UNIDAD 5: LA DIVISIÓN.
|
|
|
- María Dolores de la Cruz Velázquez
- hace 9 años
- Vistas:
Transcripción
1 UNIDAD 5: LA DIVISIÓN. ÍNDICE 5.1 Repaso de la división de números naturales Términos de la división Palabras clave de la división Prueba de la división Tipos de divisiones según el resto Mitad, tercio, cuarto 5.2 División por la unidad seguida de ceros 5.3 Operaciones combinadas Sin paréntesis Con paréntesis 5.4 División por más de una cifra Dividendo y divisor de dos cifras Dividendo de tres cifras y divisor de dos Primera cifra del dividendo menor que la primera del divisor Cociente con un cero intercalado Divisor con tres cifras 5.5 Tratamiento de problemas [MATEMÁTICAS: 4º DE PRIMARIA] Página 1
2 5.1 La división o cociente de números naturales La división es una operación que se hace para repartir en partes iguales una cantidad, o para hacer grupos iguales con objetos dados Palabras clave de la división: La división se utiliza para repartir, agrupar, distribuir, hacer partes iguales Ejemplos: a) Cuántos grupos de 6 alumnos pueden formarse con 138? 138 : 6 = 23 Se pueden formar 23 alumnos. b) Por 4 cajas de colores pagué 60 Euros. Cuánto vale una caja? 60 : 4 = 15 Cada caja vale 15 Euros Términos de la división Los términos de la división son: dividendo, divisor, cociente y resto. Dividendo: número que se divide Divisor: número por el que se divide Cociente: resultado Resto: número que sobra [MATEMÁTICAS: 4º DE PRIMARIA] Página 2
3 Dividendo (D) 34 6 divisor (d) Resto (R) 4 5 Cociente (C) El signo de la división es o : y se lee dividido entre. Ejemplo: 24 : 4 = entre 4 es igual a Prueba de la división Para saber si una división está bien realizada, multiplicamos el divisor por el cociente, le sumamos el resto y obtenemos el dividendo. D = d x C + R Ejemplo x = ATENCIÓN! El resto tiene que ser siempre menor que el divisor Tipos de divisiones según el resto EXACTA R = 0 ENTERA R 0 Prueba D = d x C Prueba D = d x C + R Ejemplo 24 = 4 x Ejemplo 34 = 6 x [MATEMÁTICAS: 4º DE PRIMARIA] Página 3
4 5.1.5 Mitad, tercio, cuarto Dividir entre: Es hallar: Ejemplo: 2 MITAD 50 : 2 = 25 3 TERCIO 18 : 3 = 6 4 CUARTO 40 : 4 = 10 5 QUINTA PARTE 100 : 5 = 20 6 SEXTA PARTE 18 : 6 = 3 7 SÉPTIMA PARTE 49 : 7 = División por la unidad seguida de ceros La división de un número acabado en uno o varios ceros por la unidad seguida de ceros es igual a dicho número quitándole tantos ceros finales como lleva seguidos la unidad Observa algunos ejemplos: : 10 = : 100 = : 1000 = : 10 = : 100 = [MATEMÁTICAS: 4º DE PRIMARIA] Página 4
5 5.3 Operaciones combinadas Cuando estemos ante una expresión matemática donde se mezclen distintas operaciones, deberemos seguir ciertas pautas para resolverla Sin paréntesis Se resuelven primero las multiplicaciones y divisiones, y luego las sumas y las restas. Pero siempre manteniendo el orden de escritura de las operaciones y números. Por ejemplo: 24 4 x 5 = Así, no se ha realizado primero 24 4 puesto que antes se resuelve la multiplicación (4 x 5 = 20), pero sí se mantiene el orden del 24 escrito antes que el producto (24-20 = 4) Con paréntesis Se resuelve primero la operación que hay dentro del paréntesis y después lo que quede. Pero siempre manteniendo el orden de escritura de las operaciones y números. Por ejemplo: 8 x (6 4) = 8 x 2 16 Como verás se ha resuelto primero 6 4 puesto que antes se resuelven las operaciones incluidas en los paréntesis (6-4 = 2 ), pero se ha mantenido el orden del 8 escrito antes que el paréntesis (8 x 2 = 16). [MATEMÁTICAS: 4º DE PRIMARIA] Página 5
6 Observa un ejemplo que tiene de todo: x 4 5 x (3 + 1) 2 = División por más de una cifra Dividendo y divisor de dos cifras Pasos: 1º.- Como el divisor tiene dos cifras, tomaremos las dos del dividendo. 2º.- Ahora dividimos 76 entre 25 = 3. 3º.- Multiplicar 3 por 25 (primero se multiplica el 3 por el 5 llevándote la decena, luego se multiplica el 3 por el 2 y se le añade la decena que nos llevábamos). 4º.- Nos sobra una (que es el resto), para llegar a 76, y así, la división es entera Dividendo de tres cifras y divisor de dos 1º.- Separamos en el dividendo, comenzando por la izquierda, las cifras necesarias para que el número que formen sea igual o mayor que el divisor. En este caso es el [MATEMÁTICAS: 4º DE PRIMARIA] Página 6
7 2º.- Para dividir 89 entre 21 buscamos un número que multiplicado por 2 nos dé 8 o menos de 8. Ese número es el 4 porque (2 x 4 = 8) Se coloca en el cociente y se multiplica por la cifra de las unidades del divisor (4 x 1 = 4). Y se actúa como con una división normal, es decir, el resultado se resta a la c ifra de las unidades de las dos cifras escogidas del dividendo. Por último, multiplicamos el cociente por la cifra de las decenas del divisor (4 x 2 = 8). El resultado se resta a la cifra de las decenas de las dos cifras escogidas del dividendo Comprobamos que 3 (resto parcial) es menor que 21 (divisor). 3º.- Bajamos la cifra siguiente del dividendo y calculamos otra cifra para el cociente procediendo del mismo modo que en el 2º paso Comprobamos que 14 (resto) es menor que 21 (divisor). Como no hay más cifras en el dividendo, la división se ha terminado. [MATEMÁTICAS: 4º DE PRIMARIA] Página 7
8 5.4.3 Primera cifra del dividendo menor que la primera del divisor Como 24 no cabe entre 36, tenemos que coger tres cifras del dividendo, que es 247 y empezamos la división. Continuamos operando como una división normal. D e b e s fijarte cada vez que hagas una división en que los restos parciales que van saliendo han de ser siempre menores que el divisor Cociente con un cero intercalado Ejemplo: Operamos como una división normal y al bajar el 5, como no lo podemos dividir entre 13, ponemos cero en el cociente y bajamos la cifra siguiente, 6, formando 56 y continuamos dividiendo normalmente El divisor tiene tres cifras Ejemplo: Separamos en el dividendo las cifras necesarias para obtener un número igual o mayor que el divisor. Después se continúa como una división normal RECUERDA! Dividir es repartir una cantidad en partes iguales. [MATEMÁTICAS: 4º DE PRIMARIA] Página 8
9 5.5 Tratamiento de problemas Resolver problemas no es tan difícil como parece a veces, tan sólo tienes que poner mucha atención a los pasos que hay que seguir y, sobre todo, no tengas prisa en resolverlos. El tratamiento puede ser el siguiente: 1º.- Leer detenidamente, cuantas veces sea necesario, el enunciado del problema hasta lograr entender qué plantea y qué propone solucionar. 2º.- Extraer los datos numéricos que van a servir para resolver las cuestiones planteadas, y escribirlos para tenerlos de referencia directa. 3º.- Escoger la operación u operaciones que van a conducir a obtener las soluciones parciales y la final o finales. 4º.- Repasar todas las operaciones realizadas y comprobar si el resultado obtenido se ajusta al planteamiento realizado. 5º.- Expresar el resultado mediante la cantidad numérica obtenida acompañada del concepto pedido. Recordamos algunas claves para la elección de las operaciones: - Si hay que añadir, unir cantidades, obtener el total de varias cosas, cobrar, se suma. - Si hay que quitar, separar, calcular la diferencia entre, cuánto falta hasta, cuánto más es uno que otro, se resta. - Si hay un número determinado de cosas que se repiten y se pide el total de éstas, se multiplica. - Si hay que repartir, se divide. [MATEMÁTICAS: 4º DE PRIMARIA] Página 9
DIVISION: Veamos una división: Tomamos las dos primeras cifra de la izquierda del dividendo (57).
DIVISION: Dividir es repartir un número en grupos iguales (del tamaño que indique el divisor). Por ejemplo: 45/ 5 es repartir 45 en grupos de 5. Los términos de la división son: Dividendo: es el número
UNIDAD 1. NÚMEROS NATURALES Y OPERACIONES
UNIDAD 1. NÚMEROS NATURALES Y OPERACIONES 1. SISTEMA DE NUMERACIÓN DECIMAL. 2. LECTURA, ESCRITURA, DESCOMPOSICIÓN Y ORDENACIÓN DE NÚMEROS NATURALES. 3. SUMA DE NÚMEROS NATURALES. PROPIEDADES. 4. RESTA
02-A-1/8. Nombre: Dividir es repartir a partes iguales. Una división es exacta cuando el resto es igual a cero.
02-A-1/8 Cálculo. División (:). Dividir es repartir a partes iguales. Signo. Son dos puntos (:) que se leen divido por o dividido entre. : = 4 : = Términos. La división tiene cuatro términos. Dividendo.
RESUMEN PARA EL ESTUDIO
RESUMEN PARA EL ESTUDIO 1. Números de siete cifras U. millón CM DM UM C D U Cómo se lee 2 8 9 6 7 8 2 Cómo se descompone: 2.896.782 = 2 U. millón + 8 CM + 9 DM + 6 UM + 7 C + 8 D + 2 U Cómo se compone:
POTENCIAS Y RAÍZ CUADRADA
POTENCIAS Y RAÍZ CUADRADA 1. POTENCIAS. 1.1. CONCEPTO DE POTENCIA. ELEMENTOS. Una potencia es un producto de factores iguales. Las potencias están formadas por: Base: factor que se repite. Exponente: número
Unidad didáctica: Leer para aprender. Asignatura: Matemáticas. Título: La División
Unidad didáctica: Leer para aprender. Asignatura: Matemáticas Título: La División Curso: 3º E.P Profesor/a: Objetivo: Que el alumno comprenda el concepto de división como reparto en partes iguales. Contenidos
2º Se lee número que hay antes de la coma, se añade la palabra coma y luego se lee la parte decimal
Qué son los decimales? Los decimales son una manera distinta de escribir fracciones con denominadores como 10, 100 y 1,000. Tanto los decimales como las fracciones indican una parte de un entero. Un decimal
LOS NÚMEROS ENTEROS. Para restar un número entero, se quita el paréntesis y se pone al número el signo contrario al que tenía.
Melilla Los números Enteros y operaciones elementales LOS NÚMEROS ENTEROS 1º LOS NÚMEROS ENTEROS. El conjunto de los números enteros Z está formado por los números naturales (enteros positivos) el cero
TEMA 4: LAS FRACCIONES
TEMA : LAS FRACCIONES Hasta ahora has trabajado con números naturales, enteros y decimales, pero sigue habiendo situaciones que no podemos expresar con estos números, por ejemplo, cuando decimos: Medio
UNIDAD 2. MÚLTIPLOS Y DIVISORES
UNIDAD. MÚLTIPLOS Y DIVISORES. MÚLTIPLOS DE UN NÚMERO.. DIVISORES DE UN NÚMERO. 3. NÚMEROS PRIMOS Y NÚMEROS COMPUESTOS. 4. CRITERIOS DE DIVISIBILIDAD. 5. MÍNIMO COMÚN MÚLTIPLO. 6. MÁXIMO COMÚN DIVISOR..
Si dividimos la unidad en 10 partes iguales, cada una de ellas es una décima.
NÚMEROS DECIMALES 1. DÉCIMA, CENTÉSIMA Y MILÉSIMA. 1.1. CONCEPTO. Si dividimos la unidad en 10 partes iguales, cada una de ellas es una décima. Si dividimos la unidad en 100 partes iguales, cada una de
A veces, un número no se dividirá equitativamente. Cuando esto sucede, tenemos un resto.
Materia: Matemática de Octavo Tema: Operaciones en Z - División Ya averiguaste cuántos cubos de pescado va a necesitar Jonás para alimentar a las focas? Ahora que el sabe cuántas libras de pescado se necesitan,
POLINOMIOS En esta unidad aprenderás a:
POLINOMIOS En esta unidad aprenderás a: Reconocer polinomios y calcular su valor numérico Realizar operaciones con polinomios. Manejar la regla de Ruffini y el teorema del resto para encontrar las raíces
FRACCIONES. Las partes que tomamos ( 3 ó 5 ) se llaman numerador y las partes en que dividimos el queso ( 8 ) denominador.
FRACCIONES Una fracción, en general, es la expresión de una cantidad dividida por otra, y una fracción propia representa las partes que tomamos de un todo. El ejemplo clásico es el de un queso que partimos
Ecuaciones de primer ysegundo grado
86 _ 087-098.qxd 7//07 : Página 87 Ecuaciones de primer ysegundo grado INTRODUCCIÓN La unidad comienza diferenciando entre ecuaciones e identidades, para pasar luego a la exposición de los conceptos asociados
UNIDAD 6: FRACCIONES ÍNDICE. 6.1 Conocimiento de fracciones: Términos de las fracciones Representación. 6.1.
UNIDAD 6: FRACCIONES ÍNDICE 6. Conocimiento de fracciones: 6.. Términos de las fracciones. 6.. Representación 6.. Interpretación 6. Lectura y escritura de fracciones. 6. Comparación de fracciones. 6..
OBJETIVO 1 EL CONCEPTO DE NÚMERO DECIMAL
COMPRENDER OBJETIVO 1 EL CONCEPTO DE NÚMERO DECIMAL NOMBRE: CURSO: ECHA: SIGNIICADO DE LOS NÚMEROS DECIMALES En nuestra vida diaria medimos, calculamos, comparamos, etc. Hablamos de cantidades que no son
TEMA 3: NÚMEROS DECIMALES
TEMA 3: NÚMEROS DECIMALES 1. NÚMEROS DECIMALES Para expresar cantidades comprendidas entre dos números enteros, utilizamos los números decimales. Los números decimales se componen de dos partes separadas
Glosario. equation: ecuación. divide: dividir. grouping problem: problema de agrupar. divided by: dividido por. division: división.
DIVISION A divide: dividir Cuando separamos objetos en grupos iguales usamos la palabra dividir. Por ejemplo, para repartir 12 galletas equitativamente entre 2 personas, dividimos 12 en 2 partes iguales
TEMA 1: NÚMEROS NATURALES
TEMA 1: NÚMEROS NATURALES 1. NÚMEROS NATURALES Todas las civilizaciones han tenido un sistema de numeración. Estos han pasado de unos pueblos a otros y han evolucionado a lo largo del tiempo. Desde la
SUMA, RESTA, MULTIPLICACIÓN Y DIVISIÓN DE NÚMEROS NATURALES
SUMA, RESTA, MULTIPLICACIÓN Y DIVISIÓN DE NÚMEROS NATURALES 1. REPASAMOS LA SUMA Y LA RESTA 1.1. SUMA. La suma o adición consiste en añadir dos números o más para conseguir una cantidad total. Los números
1.- NÚMEROS NATURALES Y DECIMALES
1.- NÚMEROS NATURALES Y DECIMALES 1.1 Posición de las cifras de un número natural. Los números naturales son los números que conocemos (0, 1, 2, 3 ). Los números naturales están ordenados, lo que nos permite
Números. Índice del libro. 1. Los números reales. 2. Operaciones con números enteros y racionales. 3. Números decimales
1. Los números reales 2. Operaciones con números enteros y racionales 3. decimales 4. Potencias de exponente entero 5. Radicales 6. Notación científica y unidades de medida 7. Errores Índice del libro
UNIDAD DIDÁCTICA #1 CONTENIDO
UNIDAD DIDÁCTICA #1 CONTENIDO OPERACIONES CON DECIMALES MULTIPLICACION DE DECIMALES DIVISIÓN DE DECIMALES OPERACIONES COMBINADAS CON DECIMALES POTENCIACIÓN DE DECIMALES HOJA DE EVALUACIÓN BIBLIOGRAFÍA
INTRODUCCIÓN PLAN DE ACCIÓN
INTRODUCCIÓN El Propósito de dicho trabajo es la enseñanza de la división a través de un medio de comunicación escrito como lo es la carta. El aprendizaje va dirigido a un adolescente masculino de 15 años
OBJETIVO 1 COMPRENDER EL CONCEPTO DE NÚMERO DECIMAL NOMBRE: CURSO: FECHA: Centena Decena Unidad Décima Centésima Milésima.
OBJETIVO COMPRENDER EL CONCEPTO DE NÚMERO DECIMAL NOMBRE: CURSO: ECHA: El sistema de numeración decimal tiene dos características:. a Es decimal: unidades de un orden forman unidad del orden siguiente..
Fracciones + + EJERCICIOS resueltos. Operaciones combinadas + = Para resolver operaciones combinadas debemos tener en cuenta estas indicaciones:
Operaciones combinadas Para resolver operaciones combinadas debemos tener en cuenta estas indicaciones: La misión de los paréntesis es la de unir o "empaquetar" aquello a lo que afectan. Los signos de
Multiplicación y División de Números Naturales
Multiplicación y División de Números Naturales I. Multiplicación La multiplicación o producto, es una forma rápida de calcular la suma, cuando los sumandos son iguales. 2+2+2+2 = 2 x 4 = 8. También se
RECONOCER EL GRADO, EL TÉRMINO Y LOS COEFICIENTES DE UN POLINOMIO
OBJETIVO RECONOCER EL GRADO, EL TÉRMINO Y LOS COEICIENTES DE UN POLINOMIO NOMBRE: CURSO: ECHA: Un polinomio es una expresión algebraica formada por la suma de monomios, que son los términos del polinomio.
FICHAS REPASO 3º ESO. Para restar números enteros, se suma al minuendo el opuesto del sustraendo y después se aplican las reglas de la suma.
FICHAS REPASO º ESO OPERACIONES CON NÚMEROS ENTEROS El valor absoluto de un número entero es el número natural que resulta al prescindir del signo. Por ejemplo, el valor absoluto de es y el valor absoluto
Los números naturales están ordenados, lo que nos permite comparar dos números naturales:
LOS NUMEROS NATURALES. El conjunto de los números naturales está formado por: N = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9,...} Con los números naturales contamos los elementos de un conjunto (número cardinal). O
UNIDAD 4. NÚMEROS DECIMALES Y OPERACIONES
UNIDAD 4. NÚMEROS DECIMALES Y OPERACIONES 1. PARTES DE UN NÚMERO DECIMAL. 2. LECTURA Y ESCRITURA DE DECIMALES. 3. DESCOMPOSICIÓN DE NÚMEROS. DECIMALES Y VALOR RELATIVO DE LAS CIFRAS. 4. COMPARACIÓN Y ORDENACIÓN
2. Ecuaciones de primer grado: (sencillas, con paréntesis, con denominadores).
Bloque 3. ECUACIONES Y SISTEMAS (En el libro Temas 4 y 5, páginas 63 y 81) 1. Ecuaciones: Definiciones. Reglas de equivalencia. 2. Ecuaciones de primer grado: (sencillas, con paréntesis, con denominadores).
UNIDAD 7: NÚMEROS DECIMALES Y OPERACIONES
UNIDAD 7: NÚMEROS DECIMALES Y OPERACIONES ÍNDICE 7.1 Unidad decimal. 7.2 Escritura, lectura y descomposición de números decimales. 7.2.1 Escritura de números decimales. 7.2.2 Lectura de números decimales.
lasmatemáticas.eu Pedro Castro Ortega materiales de matemáticas
1. Fracciones Una fracción es una expresión del tipo a b, donde a y b son números naturales llamados numerador y denominador, respectivamente. 1.1. Interpretación de una fracción a) Fracción como parte
Lección 2: OPERACIONES CON NÚMEROS NATURALES
Lección 2: OPERACIONES CON NÚMEROS NATURALES 2.1.-SUMA Y RESTA DE NÚMEROS NATURALES 2.1.1.- LA SUMA O ADICIÓN: Sumar es añadir una cantidad a otra; juntar o reunir varias cantidades en una sola. SIGNO
FICHAS DE TRABAJO REFUERZO
FICHAS DE TRABAJO REFUERZO DEPARTAMENTO DE MATEMATICAS CONTENIDO 1. Números naturales a. Leer y escribir números naturales b. Orden de cifras c. Descomposición polinómica d. Operaciones combinadas e. Potencias
Divisibilidad I. Nombre Curso Fecha
Matemáticas 2.º ESO Unidad 1 Ficha 1 Divisibilidad I Un número b es divisor de otro número a si al dividir a entre b la división es exacta. Se dice también que a es múltiplo de b. 1. Completa con la palabra
TEMA 1 NÚMEROS NATURALES
TEMA 1 NÚMEROS NATURALES Criterios De Evaluación de la Unidad 1 Efectuar correctamente operaciones combinadas de números naturales, aplicando correctamente las reglas de prioridad y haciendo un uso adecuado
Los números enteros. Dado que los enteros contienen los enteros positivos, se considera a los números naturales son un subconjunto de los enteros.
Los números enteros Con los números naturales no era posible realizar diferencias donde el minuendo era menor que el que el sustraendo, pero en la vida nos encontramos con operaciones de este tipo donde
NÚMEROS DECIMALES. Teoría 3 er Ciclo Primaria Colegio Romareda 2011/2012 Página 28
Teoría 3 er Ciclo Primaria Colegio Romareda 20/202 Página 28 NÚMEROS DECIMALES Los números decimales nacen como una forma especial de escritura de las fracciones decimales, de manera que la coma separa
CURSO UNICO DE INGRESO 2010
INSTITUTO SUPERIOR ZARELA MOYANO DE TOLEDO PROF. ING. ELSA MEDINA CURSO UNICO DE INGRESO 2010 MATEMATICAS INTRODUCCION El presente material supone un REPASO sobre los temas fundamentales y necesarios para
LOS NÚMEROS DECIMALES DESCOMPOSICIÓN DE NÚMEROS DECIMALES. 28,246 = 2D + 8 U + 2d + 4 c + 6 m 28,246 = 20 + 8 + 0,2 + 0,04 + 0,006
LOS NÚMEROS DECIMALES DESCOMPOSICIÓN DE NÚMEROS DECIMALES Los números decimales tienen dos partes separadas por una coma. 28,246 es un número decimal. Parte entera Parte decimal 6º de E. Primaria Decenas
MATEMÁTICAS 1º DE ESO
MATEMÁTICAS 1º DE ESO LOMCE TEMA IV : LAS FRACCIONES. OPERACIONES Los siginificados de una fracción. Fracciones propias e impropias. Equivalencias de fracciones. Amplificación y simplificación. Fracción
MATEMÁTICAS UNIDAD 4 GRADO 6º. Números naturales
1 Franklin Eduardo Pérez Quintero MATEMÁTICAS UNIDAD 4 GRADO 6º Números naturales 1 2 Franklin Eduardo Pérez Quintero LOGRO: Estudiar, analizar y profundizar las operaciones y propiedades de los números
RAMÓN GALÁN GONZÁLEZ
RAMÓN GALÁN GONZÁLEZ INTRODUCCIÓN. Sabemos que la mecanización de la división no es el principal problema que presenta esta operación, ni es el aspecto prioritario que debemos otorgarle ya que existen
Potencias y raíces Matemáticas 1º ESO
ÍNDICE Potencias y raíces Matemáticas 1º ESO 1. Potencias 2. Propiedades de potencias 3. Cuadrados perfectos 4. Raíces cuadradas 1. POTENCIAS Una potencia es una multiplicación en la que todos los factores
Vamos a llamar número racional a todo aquel que puede ser expresado como un cociente entre dos números enteros: 4 2 = 2
Instituto Raúl calabrini Ortiz Matemática º año NUMERO RACIONALE En la ecuación 0, todos los números que aparecen son enteros in embargo, cuando tratamos de resolverla, vemos que la ecuación no tiene solución
2x 1. compatible determinado, luego tiene una única solución. Para resolverlo aplicaremos reducción, 23y = 0
RELACIÓN DE ECUACIONES Y SISTEMAS. Considera el sistema. 7 Atención a los coeficientes del sistema! 7. Sabemos antes de resolverlo que el sistema es compatible determinado, luego tiene una única solución.
Tema 6 Lenguaje Algebraico. Ecuaciones
Tema 6 Lenguaje Algebraico. Ecuaciones 1. El álgebra El álgebra es una rama de las matemáticas que emplea números y letras con las operaciones aritméticas de sumar, restar, multiplicar, dividir, potencias
Llamamos potencia a todo producto de factores iguales. Por ejemplo: 3 4 =
1. NÚMEROS NATURALES POTENCIAS DE UN NÚMERO NATURAL Llamamos potencia a todo producto de factores iguales. Por ejemplo: 3 4 = 3 3 3 3 El factor que se repite es la base, y el número de veces que se repite
Lección 10: División de Polinomios. Dra. Noemí L. Ruiz Limardo 2009
Lección 10: División de Polinomios Dra. Noemí L. Ruiz Limardo 009 Objetivos de la lección Al finalizar esta lección los estudiantes: Dividirán polinomios de dos o más términos por polinomios de uno y dos
3 Números decimales OBJETIVOS CONTENIDOS PROCEDIMIENTOS. Significado de los números decimales. Representación en la recta numérica.
829485 _ 024-008.qxd 12/9/07 15:10 Página 27 Números decimales INTRODUCCIÓN RESUMEN DE LA UNIDAD En esta unidad estudiamos el sistema de numeración decimal, e introducimos las denominaciones de la parte
4 Ecuaciones e inecuaciones
Ecuaciones e inecuaciones INTRODUCCIÓN Comenzamos esta unidad diferenciando entre identidades y ecuaciones, y definiendo los conceptos asociados a cualquier ecuación: miembros, términos, coeficientes,
TEMA 2: NÚMEROS ENTEROS 1º ESO. MATEMÁTICAS
TEMA 2: NÚMEROS ENTEROS 1º ESO. MATEMÁTICAS Por qué aparecen los números enteros? Por qué aparecen los números enteros? La cueva de Voronia, es la cueva conocida más profunda de la Tierra, localizada
Resolución de ecuaciones lineales. En general para resolver una ecuación lineal o de primer grado debemos seguir los siguientes pasos:
Resolución de ecuaciones lineales En general para resolver una ecuación lineal o de primer grado debemos seguir los siguientes pasos: 1º Quitar paréntesis. Si un paréntesis tiene el signo menos delante,
-. Halla el término que falta de las siguientes divisiones aplicando la prueba la de la división:
Para poder realizar correctamente el refuerzo de esta lección, debes haber realizado correctamente la lección anterior, y estudiado los refuerzos propuestos. Si es necesario, repite los ejercicios. -.
NÚMEROS RACIONALES Y REPRESENTACIÓN DECIMAL. Mate 3041 Profa. Milena R. Salcedo Villanueva
NÚMEROS RACIONALES Y REPRESENTACIÓN DECIMAL Mate 3041 Profa. Milena R. Salcedo Villanueva 1 FRACCIONES Una fracción tiene dos términos: numerador y denominador Denominador indica las veces que se divide
Números decimales OBJETIVOS CONTENIDOS PROCEDIMIENTOS
8 _ 0-088.qxd //0 09: Página Números decimales INTRODUCCIÓN El estudio de los números decimales comienza recordando el sistema de numeración decimal, que es la base de la expresión escrita de los números
Unidad 1 Números. Los números naturales son aquellos que se utilizan para contar los elementos de un conjunto.
Unidad 1 Números 1.- Números Naturales Los números naturales son aquellos que se utilizan para contar los elementos de un conjunto. El conjunto de números naturales se representa por la letra N Operaciones
DIVISIBILIDAD NÚMEROS NATURALES
DIVISIBILIDAD NÚMEROS NATURALES MÚLTIPLOS Un número a es múltiplo de otro b cuando es el resultado de multiplicarlo por otro número c. a = b c Ejemplo: 12 es múltiplo de 2, ya que resulta de multiplicar
TRABAJO DE MATEMÁTICAS. PENDIENTES DE 1º ESO. (2ª parte)
TRABAJO DE MATEMÁTICAS PENDIENTES DE 1º ESO. (2ª parte) NÚMEROS RACIONALES REDUCCIÓN DE FRACCIONES AL MISMO DENOMINADOR Para reducir varias fracciones al mismo denominador se siguen los siguientes pasos:
Natural por decimal Decimal por natural Decimal por decimal 2764 x 2,9 24876. 89,26 x 24 35704 2142,24
1.- SUMA Y RESTA DE NÚMEROS DECIMALES Para sumar o restar números con decimales se suman o restan siempre unidades del mismo orden. 342,51 + 8,1 + 9.627,329 350 18,436 342,51 8,1 9.629,329 9.979,939 350,000
POTENCIAS. MÚLTIPLOS Y DIVISORES. MÁXIMO COMÚN DIVISOR Y MÍNIMO COMÚN MÚLTIPLO.
1. LOS NÚMEROS NATURALES POTENCIAS. MÚLTIPLOS Y DIVISORES. MÁXIMO COMÚN DIVISOR Y MÍNIMO COMÚN MÚLTIPLO. 2. LOS NÚMEROS ENTEROS. VALOR ABSOLUTO DE UN NÚMERO ENTERO. REPRESENTACIÓN GRÁFICA. OPERACIONES.
SUBDIRECCION DE EDUCACION DEPARTAMENTO COLEGIOS LICEO CAMPESTRE CAFAM GUIA DE APRENDIZAJE No. 1 AREA: MATEMATICAS
SUBDIRECCION DE EDUCACION DEPARTAMENTO COLEGIOS LICEO CAMPESTRE CAFAM GUIA DE APRENDIZAJE No. 1 AREA: MATEMATICAS ASIGNATURA: Matemáticas TEMA: Números Naturales GRADO: Quinto PERIODO: Primero PROFESOR:
Factorización de polinomios FACTORIZACIÓN DE POLINOMIOS
FACTORIZACIÓN DE POLINOMIOS 1. Polinomios Un monomio es el producto de un número real por una o más letras que pueden estar elevadas a exponentes que sean números naturales. La suma de los exponentes de
Una expresión algebraica es una combinación de números y letras combinados mediante las operaciones matemáticas.
TEMA 6 EXPRESIONES ALGEBRAICAS Una expresión algebraica es una combinación de números y letras combinados mediante las operaciones matemáticas. Ejemplo: 2 x, 2 a + 3, m (n - 3),... Usamos las expresiones
Ámbito Científico-Tecnológico Módulo III Bloque 3 Unidad 3 Las letras y los números: un cóctel perfecto
Ámbito Científico-Tecnológico Módulo III Bloque 3 Unidad 3 Las letras y los números: un cóctel perfecto En esta unidad vas a comenzar el estudio del álgebra, el lenguaje de las matemáticas. Vas a aprender
1. NUMEROS REALES a. Los Números Reales
1. NUMEROS REALES a. Los Números Reales Los números reales comprenden todo el campo de números que utilizamos en las matemáticas, a excepción de los números complejos que veremos en capítulos superiores.
TEMA 3: FRACCIONES 1º ESO MATEMÁTICAS
TEMA : FRACCIONES 1º ESO MATEMÁTICAS Tema : Fracciones Fracciones equivalentes. Comparación de fracciones y ordenación Proporcionalidad, Porcentajes y escalas Operaciones con fracciones. + problemas 6
FRACCIONES. numerador. denominador. Tres cuartos. Cuatro séptimos. Un medio. Once veinteavos. Tres quintos. Cuatro sextos. Ocho décimos.
Código Centro 80080 C/ Valderribas, 7 C.P. 8007 Tfno/fax 989 FRACCIONES Una fracción es un número representado por otros dos separados por una línea recta horizontal. Al número de abajo le llamamos denominador
TEMA 2 FRACCIONES MATEMÁTICAS 2º ESO
TEMA 2 FRACCIONES Criterios De Evaluación de la Unidad 1 Utilizar de forma adecuada las fracciones para recibir y producir información en actividades relacionadas con la vida cotidiana. 2 Leer, escribir,
1. EXPRESIONES ALGEBRAICAS.
TEMA 3: POLINOMIOS 1. EXPRESIONES ALGEBRAICAS. Trabajar en álgebra consiste en manejar relaciones numéricas en las que una o más cantidades son desconocidas. Estas cantidades se llaman variables, incógnitas
Lección 5: Ecuaciones con números naturales
GUÍA DE MATEMÁTICAS I Lección 5: Ecuaciones con números naturales Observe la siguiente tabla y diga cuáles son los números que faltan. 1 2 3 4 5 6 7 8 9 10 11 12 3 6 9 12 Es sencillo encontrar la regla
Unidad 1 Los números de todos los días
CUENTAS ÚTILES Módulo nivel intermedio. 3ra. Edición. Primaria Unidad 1 Los números de todos los días Los números naturales son aquellos que utilizamos para contar: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11,
Chapter Audio Summary for McDougal Littell Pre-Algebra
Chapter Audio Summary for McDougal Littell Pre-Algebra Chapter 5 Rational Numbers and Equations En el capítulo 5 aprendiste a escribir, comparar y ordenar números racionales. Después aprendiste a sumar
primarios = 3; 5 4 = 1; 2(3) = 6; 3. Observa todos los valores usados en
Unidad 1. Conjuntos de números II. Operaciones y expresiones 1. Operaciones con números racionales. Las operaciones con números racionales las estamos realizando desde los grados 12 primarios. 1 + 2 =
TEMA 2: Potencias y raíces. Tema 2: Potencias y raíces 1
TEMA : Potencias y raíces Tema : Potencias y raíces ESQUEMA DE LA UNIDAD.- Concepto de potencia..- Potencias de exponente natural..- Potencias de exponente entero negativo..- Operaciones con potencias..-
UNIDAD 3: NÚMEROS DECIMALES
UNIDAD 3: NÚMEROS DECIMALES Si dividimos la unidad en 10 partes iguales, cada parte es una DÉCIMA. Cuando necesitamos expresar cantidades más pequeñas que la unidad, utilizamos LAS UNIDADES DECIMALES.
DIVISIBILIDAD NÚMEROS NATURALES
DIVISIBILIDAD NÚMEROS NATURALES MÚLTIPLOS Un número a es múltiplo de otro b cuando es el resultado de multiplicarlo por otro número c. a = b c Ejemplo: 12 es múltiplo de 2, ya que resulta de multiplicar
Ecuaciones de Primer Grado con una Incógnita
Tema 5 Ecuaciones de Primer Grado con una Incógnita Una ecuación es una igualdad ( = ) que sólo se verifica para unos valores concretos de una variable, generalmente llamada x. Cuando sólo aparece una
TEMA 8 PRACTICAR LA DIVISIÓN. 2.- Haz estas divisiones y comprueba que el resto es menor que el divisor 51 : 3 98 : 2 67 : 3 88 : 4
TEMA 8 PRACTICAR LA DIVISIÓN 1 En todas las divisiones el resto debe ser menor que el divisor. 1.- Realiza las siguientes divisiones 34 : 2 48 : 3 81 : 3 64 : 5 2.- Haz estas divisiones y comprueba que
Lección 7: POLINOMIOS
Lección 7: POLINOMIOS 7.1.- POLINOMIOS Lee detenidamente en las páginas 92 y 93 del libro la cuestión 4, Polinomios, 1.- Página 93, actividad 14. 2.- Página 93, actividad 15. 3.- Página 93, actividad 16.
FIN EDUCATIVO FIN INSTRUCTIVO
FIN EDUCATIVO Todos somos números en las Matemáticas de la vida, con valores: absolutos, relativos, positivos y negativos. Los primeros representan a nuestras cualidades y virtudes ; los segundos a los
Inecuaciones en. Desigualdad: se llama desigualdad a toda relación entre expresiones numéricas o algebraicas. Propiedades de las desigualdades:
Inecuaciones en Introducción Desigualdad: se llama desigualdad a toda relación entre epresiones numéricas o algebraicas unidas por uno de los cuatro signos de desigualdad,,,, Por ejemplo: 6 ; ; 8, etc....
TEMA 1 CONJUNTOS NUMÉRICOS
TEMA 1 CONJUNTOS NUMÉRICOS. Objetivos / Criterios de evaluación O.1.1 Realizar correctamente operaciones con fracciones: Suma, resta, producto, cociente, potencia y radicación. O.1.2 Resolver operaciones
Tema 4: Múltiplos y Divisores
Tema 4: Múltiplos y Divisores Índice 1. Introducción. 2. Múltiplos de un número. 3. Divisores de un número. 4. Criterios de divisibilidad. 5. Números primos y números compuestos. 6. Descomposición de un
TEMA 6: DIVISIÓN DE POLINOMIOS RAÍCES MATEMÁTICAS 3º ESO
TEMA 6: DIVISIÓN DE POLINOMIOS RAÍCES MATEMÁTICAS 3º ESO 1. División de polinomios Dados dos polinomios P (el dividendo) y D (el divisor), dividir P entre D es encontrar dos polinomios Q (el cociente)
TEMA 1. Números Reales. Teoría. Matemáticas
1 1.- Los números reales Cuáles son los números reales? Los números reales son todos los números racionales y todos los números irracionales. El conjunto de los números reales se designa con el símbolo
UNA ECUACIÓN, SU GRADO Y SU SOLUCIÓN
86 _ 087-098.qxd 7//07 : Página 88 IDENTIICAR OBJETIVO UNA ECUACIÓN, SU GRADO Y SU SOLUCIÓN NOMBRE: CURSO: ECHA: Dado el polinomio P(x) x +, ya sabemos cómo se calcula su valor numérico: x P() + x P( )
lasmatemáticas.eu Pedro Castro Ortega materiales de matemáticas
º ESO 1. Expresiones algebraicas En matemáticas es muy común utilizar letras para expresar un resultado general. Por ejemplo, el área de un b h triángulo es base por altura dividido por dos y se expresa
Ecuaciones de primer grado
i Ecuaciones de primer grado M. Dolores Guadalupe Duarte Marinas José Navarro Cáceres e-lectolibris 18 de febrero de 2014 Ecuaciones de primer grado Considera la siguiente expresión: 2x + 1 = 7, observa
Bloque 1. Aritmética y Álgebra
Bloque 1. Aritmética y Álgebra Los números naturales Los números naturales Los números naturales se definen como: N = { 0,1, 2, 3, 4, 5,...,64, 65, 66,...,1639,1640,1641,1642,... } El sistema de numeración
Concepto de fracción. Unidad fraccionaria. Concepto de fracción. Representación de fracciones
Unidad fraccionaria Concepto de fracción La unidad fraccionaria es cada una de las partes que se obtienen al dividir la unidad en n partes iguales. Concepto de fracción Una fracción es el cociente de dos
Nos organizamos para leer obras interesantes
QUINTO Grado - Unidad 2 - Sesión 06 Nos organizamos para leer obras interesantes En esta sesión los niños y las niñas aprenderán a resolver problemas usando estrategias de cálculo de divisiónes con divisor
Fracciones y números mixtos
Fracciones y números mixtos Un número mixto está formado por un número natural y una fracción. Todas las fracciones mayores que la unidad que no son equivalentes a un número natural se pueden expresar
2 Escribe con cifras. 3 Cuál es el valor de la cifra 4 en estos números?: 4 Escribe el signo > o <, según corresponda.
PREPARO MAT. 6º Nuestro sistema de numeración Agrupamos de diez en diez MILLONES DMM UMM 4 CM MILLARES DM UM 6 0 0 C UNIDADES D U 3 6 8 El número 4 600 368 se lee: «Cuatro millones seiscientos mil trescientos
OBJETIVO 1 CONOCER LA ESTRUCTURA DEL SISTEMA DE NUMERACIÓN DECIMAL NOMBRE: CURSO: FECHA: Unidad de millar. Decena de millar
OBJETIVO CONOCER LA ESTRUCTURA DEL SISTEMA DE NUMERACIÓN DECIMAL NOMBRE: CURSO: ECHA: El sistema de numeración decimal tiene dos características:. a Es decimal: 0 unidades de un orden forman unidad del
UNIDAD DE APRENDIZAJE I
UNIDAD DE APRENDIZAJE I Saberes procedimentales Interpreta y utiliza correctamente el lenguaje simbólico para el manejo de expresiones algebraicas. 2. Identifica operaciones básicas con expresiones algebraicas.
Fracciones. Contenidos. Objetivos. 1. Fracciones Fracciones Equivalentes Simplificación de Fracciones
Fracciones Contenidos 1. Fracciones Fracciones Equivalentes Simplificación de Fracciones 2. Fracciones con igual denominador Reducción a común denominador Comparación de fracciones 3. Operaciones con fracciones
