MATEMÁTICAS 2º DE ESO LOE

Tamaño: px
Comenzar la demostración a partir de la página:

Download "MATEMÁTICAS 2º DE ESO LOE"

Transcripción

1 MATEMÁTICAS 2º DE ESO LOE TEMA I: NÚMEROS ENTEROS (parte 3/3) Los divisores de un número entero. Descomposición factorial de un número entero. Máximo común divisor (m.c.d.) de dos o más números enteros. Mínimo común múltiplo (m.c.m.) de dos o más números enteros Forma de hallar de forma conjunta el m.c.d. y el m.c.m. de varios números Ricardo Esteban Alonso 1 de 8

2 LOS DIVISORES DE UN NÚMERO ENTERO Para obtener los divisores de un número se divide dicho número por los sucesivos números naturales hasta que el cociente sea menor que el divisor: se eligen los divisores y los cocientes de las divisiones exactas (o ya no seguimos buscando cuando comiencen a repetirse los divisores). Divisiones Divisores de : 1 = 28 1 y : 2 = 14 2 y : 3 = no exacta : 4 = 7 4 y 7 28 : 5 = no exacta : 6 = no exacta (cociente menor) ya no haría falta seguir 28 : 7 = 4 se repiten Ricardo Esteban Alonso 2 de 8

3 DESCOMPOSICIÓN FACTORIAL DE UN NÚMERO ENTERO Descomponer o factorizar un número natural en sus factores primos es expresar dicho número como un producto de números primos. Cuando el número es entero negativo añadimos el factor -1, como por ejemplo en el número -12: -12 = (-1) Podemos emplear dos procedimientos: "con cajas de divisiones sucesivas", o utilizando una regla vertical donde se escriben a la derecha los divisores primos y a la izquierda los cocientes, y se finaliza cuando se obtiene el 1 como último cociente El resultado es: 120 = Los factores que se repiten se escriben en forma de potencia: 120 = Ricardo Esteban Alonso 3 de 8

4 Para averiguar si un número es primo se comienza comprobando si es divisible por números primos menores que él. Cuando las divisiones no resulten exactas, y obtengamos un cociente menor o igual que el divisor, podemos afirmar que el número dado es primo. Un número es primo cuando es positivo y sus únicos divisores positivos son él mismo y la unidad. MÁXIMO COMÚN DIVISOR (m.c.d.) Es el mayor número entero positivo que es divisor de los dos o más números dados. Para calcular el m.c.d. de varios números se siguen los siguientes pasos: Se descomponen los números en producto de sus factores primos. Se forma un producto con los factores comunes elevados a menor exponente. Ricardo Esteban Alonso 4 de 8

5 Ejemplo: halla el m.c.d. de 20 y = = m.c.d. (20 y 56) = 2 2 = 4 El m.c.d. de varios números enteros (positivos y negativos) coincide con los de sus valores absolutos, es decir como si fueran números naturales. En general, nosotros vamos a operar con números naturales Dos números se dice que son primos entre sí cuando su m.c.d. es el 1: Ejemplos: a) 25 y 32 son primos entre sí: m.c.d. es el 1 b) 3, 7 y 20 son primos entre sí: m.c.d es el 1 Ricardo Esteban Alonso 5 de 8

6 MÍNIMO COMÚN MULTIPLO (m.c.m.) Es el menor número entero positivo que es múltiplo de los números dados. Se siguen los siguientes pasos para calcularlo: Se descomponen los números en producto de sus factores primos. Se forma un producto con los factores comunes y no comunes elevados a mayor exponente. En el ejemplo anterior: 20 = = m.c.m. (20 y 56) = = 280 El m.c.m. de varios números enteros (positivos y negativos) coincide con los de sus valores absolutos, es decir como si fueran números naturales. Ricardo Esteban Alonso 6 de 8

7 Entre el m.c.d. y el m.c.m. de dos números enteros dados, podemos comprobar que se cumple que: m.c.d.(a,b) m.c.m.(a,b) = a b Es decir, que el producto del m.c.d. de los dos números enteros por su m.c.m. es igual al valor absoluto del producto de los dos números. Ejemplo: -20 = m.c.d. (-20 y 56) = 4 m.c.m. (-20 y 56) = = = ( 20) 56 Ricardo Esteban Alonso 7 de 8

8 Forma de hallar el m.c.d. y el m.c.m. a la vez Ejemplo: halla el mcd y el mcm de los números 18, 30 y Se van dividiendo todos los números dados a la vez entre los números primos empezando por el 2; si alguno de los números dados no es divisible por 2 se escribe debajo hasta que se pueda dividir por algún número primo y se sigue hasta terminar la descomposición como si se tratara de un solo número Acaba cuando todos se dividen entre el 1. Los divisores comunes a los tres números se han señalado en color rojo: ellos son los divisores comunes y su producto es el máximo común divisor: mcd (18, 30 y 48) = = 6 Todos los factores entre los que han sido divisibles alguno de los tres números forman parte del mínimo común múltiplo: mcm (18, 30 y 48) = = 720 Ricardo Esteban Alonso 8 de 8

DIVISIBILIDAD NÚMEROS NATURALES

DIVISIBILIDAD NÚMEROS NATURALES DIVISIBILIDAD NÚMEROS NATURALES MÚLTIPLOS Un número a es múltiplo de otro b cuando es el resultado de multiplicarlo por otro número c. a = b c Ejemplo: 12 es múltiplo de 2, ya que resulta de multiplicar

Más detalles

MÚLTIPLOS Y DIVISORES DE UN NÚMERO (Apuntes Tema 2 y parte del Tema 3)

MÚLTIPLOS Y DIVISORES DE UN NÚMERO (Apuntes Tema 2 y parte del Tema 3) . Múltiplos de un número MÚLTIPLOS Y DIVISORES DE UN NÚMERO (Apuntes Tema y parte del Tema ) Un número es múltiplo de otro número cuando es el resultado de multiplicar el segundo por cualquier número natural

Más detalles

Un número natural distinto de 1 es un número primo si sólo tiene dos divisores, él mismo y la unidad.

Un número natural distinto de 1 es un número primo si sólo tiene dos divisores, él mismo y la unidad. Números primos NÚMEROS PRIMOS Un número natural distinto de es un número primo si sólo tiene dos divisores, él mismo y la unidad. Un número natural es un número compuesto si tiene otros divisores además

Más detalles

DIVISIBILIDAD NÚMEROS NATURALES

DIVISIBILIDAD NÚMEROS NATURALES DIVISIBILIDAD NÚMEROS NATURALES MÚLTIPLOS Un número a es múltiplo de otro b cuando es el resultado de multiplicarlo por otro número c. a = b c Ejemplo: 12 es múltiplo de 2, ya que resulta de multiplicar

Más detalles

Ampliación Tema 3: Múltiplo y divisores

Ampliación Tema 3: Múltiplo y divisores - Múltiplo. Divisible. Divisor Ampliación Tema 3: Múltiplo y divisores 56 8 56 es divisible por 8 0 7 56 es múltiplo de 8 Para indicar que 56 es múltiplo de 8 se escribe sobre el divisor 8 un punto :(8)

Más detalles

3 Divisibilidad. 1. Múltiplos y divisores de un número Criterios de divisibilidad Descomposición de un número en factores primos 18

3 Divisibilidad. 1. Múltiplos y divisores de un número Criterios de divisibilidad Descomposición de un número en factores primos 18 Divisibilidad 1. Múltiplos y divisores de un número 16 2. Criterios de divisibilidad 17 3. Descomposición de un número en factores primos 18 4. Mínimo común múltiplo y máximo común divisor 19 5. Evaluación

Más detalles

Divisibilidad I. Nombre Curso Fecha

Divisibilidad I. Nombre Curso Fecha Matemáticas 2.º ESO Unidad 1 Ficha 1 Divisibilidad I Un número b es divisor de otro número a si al dividir a entre b la división es exacta. Se dice también que a es múltiplo de b. 1. Completa con la palabra

Más detalles

NOTA IMPORTANTE. La segunda mitad de las páginas corresponden a las soluciones de la primera mitad.

NOTA IMPORTANTE. La segunda mitad de las páginas corresponden a las soluciones de la primera mitad. NOTA IMPORTANTE La segunda mitad de las páginas corresponden a las soluciones de la primera mitad. DIVISIBILIDAD RELACIÓN DE DIVISIBILIDAD Fíjate en las siguientes divisiones: 18 2 13 2 0 9 1 6 como la

Más detalles

Blog de matemáticas realizado por José Mª Moya Medina ( MATEMATICASIESPTH.BLOGSPOT.COM )

Blog de matemáticas realizado por José Mª Moya Medina ( MATEMATICASIESPTH.BLOGSPOT.COM ) RESUMEN DEL TEMA 1- MÚLTIPLO Y DIVISOR Canción Definición Ejemplo Trucos PROPIEDADES Un nº a es divisor de 5 es divisor de 15? Para que un nº sea divisor otro nº b, si la división Sí porque la división

Más detalles

DIVISIBILIDAD NÚMEROS NATURALES

DIVISIBILIDAD NÚMEROS NATURALES DIVISIBILIDAD NÚMEROS NATURALES MÚLTIPLOS Un número a es múltiplo de otro b cuando es el resultado de multiplicarlo por otro número c. a = b c Ejemplo: 12 es múltiplo de 2, ya que resulta de multiplicar

Más detalles

Un número a es múltiplo de otro b cuando es el resultado de multiplicar este último por otro número c.

Un número a es múltiplo de otro b cuando es el resultado de multiplicar este último por otro número c. DIVISIBILIDAD Múltiplos Un número a es múltiplo de otro b cuando es el resultado de multiplicar este último por otro número c. 18 = 2 9 18 es múltiplo de 2, ya que resulta de multiplicar 2 por 9. Tabla

Más detalles

EJERCICIOS MATEMÁTICAS 1º F.P.B.

EJERCICIOS MATEMÁTICAS 1º F.P.B. EJERCICIOS MATEMÁTICAS 1º F.P.B. U3 DIVISIBILIDAD 1. MÚLTIPLOS Y DIVISORES Decimos que un número es múltiplo de otro si lo contiene un número entero de veces. El número 0 solamente tiene un múltiplo, que

Más detalles

DIVISIBILIDAD 2 3 = 8. Es decir, el resultado de multiplicar 2 por cualquier número natural.

DIVISIBILIDAD 2 3 = 8. Es decir, el resultado de multiplicar 2 por cualquier número natural. DIVISIBILIDAD I. Múltiplos y Divisores 1. MULTIPLOS Los múltiplos de 2 son = 2 2 1 = 4 2 2 = 6 2 3 = 8 2 4 etc Es decir, el resultado de multiplicar 2 por cualquier número natural. Múltiplo de un número

Más detalles

MATEMÁTICAS 5º PRIMARIA DIVISIBILIDAD: MÚLTIPLOS Y DIVISORES

MATEMÁTICAS 5º PRIMARIA DIVISIBILIDAD: MÚLTIPLOS Y DIVISORES MATEMÁTICAS 5º PRIMARIA DIVISIBILIDAD: MÚLTIPLOS Y DIVISORES 1 2 MÚLTIPLOS DE UN NÚMERO Un número es múltiplo de otro si se obtiene multiplicando este número por otro número natural. Ejemplo: 12 es múltiplo

Más detalles

TEORÍA DE DIVISIBILIDAD

TEORÍA DE DIVISIBILIDAD TEORÍA DE DIVISIBILIDAD MÚLTIPLOS Y DIVISORES.- Dados dos números naturales a y b, con a b, se dice que a es divisible por b o que a es múltiplo de b o que b es divisor de a, si la división de a : b es

Más detalles

TEMA 2: DIVISIBILIDAD. Estudiaremos conceptos relacionados con la división: múltiplos y divisores, números primos. 28 es divisible entre 4

TEMA 2: DIVISIBILIDAD. Estudiaremos conceptos relacionados con la división: múltiplos y divisores, números primos. 28 es divisible entre 4 Alonso Fernández Galián TEMA : DIVISIBILIDAD Estudiaremos conceptos relacionados con la división: múltiplos y divisores, números primos. LA RELACIÓN DE DIVISIBILIDAD. MÚLTIPLOS Y DIVISORES La divisibilidad

Más detalles

UNIDAD 2. MÚLTIPLOS Y DIVISORES

UNIDAD 2. MÚLTIPLOS Y DIVISORES UNIDAD. MÚLTIPLOS Y DIVISORES. MÚLTIPLOS DE UN NÚMERO.. DIVISORES DE UN NÚMERO. 3. NÚMEROS PRIMOS Y NÚMEROS COMPUESTOS. 4. CRITERIOS DE DIVISIBILIDAD. 5. MÍNIMO COMÚN MÚLTIPLO. 6. MÁXIMO COMÚN DIVISOR..

Más detalles

DIVISIBILIDAD. El cero es múltiplo de cualquier número. El producto de cualquier número por 0 es igual a 0

DIVISIBILIDAD. El cero es múltiplo de cualquier número. El producto de cualquier número por 0 es igual a 0 DIVISIBILIDAD MÚLTIPLOS DE UN NÚMERO Definición: Un número es múltiplo de otro cuando lo contiene un número exacto de veces, es decir, cuando la división del primero entre el segundo es exacta. 10 es múltiplo

Más detalles

Tema 2. Divisibilidad. Múltiplos y submúltiplos.

Tema 2. Divisibilidad. Múltiplos y submúltiplos. Tema 2. Divisibilidad. Múltiplos y submúltiplos. En el tema 1, se ha mostrado como realizar cuentas con números naturales y enteros. Antes de conocer otras clases de números, los racionales, irracionales

Más detalles

MÚLTIPLOS, DIVISORES Y DIVISIBILIDAD

MÚLTIPLOS, DIVISORES Y DIVISIBILIDAD MÚLTIPLOS, DIVISORES Y DIVISIBILIDAD 1 DIVISIBILIDAD La divisibilidad es una parte de la teoría de los números que analiza cada una de las condiciones que debe tener un número para que sea divisible por

Más detalles

Tema 2 Divisibilidad

Tema 2 Divisibilidad 1. Relación de Divisibilidad Tema 2 Divisibilidad Entre dos números a y b existe la relación de divisibilidad si al dividir a : b la división es exacta. Existe la relación de divisibilidad entre estos

Más detalles

TEMA 1: LOS NÚMEROS ENTEROS. Segundo Curso de Educación Secundaria Obligatoria. I.E.S de Fuentesaúco. Manuel González de León.

TEMA 1: LOS NÚMEROS ENTEROS. Segundo Curso de Educación Secundaria Obligatoria. I.E.S de Fuentesaúco. Manuel González de León. TEMA 1: LOS NÚMEROS ENTEROS Segundo Curso de Educación Secundaria Obligatoria. I.E.S de Fuentesaúco. Manuel González de León. CURSO 2011-2012 1. Los Números Enteros. 2. Suma y resta de números enteros.

Más detalles

Bloque 1. Aritmética y Álgebra

Bloque 1. Aritmética y Álgebra Bloque 1. Aritmética y Álgebra Los números naturales Los números naturales Los números naturales se definen como: N = { 0,1, 2, 3, 4, 5,...,64, 65, 66,...,1639,1640,1641,1642,... } El sistema de numeración

Más detalles

Objetivos. Antes de empezar

Objetivos. Antes de empezar Objetivos En esta quincena aprenderás a: Saber si un número es múltiplo de otro. Reconocer las divisiones exactas. Hallar todos los divisores de un número. Reconocer los números primos. Descomponer un

Más detalles

ESCUELA PREPARATORIA OFICIAL NO.16 MATERÍA: PENSAMIENTO NUMÉRICO Y ALGEBRAICO I

ESCUELA PREPARATORIA OFICIAL NO.16 MATERÍA: PENSAMIENTO NUMÉRICO Y ALGEBRAICO I ARITMÉTICA 1. Números naturales 2. Divisibilidad 3. Números enteros 4. Números decimales 5. Fracciones y números racionales 6. Proporcionalidad 7. Sistema métrico decimal 8. Sistema sexagesimal 9. Números

Más detalles

NÚMEROS PRIMOS Y COMPUESTOS

NÚMEROS PRIMOS Y COMPUESTOS LECCIÓN 5: NÚMEROS PRIMOS Y COMPUESTOS 5.1.- NÚMEROS PRIMOS Y COMPUESTOS Un número se puede descomponer en un producto de dos factores buscando un divisor de dicho número y dividiéndolo entre el divisor

Más detalles

Objetivos. Criterios de evaluación. Contenidos. Actitudes. Conceptos. Procedimientos

Objetivos. Criterios de evaluación. Contenidos. Actitudes. Conceptos. Procedimientos P R O G R A M A C I Ó N D E L A U N I D A D Objetivos 1 Identificar relaciones de divisibilidad entre números naturales y reconocer si un número es múltiplo o divisor de otro número dado. 2 Utilizar los

Más detalles

DIVISIBILIDAD. 2º E.S.O. Un número es múltiplo de otro si se puede obtener multiplicando el segundo por otro número entero.

DIVISIBILIDAD. 2º E.S.O. Un número es múltiplo de otro si se puede obtener multiplicando el segundo por otro número entero. MULTIPLOS Y DIVISORES DIVISIBILIDAD. NÚMEROS ENTEROS. º E.S.O. Un número es múltiplo de otro si se puede obtener multiplicando el segundo por otro número entero. 8 es múltiplo de porque 8 = 9 75 es múltiplo

Más detalles

TEMA 1. Los números enteros. Matemáticas

TEMA 1. Los números enteros. Matemáticas 1 Introducción En esta unidad veremos propiedades de los números enteros, como se opera con ellos (con y sin calculadora), los números primos, máximo común divisor y mínimo común múltiplo y por últimos

Más detalles

MINISTERIO DE EDUCACION INSTITUTO PROFESIONAL Y TECNICO NOCTURNO DE COLÓN MATEMATICAS SEPTIMO

MINISTERIO DE EDUCACION INSTITUTO PROFESIONAL Y TECNICO NOCTURNO DE COLÓN MATEMATICAS SEPTIMO El 1 queda excluido del conjunto de los números primo. HAZLO TU Y COMPRUEBA LO APRENDIDO. Escribe en cada celda con la información solicitada, en el caso de los divisores escriba en el orden natural. Numeral

Más detalles

COMPRENDER Y APLICAR LOS CRITERIOS DE DIVISIBILIDAD

COMPRENDER Y APLICAR LOS CRITERIOS DE DIVISIBILIDAD REPASO Y APOYO OBJETIVO COMPRENDER Y APLICAR LOS CRITERIOS DE DIVISIBILIDAD Los criterios de divisibilidad son una serie de normas que permiten saber si un número es divisible por,,, A continuación, vamos

Más detalles

TRABAJO DE MATEMÁTICAS. PENDIENTES DE 2º E.S.O. (1ª parte)

TRABAJO DE MATEMÁTICAS. PENDIENTES DE 2º E.S.O. (1ª parte) TRABAJO DE MATEMÁTICAS PENDIENTES DE º E.S.O. (ª parte) NÚMEROS ENTEROS.-) Realiza las operaciones siguientes () (0) (-) ( ) (-) ( -) (-) ( -) (-) () - - - -0 - - - ( -) ( ) ( -) ( ) ( ) ( - ) ( - ) (

Más detalles

MATEMÁTICAS 1º DE ESO

MATEMÁTICAS 1º DE ESO MATEMÁTICAS 1º DE ESO LOMCE TEMA IV : LAS FRACCIONES. OPERACIONES Los siginificados de una fracción. Fracciones propias e impropias. Equivalencias de fracciones. Amplificación y simplificación. Fracción

Más detalles

1. Escribir los Z del 7 al 23: 2. Representar en la recta real los siguientes Z: 5, -4, 2, 0, -1, 1

1. Escribir los Z del 7 al 23: 2. Representar en la recta real los siguientes Z: 5, -4, 2, 0, -1, 1 FICHA 1: Concepto de nº entero, múltiplo y divisor, nº primo Concepto de nº entero (Z): 1. Escribir los Z del 7 al 23: 2. Representar en la recta real los siguientes Z: 5, -4, 2, 0, -1, 1 A la vista de

Más detalles

Descomposición factorial. Suma o diferencia de cubos perfectos. P r o c e d i m i e n t o

Descomposición factorial. Suma o diferencia de cubos perfectos. P r o c e d i m i e n t o 103 Descomposición factorial Suma o diferencia de cubos perfectos P r o c e d i m i e n t o 1. Se abren dos paréntesis 2. En el primer paréntesis se escribe la suma o la diferencia, según el caso, de las

Más detalles

EJERCICIOS DE POLINOMIOS

EJERCICIOS DE POLINOMIOS EJERCICIOS DE POLINOMIOS NOMBRE:... Nº:... º....- Escribe el grado, el número de términos y el nombre (monomio, binomio, trinomio, polinomio) que recibe cada una de las siguientes expresiones algebraicas:

Más detalles

1. Escribir los Z del 7 al 23: 2. Representar en la recta real los siguientes Z: 5, -4, 2, 0, -1, 1

1. Escribir los Z del 7 al 23: 2. Representar en la recta real los siguientes Z: 5, -4, 2, 0, -1, 1 FICHA 1: Concepto de nº entero, múltiplo y divisor, nº primo Concepto de nº entero (Z): 1. Escribir los Z del 7 al 23: 2. Representar en la recta real los siguientes Z: 5, -4, 2, 0, -1, 1 A la vista de

Más detalles

TEMA 1 NÚMEROS NATURALES

TEMA 1 NÚMEROS NATURALES TEMA 1 NÚMEROS NATURALES Criterios De Evaluación de la Unidad 1 Efectuar correctamente operaciones combinadas de números naturales, aplicando correctamente las reglas de prioridad y haciendo un uso adecuado

Más detalles

DIVISIBILIDAD. - DIVISOR DE UN NÚMERO: Un número es divisor de un número dado, cuando al dividir el número entre el divisor, nos da resultado exacto.

DIVISIBILIDAD. - DIVISOR DE UN NÚMERO: Un número es divisor de un número dado, cuando al dividir el número entre el divisor, nos da resultado exacto. DIVISIBILIDAD La divisibilidad es la parte de las matemáticas que nos enseña la relación entre los números, sus múltiplos y divisores. Lo primero que hemos de conocer es por tanto qué es un múltiplo o

Más detalles

1. Observa los ejemplos y escribe como se leen las siguientes potencias.

1. Observa los ejemplos y escribe como se leen las siguientes potencias. ACTIVIDADES DE REFUERZO DE MATEMÁTICAS 1º E.S.O. Tema : Potencias y raíces. 1. Observa los ejemplos y escribe como se leen las siguientes potencias. 1 : siete a la uno. 1 : : tres al cuadrado. : : cinco

Más detalles

FICHAS DE TRABAJO REFUERZO

FICHAS DE TRABAJO REFUERZO FICHAS DE TRABAJO REFUERZO DEPARTAMENTO DE MATEMATICAS CONTENIDO 1. Números naturales a. Leer y escribir números naturales b. Orden de cifras c. Descomposición polinómica d. Operaciones combinadas e. Potencias

Más detalles

DIVISIBILIDAD CRITERIOS DE DIVISIBILIDAD

DIVISIBILIDAD CRITERIOS DE DIVISIBILIDAD DIVISIBILIDAD CRITERIOS DE DIVISIBILIDAD Un número es divisible por 2 si acaba en cero o cifra par. Ejemplos: 38, porque acaba en 8. 20, porque acaba en 0. Un número es divisible por 3 si la suma de sus

Más detalles

2. Realiza las siguientes operaciones: = = = = : 1759 =

2. Realiza las siguientes operaciones: = = = = : 1759 = Ejercicios Navidades 0-0. Realiza las siguientes operaciones: 7 + 6876 + 967 +67 + 968 = 68 +798 + 79 + 0 + 79 = 976 086 76 + 69 + 7 + 906 + = 90 697 + 69 + 97 +86 + 97 = 8. Realiza las siguientes operaciones:

Más detalles

1.- NÚMEROS NATURALES Y DECIMALES

1.- NÚMEROS NATURALES Y DECIMALES 1.- NÚMEROS NATURALES Y DECIMALES 1.1 Posición de las cifras de un número natural. Los números naturales son los números que conocemos (0, 1, 2, 3 ). Los números naturales están ordenados, lo que nos permite

Más detalles

Recuperación Primer Trimestre Matemáticas 1ºESO

Recuperación Primer Trimestre Matemáticas 1ºESO Recuperación Primer Trimestre Matemáticas 1ºESO TEMA 1: DIVISIBILIDAD 1 Ana tiene 0 libros que quiere colocar en montones de manera que todos ellos tengan el mismo número de libros. De cuántas formas puede

Más detalles

Unidad didáctica 1. Operaciones básicas con números enteros

Unidad didáctica 1. Operaciones básicas con números enteros Unidad didáctica 1 Operaciones básicas con números enteros 1.- Representación y ordenación de números enteros. Para representar números enteros en una recta hay que seguir estos pasos: a) Se dibuja una

Más detalles

open green road Guía Matemática MÚLTIPLOS Y DIVISORES profesor: Nicolás Melgarejo .cl

open green road Guía Matemática MÚLTIPLOS Y DIVISORES profesor: Nicolás Melgarejo .cl Guía Matemática MÚLTIPLOS Y DIVISORES profesor: Nicolás Melgarejo.cl 1. Múltiplos y divisibilidad Se dice que un número a es divisible por otro b si al dividir a con b, el residuo o resto es cero, dicho

Más detalles

Teoría (resumen) Por ejemplo, los múltiplos de 3 son: 3, 6, 9, 12, 15, 18, ; los múltiplos de 2 son: 2, 4, 6, 8, 10, 12, ; o sea los números pares.

Teoría (resumen) Por ejemplo, los múltiplos de 3 son: 3, 6, 9, 12, 15, 18, ; los múltiplos de 2 son: 2, 4, 6, 8, 10, 12, ; o sea los números pares. 1.- Divisibilidad Teoría (resumen) Múltiplos de un número. Son aquellos que se obtienen al multiplicar dicho número por los números naturales 1, 2, 3,. Por ejemplo, los múltiplos de 3 son: 3, 6, 9, 12,

Más detalles

GESTIÓN ACADÉMICA GUÍA DIDÁCTICA

GESTIÓN ACADÉMICA GUÍA DIDÁCTICA PÁGINA: 1 de 7 Nombres y Apellidos del Estudiante: Docente: Área: MATEMATICAS Grado: SEXTO Periodo: SEGUNDO Duración: 3 semanas y/o 15 horas GUIA 1 Asignatura: MATEMATICAS ESTÁNDAR: Resuelvo y formulo

Más detalles

MÚLTIPLOS Y DIVISORES

MÚLTIPLOS Y DIVISORES MÚLTIPLOS Y DIVISORES 1. MÚLTIPLOS DE UN NÚMERO. 1.1. CONCEPTO DE MÚLTIPLO. Un número es múltiplo de otro cuando lo contiene un número exacto de veces, es decir, cuando la división del primero entre el

Más detalles

UNIDAD 1: NÚMEROS NATURALES

UNIDAD 1: NÚMEROS NATURALES UNIDAD 1: NÚMEROS NATURALES 1. Calcula: Ya conoces las cuatro operaciones básicas, la suma, la resta, multiplicación y división. Cuando te aparezcan varias operaciones para realizar debes saber la siguiente

Más detalles

1. Expresiones polinómicas con una indeterminada

1. Expresiones polinómicas con una indeterminada C/ Francisco García Pavón, 16 Tomelloso 1700 (C. Real) Teléfono Fa: 96 51 9 9 Polinomios 1. Epresiones polinómicas con una indeterminada 1.1. Los monomios Un monomio es una epresión algebraica con una

Más detalles

EJERCICIOS DE REPASO 1 E.S.O. SEGUNDO TRIMESTRE

EJERCICIOS DE REPASO 1 E.S.O. SEGUNDO TRIMESTRE EJERCICIOS DE REPASO 1 E.S.O. SEGUNDO TRIMESTRE , OPERACIONES CON NUMEROS ENTEROS - 1o ESO SUMAS Y RESTAS 1. Calcula: a) 4-5 = b)-1+8= e) - 3-6 = d) 9-11 = e) 1-9 = f) - 2 + 4 = g) - 7-9 = h) + 5 + 6 =

Más detalles

NÚMEROS REALES---AGUERRERO

NÚMEROS REALES---AGUERRERO Contenido NÚMEROS REALES... 2 IGUALDAD Y SUS PROPIEDADES... 4 NÚMEROS MÚLTIPLOS, COMPUESTOS Y PRIMOS... 4 NÚMEROS PRIMOS... 5 DESCOMPOSICIÓN DE UN NÚMERO EN SUS FACTORES PRIMOS... 7 MÁXIMO COMÚN DIVISOR...

Más detalles

Autor: Antonio Rivero Cuesta, Tutor C.A. Palma de Mallorca

Autor: Antonio Rivero Cuesta, Tutor C.A. Palma de Mallorca Tema Autor: Antonio Rivero Cuesta, Tutor C.A. Palma de Mallorca.1 De las siguientes operaciones, cuál no permite operar cualquier par de números naturales para obtener un resultado natural? a) La suma.

Más detalles

INSTITUTO DE FORMACIÓN DOCENTE DE CANELONES DIVISIBILIDAD

INSTITUTO DE FORMACIÓN DOCENTE DE CANELONES DIVISIBILIDAD DIVISIBILIDAD Definición de múltiplo Dados los números naturales a y b, se dice que a es múltiplo de b, si y solo si existe un número natural c, único, tal que a = b.c El número c se dice que es el cociente

Más detalles

TEMA 1.- POLINOMIOS Y FRACCIONES ALGEBRAICAS

TEMA 1.- POLINOMIOS Y FRACCIONES ALGEBRAICAS TEMA 1.- POLINOMIOS Y FRACCIONES ALGEBRAICAS 1.- POLINOMIOS Recordemos que un monomio es una expresión algebraica (combinación de letras y números) en la que las únicas operaciones que aparecen entre las

Más detalles

OPERACIONES CON MONOMIOS Y POLINOMIOS. Suma de monomios

OPERACIONES CON MONOMIOS Y POLINOMIOS. Suma de monomios OPERACIONES CON MONOMIOS Y POLINOMIOS Suma de monomios Sólo podemos sumar monomios semejantes. La suma de los monomios es otro monomio que tiene la misma parte literal y cuyo coeficiente es la suma de

Más detalles

Tema 4: Múltiplos y Divisores

Tema 4: Múltiplos y Divisores Tema 4: Múltiplos y Divisores Índice 1. Introducción. 2. Múltiplos de un número. 3. Divisores de un número. 4. Criterios de divisibilidad. 5. Números primos y números compuestos. 6. Descomposición de un

Más detalles

Fracciones. Tipos de fracciones. Impropia. El numerador es más grande o igual que el denominador. 7 3, 9 4, 11 6

Fracciones. Tipos de fracciones. Impropia. El numerador es más grande o igual que el denominador. 7 3, 9 4, 11 6 Fracciones Es una expresión que representa una o varias partes de la unidad. Numerador y Denominador El denominador indica en cuantas partes se divide la unidad y el numerador indica cuantas partes se

Más detalles

INSTITUTO TECNOLÓGICO METROPOLITANO DECANATURA DE CIENCIAS JEFATURA DE CIENCIAS BÁSICAS

INSTITUTO TECNOLÓGICO METROPOLITANO DECANATURA DE CIENCIAS JEFATURA DE CIENCIAS BÁSICAS INSTITUTO TECNOLÓGICO METROPOLITANO DECANATURA DE CIENCIAS JEFATURA DE CIENCIAS BÁSICAS NIVELATORIO DE MATEMÁTICAS BÁSICAS Guía 3 Números Naturales y Enteros COMPETENCIA Reconoce operaciones. los conjuntos

Más detalles

Recuperación Primer Trimestre Matemáticas 1ºESO

Recuperación Primer Trimestre Matemáticas 1ºESO Recuperación Primer Trimestre Matemáticas 1ºESO TEMA 1: DIVISIBILIDAD 1 Ana tiene 0 libros que quiere colocar en montones de manera que todos ellos tengan el mismo número de libros. De cuántas formas puede

Más detalles

Catedrático: I.S.C. Iván de J. Moscoso Navarro Contenido:

Catedrático: I.S.C. Iván de J. Moscoso Navarro Contenido: Materia: Matemáticas I Catedrático: I.S.C. Iván de J. Moscoso Navarro Contenido: UNIDAD TEMATICA II.- SISTEMAS NUMÉRICOS 2.1 Números Naturales ( N )... Introducción Propiedades de la adición de los números

Más detalles

FACULTAD DE CIENCIAS EXACTAS Y NATURALES SEMILLERO DE MATEMÁTICAS DIVISIBILIDAD

FACULTAD DE CIENCIAS EXACTAS Y NATURALES SEMILLERO DE MATEMÁTICAS DIVISIBILIDAD FACULTAD DE CIENCIAS EXACTAS Y NATURALES SEMILLERO DE MATEMÁTICAS GRADO: 6 TALLER 3 SEMESTRE II DIVISIBILIDAD RESEÑA HISTÓRICA La división es una operación aritmética de descomposición que consiste en

Más detalles

Múltiplos y divisores

Múltiplos y divisores Múltiplos y divisores Contenidos 1. Múltiplos y divisores Múltiplos de un número La división exacta Divisores de un número Criterios de divisibilidad Números primos Números primos y compuestos Obtención

Más detalles

Los números naturales

Los números naturales Los números naturales Los números naturales Los números naturales son aquellos que sirven para contar. Se suelen representar utilizando las cifras del 0 al 9. signo suma o resultado Suma: 9 + 12 = 21 sumandos

Más detalles

NÚMEROS NATURALES. DIVISIBILIDAD. NÚMEROS ENTEROS

NÚMEROS NATURALES. DIVISIBILIDAD. NÚMEROS ENTEROS UNIDAD 0: NÚMEROS NATURALES. DIVISIBILIDAD. NÚMEROS ENTEROS ESTRUCTURA DEL SISTEMA DE NUMERACIÓN DECIMAL Nuestro sistema de numeración es decimal y posicional. Para escribir cualquier número se utilizan

Más detalles

Mínimo común múltiplo

Mínimo común múltiplo Mínimo común múltiplo El número más pequeño (no cero) que es múltiplo de dos o más números. El nombre de mínimo común múltiplo está hecho de las partes mínimo, común y múltiplo: Qué es un "múltiplo"? Los

Más detalles

Unidad didáctica 1. Operaciones básicas con números enteros

Unidad didáctica 1. Operaciones básicas con números enteros Unidad didáctica 1 Operaciones básicas con números enteros 1.- Representación y ordenación de números enteros Para representar números enteros en una recta hay que seguir estos pasos: a) Se dibuja una

Más detalles

Llamamos potencia a todo producto de factores iguales. Por ejemplo: 3 4 =

Llamamos potencia a todo producto de factores iguales. Por ejemplo: 3 4 = 1. NÚMEROS NATURALES POTENCIAS DE UN NÚMERO NATURAL Llamamos potencia a todo producto de factores iguales. Por ejemplo: 3 4 = 3 3 3 3 El factor que se repite es la base, y el número de veces que se repite

Más detalles

Tema 1 : NÚMEROS NATURALES. DIVISIBILIDAD. Primero de Educación Secundaria Obligatoria. I.e.s Fuentesaúco.

Tema 1 : NÚMEROS NATURALES. DIVISIBILIDAD. Primero de Educación Secundaria Obligatoria. I.e.s Fuentesaúco. 2009 Tema 1 : ÚMEROS ATURALES. DIVISIBILIDAD. Primero de Educación Secundaria Obligatoria. I.e.s Fuentesaúco. Manuel González de León mgdl 01/01/2009 Tema 01: úmeros aturales. Divisibilidad IDICE: 01.

Más detalles

INSTITUTO DE FORMACIÓN DOCENTE DE CANELONES DIVISIBILIDAD

INSTITUTO DE FORMACIÓN DOCENTE DE CANELONES DIVISIBILIDAD DIVISIBILIDAD Definición de múltiplo Dados los números naturales a y b, se dice que a es múltiplo de b, si y solo si existe un número natural k, único, tal que a = b.k El número k se dice que es el cociente

Más detalles

1. Escribir los Z del 7 al 23: 2. Completar con el signo < o >, según corresponda (véase el primer ejemplo):

1. Escribir los Z del 7 al 23: 2. Completar con el signo < o >, según corresponda (véase el primer ejemplo): EJERCICIOS de ENTEROS º ESO FICHA 1: Concepto de nº entero. Representación en la recta R 1. Escribir los Z del 7 al :. Completar con el signo < o >, según corresponda (véase el primer ejemplo): a) < 7

Más detalles

Factorización ecuación identidad condicional término coeficiente monomio binomio trinomio polinomio grado ax3

Factorización ecuación identidad condicional término coeficiente monomio binomio trinomio polinomio grado ax3 Factorización Para entender la operación algebraica llamada factorización es preciso repasar los siguientes conceptos: Cualquier expresión que incluya la relación de igualdad (=) se llama ecuación. Una

Más detalles

6. Usa el teorema del resto para comprobar si los siguientes polinomios son divisibles por (x 2)

6. Usa el teorema del resto para comprobar si los siguientes polinomios son divisibles por (x 2) 1. Halla el cociente y el resto de la división: (3x 2 7x + 5) : (x 2 ) 2. Halla el cociente y el resto de la división: (x 3 3x 2 2) : (x 2 + 1) 3. Calcula y simplifica: a) 3x(x + 7) 2 + (2x 1)( 3x + 2)

Más detalles

Aritmética entera. AMD Grado en Ingeniería Informática. AMD Grado en Ingeniería Informática (UM) Aritmética entera 1 / 15

Aritmética entera. AMD Grado en Ingeniería Informática. AMD Grado en Ingeniería Informática (UM) Aritmética entera 1 / 15 Aritmética entera AMD Grado en Ingeniería Informática AMD Grado en Ingeniería Informática (UM) Aritmética entera 1 / 15 Objetivos Al finalizar este tema tendréis que: Calcular el máximo común divisor de

Más detalles

UNIDAD 1. NÚMEROS. (Página 223 del libro) Nivel II. Distancia. Ámbito Científico Tecnológico.

UNIDAD 1. NÚMEROS. (Página 223 del libro) Nivel II. Distancia. Ámbito Científico Tecnológico. UNIDAD 1. NÚMEROS. (Página 22 del libro) Nivel II. Distancia. Ámbito Científico Tecnológico. Clasificación de los números Números naturales son aquellos que utilizamos para contar. N = 0,1,2,,,5,6, Números

Más detalles

FICHAS REPASO 3º ESO. Para restar números enteros, se suma al minuendo el opuesto del sustraendo y después se aplican las reglas de la suma.

FICHAS REPASO 3º ESO. Para restar números enteros, se suma al minuendo el opuesto del sustraendo y después se aplican las reglas de la suma. FICHAS REPASO º ESO OPERACIONES CON NÚMEROS ENTEROS El valor absoluto de un número entero es el número natural que resulta al prescindir del signo. Por ejemplo, el valor absoluto de es y el valor absoluto

Más detalles

MATEMÁTICAS 1º DE ESO

MATEMÁTICAS 1º DE ESO MATEMÁTICAS 1º DE ESO LOE TEMA V : LOS NÚMEROS DECIMALES El Sistema de Numeración Decimal: órdenes de unidades decimales y equivalencias. Números decimales y fracciones decimales. Tipos de números decimales

Más detalles

Mínimo común múltiplo (mcm) y máximo común divisor (MCD)

Mínimo común múltiplo (mcm) y máximo común divisor (MCD) Mínimo común múltiplo (mcm) y máximo común divisor (MCD) por Cristina Andrade Guevara El trabajar con mcm y MCD implica realizar cálculos con números primos, por lo que de manera introductoria te hablaremos

Más detalles

Módulo de Matemáticas Académicas II Módulo de Matemáticas Aplicadas II Nivel II de ESPAD. Unidad 0. Números naturales y enteros

Módulo de Matemáticas Académicas II Módulo de Matemáticas Aplicadas II Nivel II de ESPAD. Unidad 0. Números naturales y enteros Módulo de Matemáticas Académicas II Módulo de Matemáticas Aplicadas II Nivel II de ESPAD Unidad 0 Números naturales y enteros Este documento ha sido realizado por la profesora Carmen de la Fuente Blanco

Más detalles

Unidad 2: Ecuaciones, inecuaciones y sistemas.

Unidad 2: Ecuaciones, inecuaciones y sistemas. Unidad 2: Ecuaciones, inecuaciones y sistemas 1 Unidad 2: Ecuaciones, inecuaciones y sistemas. 1.- Factorización de polinomios. M. C. D y m.c.m de polinomios. Un número a es raíz de un polinomio es 0.

Más detalles

CONJUNTO DE LOS NÚMEROS NATURALES

CONJUNTO DE LOS NÚMEROS NATURALES República Bolivariana de Venezuela Ministerio de la Defensa Universidad Nacional Experimental de las Fuerzas Armadas Curso de Inducción Universitaria CIU Cátedra: Razonamiento Matemático CONJUNTO DE LOS

Más detalles

Colegio FUENTELARREYNA

Colegio FUENTELARREYNA Colegio FUENTELARREYNA RESOLUCIÓN de de septiembre de 9 en la que se establecen los estándares o conocimientos esenciales de la materia de Matemáticas para el primer curso de la Educación Secundaria Obligatoria

Más detalles

FRACCIONES. Profesora: Charo Ferreira

FRACCIONES. Profesora: Charo Ferreira FRACCIONES - Definición: La fracción puede tener varias interpretaciones, todas ellas aplicables y correctas: 1. Fracción es una expresión que indica una cantidad que expresa una o varias unidades no completas.

Más detalles

Ejercicios Pendientes Matemáticas 2º ESO Curso Números Enteros Los Números Enteros

Ejercicios Pendientes Matemáticas 2º ESO Curso Números Enteros Los Números Enteros Los 1) 2) 1 3) 4) 5) 9) ) 2 11) 12) 16) 3 17) 18) 19) 4 20) 21) En qué orden se realizan las operaciones con números enteros Para resolver varias operaciones combinadas con números enteros, se debe seguir

Más detalles

Bloque 1. Tema 3 Divisibilidad, máximo común divisor y mínimo común múltiplo. Potencias y raíces.

Bloque 1. Tema 3 Divisibilidad, máximo común divisor y mínimo común múltiplo. Potencias y raíces. ÍNDICE Bloque 1. Tema 3 Divisibilidad, máximo común divisor y mínimo común múltiplo. 1. Divisibilidad 1.1. Múltiplos de un número natural 1.2. Divisores de un número natural 1.2.1. Cálculo de los divisores

Más detalles

1. Escribir los Z del 7 al 23: 2. Ordenar de menor a mayor los siguientes Z: -34, 23, 7, 100, -33, 0, 24, -2, 14, -1, 132, -1000

1. Escribir los Z del 7 al 23: 2. Ordenar de menor a mayor los siguientes Z: -34, 23, 7, 100, -33, 0, 24, -2, 14, -1, 132, -1000 FICHA 1: Concepto de nº entero, múltiplo y divisor, nº primo Concepto de nº entero (Z): 1. Escribir los Z del 7 al 23: 2. Ordenar de menor a mayor los siguientes Z: -34, 23, 7, 100, -33, 0, 24, -2, 14,

Más detalles

13 ESO. «El estudio es un esfuerzo total para aprender, y sólo es verdaderamente provechoso cuando se aprende» Morgan. Profesor

13 ESO. «El estudio es un esfuerzo total para aprender, y sólo es verdaderamente provechoso cuando se aprende» Morgan. Profesor «El estudio es un esfuerzo total para aprender, y sólo es verdaderamente provechoso cuando se aprende» 13 ESO Morgan. Profesor N N ÍNDICE: EL NIF DIA DEL MEDIO AMBIENTE 1. NÚMEROS NATURALES 2. MÚLTIPLOS

Más detalles

Unidad n 1: Múltiplos y factores. Matemática Profesora camila San Martín

Unidad n 1: Múltiplos y factores. Matemática Profesora camila San Martín Unidad n 1: Múltiplos y factores. Matemática Profesora camila San Martín Qué crees que es un múltiplo? a qué palabras se asemeja? Definición de múltiplo: Según la RAE: Dicho de un número o de una cantidad:

Más detalles

UNIDAD 1 CONCEPTOS BÁSICOS. Números naturales, Números enteros, Números racionales, números irracionales y números reales. Dr. Daniel Tapia Sánchez

UNIDAD 1 CONCEPTOS BÁSICOS. Números naturales, Números enteros, Números racionales, números irracionales y números reales. Dr. Daniel Tapia Sánchez UNIDAD 1 CONCEPTOS BÁSICOS Números naturales, Números enteros, Números racionales, números irracionales y números reales Dr. Daniel Tapia Sánchez 1.1 Números Naturales (N) 1.1.1 Consecutividad numérica

Más detalles

Matemática I. Mínimo Común Múltiplo. Ing. Santiago Figueroa Lorenzo Correo:

Matemática I. Mínimo Común Múltiplo. Ing. Santiago Figueroa Lorenzo Correo: Matemática I Mínimo Común Múltiplo Ing. Santiago Figueroa Lorenzo Correo: [email protected] Temas Primera Unidad: Elementos Algebraicos Tema 3: Mínimo Común Múltiplo Mínimo Común Múltiplo

Más detalles

OBJETIVO 4 LOS MÚLTIPLOS Y LOS DIVISORES DE UN NÚMERO NOMBRE: CURSO: FECHA: Múltiplos de 5 F 5, 10, 15, 20, 25, 30, 35, 40, 45,...

OBJETIVO 4 LOS MÚLTIPLOS Y LOS DIVISORES DE UN NÚMERO NOMBRE: CURSO: FECHA: Múltiplos de 5 F 5, 10, 15, 20, 25, 30, 35, 40, 45,... IDENTIFICAR OBJETIVO LOS MÚLTIPLOS Y LOS DIVISORES DE UN NÚMERO NOMBRE: CURSO: FECHA: Los múltiplos de un número son aquellos números que se obtienen multiplicando dicho número por,,,,,..., es decir, por

Más detalles

POLINOMIOS Y FRACCIONES ALGEBRAICAS

POLINOMIOS Y FRACCIONES ALGEBRAICAS POLINOMIOS Y FRACCIONES ALGEBRAICAS Monomio: Monomio es una expresión algebraica en la que las únicas operaciones que aparecen entre las variables son el producto y la potencia de exponente natural. 2x

Más detalles

TEMA 2: DIVISIBILIDAD. Contenidos:

TEMA 2: DIVISIBILIDAD. Contenidos: Contenidos: - Múltiplos y divisores de un número. - Criterios de divisibilidad. - Números primos y compuestos. Descomposición de un número compuesto en factores primos. - Concepto de máximo común divisor

Más detalles

2. Calcula cociente y resto en la siguiente división de polinomios: (x 5 32) : (x 1)

2. Calcula cociente y resto en la siguiente división de polinomios: (x 5 32) : (x 1) 1. Un polinomio con raíces únicas 1, 0, 2, 2, 3 es: a) x 4 + 4x 3 + x 2 6x b) x 4 + 6x 3 + 9x 2 4x 12 c) x 5 6x 4 + 9x 3 + 4x 2 12x d) x 5 + 6x 4 + 9x 3 4x 2 12x e) x 4 4x 3 + x 2 + 6x 2. Calcula cociente

Más detalles

COLEGIO SAN JOSÉ - Hijas de María Auxiliadora C/ Emilio Ferrari, 87 - Madrid Departamento de Ciencias Naturales

COLEGIO SAN JOSÉ - Hijas de María Auxiliadora C/ Emilio Ferrari, 87 - Madrid Departamento de Ciencias Naturales C/ Emilio Ferrari, 7 - Madrid 017. FRACCIONES Antes de empezar El trabajo con fracciones ya no es nuevo para ti. Ya sabes que una fracción puede verse desde una triple perspectiva. Puedes ver una fracción

Más detalles

CEIP Mediterráneo. 1º relación de divisibilidad: múltiplos y divisores.

CEIP Mediterráneo. 1º relación de divisibilidad: múltiplos y divisores. Melilla DIVISIBILIDAD 1º relación de divisibilidad: múltiplos y divisores. Dos números están emparentados por la relación de divisibilidad cuando el cociente entre el mayor y el menor es exacto. El mayor

Más detalles