DIVISIBILIDAD CIENTÍFICO, MAT. 2
|
|
|
- Javier Parra Pérez
- hace 7 años
- Vistas:
Transcripción
1 DIVISIBILIDAD CIENTÍFICO, MAT. 2 DIVISIÓN ENTERA Dados an, bn, b 0, existen y son únicos los números naturales q y r tales 1) q + r que: 2) r b a = dividendo b = divisor q = cociente r = resto Ejercicio 1 Completa los siguientes esquemas de división entera discutiendo el número de soluciones: Ejercicio 2 Completa los siguientes esquemas de división entera, sabiendo que: a 5 1 q a) a b) a c) 3a 5 d) 4a Ejercicio 3 Halla un número natural que dividido por 6 da cociente q sabiendo que q dividido 7 da cociente 14 y que el resto en ambas divisiones es igual a 5. Ejercicio 4 Determina a y b naturales, b 0 sabiendo que: a) a + b = 11 b) a b = 8 c) a b = Ejercicio 5 Determina los naturales que divididos por 25 dan cociente q y resto q 2. Ejercicio 6 Determina todos los b y r naturales que cumplen las siguientes condiciones: Ejercicio 7 Determina a, q y r naturales que cumplan: 2 q a r q a + 33 b r q + 3 4a 121 r q 1 Ejercicio 8 Se sabe que: a 7 3 q 1 1 q 2 Determina los restos que se obtienen al dividir por 7: a + b, 5a b, a 2, b 2. DIVISIBILIDAD 2018 LICEO 10 1
2 DIVISORES Y MÚLTIPLOS En el caso en que r = 0 a = b q, existe división exacta de a entre b. Se dice entonces que: a es divisible entre b, que a es múltiplo de b ( a = b ), que b divide a a (b a) o que b es divisor de a. Notaciones: a = b q b a (b divide a) a = b (a es múltiplo de b). d(a) = {xn / x a} (conjunto de divisores de a). m(a) = {xn * / x = a } (conjunto de múltiplos, no nulos, de a). Ejercicio 9 Dado A = {25, 42, 1, 78, 45, 21, 7, 4, 3, 9, 5, 0}. a) Determina los elementos de A que sean múltiplos de 3, de 7, de 5, de 1. b) Determina los elementos de A que sean divisores de 42, de 78, de 45, de 21. Observaciones: Cuando decimos b a o a = b está implícito que b 0. El número 1 es el único divisor de todos los números. Todo natural distinto de cero es divisor de si mismo. El cero no es divisor de ningún número natural. 0 es múltiplo de todos los números. 1 solamente es múltiplo de sí mismo. Ejercicio 10 Sean an y bn. Analiza si las siguientes afirmaciones son verdaderas o falsas. En caso de falsedad, demuéstrala con un ejemplo. a) a = 4 a + b = 4 e) a = 4 y a + b = 4 b = 4 b) a + b = 4 a = 4 o b = 4 c) a = 4 y b = 4 a + b = 4 d) a b, a = 4 y b = 4 a b = 4 Teorema 1 1) a c c b c 1) 2) a=c b=c a=c x b=c y 2) f) a = 4 a b = 4 g) a b = 4 a = 4 o b = 4 a b a c a b c b c a+b=c x+c y = c (x+y) a+b=c distributiva a=c a=c x a b=c x c y = c (x y) distributiva =c b=c b=c y a b c x c y x y DIVISIBILIDAD 2018 LICEO 10 2
3 Ejercicio 11 Demuestra las siguientes propiedades: a) a c, a b c b c b) a c a b c c) a b y b c a c d) x y, y 0 x y Ejercicio 12 Sean a = y b= a) Indica (sin calcular a ) 6 divisores de a. b) Indica (sin calcular b ) 6 divisores de b. c) Indica (sin calcular a y b ) 3 divisores a + b. Ejercicio 13 Sean a = y a + b= a) Indica (sin calcular b ) 3 divisores de b. b) Explica por qué b no es múltiplo de 11. Ejercicio 14 Sean a = y 11 a + b= Explica por qué b es múltiplo de 11. Ejercicio 15 Demuestra usando propiedades: a) La suma de dos números a y b, ambos pares o ambos impares, es un número par. b) La suma de dos números impares consecutivos es múltiplo de 4. c) La suma de tres números impares consecutivos es divisible por 3, pero no por 6. Ejercicio 16 Demuestra que las siguientes afirmaciones son falsas dando un contraejemplo para cada una: a) si a bc a b o a c b) si a (b + c) a b o a c c) si a b y c b a c b d) si n 1 = a n =(a 1) Ejercicio 17 Se sabe que m n = p, (m + 6) (n + 6) = p Determina todos los posibles valores de m y n, sabiendo además que m es múltiplo de n. Ejercicio 18 Demuestra: a) abc (a b c) 9 b) abcd dcba 11 c) a0000 a 11 d) aabb 11 e) a b 7 aba 7 f) a + c + e b d = 11 abcde 11 DIVISIBILIDAD 2018 LICEO 10 3
4 MÁXIMO COMÚN DIVISOR Dados an * y bn * llamamos máximo común divisor de a y b (D(a, b) o MCD(a, b)) al máximo del conjunto de sus divisores comunes. En símbolos: D(a, b) = máx[d(a)d(b)]. Observación: Si b = 0 D(a, b) = D(a, 0) = a pues d(0) = N * Ejemplo Busquemos el D(90, 24): d(90) = {1, 2, 3, 5, 6, 9, 10, 15, 18, 30, 45, 90} D(90, 24) 6 d(24) = {1, 2, 3, 4, 6, 8, 12, 24} Teorema 2 Si r es el resto de dividir a por b, b 0 d(a)d(b) = d(b)d(r). Corolario Si r es el resto de dividir a entre b, b 0 D(a, b) = D(b, r) d(a) d(b)=d(b) d(r) máx[d(a) d(b)]=máx[d(b) d(r)] D(a, b) = D(b, r) Algoritmo de Euclides Otra forma de hallar el D(90, 24) es la siguiente: Se divide el mayor entre el menor: Por lo demostrado anteriormente: D(90, 24) = D(24, 18) Se repite el procedimiento: Por lo demostrado: D(90, 24) = D(24, 18) = D(18, 6) Se repite el procedimiento: Por lo demostrado: D(90, 24) = D(24, 18) = D(18, 6) = D(6, 0) = 6 Para facilitar los cálculos se usa esta disposición llamada Algoritmo de Euclides: Ejercicio 19 Halla: D(3675, 504) y D(18144, 900). DIVISIBILIDAD 2018 LICEO 10 4
5 Ejercicio 20 Calcula a y b en cada caso: a) D 0 Sabiendo además que: b + D = 85 b) 8c c/5 c 54 0 Sabiendo además que: b + 1 = 65c Ejercicio 21 Utilizando el algoritmo de Euclides, calcula: a) D(n, n + 1) b) D(2n, 2n + 2) Teorema 3 D(a, b)=d D a y D b D d(a) D a D(a, b) máx[d(a) d(b)] D D [d(a) d(b)] D d(b) D b Corolario: 1)D a y D b D(a, b)=d 2)Si x a y x b x D (Lo admitimos) Lema Si q y r son cociente y resto de dividir a entre b (b 0) y x 0, entonces q y r x son cociente y resto de dividir a x entre b x. Teorema 4 Si x 0, D(a, b) = D D(a x, b x) = D x (Lo admitimos) Corolario: Si x a, x b y D(a, b) = D D(a/x, b/x) = D/x (Lo admitimos) DIVISIBILIDAD 2018 LICEO 10 5
Olimpiada de Matemáticas en Chiapas
UNIVERSIDAD AUTÓNOMA DE CHIAPAS FACULTAD DE CIENCIAS EN FÍSICA Y MATEMÁTICAS Divisibilidad, MCD, MCM, Primos y TFA Olimpiada de Matemáticas en Chiapas Julio del 2018 Divisibilidad El conjunto de los números
ALGEBRA I - Práctica N 4 (Primera parte) - Primer cuatrimestre de Números enteros
ALGEBRA I - Práctica N 4 (Primera parte) - Primer cuatrimestre de 2002 Números enteros Ejercicio. Dados a, b y c números enteros, decidir cuáles de las siguientes afirmaciones son verdaderas y cuáles son
Gu ıa Departamento. Matem aticas U.V.
Universidad de Valparaíso Instituto de Matemáticas 1. Determinar el cociente y el residuo de 541 y de -541al dividir por 17 391 y -391 al dividir por 17 Guía de Teoría de Números 2. Sea a Z,n N comparar
Propiedades de números enteros (lista de problemas para examen)
Propiedades de números enteros (lista de problemas para examen) Denotamos por Z al conjunto de los números enteros y por N al conjunto de los números enteros positivos: N = 1, 2, 3,...}. Valor absoluto
(1)Factores, Múltiplos y Divisores. (2) Números compuestos y primos
4.1-4.2 (1)Factores, Múltiplos y Divisores (2) Números compuestos y primos Factorización Cuando escribimos 12 = 6 x 2 decimos que 6 x 2 corresponde a una factorización de 12. Existen otras factorizaciones
Relaciones de orden. Definición 1. Llamamos conjunto ordenado a un par (E, ) donde E es un conjunto y es un orden definido en E
Relaciones de orden Diremos que una relación R es de orden si verifica las propiedades reflexiva, antisimétrica y transitiva. Generalmente usaremos la notación en lugar de R para expresar relaciones de
Álgebra I Práctica 3 - Números enteros (Parte 1)
Divisibilidad Álgebra I Práctica 3 - Números enteros (Parte 1 1. Decidir cuáles de las siguientes afirmaciones son verdaderas para todo a, b, c Z i a b c a c y b c, ii 4 a a, iii a b a ó b, iv 9 a b 9
TRABAJO PRÁCTICO Nº 4: POLINOMIOS
TRABAJO PRÁCTICO Nº : POLINOMIOS EJERCICIOS A DESARROLLAR Clase ) Dados los polinomios reales P(x) =.x ; Q(x) = 3x3 x + y los polinomios complejos R(x) = i.x ; S(x) = x + ( + i).x i, calcular: a) 3x. P(x)
Aritmética Entera MATEMÁTICA DISCRETA I. F. Informática. UPM. MATEMÁTICA DISCRETA I () Aritmética Entera F. Informática.
Aritmética Entera MATEMÁTICA DISCRETA I F. Informática. UPM MATEMÁTICA DISCRETA I () Aritmética Entera F. Informática. UPM 1 / 18 Estructura de los números enteros Estructura de los números enteros Definición
DIVISIBILIDAD: Resultados
DIVISIBILIDAD: Resultados Página 1 de 9 Se enumeran a continuación, como referencia, ciertos resultados sobre divisibilidad. 1.1 Definición. Dados los enteros a y b, se dice que a divide a b (Notación:
EJERCICIOS DE POLINOMIOS
EJERCICIOS DE POLINOMIOS NOMBRE:... Nº:... º....- Escribe el grado, el número de términos y el nombre (monomio, binomio, trinomio, polinomio) que recibe cada una de las siguientes expresiones algebraicas:
Capítulo 4: Polinomios
Capítulo 4: Polinomios Miguel Ángel Olalla Acosta [email protected] Departamento de Álgebra Universidad de Sevilla Diciembre de 2017 Olalla (Universidad de Sevilla) Capítulo 4: Polinomios Diciembre de
Ejercicio 1 Completa: Monomio Coeficiente Parte literal Grado
Soluciones a los ejercicios de Álgebra, primera parte: Ejercicio 1 Completa: Monomio Coeficiente Parte literal Grado 3xz 3 xz 3 1x zy 1 4 abc 1 5 x 5 3 x zy 6 4 abc 6 x 1 Ejercicio Halla el valor numérico
Plan de Animación para la enseñanza de las Matemáticas
DIVISIBILIDAD NUMERICA Criterios de divisibilidad por 2, 3 y 5 (5 y 6 grado de primaria y educación media general) Los criterios o caracteres de divisibilidad son ciertas señales de los números que nos
Tarea 2 de Álgebra Superior II
Tarea 2 de Álgebra Superior II Divisibilidad 1. Sean a, b, c, d Z. Determine si los siguientes enunciados son verdaderos o falsos. Si son verdaderos, probar el resultado, y si son falsos, dar un contraejemplo.
Lección 4: RELACIÓN DE DIVISIBILIDAD
Lección 4: RELACIÓN DE DIVISIBILIDAD 1.- RELACIÓN DE DIVISIBILIDAD. MÚLTIPLOS Y DIVISORES La divisibilidad es la relación que hay entre dos números cuando uno de ellos, el mayor, contiene una cantidad
Lección 4: RELACIÓN DE DIVISIBILIDAD
Lección 4: RELACIÓN DE DIVISIBILIDAD 1.- RELACIÓN DE DIVISIBILIDAD. MÚLTIPLOS Y DIVISORES La divisibilidad es la relación que hay entre dos números cuando uno de ellos, el mayor, contiene una cantidad
Preguntas propuestas. Aptitud Académica Matemática Cultura General Ciencias Naturales
Preguntas propuestas 3 2015 Aptitud Académica Matemática Cultura General Ciencias Naturales NIVEL BÁSICO Divisibilidad I 1. Cuántos múltiplos de 3 hay en 1; 2; 3; 4; 5;...; 284? A) 90 B) 91 C) 92 D) 93
Ejemplos: a) 15 si es múltiplo de 5 ; 15 si contiene a 5 tres veces. b) 20 no es múltiplo de 7 ; 20 no contiene a 7 un número entero de veces.
Clase-02 Continuación Números Naturales: Múltiplos: Si n IN ; múltiplo de un número n es todo número natural que contiene a n un número entero de veces. Ejemplos: a) 15 si es múltiplo de 5 ; 15 si contiene
Polinomios y fracciones algebraicas. Resolución de ecuaciones polinómicas y racionales.
Polinomios y fracciones algebraicas. Resolución de ecuaciones polinómicas y racionales. Índice de contenido Polinomios y fracciones algebraicas: nociones básicas...2 Qué es y qué no es un polinomio...2
Ejercicios de Álgebra Básica. Curso 2015/16
Ejercicios de Álgebra Básica. Curso 2015/16 Tema 3: El anillo de los números enteros Divisibilidad en Z Ejercicio 1. Probar que para todo número n, n y n + 1 son primos entre sí. Ejercicio 2. Probar que
Polinomios. Polinomios.
Definición: Llamamos polinomio a una expresión del tipo: P(x)=a n x n +...+a 2 x 2 + a x+a 0 Donde a ii es un número real para todo valor natural de i. Llamaremos: a los a i coeficientes del polinomio
Teoría de Números. Divisibilidad. Olimpiada de Matemáticas en Tamaulipas
Teoría de Números Divisibilidad Olimpiada de Matemáticas en Tamaulipas 1. Introducción Divisibilidad es una herramienta de la aritmética que nos permite conocer un poco más la naturaleza de un número,
Continuación Números Naturales:
Continuación Números Naturales: Múltiplos y divisores de un número natural. Reglas de divisibilidad. Mínimo común múltiplo y Máximo común divisor. Ejercicios de aplicación. Continuación Números Naturales:
Preguntas propuestas. Aptitud Académica Matemática Cultura General Ciencias Naturales
Preguntas propuestas 4 2015 Aptitud Académica Matemática Cultura General Ciencias Naturales NIVEL BÁSICO Clasificación de los Z + III 1. Si 4 2n tiene 81 divisores, halle el valor de n. A) 20 B) 10 C)
Capítulo I ELEMENTOS PREVIOS
Capítulo I ELEMENTOS PREVIOS Antes de iniciar lo referente a Criterios de Divisibilidad, recordaremos algunos conceptos y propiedades previas que nos permitirán comprender de mejor manera el contenido
Ejercicios del tema 7
U N I V E R S I D A D D E M U R C I A Ejercicios del tema 7 DEPARTAMENTO DE MATEMÁTICAS CONJUNTOS Y NÚMEROS 2013/2014. Ejercicios de aritmética y congruencias 1. Un amigo le pregunta a otro: Cuántos hijos
EXPRESIONES ALGEBRAICAS
EXPRESIONES ALGEBRAICAS. Calcula el valor numérico de las siguientes expresiones para los valores que se indican: a) x + y para x=, y= a b para a=, b= ( x)( ) x x para x= 0. d) π r para r=, r= 0, r= 00
División algebraica I (Método de Horner)
División algebraica I (Método de Horner) División por Horner: División no algebraica de polinomios Esta división exige condiciones especiales: a. Aplicamos el método de Horner con el ordenamiento de los
gr(p(x)) = n = deg(p(x)), cuando a n 0. El conjunto de todos los polinomios con coeficiente en K lo denotamos por K[x]
Capítulo 5 Polinomios Definición 22 Sea K igual a Z,Q,R,C, un polinomio en la variable x con coeficientes en K es una expresión de la forma p(x) = a n x n +a n 1 x n 1 + +a 1 x+a 0, donde a i con i desde
Ejercicios... Julio Yarasca
Ejercicios... Julio Yarasca 4 de junio de 2015 Capítulo 1 Productos Notables 1.1. Teoría Tenemos los siguientes productos notables 1. Binomio al cuadrado 2. Identidades de Lagrange 3. Diferencia de Cuadrados
Introducción a la Teoría de Números
Introducción a la Teoría de Números Elaborado por: Jeff Maynard Guillén Eliminatoria II Julio, 2011 Introducción a la Teoría de Números A manera de repaso vamos a recordar algunos conjuntos N = {1, 2,
1. NÚMEROS PRIMOS Y COMPUESTOS.
. NÚMEROS PRIMOS Y COMPUESTOS. De acuerdo a las propiedades ya vistas de los divisores, sabemos que: todo natural no nulo es divisor de sí mismo es divisor de todo número natural. Ahora: el natural tiene
RECONOCER EL GRADO, EL TÉRMINO Y LOS COEFICIENTES DE UN POLINOMIO
OBJETIVO RECONOCER EL GRADO, EL TÉRMINO Y LOS COEICIENTES DE UN POLINOMIO NOMBRE: CURSO: ECHA: Un polinomio es una expresión algebraica formada por la suma de monomios, que son los términos del polinomio.
Sección III CRITERIOS DE DIVISIBILIDAD I (Criterios Habituales)
Sección III CRITERIOS DE I (Criterios Habituales) Las reglas de divisibilidad son criterios que sirven para saber si un número es divisible por otro sin necesidad de realizar la división. Llamaremos criterio
MÚLTIPLOS, DIVISORES Y DIVISIBILIDAD
MÚLTIPLOS, DIVISORES Y DIVISIBILIDAD 1 DIVISIBILIDAD La divisibilidad es una parte de la teoría de los números que analiza cada una de las condiciones que debe tener un número para que sea divisible por
6. Usa el teorema del resto para comprobar si los siguientes polinomios son divisibles por (x 2)
1. Halla el cociente y el resto de la división: (3x 2 7x + 5) : (x 2 ) 2. Halla el cociente y el resto de la división: (x 3 3x 2 2) : (x 2 + 1) 3. Calcula y simplifica: a) 3x(x + 7) 2 + (2x 1)( 3x + 2)
Números Enteros. Introducción
Números Enteros Introducción Todos los conjuntos de números fueron de alguna manera "descubiertos" o sugeridos en conexión con problemas planteados en problemas físicos o en el seno de la matemática elemental
ARITMÉTICA ENTERA LOS NÚMEROS ENTEROS. = {..., n,..., 3, 2, 1, 0, 1, 2, 3,..., n,...} (Zahlen, en alemán, números)
LOS NÚMEROS ENTEROS ARITMÉTICA ENTERA = {..., n,..., 3, 2, 1, 0, 1, 2, 3,..., n,...} (Zahlen, en alemán, números) Recordamos la estructura de sus propiedades aritméticas la relación de orden usual, compatible
1º FORMA DE RESOLVER EL PROBLEMA: 112*57=6384 KILOS AHORRADOS
4.- Unos granjeros almacenaron heno para 57 días, pero como el heno era de mejor calidad de lo que pensaban, ahorraron 112 kg. por día, con lo que tuvieron heno para 73 días. Cuántos kilos de heno almacenaron?
TEMA 2: DIVISIBILIDAD
TEMA 2: DIVISIBILIDAD Conceptos de múltiplo y divisor (ejemplos): Del 2 2,4,6,8,10,12,14,16, Del 3 3,6,9,12,15,18,21,24, Por ejemplo: Diremos que 8 es múltiplo de 2 o que 2 es divisor de 8 Conceptos de
Multiplicación División
Aritmética CAPÍTULO V Multiplicación División 01. Calcule m + n + p + r, si mnpr 27 tiene como suma de sus productos parciales 3946. A) 13 B) 15 C) 16 D) 12 E) 11 02. En una multiplicación al multiplicando
Clase 1: Divisibilidad
Clase 1: Divisibilidad Dr. Daniel A. Jaume, * 5 de agosto de 2011 1. Enteros y el principio del buen orden El conjunto de los números enteros será denotado por Z. Z = {..., 3, 2, 1, 0, 1, 2, 3,...} A los
Clase 2: Algoritmo de Euclídes
Clase 2: Algoritmo de Euclídes Dr. Daniel A. Jaume, * 8 de agosto de 2011 1. Máximo común divisor Para entender que es el máximo común divisor de un par de enteros (no simultáneamente nulos). Lidearemos
Capítulo 4: Polinomios
Capítulo 4: Polinomios Miguel Ángel Olalla Acosta [email protected] Departamento de Álgebra Universidad de Sevilla Diciembre de 2015 Olalla (Universidad de Sevilla) Capítulo 4: Polinomios Diciembre de
TRABAJO PRÁCTICO Nº 4 FUNCIONES POLINÓMICAS
TRABAJO PRÁCTICO Nº 4 FUNCIONES POLINÓMICAS En este eje intentaremos continuar desarrollando en los estudiantes la competencia básica de Resolución de Problemas y además las siguientes competencias específicas
OLIMPIADA COSTARRICENSE DE MATEMÁTICA UNA - UCR - TEC - UNED - MEP - MICIT. Teoría de Números. II Nivel I Eliminatoria
OLIMPIADA COSTARRICENSE DE MATEMÁTICA UNA - UCR - TEC - UNED - MEP - MICIT Teoría de Números II Nivel I Eliminatoria Abril, 2015 Índice 1. Presentación 2 2. Temario 2 3. Divisibilidad 2 4. Algoritmo de
DIVISIBILIDAD NÚMEROS NATURALES
DIVISIBILIDAD NÚMEROS NATURALES MÚLTIPLOS Un número a es múltiplo de otro b cuando es el resultado de multiplicarlo por otro número c. a = b c Ejemplo: 12 es múltiplo de 2, ya que resulta de multiplicar
Introducción a la Matemática Discreta
Introducción a la Matemática Discreta Aritmética Entera Luisa María Camacho Camacho Introd. a la Matemática Discreta 1 / 36 Introducción a la Matemática Discreta Temario Tema 1. Teoría de Conjuntos. Tema
TRABAJO PRÁCTICO Nº 2
TRABAJO PRÁCTICO Nº EXPRESIONES ALGEBRAICAS Objetivos: Identificar epresiones algebraicas de las no algebraicas. Reconocer los diferentes tipos de epresiones algebraicas. Establecer qué tipo de epresiones
2. Calcula cociente y resto en la siguiente división de polinomios: (x 5 32) : (x 1)
1. Un polinomio con raíces únicas 1, 0, 2, 2, 3 es: a) x 4 + 4x 3 + x 2 6x b) x 4 + 6x 3 + 9x 2 4x 12 c) x 5 6x 4 + 9x 3 + 4x 2 12x d) x 5 + 6x 4 + 9x 3 4x 2 12x e) x 4 4x 3 + x 2 + 6x 2. Calcula cociente
Tema 3: Multiplicación y división.
Tema 3: Multiplicación y división. SELECCIÓN DE EJERCICIOS RESUELTOS 2. Determina el menor número natural que multiplicado por 7 nos da un número natural que se escribe usando únicamente la cifra 1. Y
TALLER DE MATEMÁTICAS NOTAS. Toda expresión algebraica del tipo. a n x n + a n 1 x n a 1 x + a 0. es un polinomio de grado n, si a n 0.
NOTAS Toda expresión algebraica del tipo es un polinomio de grado n, si a n 0. a n x n + a n 1 x n 1 +... + a 1 x + a 0 RELACIONES DE DIVISIBILIDAD 1) x n a n = (x a)(x n 1 + ax n 2 + a 2 x n 3 +... +
EXPRESIÓN ALGEBRAICA Monomios, Polinomios
EXPRESIÓN ALGEBRAICA Monomios, Polinomios CPR. JORGE JUAN Xuvia-Narón Se denomina expresión algebraica a toda combinación de números reales y letras ligadas por las operaciones aritméticas de, adición,
Aritmética. 7. Si MCD(a; ab)=b, cuántos valores toma ab? 8. Si el MCD(abaa; ac(a 1)(a+2))=28, además MCM(abaa; ac(a 1)(a+2))=...
MCD - MCM I 1. Si MCD(360; abc)=18, calcule la cantidad de los posibles valores que toma abc. A) 18 B) 16 C) 20 D) 21 E) 30 2. Se cumple que MCD(k 2 ; mn)=16 y MCM(k 2 ; mn)=a9(a+1) Halle el valor de k+m+n.
CONJUNTOS CIENTÍFICO, MAT. 2
CONJUNTOS CIENTÍFICO, MAT. 2 PRIMERAS NOCIONES Conceptos primitivos: Conjunto y elemento de un conjunto. Formas de determinar un conjunto: 1) Decimos que un conjunto está determinado por extensión cuando
TEMA 6: DIVISIÓN DE POLINOMIOS RAÍCES MATEMÁTICAS 3º ESO
TEMA 6: DIVISIÓN DE POLINOMIOS RAÍCES MATEMÁTICAS 3º ESO 1. División de polinomios Dados dos polinomios P (el dividendo) y D (el divisor), dividir P entre D es encontrar dos polinomios Q (el cociente)
Polinomios (lista de problemas para examen)
Polinomios (lista de problemas para examen) En esta lista de problemas el conjunto de los polinomios de una variable con coeficientes complejos se denota por P(C). También se usa la notación C[x], si la
TEMA 2. POLINOMIOS Y FRACCIONES ALGEBRAICAS
TEMA. POLINOMIOS Y FRACCIONES ALGEBRAICAS.. Repaso de polinomios - Epresión algebraica. Valor numérico - Polinomios. Operaciones con polinomios.. Identidades notables - Cuadrado de una suma de una diferencia
UNIVERSIDAD MARIANA PROGRAMA DE INGENIERÍA AMBIENTAL PRECALCULO TALLER I. e) A c f) B c g) (A B)c
UNIVERSIDAD MARIANA PROGRAMA DE INGENIERÍA AMBIENTAL PRECALCULO TALLER I Raúl Córdoba. Sean U = {,,,,,6,7,8,9,0}, A = {,,,,} y B = {,,6,8,0}. Determinar los siguientes conjuntos. a A B b A B c A B d B
VALOR NUMÉRICO DE UNA EXPRESIÓN ALGEBRAICA. 1. Calcula el valor numérico de las siguientes expresiones para los valores que se indican: (Sol: 5x
Boletín Epresiones algebraicas VALOR NUMÉRICO DE UNA EXPRESIÓN ALGEBRAICA.. Calcula el valor numérico de las siguientes epresiones para los valores que se indican para, 5 (Sol 9) a b para a 5, b 5 (Sol
5 REPASO Y APOYO OBJETIVO 1
5 REPASO Y APOYO OBJETIVO 1 RECONOCER EL GRADO, LOS TÉRMINOS Y EL TÉRMINO INDEPENDIENTE DE UN POLINOMIO Nombre: Curso: echa: Un monomio es una expresión algebraica formada por el producto de un número,
ACTIVIDADES POLINOMIOS
ACTIVIDADES POLINOMIOS 1. Indica cuáles de las siguientes expresiones algebraicas corresponden a polinomios. Justifica tu respuesta. a) ( ) = 5 + 4 6,1234 + 0,000017 13 b) ( ) = 3 6 + 26 c) ( ) = 6 13
Semejanza. Razones. Teorema de Thales. Proporciones. a = b. c d
Semejanza Razones Razones y proporciones Teorema de Thales Triángulos semejantes Teoremas de semejanza Teoremas de Euclides Perímetro y Área a) Razón. Es el cuociente entre dos números (positivos). b)
Criterios de divisibilidad
ENCUENTRO # 2 TEMA: Criterios de Divisibilidad. CONTENIDOS: 1. Criterios de divisibilidad, múltiplos y divisores de un número dado. 2. Principios Fundamentales de la Divisibilidad. DESARROLLO Criterios
CURSO DE MATEMÁTICA BÁSICA: ÁLGEBRA
http:/// CURSO DE MATEMÁTICA BÁSICA: ÁLGEBRA DESARROLLA EN FORMA RESUMIDA CADA UNIDAD CON: I. GUIONES DE CONFERENCIAS II. FICHAS DE ESTUDIO III. LABORATORIOS DE EJERCICIOS Trata las unidades siguientes:
INSTITUTO DE FORMACIÓN DOCENTE DE CANELONES DIVISIBILIDAD
DIVISIBILIDAD Definición de múltiplo Dados los números naturales a y b, se dice que a es múltiplo de b, si y solo si existe un número natural c, único, tal que a = b.c El número c se dice que es el cociente
Indica el coeficiente, parte literal y grado de estos monomios.
Polinomios EJERCICIOS 001 Indica el coeficiente, parte literal y grado de estos monomios. a) y z 4 b) 5b c c) 15 y d) y 5 a) Coeficiente: Parte literal: y z 4 Grado: + + 4 9 b) Coeficiente: 5 Parte literal:
Unidad didáctica 1. Operaciones básicas con números enteros
Unidad didáctica 1 Operaciones básicas con números enteros 1.- Representación y ordenación de números enteros. Para representar números enteros en una recta hay que seguir estos pasos: a) Se dibuja una
Contenido Objetivos División Sintética de Polinomios. Carlos A. Rivera-Morales. Precálculo II
Carlos A. Rivera-Morales Precálculo II Tabla de Contenido 1 2 : Discutiremos: cómo llevar a cabo el proceso de división sintética de polinomios en una variable real : Discutiremos: cómo llevar a cabo el
Polinomios y fracciones algebraicas
Polinomios y fracciones algebraicas LITERATURA Y MATEMÁTICAS La máquina de leer los pensamientos Dumoulin, conoce usted al profesor Windbag? Vagamente... Sólo le vi el día que le devolvimos la visita...
Aritmética Entera y Modular.
Tema 5 Aritmética Entera y Modular. 5.1 Divisibilidad en Z. Definición 1. Si a, b Z, a 0, se dice que a divide a b, y se indica por a b, si existe k Z, tal que b = ak. También se dice que a es un divisor
EJE N 3 : ECUACION LINEAL, CUADRATICA Y SISTEMA DE ECUACIONES
TALLER DE INGRESO 018 EJE N : ECUACION LINEAL, CUADRATICA Y SISTEMA DE ECUACIONES ECUACIONES DE PRIMER GRADO CON UNA INCÓGNITA 1) Halla el valor de x a) b) c) d) e) f) g) h) i) j) k) l) m) n) ) Resolver
5 DIVISIÓN DE POLINOMIOS. RAÍCES
AMPLIACIÓN 5.74 Halla los valores que han de tomar m y n, para que el polinomio P(x) 2x 5 x 4 x 3 mx 2 nx 2 sea divisible por x 2 1. 2x 5 x 4 3x 3 (m 1mx 2 (3 )nx 2(m x 2 1 2x 5 x 3 2x 3 6x 1 2x 3 x 2
= 310 (1 + 5) : 2 2 = = = 12 ( 3) ( 5) = = 2 = ( 4) + ( 20) + 3 = = 21
Unidad I, NÚMEROS NATURALES Y ENTEROS A continuación se enuncian las claves de cada pregunta hechas por mí (César Ortiz). Con esto, asumo cualquier responsabilidad, entiéndase por si alguna solución está
MÚLTIPLOS Y DIVISORES DE UN NÚMERO (Apuntes Tema 2 y parte del Tema 3)
. Múltiplos de un número MÚLTIPLOS Y DIVISORES DE UN NÚMERO (Apuntes Tema y parte del Tema ) Un número es múltiplo de otro número cuando es el resultado de multiplicar el segundo por cualquier número natural
Polinomios (Parte 1) 1) Sean los polinomios: A(x) = 1 3 x4 +5x 10x 2 C(x) = 7x 3 -x 5-2x B(x) = -2x 3 + 2x 2-5 D(x) = -5x-x 2 +1
ESCUELAS TECNICAS ORT SEDE BELGRANO Nombre y apellido: Curso: MA Prof: Eric Lescano Polinomios (Parte Sean los polinomios: A(x) = 1 x +x 10x C(x) = 7x -x -x + 1 B(x) = -x + x - D(x) = -x-x +1 a. Indicar
Polinomios en R[x] - Función Polinómica
Polinomios en R[x] - Función Polinómica. Indicar cuáles de las siguientes expresiones son polinomios: a) A( x) = x 6x + b) B( x) = x 6x c) C( x) = x + x + x d) D( x) = + x +. Determinar el grado y el término
DIVISIÓN ENTERA. dividendo a b divisor resto r c cociente
60. a) Representá, en la recta numérica, todos los números naturales a que cumplen lo que se indica en cada caso. Marcalos con una X y escribí los números correspondientes. i. 10 a < 14 0 8 ii. 59 < a
5. Determine todos los elementos de los conjuntos: a. {m Z mn = 30, para algún n Z}
1 Ejercicios 1-1 (R = reales Q=racionales Z = enteros N = naturales) 1. Muestre que la relación D denida en R por adb a b Z es una relación de equivalencia. a. Describa los elementos en la clase de equivalencia
IV Taller de Olimpiadas Matemáticas para Profesores 2014
IV Taller de Olimpiadas Matemáticas para Profesores 204 Polinomios Jorge Tipe Villanueva. Polinomios Un polinomio es una expresión de la forma a n x n +a n x n + +a x+a 0, donde los números a i son complejos.
LOS NÚMEROS COMPLEJOS
LOS NÚMEROS COMPLEJOS Para una mirada sobre el origen y desarrollo histórico de los números complejos leer el siguiente documento páginas 8-13 CANTIDADES IMAGINARIAS Definición: Las cantidades imaginarias
Aritmética entera. AMD Grado en Ingeniería Informática. AMD Grado en Ingeniería Informática (UM) Aritmética entera 1 / 15
Aritmética entera AMD Grado en Ingeniería Informática AMD Grado en Ingeniería Informática (UM) Aritmética entera 1 / 15 Objetivos Al finalizar este tema tendréis que: Calcular el máximo común divisor de
UNIDAD 2: Expresiones Algebraicas
UNIDAD : Epresiones Algebraicas Unidad Epresiones Algebraicas A - DEFINICIONES Epresión literal: Es la reunión de letras (variables) y cifras (números reales) combinados entre sí y sometidos a operaciones
Anillo de polinomios con coeficientes en un cuerpo
Capítulo 2 Anillo de polinomios con coeficientes en un cuerpo En el conjunto Z se ha visto cómo la relación ser congruente módulo m para un entero m > 1, es compatible con las operaciones suma y producto.
NÚMEROS ENTEROS. OBSERVACION: En la división se cumple la regla de los signos de la multiplicación.
NÚMEROS ENTEROS Los elementos del conjunto = {, -3,-2,-1, 0, 1, 2, } se denominan Números Enteros. OPERATORIA EN ADICIÓN Al sumar números de igual signo, se suman los valores absolutos de ellos conservando
Material de Apoyo. 1. Notación Usual. Q Los números racionales (fracciones). R Los números reales. ], a] El intervalo {x R : x a}.
Material de Apoyo 1. Notación Usual N Los números naturales {1, 2, 3,...}. Z Los enteros {..., 3, 2, 1, 0, 1, 2, 3,...}. Q Los números racionales (fracciones). R Los números reales. P Los números primos
Capítulo 3: El anillo de los números enteros
Capítulo 3: El anillo de los números enteros Miguel Ángel Olalla Acosta [email protected] Departamento de Álgebra Universidad de Sevilla Noviembre de 2016 Olalla (Universidad de Sevilla) El anillo de
Colegio San Patricio A Incorporado a la Enseñanza Oficial Fundación Educativa San Patricio
TRABAJO PRÁCTICO Nº 5. MONOMIOS Y POLINOMIOS TEORÍA Y PRÁCTICA Monomios Un monomio es una expresión algebraica formada por: - una parte numérica, llamada coeficiente, y - una parte literal, formada por
Capítulo 1 Aritmética y tecnicismo algebraico
Capítulo 1 Aritmética y tecnicismo algebraico 1) Sean las expresiones algebraicas A = a, B = (a + 5)(a 5) y C = 6a 68. a) Calcula y simplifica la expresión D = A 1 B + C. b) Factoriza la expresión D. 50
Problema 3 Sea ABC un triángulo acutángulo con circuncentro O. La recta AO corta al lado BC en D. Se sabe que OD = BD = 1 y CD = 1+
PRIMER NIVEL PRIMER DÍA Problema 1 a) Es posible dividir un cuadrado de lado 1 en 30 rectángulos de perímetro? b) Supongamos que un cuadrado de lado 1 está dividido en 5 rectángulos de perímetro p. Hallar
Definición 1.2. Sea (K, +, ) un dominio de integridad. Un polinomio de grado n sobre K es una expresión de la forma
Polinomios Definición 1.1. Un conjunto K junto con dos operaciones definidas en él que denotaremos por + : K K K : K K K para las cuales se cumplen las siguientes propiedades: Asociatividad Conmutatividad
Capítulo 4: Polinomios
Capítulo 4: Polinomios Miguel Ángel Olalla Acosta [email protected] Departamento de Álgebra Universidad de Sevilla Diciembre de 2016 Olalla (Universidad de Sevilla) Capítulo 4: Polinomios Diciembre de
