Ejercicios... Julio Yarasca
|
|
|
- María del Rosario Rico Crespo
- hace 9 años
- Vistas:
Transcripción
1 Ejercicios... Julio Yarasca 4 de junio de 2015
2 Capítulo 1 Productos Notables 1.1. Teoría Tenemos los siguientes productos notables 1. Binomio al cuadrado 2. Identidades de Lagrange 3. Diferencia de Cuadrados (a + b) 2 = a 2 + 2ab + b 2 (1.1) (a b) 2 = a 2 2ab b 2 (1.2) (a + b) 2 + (a b) 2 = 2(a 2 + b 2 ) (1.3) (a + b) 2 (a b) 2 = 4ab (1.4) (a + b)(a b) = a 2 b 2 (1.5) 4. Binomio al cubo (a + b) 3 = a 3 + 3a 2 b + 3ab 2 + b 3 = a 3 + b 3 + 3ab(a + b) (1.6) (a b) 3 = a 3 3a 2 b + 3ab 2 b 3 = a 3 b 3 3ab(a b) (1.7) 5. Suma y diferencia de cubos a 3 + b 3 = (a + b)(a 2 ab + b 2 ) (1.8) a 3 b 3 = (a b)(a 2 + ab + b 2 ) (1.9) 1
3 Problema 2 Si x + 1 x = 4, hallar: R = (x 2 + x 2 )(x 3 + x 3 ) 6. Trinomio al cuadrado (a + b + c) 2 = a 2 + b 2 + c 2 + 2(ab + bc + ac) (1.10) 7. Trinomio al cubo (a + b + c) 3 = a 3 + b 3 + c 3 + 3(a + b)(b + c)(a + c) (1.11) 8. Otras: Si a + b + c = 0, se cumple a 2 + b 2 + c 2 = 2(ab + bc + ac) (1.12) a 3 + b 3 + c 3 = 3abc (1.13) Problema 1 Si x 3 + y 3 = 20 y xy = 5, calcular : M = (x + y) 3 15(x + y) + 15 Reemplazando (x + y) 3 = x 3 + y 3 + 3xy(x + y) = (x + y) 3 = (x + y) M = (x + y) 3 15(x + y) + 15 = (x + y) 15(x + y) + 15 = 35 x + x 1 = 4 = (x + x 1 ) 2 = 16 = x 2 + 2xx 1 + x 2 = 16 x 2 + x 2 = 14 2
4 Remplazando x + x 1 = 4 = (x + x 1 ) 3 = 64 = x 3 + 3xx 1 4 (x + x 1 ) + x 3 = 16 x 3 + x = 64 x 3 + x 3 = 52 R = (x 2 + x 2 )(x 3 + x 3 ) = = 728 Problema 3 Si x + 1 x = a, hallar: U = x x 2 Por lo tanto x + x 1 = a = (x + x 1 ) 2 = a 2 = x 2 + 2xx 1 + x 2 = a 2 U = x x 2 = a2 2 x 2 + x 2 = a 2 2 Problema 4 Si ( a + 1 a) 2 = 3, hallar W = a a 3 Ahora (a + a 1 ) 2 = 3 = a 2 + 2aa 1 + a 2 = 3 = a 2 + a 2 = 1 (a + a 1 )(a 2 + a 2 ) = 3,1 a 3 + a a + a 1 = 3 a 3 + a 3 = 0 3
5 Por lo tanto W = 0 Problema 5 Si x + y + z = 1, calcular M = x3 + y 3 + z 3 1 xy + yz + zx xyz x + y + z = 1 = (x + y + z) 3 = 1 = x 3 + y 3 + z 3 + 3(x + y)(y + z)(x + z) = 1 x 3 + y 3 + z 3 + 3(x + y)(y + z)(x + z) = 1 3(x + y)(y + z)(x + z) = x 3 + y 3 + z 3 1 3(1 z)(1 x)(1 y) = x 3 + y 3 + z 3 1 Reemplazando M = x3 + y 3 + z 3 1 xy + yz + zx xyz = 3(1 z)(1 x)(1 y) xy + yz + zx xyz (1 z x + xz)(1 y) = 3 xy + yz + zx xyz 1 z x + xz y + zy + xy xyz = 3 xy + yz + zx xyz xz + zy + xy xyz = 3 xy + yz + zx xyz = 3 Problema 6 Si a + b + c = 0, reducir: W = a2 + b 2 c 2 a + b2 + c 2 a 2 b + c2 + a 2 b 2 c 4
6 Reemplazando a + b + c = 0 = a + b = c = a 2 + b 2 + 2ab = c 2 = a 2 + b 2 c 2 = 2ab a + c = b = a 2 + c 2 + 2ac = b 2 = a 2 + c 2 b 2 = 2ac b + c = a = b 2 + c 2 + 2bc = a 2 = b 2 + c 2 a 2 = 2bc W = a2 + b 2 c 2 a 2ab a + 2bc b = 2b 2c 2a = 2(a + b + c) = 0 + b2 + c 2 a 2 b + 2ac c + c2 + a 2 b 2 c Problema 7 Si b 3 1 = 0 y b 1, calcular: Q = 1 + b5 b 4 Tenemos Multiplicando por b 3 tenemos b 3 1 = 0 = (b 1)(b 2 + b + 1) = b 2 + b + 1 = 0 Por lo tanto Q = 1 b 5 + b 4 + b 3 = 0 = b 5 + b = 0 = b 4 = b = 1 + b5 b 4 = 1 Problema 8 Si a + 1 b = 1 y b + 1 c = 1, determine el valor de W = abc 5
7 Tenemos a + 1 b = 1 = ab + 1 = b b + 1 c = 1 = bc + 1 = c = bc c = 1 Entonces multiplicando por c a ab + 1 = b tenemos Por lo tanto W = 1 abc + c = bc = abc = bc c = 1 6
8 Capítulo 2 División 2.1. Teoría Recordems el algoritmo de la división D(x) = d(x)q(x) + R(x) donde D(x): dividendo d(x): divisor Q(x): cociente R(x): residuo 2.2. Problemas Problema 9 Encontrar el residuo y cociente de la siguiente división: 6x 4 7x 3 4x x 3 3x 2 + x 2 7
9 Tenemos que el dividendo y el divisor estan completos y ordenado entonces Entonces Q(x) = 2x 2 3x + 1 y R(x) = 3x Problema 10 Encuentre el cociente de dividir x 5 + 5x x x 3 + 5x + 1 x + 1 Tenemos Entonces el cociente Q(x) = x 4 + 4x 3 + 6x 2 + 4x Problema 11 El residuo de dividir: es 5x x + 7, calcular U.N.I 8x 5 + 4x 3 + Ux 2 + Nx + I 2x 3 + x
10 Utilizando el metodo de horner Entonces Por lo tanto U.N.I = U N I U 12 3 = 5 = U = 20 N + 6 = 11 = N = 5 I 9 = 7 = I = 16 Problema 12 Si la división es exacta, encontrar A + B. 6x x x 2 + Ax + B 3x 2 + 2x + 1 Utilizando el metodo de horner Entonces Por lo tanto A + B = A B A = 0 = A = 6 B + 5 = 0 = B = 5 Problema 13 Calcular el residuo de dividir (x 2 3x 1) 4 + 2(x 3) 5 + x x 4 9
11 Aplicando el teorema del resto tenemos x 4 = 0 = x = 4 Reemplazando en (x 2 3x 1) 4 + 2(x 3) 5 + x, tenemos R(x) = = 87 Problema 14 Hallar el resto de dividir (x 4) 7 + (x 5) 11 por x 2 9x Tenemos x 2 9x + 20 = (x 4)(x 5) y el resto es de la forma ax + b, entonces algoritmo de la división es Para x = 4 tenemos Para x = 5 tenemos Por lo tanto a = 2 y b = 9, el resto R(x) = 2x 9. (x 4) 7 + (x 5) 11 = Q(x)(x 4)(x 5) + ax + b 1 = 4a + b 1 = 5a + b 10
12 Capítulo 3 Cocientes Notables 3.1. Teoría Si es un cociente notable se cumple x m ± y n x a ± y b m a = n = número de términos b Sea N :número de términos, el término k-ésimo es t k = ±(x a ) N k (y b ) k Problemas Problema 15 Sea el cociente notable tiene 10 términos, hallar m + n x 30 y m x 2 y 2 11
13 Como es un cociente notable tenemos Entonces n = 3 y m = 20, la suma es 23. x 30 y m x n y 2 30 n = m 2 = 10 Problema 16 Sea el cociente notable tiene 9 términos, hallar m + n x m 2 y n+5 x 3 y 2 Como x m 2 y n+5 x 3 y 2 es un cociente notable tenemos m 2 = n + 5 = Entonces m = 29 y n = 13 por lo tanto m + n = 42. Problema 17 La siguiente división es un cociente notable x m2 +81 y 2m x 27 y 3 Hallar el número de términos de dicho cociente notable. Sea N el número de términos, tenemos N = m = 2m 3 12
14 Luego Por otro lado m = 2m 3 = m = 18m = (m 9) 2 = 0 = m = 9 N = 2m 3 = N = 6 Por lo tanto el número de términos es 6. Problema 18 Si m n = 27, y x m y n x 7 y 4 es un cociente notable, hallar el grado absoluto del sexto terminio del desarrollo. Como es un cociente notable tenemos m 7 = n 4 = m = 7n 4 Reemplazando 7n n = 27 = n = 36 4 Entonces m = 63, tambien el número de términos es 9,p por lo tanto t 6 = (x 7 ) 9 6 (y 4 ) 6 1 = x 21 y 20 13
15 Capítulo 4 MCD y MCM 4.1. Regla 1. Se factorizan los polinomios dados. 2. El MCD estará formado por la multiplicación de todos los factores primos comunes de los polinomios dados, considerados con su menor exponente. 3. El MCM está formado por la multiplicación de factores primos no comunes y comunes, a los polinomios dados, considerados con su mayor exponente. Sean p, q polinomios, se cumple MCD(p, q) MCM(p, q) = p q 4.2. Problemas Problema 19 Sean Calcular MCD, MCM M(x) = (x + 6) 2 (x + 7) 3 (x 9) 4 N(x) = (x + 10) 3 (x + 7) 2 (x + 6) 3 14
16 Tenemos MCD = (x + 6) 2 (x + 7) 2 MCM = (x + 10) 3 (x 9) 4 (x + 6) 3 (x + 7) 3 Problema 20 Sean F (x) = x 3 + x 2 + x + 1 P (x) = x 3 + 6x x + 6 Hallar el MCD. Tenemos que F ( 1) = 0 entonces (x ( 1)) es un factor de F, Entonces Ahora notemos Por lo tanto Entonces MCD = x + 1 F (x) = (x + 1)(x 2 + 1) P ( 1) = 0 P ( 2) = 0 P ( 3) = 0 P (x) = (x + 1)(x + 2)(x + 3) 15
FACTORIZACIÓN I # DE FACTORES PRIMOS POLINOMIO FACTORIZADO. multiplicación (x + 1) (x + 3) = x 2 + 4x + 3. P(x, y, z) = (x + y)(x - y)z 2 x 3
I Es el proceso que consiste en transportar un polinomio racional entero en una multiplicación de dos o mas polinomios de grados mayores o iguales a uno, llamado factores: multiplicación (x + 1) (x + 3)
FACTORIZACIÓN MÉTODO DE FACTORIZACIÓN A. FACTOR COMÚN MONOMIO
Es el proceso que consiste en transportar un polinomio racional entero en una multiplicación de dos o más polinomios de grados mayores o iguales a uno, llamado factores: multiplicación (x + 1) (x + 3)
UNIDAD DIDÁCTICA #5 CONTENIDO I. PRODUCTOS NOTABLES III. DIVISIÓN DE POLINOMIOS II. CUBO DE LA SUMA O DIFERENCIA DE DOS CANTIDADES
UNIDAD DIDÁCTICA #5 CONTENIDO I. PRODUCTOS NOTABLES II. CUBO DE LA SUMA O DIFERENCIA DE DOS CANTIDADES III. DIVISIÓN DE POLINOMIOS IV. FACTORIZACIÓN DE EXPRESIONES ALGEBRAICAS I. PRODUCTOS NOTABLES Los
Colegio San Patricio A Incorporado a la Enseñanza Oficial Fundación Educativa San Patricio
TRABAJO PRÁCTICO Nº 5. MONOMIOS Y POLINOMIOS TEORÍA Y PRÁCTICA Monomios Un monomio es una expresión algebraica formada por: - una parte numérica, llamada coeficiente, y - una parte literal, formada por
Ejercicio 1 Completa: Monomio Coeficiente Parte literal Grado
Soluciones a los ejercicios de Álgebra, primera parte: Ejercicio 1 Completa: Monomio Coeficiente Parte literal Grado 3xz 3 xz 3 1x zy 1 4 abc 1 5 x 5 3 x zy 6 4 abc 6 x 1 Ejercicio Halla el valor numérico
Coeficiente Parte literal Coeficiente Parte literal 5 x 6 am 2. El grado de un monomio es la suma de los exponentes de las letras que lo forman:
1 Monomios Un monomio es una expresión algebraica formada por: - una parte numérica, llamada coeficiente, y - una parte literal, formada por letras y sus exponentes. Coeficiente Parte literal Coeficiente
Factorización I Factor común - Identidades
Factorización I Factor común - Identidades FACTORIZACIÓN Es un proceso que consiste en escribir una expresión algebraica mediante producto de factores primos. MÉTODOS DE FACTORIZACIÓN Existen muchos métodos
EJERCICIOS DE POLINOMIOS
EJERCICIOS DE POLINOMIOS NOMBRE:... Nº:... º....- Escribe el grado, el número de términos y el nombre (monomio, binomio, trinomio, polinomio) que recibe cada una de las siguientes expresiones algebraicas:
EXPRESIÓN ALGEBRAICA Monomios, Polinomios
EXPRESIÓN ALGEBRAICA Monomios, Polinomios CPR. JORGE JUAN Xuvia-Narón Se denomina expresión algebraica a toda combinación de números reales y letras ligadas por las operaciones aritméticas de, adición,
M.C.D. - M.C.M. de polinomios
M.C.D. - M.C.M. de polinomios M.C.D. y M.C.M. de polinomios Máximo común divisor (M.C.D.) Mínimo común múltiplo (M.C.M.) Propiedades el el 1 M.C.D. de dos o más polinomios es otro polinomio que tiene la
División de polinomios
División de polinomios: Horner División de polinomios Es aquella operación algebraica que tiene como objetivo encontrar dos únicos polinomios llamados cociente entero q(x) y residuo R(x) a partir de otros
1. Sumar monomios semejantes:
HOJA 1: Monomios 1. Sumar monomios semejantes: a) 3x + 4x 5x b) 6x 3 x 3 + 3x 3 c) x 5 + 4x 5 7x 5 d) x 4 + 6x 4 + 3x 4 5x 4 e) 7x + 9x 8x + x f) y + 5y 3y g) 3x y 6x y + 5x y h) 4xy xy 7xy i) a 6 3a 6
ax 3 -bx 2 = x 2 (ax-b) 2b 5 -b 3 = b 3 (2b 2-1)
CPU Calle Mercado # 555 Teléfono 3 366191 FACTORIZACIÓN Caso I: Factor Común Cómo Reconocer: Existe un factor común en todos los términos. Los números pueden factorizarse en este caso si existe máximo
PRODUCTOS NOTABLES: son aquellas multiplicaciones algebraicas
PRODUCTOS NOTABLES: son aquellas multiplicaciones algebraicas que se resuelven siguiendo Reglas y Fórmulas específicas para cada caso y cuyo resultado puede ser escrito por simple inspección, es decir
1 Unidad II. Tópicos del algebra
Unidad II. Tópicos del algebra. Expresiones algebraicas Una expresión algebraica es una expresión matemática abstracta como 5xy 4 z 2 + 2 x2 y 0 Cada expresión algebraica está constituida por elementos
Productos Notables. Ejercicios de productos y cocientes notables. www.math.com.mx. José de Jesús Angel Angel. [email protected]
Productos Notables Ejercicios de productos y cocientes notables www.math.com.mx José de Jesús Angel Angel [email protected] MathCon c 2007-2008 Contenido 1. Introducción 2 2. El cuadrado de una suma (a
1. Sumar monomios semejantes:
FICHA 1: Monomios 1. Sumar monomios semejantes: a) 3x + 4x 5x b) 6x 3 x 3 + 3x 3 c) x 5 + 4x 5 7x 5 d) x 4 + 6x 4 + 3x 4 5x 4 e) 7x + 9x 8x + x f) y + 5y 3y g) 3x y 6x y + 5x y h) 4xy xy 7xy i) a 6 3a
2. Calcula cociente y resto en la siguiente división de polinomios: (x 5 32) : (x 1)
1. Un polinomio con raíces únicas 1, 0, 2, 2, 3 es: a) x 4 + 4x 3 + x 2 6x b) x 4 + 6x 3 + 9x 2 4x 12 c) x 5 6x 4 + 9x 3 + 4x 2 12x d) x 5 + 6x 4 + 9x 3 4x 2 12x e) x 4 4x 3 + x 2 + 6x 2. Calcula cociente
Contenido. 1. Definiciones. 2. Operaciones Algebraicas 2.1 Suma y resta 2.2 Multiplicación 2.3 Productos Notables 2.4 Factorización 2.
Contenido 1. Definiciones 1.1 Término algebraico 1.2 Expresión algebraica 1.3 términos semejantes 2. Operaciones Algebraicas 2.1 Suma y resta 2.2 Multiplicación 2.3 Productos Notables 2.4 Factorización
(a+b) (a b)=a 2 b 2 OBJETIVOS CONTENIDOS PROCEDIMIENTOS
Polinomios INTRODUCCIÓN Son múltiples los contextos en los que aparecen los polinomios: fórmulas económicas, químicas, físicas, de ahí la importancia de comprender el concepto de polinomio y otros asociados
Ejercicios de Factorización. Prof. María Peiró
Ejercicios de Factorización Prof. María Peiró Trinomio Cuadrado Perfecto Un trinomio cuadrado perfecto, es un polinomio de tres términos que resulta de elevar al cuadrado un binomio. Un trinomio será cuadrado
DESARROLLO D) 4. para a = 1 y b = 2 (a 2 + b 2 )(2a 3b 2 ) es:
ENCUENTRO # 10 TEMA:Operaciones con polinomios CONTENIDOS: 1. Multiplicación de polinomios. 2. Productos notables. DESARROLLO Ejercicio Reto x 2 1. Al racionalizar el denominador de la fracción 3 + se
SERIE INTRODUCTORIA. REPASO DE ALGEBRA.
SERIE INTRODUCTORIA. REPASO DE ALGEBRA. 1.- REDUCCION DE TÉRMINOS SEMEJANTES. Recuerde que los términos semejantes son aquellos que tienen las mismas letras con los mismos exponentes. Ejemplos: *7m; 5m
Fundación Uno A)2011 B)2012 B)2013 D)2014 E)2015. es equivalente a 12 b 7 + a 7 b 12 a 19 a 19 a 13 a 6 b 7 + a 7 b 6 b13 a: D) a8 +a 3 b 5 +b 8
ENCUENTRO # 6 TEMA:Fracciones Algebraicas CONTENIDOS:. Máximo Común Divisor 2. Mínimo Común Múltiplo 3. Simplificación de Fraciones Algebraicas 4. Suma de Fracciones Algebraicas 5. Resta de Fracciones
RECONOCER EL GRADO, EL TÉRMINO Y LOS COEFICIENTES DE UN POLINOMIO
OBJETIVO RECONOCER EL GRADO, EL TÉRMINO Y LOS COEICIENTES DE UN POLINOMIO NOMBRE: CURSO: ECHA: Un polinomio es una expresión algebraica formada por la suma de monomios, que son los términos del polinomio.
A L G E B R A. Ejercicio Signo C. numérico F. literal Grado 5,9a 2 b 3 c menos 5,9 a 2 b 3 c 2+3+1=6
CONCEPTOS BÁSICOS: A L G E B R A. Término algebraico: Un término algebraico es el producto de una o más variables y una constante literal o numérica. Ejemplos: x y ; ; m En todo término algebraico podemos
TEMA 3. POLINOMIOS Y FRACCIONES ALGEBRAICAS. Ficha 1. P x
Ficha. Dados los siguientes polinomios, ordenarlos en orden decreciente, indicar cuál es su grado, decir cuántos términos tiene, señalar cuál es el término independiente, calcular su valor numérico para
Práctica 02 Expresiones Algebraicas
Instituto Tecnológico de Costa Rica Escuela de Matemática Matemática General Práctica 0 Expresiones Algebraicas I. Determine el valor numérico de la expresión en cada caso: ) x + ax b si x =, a = y b =
Productos notables. Se les llama productos notables (también productos especiales) precisamente porque son muy utilizados en los ejercicios.
Productos notables Sabemos que se llama producto al resultado de una multiplicación. También sabemos que los valores que se multiplican se llaman factores. Se llama productos notables a ciertas expresiones
TEMA 3. POLINOMIOS Y FRACCIONES ALGEBRAICAS. Ficha 0
Ficha 0 Un monomio es una expresión algebraica formada por el producto de un número, llamado coeficiente, por una o más variables con exponente natural o cero, llamadas parte literal. El grado es la suma
1.- Sean los polinomios:
. EJERCICIOS DE POLINOMIOS 1.- Sean los polinomios: A(x) = 6x 5-4x 4-4x - x + x + 8 B(x) = 5x 5 + 4x 4 - x - x + 5x - 8 C(x) = - 8x 6 + 4x 5 + x 4 - x + 4 Hallar: 1.- A(x) + B(x).- A(x) - C(x).- A(x) -
División algebraica I (Método de Horner)
División algebraica I (Método de Horner) División por Horner: División no algebraica de polinomios Esta división exige condiciones especiales: a. Aplicamos el método de Horner con el ordenamiento de los
1 MÓDULO INSTRUCCIONAL DE MATEMÁTICAS
1 MÓDULO INSTRUCCIONAL DE MATEMÁTICAS II TRIMESTRE - UNIDAD DE APRENDIZAJE # (EXPRESIONES ALGEBRAICAS) PROFESOR: AQUILINO MIRANDA (COLEGIO DANIEL O CRESPO) LOGROS DE APRENDIZAJE Conoce el concepto de expresión
Polinomios II. I. Regla de Ruffini
Polinomios II En las matemáticas se define el polinomio como una expresión que está formada por un número finito de variables (no conocidas) y constantes (coeficientes) siendo muy utilizados en las matemáticas
TEMA 1.- POLINOMIOS Y FRACCIONES ALGEBRAICAS
TEMA 1.- POLINOMIOS Y FRACCIONES ALGEBRAICAS 1.- POLINOMIOS Recordemos que un monomio es una expresión algebraica (combinación de letras y números) en la que las únicas operaciones que aparecen entre las
6. Usa el teorema del resto para comprobar si los siguientes polinomios son divisibles por (x 2)
1. Halla el cociente y el resto de la división: (3x 2 7x + 5) : (x 2 ) 2. Halla el cociente y el resto de la división: (x 3 3x 2 2) : (x 2 + 1) 3. Calcula y simplifica: a) 3x(x + 7) 2 + (2x 1)( 3x + 2)
OPERACIONES CON MONOMIOS Y POLINOMIOS. Suma de monomios
OPERACIONES CON MONOMIOS Y POLINOMIOS Suma de monomios Sólo podemos sumar monomios semejantes. La suma de los monomios es otro monomio que tiene la misma parte literal y cuyo coeficiente es la suma de
Polinomios y Fracciones algebraicas
Polinomios y Fracciones algebraicas 1. Polinomios 1.1. Expresiones algebraicas: Polinomios y elementos de un polinomio. 1.2. Valor numérico de un polinomio. 1.3. Operaciones con polinomios: suma, resta,
M.C.D. y M.C.M. El Máximo Común Divisor (M.C.D.) El Mínimo Común Múltiplo (M.C.M.)
M.C.D. y M.C.M. Este problema, expuesto por primera vez en el siglo pasado, cuenta con la simpatía de los aficionados a los problemas matemáticos. Se trata de obtener, para toda la serie de números naturales,
PRODUCTO NOTABLE. Producto Notable
PRODUCTO NOTABLE Producto Notable Para elevar un binomio al cuadrado (es decir, multiplicarlo por sí mismo), se suman los cuadrados de cada término con el doble del producto de ellos. Es decir: Un trinomio
CONCEPTOS GENERALES SOBRE LA FACTORIZACIÓN: Qué es factorizar o factorear un polinomio?
CONCEPTOS GENERALES SOBRE LA FACTORIZACIÓN: Qué es factorizar o factorear un polinomio? Factorizar o Factorear significa "transformar en multiplicación" (o "producto", como también se le llama a la multiplicación).
POLINOMIOS OPERACIONES CON MONOMIOS
POLINOMIOS Una expresión algebraica es una combinación de letras y números, ligados por los signos de las operaciones: adición, sustracción, multiplicación, división y potenciación. Las expresiones algebraicas
Factorización de Polinomios
www.matebrunca.com Prof. Waldo Márquez González Factorización 1 Factorización de Polinomios TEMAS A EVALUAR 1. Factor Común Monomio. 2. Factor Común Polinomio. 3. Factor Común por Agrupación. 4. Diferencia
CURSO DE MATEMÁTICA BÁSICA: ÁLGEBRA
http:/// CURSO DE MATEMÁTICA BÁSICA: ÁLGEBRA DESARROLLA EN FORMA RESUMIDA CADA UNIDAD CON: I. GUIONES DE CONFERENCIAS II. FICHAS DE ESTUDIO III. LABORATORIOS DE EJERCICIOS Trata las unidades siguientes:
OPERACIONES CON POLINOMIOS
UNIDAD 4 OPERACIONES CON POLINOMIOS PROBLEMAS PROPUESTOS Objetivo general. Al terminar esta Unidad resolverás ejercicios y problemas en los que apliques las operaciones de suma, resta, multiplicación y
EJERCICIOS PROPUESTOS. Escribe las expresiones algebraicas correspondientes. a) Tres números consecutivos. b) Tres números pares consecutivos.
EJERCICIOS PROPUESTOS 4.1 Relaciona cada enunciado con su expresión algebraica. Múltiplo de 3. Número par. El cuadrado de un número más 3. Un número más 5. El triple de un número más 7. 2x x 5 3x x 2 3
EJERCICIOS PROPUESTOS. Escribe las expresiones algebraicas correspondientes. a) Tres números consecutivos. b) Tres números pares consecutivos.
EJERCICIOS PROPUESTOS 4.1 Relaciona cada enunciado con su expresión algebraica. Múltiplo de 3. Número par. El cuadrado de un número más 3. Un número más 5. El triple de un número más 7. 2x x 5 3x x 2 3
OBJETIVOS CONTENIDOS PROCEDIMIENTOS
Polinomios INTRODUCCIÓN Son múltiples los contextos en los que aparecen los polinomios: fórmulas económicas, químicas, físicas, de ahí la importancia de comprender el concepto de polinomio y otros asociados
GUIA ALGEBRA PARTE I. Ejercicios básicos de aritmética QUEBRADOS
1 GUIA ALGEBRA PARTE I Ejercicios básicos de aritmética QUEBRADOS Fracciones mixtas ejemplo 3 4/5 Una fracción mixta es un número entero y una fracción combinados, como 1 3 / 4. Fracciones propias ejemplo
POLINOMIOS. Sol: a) 19; b) 0; c) -3; d) 37; e) 3; f) 133; g) -4; h) Halla "a" para que la siguiente división sea exacta: x 5-3x 3 +ax 2-4 : x-2
POLINOMIOS 1. Si P(x)= x -x +1 y Q(x)= x -x+, opera: a) P-Q b) P+Q c) P+Q d) P.Q Sol: a) P-Q= x -6x +x-1 b) P+Q= 1x -x -6x+7 c) P+Q= x -x+ d) P.Q= 1x 5-1x +17x -x -x+. Si P(x)= x -x -x+1, Q(x)= x -x+1
BOLETÍN REPASO MATEMÁTICAS 3º ESO - 2ª PARTE
BOLETÍN REPASO MATEMÁTICAS 3º ESO - ª PARTE Una expresión algebraica es toda combinación de números y letras unidos por los signos de las operaciones aritméticas: adición, sustracción, multiplicación,
MATEMÁTICAS I MOMENTO 1 DEFINICIONES FUNDAMENTALES (REDUCCIÓN DE TERMINOS SEMEJANTES)
1 MATEMÁTICAS I MOMENTO 1 DEFINICIONES FUNDAMENTALES (REDUCCIÓN DE TERMINOS SEMEJANTES) Introducción: El alumno comprenderá qué estudia el álgebra, así como algunas definiciones importantes como son: expresión
5 EXPRESIONES ALGEBRAICAS
5 EXPRESIONES ALGEBRAICAS EJERCICIOS Si en una librería, el precio de un libro es x euros y el de cada bolígrafo es 7 menos, expresa algebraicamente lo que cuestan: a) Cuatro libros. b) Diez bolígrafos.
EXPRESIONES ALGEBRAICAS.
EXPRESIONES ALGEBRAICAS. Se dice expresión algebraica aquella que está formada por números y letras unidos mediante signos. 4x 2 + 1 2 3y Observa que existen dos variables x e y. En la siguiente expresión
A)2011 B)2012 B)2013 D)2014 E)2015. C) a5 +b 5
ENCUENTRO # 6 TEMA: Fracciones algebraicas CONTENIDOS:. Máximo común divisor 2. Mínimo común múltiplo 3. Simplificación de fracciones algebraicas 4. Suma de fracciones algebraicas 5. Resta de fracciones
Expresiones algebraicas
Polinomios Expresiones algebraicas Una expresión algebraica es cualquier combinación de números y letras relacionados por operaciones aritméticas: suma, resta, producto, división y potenciación. Ejemplos
Clase 1. Tema: Factorización algebraica, factor común. Matemáticas 8. Bimestre: III Número de clase: 1. Esta clase tiene video
Bimestre: III Número de clase: 1 Clase 1 Esta clase tiene video Tema: Factorización algebraica, factor común Actividad 1 1 Lea y analice el ejemplo. El proceso de descomponer en factores primos se llama
MATEMÁTICAS para estudiantes de primer curso de facultades y escuelas técnicas
Universidad de Cádiz Departamento de Matemáticas MATEMÁTICAS para estudiantes de primer curso de facultades y escuelas técnicas Tema 2 Polinomios y fracciones algebraicas Elaborado por la Profesora Doctora
Contenido Nº1 Factor Común Monomio
GUIA PREPARATORIA MATEMATICA UNIDAD : ALGEBRA. CONTENIDOS : Factorizaciones. NOMBRE: Fecha:.. Contenido Nº1 Factor Común Monomio I. EJERCICIOS. Halla el factor común de los siguientes ejercicios: 1) 6x
NOCIONES DE ÁLGEBRA. Autoras. Beatriz Elena Correa Restrepo Luz Elena Muñoz Sierra Celia Villegas de Arias
NOCIONES DE ÁLGEBRA Autoras Beatriz Elena Correa Restrepo Luz Elena Muñoz Sierra Celia Villegas de Arias Tabla de Contenido Lección Página 1 Terminología básica 1 Leyes de los exponentes..............................
OLIMPIADAS COSTARRICENSES DE MATEMÁTICAS
OLIMPIADAS COSTARRICENSES DE MATEMÁTICAS UNA - UCR - TEC - UNED - MEP - MICITT Álgebra e iπ + φ φ 0 III Nivel I Eliminatoria Marzo 06 Índice. Presentación. Contenidos 3. Algunos consejos útiles 4. Problemas
FACTORIZACIÓN DE POLINOMIOS GUIA DE NIVELACION 3 PERIODO
FACTORIZACIÓN DE POLINOMIOS GUIA DE NIVELACION 3 PERIODO Recuerde que: 1. Factorizar una expresión algebraica consiste en escribirla como un producto. 2. Existen varios casos de factorización. Revisemos
Apuntes de matemáticas 2º ESO Curso 2013-2014. Lenguaje algebraico.
Lenguaje algebraico. Expresiones algebraicas Trabajar en álgebra consiste en manejar relaciones numéricas en las que una o más cantidades son desconocidas. Estas cantidades se llaman variables, incógnitas
UNIDAD DOS FACTORIZACIÓN
UNIDAD DOS FACTORIZACIÓN Factorizar quiere decir descomponer en factores, los factores son divisores de una expresión que, multiplicados entre sí, dan como resultado la primera expresión. FACTOR COMÚN
I.E.S. Tierra de Ciudad Rodrigo Departamento de Matemáticas TEMA 6. POLINOMIOS
TEMA 6. POLINOMIOS Una expresión algebraica es un conjunto de letras y números unidos por los signos matemáticos. Las expresiones algebraicas surgen de traducir al lenguaje matemático enunciados en los
POLINOMIOS Y FRACCIONES ALGEBRAICAS
POLINOMIOS Y FRACCIONES ALGEBRAICAS Definición de monomio. Expresión algebraica formada por el producto de un número finito de constantes y variables con exponente natural. Al producto de las constantes
= =
FACTORIZACIÓN 31 Factorización La factorización corresponde al proceso lógico mediante el cual se expresa un objeto o número a como el producto de otros objetos o números más simples llamados factores).
Diferencia de Cuadrados: El Cuadrado del Primer Término menos El Cuadrado del Segundo Término.
Son aquellos productos que se rigen por reglas fijas y cuyo resultado puede hallarse por simple inspección. Su denominados también "Identidades Algebraicas". Son aquellos productos cuyo desarrollo es clásico
Números Naturales. Cero elemento neutro: = 12 Sucesión fundamental : se obtiene el siguiente número = 9
Números Naturales Cuando comenzamos a contar los objetos, los años, etc, nos hemos encontrado con los números de forma natural; por eso a este conjunto de números así aprendidos se les denomina números
Ejercicios de Polinomios y Fracciones Algebráicas
Matemáticas 1º Bach CCSS. Ejercicios Tema 2. Polinomios y Fracciones Algebráicas. Pág 1/12 1. Dados los polinomios: Ejercicios de Polinomios y Fracciones Algebráicas 1. P(x) = 4x 2 1 2. Q(x) = x 3 3x 2
Bloque 1. Aritmética y Álgebra
Bloque 1. Aritmética y Álgebra 10. Polinomios 1. Expresiones algebraicas Una expresión algebraica es aquella en la que se utilizan letras, números y signos de operaciones para reflejar de forma generalizada
Colegio La Salle Envigado FORMANDO EN VALORES PARA LA VIDA GUIA FACTORIZACION
GUIA FACTORIZACION Esta guía tiene como objetivo afianzar los conocimientos teórico-prácticos en los diferentes casos de factorización, para ello se darán en esta guía algunos ejercicios de factorización
Operatoria con Expresiones Algebraicas
PreUnAB Clase # 5 Julio 2014 Expresiones Algebraicas Definición Se llama expresión algebraica a un conjunto de valores constantes (2. 3, 7, etc) y valores variables (x, a, y, etc), relacionados entre sí
Operaciones con Polinomios
www.matebrunca.com Prof. Waldo Márquez González Álgebra 1 Operaciones con Polinomios TEMAS A EVALUAR Sumas y restas de monomios. Sumas de polinomios. Resta de polinomios. Eliminación de paréntesis. Multiplicaciones
Se dice que dos monomios son semejantes cuando tienen la misma parte literal
Expresiones algebraicas 1 MONOMIOS Conceptos Un monomio es una expresión algebraica en la que las únicas operaciones que aparecen entre las variables son el producto y la potencia de exponente natural.
Partes de un monomio
Monomios Un monomio es una epresión algebraica en la que la únicas operaciones que afectan a las letras son la multiplicación y la potencia de eponente natural. Son monomios: NO son monomios: 1 yz 1 abc
SOLUCIONES A LAS ACTIVIDADES DE CADA EPÍGRAFE
Pág. 1 Página 44 Conviene recordar que: V CILINDRO πr 2 h A TOTALDEUNCILINDRO 2πr h + 2πr 2 Expresa, mediante un polinomio, el volumen de cada una de las velas cilíndricas en función del radio de su base,
Factorización de Polinomios. Profesora Ericka Salas González
Factorización de Polinomios Profesora Ericka Salas González 19 de marzo de 2006 Índice general 0.1. QUE ES FACTORIZAR UN POLINOMIO..... 2 0.1.1. Factor............................ 2 0.1.2. Factorizar..........................
COLEGIO INTERNACIONAL SEK Prof. Álvaro Elizondo Montoya. TEMA: FACTORIZACIÓN. Nombre: Fecha: Grupo: 9 FACTORIZACIÓN DE POLINOMIOS
COLEGIO INTERNACIONAL SEK Prof. Álvaro Elizondo Montoya. TEMA: FACTORIZACIÓN. Nombre: Fecha: Grupo: 9 FACTORIZACIÓN DE POLINOMIOS DESCOMPOSICIÓN DE UN POLINOMIO EN FACTORES Para resolver muchos problemas
open green road Guía Matemática PRODUCTOS NOTABLES profesor: Nicolás Melgarejo .co
Guía Matemática PRODUCTOS NOTABLES profesor: Nicolás Melgarejo.co 1. Introducción Es usual en matemática intentar simplificar todas las expresiones y definiciones, utilizando el mínimo de elementos o símbolos
Expresiones algebraicas
Expresiones algebraicas Trabajar en álgebra consiste en manejar relaciones numéricas en las que una o más cantidades son desconocidas. Estas cantidades se llaman variables, incógnitas o indeterminadas
MONOMIOS Y POLINOMIOS
Trabajar en álgebra consiste en manejar relaciones numéricas en las que una o más cantidades son desconocidas. Estas cantidades se llaman variables, incógnitas o indeterminadas y se representan por letras.
5 DIVISIÓN DE POLINOMIOS. RAÍCES
EJERCICIOS PARA ENTRENARSE División y regla de Ruffini 5.26 Realiza estas divisiones. a) (12x 2 yz 6xy 3 8xyz 2 ) (2xy) b) (15x 4 3x 3 9x 2 ) (3x 2 ) c) (5a 3 b 2 10ab 2 15a 3 b 4 ) (5ab 2 ) a) (12x 2
DESARROLLO. a r a s = ar s
ENCUENTRO # 11 TEMA:Operaciones con polinomios CONTENIDOS: 1. División de polinomios. DESARROLLO Ejercicio Reto 1. El resultado de n 4 n 1 es: A) 1 B) 1 n 1 B)4 n 1 D) 4 E) 1 4 4 4 4 4 n 1 4 2. Si para
Tema 2 Algebra. Expresiones algebraicas Índice
Tema 2 Algebra. Expresiones algebraicas Índice 1. Expresiones algebraicas comunes... 2 2. Valor numérico de una expresión algebraica... 2 3. Tipos de expresiones algebraicas... 2 4. Monomios... 2 4.1.
TEMA 5. FACTORIZACIÓN DE POLINOMIOS.
TEMA 5. FACTORIZACIÓN DE POLINOMIOS. 1. SACAR FACTOR COMÚN Cuando todos los términos de un polinomio, P(x), son múltiplos de un mismo monomio, M(x), podemos extraer M(x) como factor común. Por ejemplo:
Viernes 14 evaluación ÁLGEBRA II. Propiedad Intelectual Propiedad Cpech Intelectual Cpech
Viernes 14 evaluación ÁLGEBRA II Álgebra II Propiedad Intelectual Propiedad Cpech Intelectual Cpech Aprendizajes esperados Reconocer y resolver productos notables. Interpretar geométricamente productos
43 EJERCICIOS de POLINOMIOS
EJERCICIOS de POLINOMIOS 1. Calcular el valor numérico del polinomio P(x) para el valor de x indicado: a) P(x)x +1, para x1 b) P(x)x +1, para x-1 (Soluc: a) ; b) 0; c) 8; d) -) Ejercicios libro: pág. 1:
Calcular el cociente y el resto en las siguientes divisiones: 6x 3 + 5x 2 9x 3x 2. (b)
MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES I o Bachillerato Internacional. Grupo I. Curso 2009/200. Hoja de ejercicios III Polinomios EJERCICIO Calcular el cociente y el resto en las siguientes divisiones:.
UNIDAD 5: ÁLGEBRA. Nacho Jiménez ANT ÍNDICE SIG
UNIDAD 5: ÁLGEBRA Nacho Jiménez 0. Conceptos previos ÍNDICE 1. Para qué sirve el álgebra? 2. Expresiones algebraicas 2.1 Monomios 2.2 Suma y resta de monomios 2.3 Multiplicación de monomios 2.4 División
Ejemplo 1: 14x 2 y 2-28x x 4. R: 14x 2 (y 2-2x + 4x 2 ) Ejemplo 2: X 3 + x 5 x 7 = R: x 3 (1 + x 2 - x 4 ) Ejemplo 3:
LOS 10 CASOS DE FACTORIZACION FACTORIZACION Es una técnica que consiste en la descripción de una expresión matemática (que puede ser un número, una suma, una matriz, un polinomio, etc.) en forma de producto.
MATEMÁTICAS UNIDAD 3 GRADO 8º. factorización
1 Franklin Eduardo Pérez Quintero MATEMÁTICAS UNIDAD 3 GRADO 8º factorización 1 2 Franklin Eduardo Pérez Quintero LOGRO: Reconoce la formación de los casos principales de factorización a partir de los
TEMA 5 EXPRESIONES ALGEBRAICAS
5.1 Monomios TEMA 5 EXPRESIONES ALGEBRAICAS Di si las siguientes expresiones matemáticas son monomios o no. En caso de serlo, determina su parte literal, su coeficiente y su grado. 6x 4 6 1 x 4 6 x 4 no
Guía 3: Factorización
Departamento de Matemática Guía 3: Factorización Definición: Factorizar una expresión algebraica (o suma de términos algebraicos) consiste en escribirla en forma de multiplicación. Veremos los siguientes
UNIDAD: ÁLGEBRA Y FUNCIONES ÁLGEBRA DE POLINOMIOS
C u r s o : Matemática Material N 15 UNIDAD: ÁLGEBRA Y FUNCIONES ÁLGEBRA DE POLINOMIOS GUÍA TEÓRICO PRÁCTICA Nº 1 EVALUACIÓN DE EXPRESIONES ALGEBRAICAS Evaluar una expresión algebraica consiste en sustituir
lasmatemáticas.eu Pedro Castro Ortega materiales de matemáticas
º ESO 1. Expresiones algebraicas En matemáticas es muy común utilizar letras para expresar un resultado general. Por ejemplo, el área de un b h triángulo es base por altura dividido por dos y se expresa
2. Calcula cociente y resto en la siguiente división de polinomios: (x 5 32) : (x 1)
. Un polinomio con raíces únicas, 0, 2, 2, 3 es: a) 4 +4 3 + 2 6 b) 4 +6 3 +9 2 42 c) 5 6 4 +9 3 +4 2 2 d) 5 +6 4 +9 3 4 2 2 e) 4 4 3 + 2 +6 2. Calcula cociente y resto en la siguiente división de polinomios:
1. Factor Común. Fundación Uno. Ejercicio Reto. ENCUENTRO # 12 TEMA:Factorizaciones CONTENIDOS: 1. Factor común. 2. Factor común por Agrupamiento
ENCUENTRO # 12 TEMA:Factorizaciones CONTENIDOS: 1. Factor común 2. Factor común por Agrupamiento 3. Diferencia de cuadrados 4. Suma o Diferencia de Cubos Ejercicio Reto 1. Si a a = 2, el valor de a aaa+1
53 ESO ÍNDICE: 1. EXPRESIONES ALGEBRAICAS 2. MONOMIOS 3. POLINOMIOS 4. IDENTIDADES 5. DIVISIÓN DE POLINOMIOS 6. FRACCIONES ALGEBRAICAS
53 ESO ÍNDICE: 1. EXPRESIONES ALGEBRAICAS. MONOMIOS 3. POLINOMIOS 4. IDENTIDADES 5. DIVISIÓN DE POLINOMIOS 6. FRACCIONES ALGEBRAICAS El lenguaje algebraico 5. 1 1. EXPRESIONES ALGEBRAICAS LENGUAJE ALGEBRAICO
y 2 z Es la expresión común que tienen todos los términos de una expresión algebraica.
ENCUENTRO # 12 TEMA:Factorizaciones CONTENIDOS: 1. Factor común 2. Factor común por agrupamiento 3. Diferencia de cuadrados 4. Suma o Diferencia de Cubos Ejercicio Reto 1. Si a a = 2, el valor de a aaa+1
