usar la Tabla 1 (Tabla de Logaritmos) Ejercicio: Escribe en el espacio correspondiente el nombre de cada una de las partes de un logaritmo (sugerencia, leer módulo 11 del libro de texto):

Más detalles

Bloque 1. Aritmética y Álgebra

Bloque 1. Aritmética y Álgebra Bloque 1. Aritmética y Álgebra Los números naturales Los números naturales Los números naturales se definen como: N = { 0,1, 2, 3, 4, 5,...,64, 65, 66,...,1639,1640,1641,1642,... } El sistema de numeración

Más detalles