MATEMÁTICAS 2º DE ESO LOE
|
|
|
- Monica Nieto Gutiérrez
- hace 9 años
- Vistas:
Transcripción
1 MATEMÁTICAS 2º DE ESO LOE TEMA I: NÚMEROS ENTEROS (parte 3/3) Los divisores de un número entero. Descomposición factorial de un número entero. Máximo común divisor (m.c.d.) de dos o más números enteros. Mínimo común múltiplo (m.c.m.) de dos o más números enteros Forma de hallar de forma conjunta el m.c.d. y el m.c.m. de varios números Ricardo Esteban Alonso 1 de 8
2 LOS DIVISORES DE UN NÚMERO ENTERO Para obtener los divisores de un número se divide dicho número por los sucesivos números naturales hasta que el cociente sea menor que el divisor: se eligen los divisores y los cocientes de las divisiones exactas (o ya no seguimos buscando cuando comiencen a repetirse los divisores). Divisiones Divisores de : 1 = 28 1 y : 2 = 14 2 y : 3 = no exacta : 4 = 7 4 y 7 28 : 5 = no exacta : 6 = no exacta (cociente menor) ya no haría falta seguir 28 : 7 = 4 se repiten Ricardo Esteban Alonso 2 de 8
3 DESCOMPOSICIÓN FACTORIAL DE UN NÚMERO ENTERO Descomponer o factorizar un número natural en sus factores primos es expresar dicho número como un producto de números primos. Cuando el número es entero negativo añadimos el factor -1, como por ejemplo en el número -12: -12 = (-1) Podemos emplear dos procedimientos: "con cajas de divisiones sucesivas", o utilizando una regla vertical donde se escriben a la derecha los divisores primos y a la izquierda los cocientes, y se finaliza cuando se obtiene el 1 como último cociente El resultado es: 120 = Los factores que se repiten se escriben en forma de potencia: 120 = Ricardo Esteban Alonso 3 de 8
4 Para averiguar si un número es primo se comienza comprobando si es divisible por números primos menores que él. Cuando las divisiones no resulten exactas, y obtengamos un cociente menor o igual que el divisor, podemos afirmar que el número dado es primo. Un número es primo cuando es positivo y sus únicos divisores positivos son él mismo y la unidad. MÁXIMO COMÚN DIVISOR (m.c.d.) Es el mayor número entero positivo que es divisor de los dos o más números dados. Para calcular el m.c.d. de varios números se siguen los siguientes pasos: Se descomponen los números en producto de sus factores primos. Se forma un producto con los factores comunes elevados a menor exponente. Ricardo Esteban Alonso 4 de 8
5 Ejemplo: halla el m.c.d. de 20 y = = m.c.d. (20 y 56) = 2 2 = 4 El m.c.d. de varios números enteros (positivos y negativos) coincide con los de sus valores absolutos, es decir como si fueran números naturales. En general, nosotros vamos a operar con números naturales Dos números se dice que son primos entre sí cuando su m.c.d. es el 1: Ejemplos: a) 25 y 32 son primos entre sí: m.c.d. es el 1 b) 3, 7 y 20 son primos entre sí: m.c.d es el 1 Ricardo Esteban Alonso 5 de 8
6 MÍNIMO COMÚN MULTIPLO (m.c.m.) Es el menor número entero positivo que es múltiplo de los números dados. Se siguen los siguientes pasos para calcularlo: Se descomponen los números en producto de sus factores primos. Se forma un producto con los factores comunes y no comunes elevados a mayor exponente. En el ejemplo anterior: 20 = = m.c.m. (20 y 56) = = 280 El m.c.m. de varios números enteros (positivos y negativos) coincide con los de sus valores absolutos, es decir como si fueran números naturales. Ricardo Esteban Alonso 6 de 8
7 Entre el m.c.d. y el m.c.m. de dos números enteros dados, podemos comprobar que se cumple que: m.c.d.(a,b) m.c.m.(a,b) = a b Es decir, que el producto del m.c.d. de los dos números enteros por su m.c.m. es igual al valor absoluto del producto de los dos números. Ejemplo: -20 = m.c.d. (-20 y 56) = 4 m.c.m. (-20 y 56) = = = ( 20) 56 Ricardo Esteban Alonso 7 de 8
8 Forma de hallar el m.c.d. y el m.c.m. a la vez Ejemplo: halla el mcd y el mcm de los números 18, 30 y Se van dividiendo todos los números dados a la vez entre los números primos empezando por el 2; si alguno de los números dados no es divisible por 2 se escribe debajo hasta que se pueda dividir por algún número primo y se sigue hasta terminar la descomposición como si se tratara de un solo número Acaba cuando todos se dividen entre el 1. Los divisores comunes a los tres números se han señalado en color rojo: ellos son los divisores comunes y su producto es el máximo común divisor: mcd (18, 30 y 48) = = 6 Todos los factores entre los que han sido divisibles alguno de los tres números forman parte del mínimo común múltiplo: mcm (18, 30 y 48) = = 720 Ricardo Esteban Alonso 8 de 8
DIVISIBILIDAD NÚMEROS NATURALES
DIVISIBILIDAD NÚMEROS NATURALES MÚLTIPLOS Un número a es múltiplo de otro b cuando es el resultado de multiplicarlo por otro número c. a = b c Ejemplo: 12 es múltiplo de 2, ya que resulta de multiplicar
MÚLTIPLOS Y DIVISORES DE UN NÚMERO (Apuntes Tema 2 y parte del Tema 3)
. Múltiplos de un número MÚLTIPLOS Y DIVISORES DE UN NÚMERO (Apuntes Tema y parte del Tema ) Un número es múltiplo de otro número cuando es el resultado de multiplicar el segundo por cualquier número natural
Un número natural distinto de 1 es un número primo si sólo tiene dos divisores, él mismo y la unidad.
Números primos NÚMEROS PRIMOS Un número natural distinto de es un número primo si sólo tiene dos divisores, él mismo y la unidad. Un número natural es un número compuesto si tiene otros divisores además
DIVISIBILIDAD NÚMEROS NATURALES
DIVISIBILIDAD NÚMEROS NATURALES MÚLTIPLOS Un número a es múltiplo de otro b cuando es el resultado de multiplicarlo por otro número c. a = b c Ejemplo: 12 es múltiplo de 2, ya que resulta de multiplicar
Ampliación Tema 3: Múltiplo y divisores
- Múltiplo. Divisible. Divisor Ampliación Tema 3: Múltiplo y divisores 56 8 56 es divisible por 8 0 7 56 es múltiplo de 8 Para indicar que 56 es múltiplo de 8 se escribe sobre el divisor 8 un punto :(8)
3 Divisibilidad. 1. Múltiplos y divisores de un número Criterios de divisibilidad Descomposición de un número en factores primos 18
Divisibilidad 1. Múltiplos y divisores de un número 16 2. Criterios de divisibilidad 17 3. Descomposición de un número en factores primos 18 4. Mínimo común múltiplo y máximo común divisor 19 5. Evaluación
Divisibilidad I. Nombre Curso Fecha
Matemáticas 2.º ESO Unidad 1 Ficha 1 Divisibilidad I Un número b es divisor de otro número a si al dividir a entre b la división es exacta. Se dice también que a es múltiplo de b. 1. Completa con la palabra
NOTA IMPORTANTE. La segunda mitad de las páginas corresponden a las soluciones de la primera mitad.
NOTA IMPORTANTE La segunda mitad de las páginas corresponden a las soluciones de la primera mitad. DIVISIBILIDAD RELACIÓN DE DIVISIBILIDAD Fíjate en las siguientes divisiones: 18 2 13 2 0 9 1 6 como la
Blog de matemáticas realizado por José Mª Moya Medina ( MATEMATICASIESPTH.BLOGSPOT.COM )
RESUMEN DEL TEMA 1- MÚLTIPLO Y DIVISOR Canción Definición Ejemplo Trucos PROPIEDADES Un nº a es divisor de 5 es divisor de 15? Para que un nº sea divisor otro nº b, si la división Sí porque la división
DIVISIBILIDAD NÚMEROS NATURALES
DIVISIBILIDAD NÚMEROS NATURALES MÚLTIPLOS Un número a es múltiplo de otro b cuando es el resultado de multiplicarlo por otro número c. a = b c Ejemplo: 12 es múltiplo de 2, ya que resulta de multiplicar
Un número a es múltiplo de otro b cuando es el resultado de multiplicar este último por otro número c.
DIVISIBILIDAD Múltiplos Un número a es múltiplo de otro b cuando es el resultado de multiplicar este último por otro número c. 18 = 2 9 18 es múltiplo de 2, ya que resulta de multiplicar 2 por 9. Tabla
EJERCICIOS MATEMÁTICAS 1º F.P.B.
EJERCICIOS MATEMÁTICAS 1º F.P.B. U3 DIVISIBILIDAD 1. MÚLTIPLOS Y DIVISORES Decimos que un número es múltiplo de otro si lo contiene un número entero de veces. El número 0 solamente tiene un múltiplo, que
DIVISIBILIDAD 2 3 = 8. Es decir, el resultado de multiplicar 2 por cualquier número natural.
DIVISIBILIDAD I. Múltiplos y Divisores 1. MULTIPLOS Los múltiplos de 2 son = 2 2 1 = 4 2 2 = 6 2 3 = 8 2 4 etc Es decir, el resultado de multiplicar 2 por cualquier número natural. Múltiplo de un número
MATEMÁTICAS 5º PRIMARIA DIVISIBILIDAD: MÚLTIPLOS Y DIVISORES
MATEMÁTICAS 5º PRIMARIA DIVISIBILIDAD: MÚLTIPLOS Y DIVISORES 1 2 MÚLTIPLOS DE UN NÚMERO Un número es múltiplo de otro si se obtiene multiplicando este número por otro número natural. Ejemplo: 12 es múltiplo
TEORÍA DE DIVISIBILIDAD
TEORÍA DE DIVISIBILIDAD MÚLTIPLOS Y DIVISORES.- Dados dos números naturales a y b, con a b, se dice que a es divisible por b o que a es múltiplo de b o que b es divisor de a, si la división de a : b es
TEMA 2: DIVISIBILIDAD. Estudiaremos conceptos relacionados con la división: múltiplos y divisores, números primos. 28 es divisible entre 4
Alonso Fernández Galián TEMA : DIVISIBILIDAD Estudiaremos conceptos relacionados con la división: múltiplos y divisores, números primos. LA RELACIÓN DE DIVISIBILIDAD. MÚLTIPLOS Y DIVISORES La divisibilidad
UNIDAD 2. MÚLTIPLOS Y DIVISORES
UNIDAD. MÚLTIPLOS Y DIVISORES. MÚLTIPLOS DE UN NÚMERO.. DIVISORES DE UN NÚMERO. 3. NÚMEROS PRIMOS Y NÚMEROS COMPUESTOS. 4. CRITERIOS DE DIVISIBILIDAD. 5. MÍNIMO COMÚN MÚLTIPLO. 6. MÁXIMO COMÚN DIVISOR..
DIVISIBILIDAD. El cero es múltiplo de cualquier número. El producto de cualquier número por 0 es igual a 0
DIVISIBILIDAD MÚLTIPLOS DE UN NÚMERO Definición: Un número es múltiplo de otro cuando lo contiene un número exacto de veces, es decir, cuando la división del primero entre el segundo es exacta. 10 es múltiplo
Tema 2. Divisibilidad. Múltiplos y submúltiplos.
Tema 2. Divisibilidad. Múltiplos y submúltiplos. En el tema 1, se ha mostrado como realizar cuentas con números naturales y enteros. Antes de conocer otras clases de números, los racionales, irracionales
MÚLTIPLOS, DIVISORES Y DIVISIBILIDAD
MÚLTIPLOS, DIVISORES Y DIVISIBILIDAD 1 DIVISIBILIDAD La divisibilidad es una parte de la teoría de los números que analiza cada una de las condiciones que debe tener un número para que sea divisible por
Tema 2 Divisibilidad
1. Relación de Divisibilidad Tema 2 Divisibilidad Entre dos números a y b existe la relación de divisibilidad si al dividir a : b la división es exacta. Existe la relación de divisibilidad entre estos
TEMA 1: LOS NÚMEROS ENTEROS. Segundo Curso de Educación Secundaria Obligatoria. I.E.S de Fuentesaúco. Manuel González de León.
TEMA 1: LOS NÚMEROS ENTEROS Segundo Curso de Educación Secundaria Obligatoria. I.E.S de Fuentesaúco. Manuel González de León. CURSO 2011-2012 1. Los Números Enteros. 2. Suma y resta de números enteros.
Bloque 1. Aritmética y Álgebra
Bloque 1. Aritmética y Álgebra Los números naturales Los números naturales Los números naturales se definen como: N = { 0,1, 2, 3, 4, 5,...,64, 65, 66,...,1639,1640,1641,1642,... } El sistema de numeración
Objetivos. Antes de empezar
Objetivos En esta quincena aprenderás a: Saber si un número es múltiplo de otro. Reconocer las divisiones exactas. Hallar todos los divisores de un número. Reconocer los números primos. Descomponer un
ESCUELA PREPARATORIA OFICIAL NO.16 MATERÍA: PENSAMIENTO NUMÉRICO Y ALGEBRAICO I
ARITMÉTICA 1. Números naturales 2. Divisibilidad 3. Números enteros 4. Números decimales 5. Fracciones y números racionales 6. Proporcionalidad 7. Sistema métrico decimal 8. Sistema sexagesimal 9. Números
NÚMEROS PRIMOS Y COMPUESTOS
LECCIÓN 5: NÚMEROS PRIMOS Y COMPUESTOS 5.1.- NÚMEROS PRIMOS Y COMPUESTOS Un número se puede descomponer en un producto de dos factores buscando un divisor de dicho número y dividiéndolo entre el divisor
Objetivos. Criterios de evaluación. Contenidos. Actitudes. Conceptos. Procedimientos
P R O G R A M A C I Ó N D E L A U N I D A D Objetivos 1 Identificar relaciones de divisibilidad entre números naturales y reconocer si un número es múltiplo o divisor de otro número dado. 2 Utilizar los
DIVISIBILIDAD. 2º E.S.O. Un número es múltiplo de otro si se puede obtener multiplicando el segundo por otro número entero.
MULTIPLOS Y DIVISORES DIVISIBILIDAD. NÚMEROS ENTEROS. º E.S.O. Un número es múltiplo de otro si se puede obtener multiplicando el segundo por otro número entero. 8 es múltiplo de porque 8 = 9 75 es múltiplo
TEMA 1. Los números enteros. Matemáticas
1 Introducción En esta unidad veremos propiedades de los números enteros, como se opera con ellos (con y sin calculadora), los números primos, máximo común divisor y mínimo común múltiplo y por últimos
MINISTERIO DE EDUCACION INSTITUTO PROFESIONAL Y TECNICO NOCTURNO DE COLÓN MATEMATICAS SEPTIMO
El 1 queda excluido del conjunto de los números primo. HAZLO TU Y COMPRUEBA LO APRENDIDO. Escribe en cada celda con la información solicitada, en el caso de los divisores escriba en el orden natural. Numeral
COMPRENDER Y APLICAR LOS CRITERIOS DE DIVISIBILIDAD
REPASO Y APOYO OBJETIVO COMPRENDER Y APLICAR LOS CRITERIOS DE DIVISIBILIDAD Los criterios de divisibilidad son una serie de normas que permiten saber si un número es divisible por,,, A continuación, vamos
TRABAJO DE MATEMÁTICAS. PENDIENTES DE 2º E.S.O. (1ª parte)
TRABAJO DE MATEMÁTICAS PENDIENTES DE º E.S.O. (ª parte) NÚMEROS ENTEROS.-) Realiza las operaciones siguientes () (0) (-) ( ) (-) ( -) (-) ( -) (-) () - - - -0 - - - ( -) ( ) ( -) ( ) ( ) ( - ) ( - ) (
MATEMÁTICAS 1º DE ESO
MATEMÁTICAS 1º DE ESO LOMCE TEMA IV : LAS FRACCIONES. OPERACIONES Los siginificados de una fracción. Fracciones propias e impropias. Equivalencias de fracciones. Amplificación y simplificación. Fracción
1. Escribir los Z del 7 al 23: 2. Representar en la recta real los siguientes Z: 5, -4, 2, 0, -1, 1
FICHA 1: Concepto de nº entero, múltiplo y divisor, nº primo Concepto de nº entero (Z): 1. Escribir los Z del 7 al 23: 2. Representar en la recta real los siguientes Z: 5, -4, 2, 0, -1, 1 A la vista de
Descomposición factorial. Suma o diferencia de cubos perfectos. P r o c e d i m i e n t o
103 Descomposición factorial Suma o diferencia de cubos perfectos P r o c e d i m i e n t o 1. Se abren dos paréntesis 2. En el primer paréntesis se escribe la suma o la diferencia, según el caso, de las
EJERCICIOS DE POLINOMIOS
EJERCICIOS DE POLINOMIOS NOMBRE:... Nº:... º....- Escribe el grado, el número de términos y el nombre (monomio, binomio, trinomio, polinomio) que recibe cada una de las siguientes expresiones algebraicas:
1. Escribir los Z del 7 al 23: 2. Representar en la recta real los siguientes Z: 5, -4, 2, 0, -1, 1
FICHA 1: Concepto de nº entero, múltiplo y divisor, nº primo Concepto de nº entero (Z): 1. Escribir los Z del 7 al 23: 2. Representar en la recta real los siguientes Z: 5, -4, 2, 0, -1, 1 A la vista de
TEMA 1 NÚMEROS NATURALES
TEMA 1 NÚMEROS NATURALES Criterios De Evaluación de la Unidad 1 Efectuar correctamente operaciones combinadas de números naturales, aplicando correctamente las reglas de prioridad y haciendo un uso adecuado
DIVISIBILIDAD. - DIVISOR DE UN NÚMERO: Un número es divisor de un número dado, cuando al dividir el número entre el divisor, nos da resultado exacto.
DIVISIBILIDAD La divisibilidad es la parte de las matemáticas que nos enseña la relación entre los números, sus múltiplos y divisores. Lo primero que hemos de conocer es por tanto qué es un múltiplo o
1. Observa los ejemplos y escribe como se leen las siguientes potencias.
ACTIVIDADES DE REFUERZO DE MATEMÁTICAS 1º E.S.O. Tema : Potencias y raíces. 1. Observa los ejemplos y escribe como se leen las siguientes potencias. 1 : siete a la uno. 1 : : tres al cuadrado. : : cinco
FICHAS DE TRABAJO REFUERZO
FICHAS DE TRABAJO REFUERZO DEPARTAMENTO DE MATEMATICAS CONTENIDO 1. Números naturales a. Leer y escribir números naturales b. Orden de cifras c. Descomposición polinómica d. Operaciones combinadas e. Potencias
DIVISIBILIDAD CRITERIOS DE DIVISIBILIDAD
DIVISIBILIDAD CRITERIOS DE DIVISIBILIDAD Un número es divisible por 2 si acaba en cero o cifra par. Ejemplos: 38, porque acaba en 8. 20, porque acaba en 0. Un número es divisible por 3 si la suma de sus
2. Realiza las siguientes operaciones: = = = = : 1759 =
Ejercicios Navidades 0-0. Realiza las siguientes operaciones: 7 + 6876 + 967 +67 + 968 = 68 +798 + 79 + 0 + 79 = 976 086 76 + 69 + 7 + 906 + = 90 697 + 69 + 97 +86 + 97 = 8. Realiza las siguientes operaciones:
1.- NÚMEROS NATURALES Y DECIMALES
1.- NÚMEROS NATURALES Y DECIMALES 1.1 Posición de las cifras de un número natural. Los números naturales son los números que conocemos (0, 1, 2, 3 ). Los números naturales están ordenados, lo que nos permite
Recuperación Primer Trimestre Matemáticas 1ºESO
Recuperación Primer Trimestre Matemáticas 1ºESO TEMA 1: DIVISIBILIDAD 1 Ana tiene 0 libros que quiere colocar en montones de manera que todos ellos tengan el mismo número de libros. De cuántas formas puede
Unidad didáctica 1. Operaciones básicas con números enteros
Unidad didáctica 1 Operaciones básicas con números enteros 1.- Representación y ordenación de números enteros. Para representar números enteros en una recta hay que seguir estos pasos: a) Se dibuja una
open green road Guía Matemática MÚLTIPLOS Y DIVISORES profesor: Nicolás Melgarejo .cl
Guía Matemática MÚLTIPLOS Y DIVISORES profesor: Nicolás Melgarejo.cl 1. Múltiplos y divisibilidad Se dice que un número a es divisible por otro b si al dividir a con b, el residuo o resto es cero, dicho
Teoría (resumen) Por ejemplo, los múltiplos de 3 son: 3, 6, 9, 12, 15, 18, ; los múltiplos de 2 son: 2, 4, 6, 8, 10, 12, ; o sea los números pares.
1.- Divisibilidad Teoría (resumen) Múltiplos de un número. Son aquellos que se obtienen al multiplicar dicho número por los números naturales 1, 2, 3,. Por ejemplo, los múltiplos de 3 son: 3, 6, 9, 12,
GESTIÓN ACADÉMICA GUÍA DIDÁCTICA
PÁGINA: 1 de 7 Nombres y Apellidos del Estudiante: Docente: Área: MATEMATICAS Grado: SEXTO Periodo: SEGUNDO Duración: 3 semanas y/o 15 horas GUIA 1 Asignatura: MATEMATICAS ESTÁNDAR: Resuelvo y formulo
MÚLTIPLOS Y DIVISORES
MÚLTIPLOS Y DIVISORES 1. MÚLTIPLOS DE UN NÚMERO. 1.1. CONCEPTO DE MÚLTIPLO. Un número es múltiplo de otro cuando lo contiene un número exacto de veces, es decir, cuando la división del primero entre el
UNIDAD 1: NÚMEROS NATURALES
UNIDAD 1: NÚMEROS NATURALES 1. Calcula: Ya conoces las cuatro operaciones básicas, la suma, la resta, multiplicación y división. Cuando te aparezcan varias operaciones para realizar debes saber la siguiente
1. Expresiones polinómicas con una indeterminada
C/ Francisco García Pavón, 16 Tomelloso 1700 (C. Real) Teléfono Fa: 96 51 9 9 Polinomios 1. Epresiones polinómicas con una indeterminada 1.1. Los monomios Un monomio es una epresión algebraica con una
EJERCICIOS DE REPASO 1 E.S.O. SEGUNDO TRIMESTRE
EJERCICIOS DE REPASO 1 E.S.O. SEGUNDO TRIMESTRE , OPERACIONES CON NUMEROS ENTEROS - 1o ESO SUMAS Y RESTAS 1. Calcula: a) 4-5 = b)-1+8= e) - 3-6 = d) 9-11 = e) 1-9 = f) - 2 + 4 = g) - 7-9 = h) + 5 + 6 =
NÚMEROS REALES---AGUERRERO
Contenido NÚMEROS REALES... 2 IGUALDAD Y SUS PROPIEDADES... 4 NÚMEROS MÚLTIPLOS, COMPUESTOS Y PRIMOS... 4 NÚMEROS PRIMOS... 5 DESCOMPOSICIÓN DE UN NÚMERO EN SUS FACTORES PRIMOS... 7 MÁXIMO COMÚN DIVISOR...
Autor: Antonio Rivero Cuesta, Tutor C.A. Palma de Mallorca
Tema Autor: Antonio Rivero Cuesta, Tutor C.A. Palma de Mallorca.1 De las siguientes operaciones, cuál no permite operar cualquier par de números naturales para obtener un resultado natural? a) La suma.
INSTITUTO DE FORMACIÓN DOCENTE DE CANELONES DIVISIBILIDAD
DIVISIBILIDAD Definición de múltiplo Dados los números naturales a y b, se dice que a es múltiplo de b, si y solo si existe un número natural c, único, tal que a = b.c El número c se dice que es el cociente
TEMA 1.- POLINOMIOS Y FRACCIONES ALGEBRAICAS
TEMA 1.- POLINOMIOS Y FRACCIONES ALGEBRAICAS 1.- POLINOMIOS Recordemos que un monomio es una expresión algebraica (combinación de letras y números) en la que las únicas operaciones que aparecen entre las
OPERACIONES CON MONOMIOS Y POLINOMIOS. Suma de monomios
OPERACIONES CON MONOMIOS Y POLINOMIOS Suma de monomios Sólo podemos sumar monomios semejantes. La suma de los monomios es otro monomio que tiene la misma parte literal y cuyo coeficiente es la suma de
Tema 4: Múltiplos y Divisores
Tema 4: Múltiplos y Divisores Índice 1. Introducción. 2. Múltiplos de un número. 3. Divisores de un número. 4. Criterios de divisibilidad. 5. Números primos y números compuestos. 6. Descomposición de un
Fracciones. Tipos de fracciones. Impropia. El numerador es más grande o igual que el denominador. 7 3, 9 4, 11 6
Fracciones Es una expresión que representa una o varias partes de la unidad. Numerador y Denominador El denominador indica en cuantas partes se divide la unidad y el numerador indica cuantas partes se
INSTITUTO TECNOLÓGICO METROPOLITANO DECANATURA DE CIENCIAS JEFATURA DE CIENCIAS BÁSICAS
INSTITUTO TECNOLÓGICO METROPOLITANO DECANATURA DE CIENCIAS JEFATURA DE CIENCIAS BÁSICAS NIVELATORIO DE MATEMÁTICAS BÁSICAS Guía 3 Números Naturales y Enteros COMPETENCIA Reconoce operaciones. los conjuntos
Recuperación Primer Trimestre Matemáticas 1ºESO
Recuperación Primer Trimestre Matemáticas 1ºESO TEMA 1: DIVISIBILIDAD 1 Ana tiene 0 libros que quiere colocar en montones de manera que todos ellos tengan el mismo número de libros. De cuántas formas puede
Catedrático: I.S.C. Iván de J. Moscoso Navarro Contenido:
Materia: Matemáticas I Catedrático: I.S.C. Iván de J. Moscoso Navarro Contenido: UNIDAD TEMATICA II.- SISTEMAS NUMÉRICOS 2.1 Números Naturales ( N )... Introducción Propiedades de la adición de los números
FACULTAD DE CIENCIAS EXACTAS Y NATURALES SEMILLERO DE MATEMÁTICAS DIVISIBILIDAD
FACULTAD DE CIENCIAS EXACTAS Y NATURALES SEMILLERO DE MATEMÁTICAS GRADO: 6 TALLER 3 SEMESTRE II DIVISIBILIDAD RESEÑA HISTÓRICA La división es una operación aritmética de descomposición que consiste en
Múltiplos y divisores
Múltiplos y divisores Contenidos 1. Múltiplos y divisores Múltiplos de un número La división exacta Divisores de un número Criterios de divisibilidad Números primos Números primos y compuestos Obtención
Los números naturales
Los números naturales Los números naturales Los números naturales son aquellos que sirven para contar. Se suelen representar utilizando las cifras del 0 al 9. signo suma o resultado Suma: 9 + 12 = 21 sumandos
NÚMEROS NATURALES. DIVISIBILIDAD. NÚMEROS ENTEROS
UNIDAD 0: NÚMEROS NATURALES. DIVISIBILIDAD. NÚMEROS ENTEROS ESTRUCTURA DEL SISTEMA DE NUMERACIÓN DECIMAL Nuestro sistema de numeración es decimal y posicional. Para escribir cualquier número se utilizan
Mínimo común múltiplo
Mínimo común múltiplo El número más pequeño (no cero) que es múltiplo de dos o más números. El nombre de mínimo común múltiplo está hecho de las partes mínimo, común y múltiplo: Qué es un "múltiplo"? Los
Unidad didáctica 1. Operaciones básicas con números enteros
Unidad didáctica 1 Operaciones básicas con números enteros 1.- Representación y ordenación de números enteros Para representar números enteros en una recta hay que seguir estos pasos: a) Se dibuja una
Llamamos potencia a todo producto de factores iguales. Por ejemplo: 3 4 =
1. NÚMEROS NATURALES POTENCIAS DE UN NÚMERO NATURAL Llamamos potencia a todo producto de factores iguales. Por ejemplo: 3 4 = 3 3 3 3 El factor que se repite es la base, y el número de veces que se repite
Tema 1 : NÚMEROS NATURALES. DIVISIBILIDAD. Primero de Educación Secundaria Obligatoria. I.e.s Fuentesaúco.
2009 Tema 1 : ÚMEROS ATURALES. DIVISIBILIDAD. Primero de Educación Secundaria Obligatoria. I.e.s Fuentesaúco. Manuel González de León mgdl 01/01/2009 Tema 01: úmeros aturales. Divisibilidad IDICE: 01.
INSTITUTO DE FORMACIÓN DOCENTE DE CANELONES DIVISIBILIDAD
DIVISIBILIDAD Definición de múltiplo Dados los números naturales a y b, se dice que a es múltiplo de b, si y solo si existe un número natural k, único, tal que a = b.k El número k se dice que es el cociente
1. Escribir los Z del 7 al 23: 2. Completar con el signo < o >, según corresponda (véase el primer ejemplo):
EJERCICIOS de ENTEROS º ESO FICHA 1: Concepto de nº entero. Representación en la recta R 1. Escribir los Z del 7 al :. Completar con el signo < o >, según corresponda (véase el primer ejemplo): a) < 7
Factorización ecuación identidad condicional término coeficiente monomio binomio trinomio polinomio grado ax3
Factorización Para entender la operación algebraica llamada factorización es preciso repasar los siguientes conceptos: Cualquier expresión que incluya la relación de igualdad (=) se llama ecuación. Una
6. Usa el teorema del resto para comprobar si los siguientes polinomios son divisibles por (x 2)
1. Halla el cociente y el resto de la división: (3x 2 7x + 5) : (x 2 ) 2. Halla el cociente y el resto de la división: (x 3 3x 2 2) : (x 2 + 1) 3. Calcula y simplifica: a) 3x(x + 7) 2 + (2x 1)( 3x + 2)
Aritmética entera. AMD Grado en Ingeniería Informática. AMD Grado en Ingeniería Informática (UM) Aritmética entera 1 / 15
Aritmética entera AMD Grado en Ingeniería Informática AMD Grado en Ingeniería Informática (UM) Aritmética entera 1 / 15 Objetivos Al finalizar este tema tendréis que: Calcular el máximo común divisor de
UNIDAD 1. NÚMEROS. (Página 223 del libro) Nivel II. Distancia. Ámbito Científico Tecnológico.
UNIDAD 1. NÚMEROS. (Página 22 del libro) Nivel II. Distancia. Ámbito Científico Tecnológico. Clasificación de los números Números naturales son aquellos que utilizamos para contar. N = 0,1,2,,,5,6, Números
FICHAS REPASO 3º ESO. Para restar números enteros, se suma al minuendo el opuesto del sustraendo y después se aplican las reglas de la suma.
FICHAS REPASO º ESO OPERACIONES CON NÚMEROS ENTEROS El valor absoluto de un número entero es el número natural que resulta al prescindir del signo. Por ejemplo, el valor absoluto de es y el valor absoluto
MATEMÁTICAS 1º DE ESO
MATEMÁTICAS 1º DE ESO LOE TEMA V : LOS NÚMEROS DECIMALES El Sistema de Numeración Decimal: órdenes de unidades decimales y equivalencias. Números decimales y fracciones decimales. Tipos de números decimales
Mínimo común múltiplo (mcm) y máximo común divisor (MCD)
Mínimo común múltiplo (mcm) y máximo común divisor (MCD) por Cristina Andrade Guevara El trabajar con mcm y MCD implica realizar cálculos con números primos, por lo que de manera introductoria te hablaremos
Módulo de Matemáticas Académicas II Módulo de Matemáticas Aplicadas II Nivel II de ESPAD. Unidad 0. Números naturales y enteros
Módulo de Matemáticas Académicas II Módulo de Matemáticas Aplicadas II Nivel II de ESPAD Unidad 0 Números naturales y enteros Este documento ha sido realizado por la profesora Carmen de la Fuente Blanco
Unidad 2: Ecuaciones, inecuaciones y sistemas.
Unidad 2: Ecuaciones, inecuaciones y sistemas 1 Unidad 2: Ecuaciones, inecuaciones y sistemas. 1.- Factorización de polinomios. M. C. D y m.c.m de polinomios. Un número a es raíz de un polinomio es 0.
CONJUNTO DE LOS NÚMEROS NATURALES
República Bolivariana de Venezuela Ministerio de la Defensa Universidad Nacional Experimental de las Fuerzas Armadas Curso de Inducción Universitaria CIU Cátedra: Razonamiento Matemático CONJUNTO DE LOS
Colegio FUENTELARREYNA
Colegio FUENTELARREYNA RESOLUCIÓN de de septiembre de 9 en la que se establecen los estándares o conocimientos esenciales de la materia de Matemáticas para el primer curso de la Educación Secundaria Obligatoria
FRACCIONES. Profesora: Charo Ferreira
FRACCIONES - Definición: La fracción puede tener varias interpretaciones, todas ellas aplicables y correctas: 1. Fracción es una expresión que indica una cantidad que expresa una o varias unidades no completas.
Ejercicios Pendientes Matemáticas 2º ESO Curso Números Enteros Los Números Enteros
Los 1) 2) 1 3) 4) 5) 9) ) 2 11) 12) 16) 3 17) 18) 19) 4 20) 21) En qué orden se realizan las operaciones con números enteros Para resolver varias operaciones combinadas con números enteros, se debe seguir
Bloque 1. Tema 3 Divisibilidad, máximo común divisor y mínimo común múltiplo. Potencias y raíces.
ÍNDICE Bloque 1. Tema 3 Divisibilidad, máximo común divisor y mínimo común múltiplo. 1. Divisibilidad 1.1. Múltiplos de un número natural 1.2. Divisores de un número natural 1.2.1. Cálculo de los divisores
1. Escribir los Z del 7 al 23: 2. Ordenar de menor a mayor los siguientes Z: -34, 23, 7, 100, -33, 0, 24, -2, 14, -1, 132, -1000
FICHA 1: Concepto de nº entero, múltiplo y divisor, nº primo Concepto de nº entero (Z): 1. Escribir los Z del 7 al 23: 2. Ordenar de menor a mayor los siguientes Z: -34, 23, 7, 100, -33, 0, 24, -2, 14,
13 ESO. «El estudio es un esfuerzo total para aprender, y sólo es verdaderamente provechoso cuando se aprende» Morgan. Profesor
«El estudio es un esfuerzo total para aprender, y sólo es verdaderamente provechoso cuando se aprende» 13 ESO Morgan. Profesor N N ÍNDICE: EL NIF DIA DEL MEDIO AMBIENTE 1. NÚMEROS NATURALES 2. MÚLTIPLOS
Unidad n 1: Múltiplos y factores. Matemática Profesora camila San Martín
Unidad n 1: Múltiplos y factores. Matemática Profesora camila San Martín Qué crees que es un múltiplo? a qué palabras se asemeja? Definición de múltiplo: Según la RAE: Dicho de un número o de una cantidad:
UNIDAD 1 CONCEPTOS BÁSICOS. Números naturales, Números enteros, Números racionales, números irracionales y números reales. Dr. Daniel Tapia Sánchez
UNIDAD 1 CONCEPTOS BÁSICOS Números naturales, Números enteros, Números racionales, números irracionales y números reales Dr. Daniel Tapia Sánchez 1.1 Números Naturales (N) 1.1.1 Consecutividad numérica
Matemática I. Mínimo Común Múltiplo. Ing. Santiago Figueroa Lorenzo Correo:
Matemática I Mínimo Común Múltiplo Ing. Santiago Figueroa Lorenzo Correo: [email protected] Temas Primera Unidad: Elementos Algebraicos Tema 3: Mínimo Común Múltiplo Mínimo Común Múltiplo
OBJETIVO 4 LOS MÚLTIPLOS Y LOS DIVISORES DE UN NÚMERO NOMBRE: CURSO: FECHA: Múltiplos de 5 F 5, 10, 15, 20, 25, 30, 35, 40, 45,...
IDENTIFICAR OBJETIVO LOS MÚLTIPLOS Y LOS DIVISORES DE UN NÚMERO NOMBRE: CURSO: FECHA: Los múltiplos de un número son aquellos números que se obtienen multiplicando dicho número por,,,,,..., es decir, por
POLINOMIOS Y FRACCIONES ALGEBRAICAS
POLINOMIOS Y FRACCIONES ALGEBRAICAS Monomio: Monomio es una expresión algebraica en la que las únicas operaciones que aparecen entre las variables son el producto y la potencia de exponente natural. 2x
TEMA 2: DIVISIBILIDAD. Contenidos:
Contenidos: - Múltiplos y divisores de un número. - Criterios de divisibilidad. - Números primos y compuestos. Descomposición de un número compuesto en factores primos. - Concepto de máximo común divisor
2. Calcula cociente y resto en la siguiente división de polinomios: (x 5 32) : (x 1)
1. Un polinomio con raíces únicas 1, 0, 2, 2, 3 es: a) x 4 + 4x 3 + x 2 6x b) x 4 + 6x 3 + 9x 2 4x 12 c) x 5 6x 4 + 9x 3 + 4x 2 12x d) x 5 + 6x 4 + 9x 3 4x 2 12x e) x 4 4x 3 + x 2 + 6x 2. Calcula cociente
COLEGIO SAN JOSÉ - Hijas de María Auxiliadora C/ Emilio Ferrari, 87 - Madrid Departamento de Ciencias Naturales
C/ Emilio Ferrari, 7 - Madrid 017. FRACCIONES Antes de empezar El trabajo con fracciones ya no es nuevo para ti. Ya sabes que una fracción puede verse desde una triple perspectiva. Puedes ver una fracción
CEIP Mediterráneo. 1º relación de divisibilidad: múltiplos y divisores.
Melilla DIVISIBILIDAD 1º relación de divisibilidad: múltiplos y divisores. Dos números están emparentados por la relación de divisibilidad cuando el cociente entre el mayor y el menor es exacto. El mayor
