Mecánica. Cecilia Pardo Sanjurjo. Tema 11. Dinámica de percusiones. Choques. DPTO. DE INGENIERÍA ESTRUCTURAL Y MECÁNICA

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Mecánica. Cecilia Pardo Sanjurjo. Tema 11. Dinámica de percusiones. Choques. DPTO. DE INGENIERÍA ESTRUCTURAL Y MECÁNICA"

Transcripción

1 Mecánica Tema 11. Dinámica de percusiones. Choques. Cecilia ardo Sanjurjo DTO. DE INGENIERÍA ESTRUCTURAL Y MECÁNICA Este tema se publica bajo Licencia: CreaJve Commons BY NC SA 3.0

2 Dinámica de percusiones. Choques En algunas situaciones, como en los choques, se ejercen uerzas muy intensas entre los sólidos durante un tiempo muy corto. Su eecto es un cambio súbito en la velocidad de los cuerpos, así como deormaciones (permanentes o no) y pérdida de energía en orma de calor o sonido.

3 A estas uerzas muy intensas ( F = ) que actúan en tiempos muy cortos se les llama uerzas impulsivas o percusionales ( Δt 0) En estos casos conviene utilizar el impulso de estas uerzas por ser una cantidad inita FΔt = 0 = inito En cambio una uerza inita (o un par de uerzas inito) da un impulso cero, ya que F Δt = inito 0 = 0 Se llama percusión al impulso producido por una de estas uerzas integrada al tiempo de actuación: = F dt FΔt unidades SI: N s Δt

4 Características: a = F m = aceleraciones muy altas Δv = a Δt = 0 = inito Cambio inito y súbito de velocidades Δs = v Δt = inito 0 = 0 osiciones congeladas Cualquier situación en que se produzca un cambio brusco en las velocidades sin modiicarse la posición se puede tratar como una percusión.

5 Dos situaciones de ese tipo: Choques! antes =0! despu s y x v despu s n n v antes N N Aparición de nuevos enlaces En la posición en que se tensa la cuerda se produce un cambio brusco de velocidades (percusión de tensión) T v antes v despu s

6 Ecuaciones de dinámica de percusiones: 2ª Ley de Newton aplicada a percusiones: FΔt = Δp F i + F i Δt = ( ) F i Δt + F i Δt = i i ara un sólido rígido o un sistema de puntos: = Δ p p = m v G i = m v inal inicial ( G v G ) x = m v Gx y = m v Gy ( i v Gx ) ( i v Gy ) La suma de las percusiones es igual al cambio de la cantidad de movimiento que se produce en la misma posición inmediatamente antes (inicial) e inmediatamente después (inal) de la percusión.

7 Teorema del momento angular aplicado a percusiones: M A Δt = ΔL A Ai F i + F i Δt = Ai F i Δt = Ai i ( ) = M A M A = Δ L A ara un sólido rígido: L A = I A ω M A = I A ( ω inal ω inicial ) con A un punto ijo del sólido o su c.d.g. El momento de las percusiones respecto a un punto A es el cambio de momento angular que se produce entre el instante de entrada (inicial) y salida (inal) de la percusión

8 Cómo se hace un esquema de percusiones? Las percusiones no son uerzas (N), son impulsos (N s), pero provienen de uerzas que instantáneamente se hacen muy altas, así que siguen las mismas reglas, en particular la ley de acción reacción. Las uerzas initas no dan percusión (pesos, cargas o pares initos), se eliminan en los esquemas Las uerzas que dependen exclusivamente de la posición tampoco dan origen a una percusión, ya que al estar la posición congelada esas uerzas se mantienen invariables y initas (por ejemplo las uerzas elásticas de los muelles) Las uerzas en los enlaces se pueden hacer muy altas, dando origen a percusiones de reacción. Las relaciones que hay entre ellas son las mismas que entre las uerzas de que provienen. or ejemplo en una articulación a un punto ijo habrá x y y ; si en un contacto hay percusión normal y de rozamiento N 0 r µ e N

9 Fuerzas normales b 100 N m Esquema de uerzas T b 100 N m h F m =k(l-l o ) h k, l o F r mg l N x ercusión : Esquema de percusiones b 100 N m b T k, l o h h r l x N

10 Se aisla cada sólido y se hace el esquema de las percusiones que actúan sobre él. Se plantean las ecs de dinámica de percusiones sobre cada uno Se completan con relaciones entre velocidades: como en las ecs iguran velocidades inmediatamente antes e inmediatamente después de la percusión, es posible que haga alta considerar el movimiento del sólido previo a la percusión y posterior a la misma que puede ser radicalmente distinto. En caso de que hubiera varias posibilidades de movimiento, se ormula una hipótesis que, supone relaciones entre velocidades y/o entre percusiones. Se resuelve y se comprueba si dicha hipótesis es acertada.

11 Ejemplo 1 m G 1 m (a) La barra de la igura se deja caer desde el reposo. Cuando ha caído 2.5 m el hilo AB se tensa. Hallar la velocidad angular de la barra inmediatamente después de tensarse el hilo. A m B 2.5 m (b) Conservación de la energía mecánica durante la caída de la barra entre (a) y (b): ( E cin + E pot ) = E a ( cin + E pot ) 0 = 1 b 2 mv G I G ω2 mg2.5 v G = 2g2.5 = 7 m / s Velocidad de G inmediatamente antes de tensarse el hilo

12 Esquema de percusiones T 45 B G y x Ecuaciones de la dinámica de percusiones: antes: v G i x y M G = I G = 7 j ω i = 0 ; después: v G = m vgx v i ( Gx ) T 12 = 3 ( v Gx 0 ) = m vgy v i ( Gy ) T 12 = 3 ( v Gy + 7 ) ( ω ω i 1 ) T = v Gx,v Gy 2 1 = ( ) ω = ω ( ω 0) Ecs percusiones (3 ecs, 4 incóg.)

13 Relaciones entre velocidades inales: A! h Campo de velocidades en hilo: v B = v A + ω h AB = ωh 2.5 i ω h 2.5 j (los hilos tensos son como barras ) m v B =AB! h 45 B 1 m G (v Gx, v Gy )! Campo de velocidades en la barra: v G = v B + ω BG v Gx = ω h 2.5 v Gy = ω h ω ( +2ecs, +1 incóg ) Sustituyendo en las ecuaciones de las percusiones y resolviendo: ω = 4.2 rad / s ω h =0.56 v G = 1.4 i 5.6 j T = N s > 0

14 Choques Suelen tener lugar en intervalos cortos de tiempo, durante el cual las uerzas (normales) que se ejercen entre los cuerpos son muy intensas produciéndose en consecuencia un cambio brusco en velocidades en uno o en ambos cuerpos (percusión). También se producen deormaciones permanentes o no. Línea de impacto o choque : dirección de la normal en el contacto G plano tangente t G l nea de impacto n G G l nea de impacto Choque central: ambos c.d.m. en la línea de impacto Choque excéntrico: alguno de los c.d.m. está uera de la línea de impacto Consideraremos que la percusión del choque es siempre en la dirección de la línea de impacto ( a veces se menciona que es liso)

15 Centros de masa en la línea de impacto: Choque central plano tangente t G G l nea de impacto n plano tangente t Velocidades de ambos cdm contenidas en la línea de impacto: Choque central directo v 1 G G 1 2 v 2 l nea de impacto n Alguna de las velocidades no dirigida según la línea de impacto: Choque central oblicuo v 1 plano tangente t G G 1 2 l nea de impacto n v 2

16 Choque central directo Dos puntos materiales tienen velocidades iniciales a lo largo de la línea de impacto, de orma que se produce un choque durante un intervalo de tiempo a! v Ai v Bi v A v B Supongamos que en el impacto sólo se producen uerzas impulsivas normales en el contacto entre los puntos Considerando el sistema ormado por A y B, la cantidad de movimiento del conjunto inmediatamente antes e inmediatamente después del choque se conserva: m A v Ai + m B v Bi = m A v A + m B v B

17 Fase de deormación o aproximación: desde t i hasta t m en que dejan de aproximarse (deormación máxima) (v A =v B =v m ) v Ai v Bi va =v B =v m v A v B de de t=t i t=t m Teorema del impulso aplicado a A Fase de restitución: desde t m hasta t t m t i F de - de dt = m A v m m A v Ai v A =v B =v m v A v B v A v B res res t=t m t=t t t m F res dt = m A v A m A v m Cociente entre el impulso de restitución y el de deormación: e = t t m F res t m t i F de dt dt = v A v m v m v Ai

18 Idem con B: e = t t m F res t m t i F de dt dt = v B v m v m v Bi Eliminando v m : e = v B v A v Bi v Ai Coeiciente de restitución Este coeiciente es positivo y adimensional, y su valor está entre 0 y 1 e = 0 choque plástico, A y B se mueven juntos 0 e 1 0 < e < 1 choque inelástico e = 1 choque elástico, recuperación completa,no hay deormación

19 Si el choque es elástico: e = 1 v B + v A = v Bi v Ai v A + v Ai = v B + v Bi [ 1] De la conservación de la cantidad de movimiento m A v Ai + m B v Bi = m A v A + m B v B m A ( v Ai v A ) = m B ( v B v Bi ) [ 2] Multiplicando miembro a miembro las ecs 1 y 2: m A ( v 2 Ai v2 A ) = m B ( v 2 B v2 Bi ) Dividiendo todo por 2 y reordenando: 1 2 m A v2 Ai m B v2 Bi = 1 2 m A v2 A m B v2 B En un choque elástico ( y sólo en ese caso) se conserva la energía cinética del sistema

20 v A Choque central oblicuo A t Aplicamos las leyes de las percusiones según las direcciones normal y tangente para cada cuerpo = mδ v G Diagrama de percusiones en cada cuerpo: v Ai B v Bi v B n l nea de impacto v A t A t v B v Ai B n n v Bi n) = m A v An t) 0 = m A v At i ( v An ) i ( v At ) v At i = v At n) = m B v Bn t) 0 = m B v Bt ( i + v Bn ) i ( v Bt ) v Bt i = v Bt

21 La cantidad de movimiento del conjunto se conserva: m i Av A + m B vb i = m A va + m B vb i n) m A v An i m B v Bn = m A v An + m B v Bn i t) m A v At i + m B v Bt = m A v At + m B v Bt Estas ecuaciones se deducen también de sumar las de cada cuerpo. Ya sabemos que las componentes en la dirección tangente se conservan, pero aún así hace alta una ecuación más para poder determinar las velocidades inales sabiendo las iniciales. Repitiendo la deducción del coeiciente de restitución en este caso se obtiene: e = v ( Bn v An ) v i i ( Bn v An ) = v ( v B A )in v i i ( v B A )in En la expresión del coeiciente de restitución sólo intervienen las conmponentes normales de las velocidades de los puntos que chocan

22 Rebote pelota: choque con cuerpo muy masivo m v 1 v 1n n v2n v 1t v 2t m suelo muy grande t m suelo muy grande v s =0 t = m ( v 2t v 1t ) v 1t = v 2t ( t = 0) e = v sn v 2n v i sn + v 1n = v 2n v 1n v 2n = e v 1n (siempre opuestas en sentido)

23 Choque entre sólidos Esquema de percusiones sobre cada sólido, teniendo en cuenta que el contacto se produce en los puntos R y Q El movimiento de cada sólido está caracterizado mediante mediante la velocidad de su cdm (G y H) y la velocidad angular inmediatamente antes e inmediatamente después del choque G! 1 i v G i R Q v H i n t H! 2 i G R Ax Ay n Q n H r N

24 Esquema de percusiones de cada sólido: percusión en el punto de impacto según la línea de impacto ( normal) G R Ax Ay n Q n H r Ecuaciones de las percusiones para cada sólido (3 ecs en el plano/sólido) N x y = mδv Gx = mδv Gy M A = I A Δω (A= pto ijo o G) Coeiciente de restitución: e = v ( v R Q )in v i i ( v R Q )in (1 ec)

25 La energía no se conserva salvo si e=1 (choque elástico), en cuyo caso se puede plantear la conservación de la energía en lugar de la deinición de e. Si e=0 el choque es perectamente plástico y las componentes normales de las velocidades inales de los puntos del contacto son iguales Suele ser necesario relacionar velocidades y velocidades angulares mediante campo de velocidades y a veces hacer alguna hipótesis del movimiento inal.

26 Ejemplo: A 3 m Datos: Martillo : llega al choque con ω 1 = 2rad / s I A = 12 kg m 2 Contacto bloque suelo: µ=0.5 Choque plástico 2 m m=3 3 kg 2 m Se pide la velocidad angular inal de los dos sólidos, suponiendo que el bloque inicie un vuelco sin deslizamiento.

27 y A 2 rad/s 3 m x Martillo: A = punto ijo; 2 rad / s ω 2 M A = I A ( ω ω i ) 3 = 12( ω 2 2) [ 1] B C 2 m G reposo inicial 2 m Bloque: I G = ( ) = 2 kg m 2 x N r reposo v G = ( v Gx,v Gy ) ω = ω x y M G = I G ( ) r + = 3( v Gx 0) [ 2] ( ) N = 3( v Gy 0) [ 3] ( ω ω i ) 1 r 1+ N x = 2 ω 0 = m vgx i v Gx = m vgy v i Gy ( ) [ 4] r 0.5 N N 0 > 0 1 x 1 Hipótesis vuelco: x=1

28 Cinemática A! 1 =2 rad/s A! 2 v C En martillo 3 3 C v G G E v E =0 En el bloque: B vi B = 6 m/s Hipótesis de vuelco sin deslizamiento en E: v E = 0 v G = v E + ω EG v Gx = v Gy = 1 ω B v B =! 2 3 A Análogamente para C: v Cx = v Cy = 2 ω B C m=3 kg n=i Choque plástico: e=0 e = v Bx ( v Cx ) v i i Bx v Cx ( ) = 0 v Bx = v Cx 3 ω 2 = 2ω

29 Las relaciones subrayadas se sustituyen en las ecs numeradas. Resolviendo: ω = 1.2 rad / s ω 2 = 0.8 rad / s ( ) = 4.8 N s > 0 N = 3.6 N s > 0 r = 1.2 N s r = 1.2 < 0.5 N = 1.8

30 ráctica 4 del Laboratorio Entrada al choque Salida del choque w 1 w 2 v G Ay Bloque : Ax x = mδv Gx ) r = m v G 0 y = mδv Gy ) N = 0 r µ e N r = 0 ( ) = mv G r Martillo: A punto ijo M A = I A Δω) L=I A ( ω 2 ω 1 ) N

31 Ay Ay Ax A Ax El momento angular respecto a A del conjunto se conserva en ese choque La cantidad de movimiento del conjunto no se conserva porque hay percusiones de reacción en A ( Ax es distinta de 0) T1 T2 Las velocidades antes y después son todas horizontales: T1 =0 T2 =0 Se conserva la cantidad de movimiento del conjunto en el choque

Física I. Cantidad de Movimiento, Impulso y Choque. Ing. Alejandra Escobar UNIVERSIDAD FERMÍN TORO VICE RECTORADO ACADÉMICO FACULTAD DE INGENIERÍA

Física I. Cantidad de Movimiento, Impulso y Choque. Ing. Alejandra Escobar UNIVERSIDAD FERMÍN TORO VICE RECTORADO ACADÉMICO FACULTAD DE INGENIERÍA Física I Cantidad de Movimiento, Impulso y Choque UNIVERSIDAD FERMÍN TORO VICE RECTORADO ACADÉMICO FACULTAD DE INGENIERÍA Ing. Alejandra Escobar IMPULSO Y CANTIDAD DE MOVIMIENTO Anteriormente se explicó

Más detalles

Tratamiento newtoniano de los fenómenos impulsivos: percusiones

Tratamiento newtoniano de los fenómenos impulsivos: percusiones Tratamiento newtoniano de los fenómenos impulsivos: percusiones Índice 1. Introducción 2 2. Modelo matemático y físico de los fenómenos impulsivos 4 2.1. Preliminares matemáticos..............................

Más detalles

10 cm longitud 30 m. Calcular: (a) la velocidad en el pie del plano inclinado si

10 cm longitud 30 m. Calcular: (a) la velocidad en el pie del plano inclinado si Las pesas de la figura ruedan sin deslizar y sin 6 cm rozamiento por un plano inclinado 30 y de 10 cm longitud 30 m. Calcular: (a) la velocidad en el pie del plano inclinado si 100 cm las pesas parten

Más detalles

Momento Lineal y Choques. Repaso. Problemas.

Momento Lineal y Choques. Repaso. Problemas. Momento Lineal y Choques. Repaso. Problemas. Resumen: Momentum lineal.. El momentum lineal p de una partícula da masa m que se mueve con una velocidad v.unidad de momentum en el sistema SI: kg m/s. Momentum

Más detalles

Examen de Física-1, 1 Ingeniería Química Examen final. Septiembre de 2014 Problemas (Dos puntos por problema).

Examen de Física-1, 1 Ingeniería Química Examen final. Septiembre de 2014 Problemas (Dos puntos por problema). Examen de Física-1, 1 Ingeniería Química Examen final. Septiembre de 014 Problemas (Dos puntos por problema). Problema 1 (Primer parcial): Un cuerpo de masa 10 g se desliza bajando por un plano inclinado

Más detalles

Dinámica : parte de la física que estudia las fuerzas y su relación con el movimiento

Dinámica : parte de la física que estudia las fuerzas y su relación con el movimiento DINÁMICA 1. Fuerza 2. Ley de Hooke 3. Impulso. 4. Momento lineal o cantidad de movimiento. Teorema del impulso. Principio de conservación de la cantidad de movimiento. 5. Leyes del movimiento. Definición

Más detalles

Momento lineal y su conservación Conservación de la cantidad de movimiento para dos partículas Impulso y momento Colisiones Clasificación de las

Momento lineal y su conservación Conservación de la cantidad de movimiento para dos partículas Impulso y momento Colisiones Clasificación de las Momento lineal y su conservación Conservación de la cantidad de movimiento para dos partículas Impulso y momento Colisiones Clasificación de las colisiones Colisiones perfectamente inelásticas Choques

Más detalles

Problemas de Física I

Problemas de Física I Problemas de Física I DINÁMICA DEL SÓLIDO RÍGIDO (1 er Q.:prob impares, 2 ndo Q.:prob pares) 1. (T) Dos partículas de masas m 1 y m 2 están unidas por una varilla de longitud r y masa despreciable. Demostrar

Más detalles

IMPULSO Y CANTIDAD DE MOVIMIENTO Según el principio de masa, si a ésta se le aplica una fuerza F adquiere una aceleración a: F = m.

IMPULSO Y CANTIDAD DE MOVIMIENTO Según el principio de masa, si a ésta se le aplica una fuerza F adquiere una aceleración a: F = m. DINÁMICA Estudia el movimiento de los objetos y de su respuesta a las fuerzas. Las descripciones del movimiento comienzan con una definición cuidadosa de magnitudes como el desplazamiento, el tiempo, la

Más detalles

ECUACION DINÁMICA DE ROTACIÓN PURA DE UN CUERPO RIGIDO ALREDEDOR DE UN EJE ω

ECUACION DINÁMICA DE ROTACIÓN PURA DE UN CUERPO RIGIDO ALREDEDOR DE UN EJE ω ECUACION DINÁMICA DE ROTACIÓN PURA DE UN CUERPO RIGIDO ALREDEDOR DE UN EJE ω Suponiendo un cuerpo rígido que gira con velocidad angular ω alrededor del eje Z que permanece fijo al cuerpo. dl = ( dm R 2

Más detalles

Problemas de Física I DINAMICA DE SISTEMAS DE PARTICULAS. (1 er Q.:prob impares, 2 ndo Q.:prob pares)

Problemas de Física I DINAMICA DE SISTEMAS DE PARTICULAS. (1 er Q.:prob impares, 2 ndo Q.:prob pares) Problemas de Física I DINAMICA DE SISTEMAS DE PARTICULAS (1 er Q.:prob impares, 2 ndo Q.:prob pares) 1. (T) Una placa circular homogénea de radio r tiene un orificio circular cortado en ella de radio r/2

Más detalles

Examen de Física-1, 1 Ingeniería Química Primer parcial. Diciembre de 2012 Problemas (Dos puntos por problema).

Examen de Física-1, 1 Ingeniería Química Primer parcial. Diciembre de 2012 Problemas (Dos puntos por problema). Examen de Física-1, 1 Ingeniería Química Primer parcial. Diciembre de 2012 Problemas (Dos puntos por problema). Problema 1: Un palo saltador de niño almacena energía en un resorte de constante k 2, 5 10

Más detalles

Cinemática: parte de la Física que estudia el movimiento de los cuerpos.

Cinemática: parte de la Física que estudia el movimiento de los cuerpos. CINEMÁTICA Cinemática: parte de la Física que estudia el movimiento de los cuerpos. Movimiento: cambio de posición de un cuerpo respecto de un punto de referencia que se supone fijo. Objetivo del estudio

Más detalles

Examen de Física-1, 1 Ingeniería Química Examen final. Enero de 2017 Problemas (Dos puntos por problema).

Examen de Física-1, 1 Ingeniería Química Examen final. Enero de 2017 Problemas (Dos puntos por problema). Examen de Física-1, 1 Ingeniería Química Examen final. Enero de 017 Problemas (Dos puntos por problema). Problema 1: Un barco enemigo está en el lado este de una isla montañosa como se muestra en la figura.

Más detalles

2 o Bachillerato. Conceptos básicos

2 o Bachillerato. Conceptos básicos Física 2 o Bachillerato Conceptos básicos Movimiento. Cambio de posición de un cuerpo respecto de un punto que se toma como referencia. Cinemática. Parte de la Física que estudia el movimiento de los cuerpos

Más detalles

Física y Química 1º Bachillerato LOMCE. Bloque 3: Trabajo y Energía. Trabajo y Energía

Física y Química 1º Bachillerato LOMCE. Bloque 3: Trabajo y Energía. Trabajo y Energía Física y Química 1º Bachillerato LOMCE Bloque 3: Trabajo y Energía Trabajo y Energía 1 El Trabajo Mecánico El trabajo mecánico, realizado por una fuerza que actúa sobre un cuerpo que experimenta un desplazamiento,

Más detalles

Física General 1 Proyecto PMME - Curso 2007 Instituto de Física Facultad de Ingeniería UdelaR

Física General 1 Proyecto PMME - Curso 2007 Instituto de Física Facultad de Ingeniería UdelaR Física General 1 Proecto PMME - Curso 007 Instituto de Física Facultad de Ingeniería UdelaR TITULO DINAMICA DEL CARRETEL AUTORES Santiago Duarte, Nicolás Puppo Juan Manuel Del Barrio INTRODUCCIÓN En este

Más detalles

aletos TEMA 15 ENERGÍA POTENCIAL ELÁSTICA

aletos TEMA 15 ENERGÍA POTENCIAL ELÁSTICA aletos 15.1 15.1 Energía potencial elástica Hay cierto tipo de sólidos que no son rígidos, capaces, por tanto, de eperimentar deormaciones. La deormación de un sólido rígido puede ser plástica, o elástica.

Más detalles

Respuesta correcta: c)

Respuesta correcta: c) PRIMER EXAMEN PARCIAL DE FÍSICA I 04/11/016 MODELO 1 1.- La posición de una partícula que se mueve en línea recta está definida por la relación x=t -6t -15t+40, donde x se expresa en metros y t en segundos.

Más detalles

UNIVERSIDAD NACIONAL DE SAN CRISTÓBAL DE HUAMANGA

UNIVERSIDAD NACIONAL DE SAN CRISTÓBAL DE HUAMANGA UNIVERSIDAD NACIONAL DE SAN CRISTÓBAL DE HUAMANGA FACULTAD DE INGENIERÍA DE MINAS GEOLOGÍA Y CIVIL ESCUELA DE FORMACIÓN PROFESIONAL DE INGENIERÍA CIVIL PRÁCTICA DOMICILIARIA II Curso DINÁMICA (IC-244)

Más detalles

Física 2º Bach. Ondas 16/11/10

Física 2º Bach. Ondas 16/11/10 Física º Bach. Ondas 16/11/10 DEPARTAMENTO DE FÍSICA E QUÍMICA Nombre: Puntuación máxima: Problemas 6 puntos (1 cada apartado). Cuestiones 4 puntos (1 cada apartado o cuestión, teórica o práctica) No se

Más detalles

TEMA 9. MOVIMIENTO ARMÓNICO SIMPLE

TEMA 9. MOVIMIENTO ARMÓNICO SIMPLE TEMA 9. MOVIMIENTO ARMÓNICO SIMPLE Un movimiento periódico es aquel que describe una partícula cuando las variables posición, velocidad y aceleración de su movimiento toman los mismos valores después de

Más detalles

Se define Momento lineal al producto de la masa por la velocidad. p = mv

Se define Momento lineal al producto de la masa por la velocidad. p = mv Momento Lineal Se define Momento lineal al producto de la masa por la velocidad p = mv Se define el vector fuerza como la derivada del momento lineal respecto del tiempo La segunda ley de Newton es un

Más detalles

MOVIMIENTO OSCILATORIO O VIBRATORIO

MOVIMIENTO OSCILATORIO O VIBRATORIO MOVIMIENTO OSCILATORIO O VIBRATORIO 1. Movimiento armónico simple (MAS). 2. Ecuaciones del MAS. 3. Dinámica del MAS. 4. Energía del MAS. 5. El oscilador armónico. 6. El péndulo simple. Física 2º bachillerato

Más detalles

DINÁMICA. Física 1º bachillerato Dinámica 1

DINÁMICA. Física 1º bachillerato Dinámica 1 DINÁMICA 1. Fuerzas. 2. Principios de la dinámica. 3. Momento lineal (o cantidad de movimiento). 4. Impulso mecánico. 5. Interacción gravitatoria. 6. Fuerza centrípeta. 7. Fuerza elástica. 8. Fuerza de

Más detalles

Física. Conservación del Momento Angular

Física. Conservación del Momento Angular Física Conservación del Momento Angular Tenemos dos discos, el inferior tiene un radio de 1 m y superior tiene un radio de 0.5 m que pueden girar alrededor del mismo eje pero con velocidades angulares

Más detalles

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA AERONÁUTICA Y DEL ESPACIO FÍSICA I

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA AERONÁUTICA Y DEL ESPACIO FÍSICA I ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA AERONÁUTICA Y DEL ESPACIO FÍSICA I PROBLEMAS RESUELTOS José Carlos JIMÉNEZ SÁEZ Santiago RAMÍREZ DE LA PISCINA MILLÁN.- DINÁMICA DE SISTEMAS DE PARTÍCULAS Dinámica

Más detalles

CONTESTAR: 1 ó 2; 3 ó 4; 6 ó 7; 8 ó 9 ó 10; 5 ó 11

CONTESTAR: 1 ó 2; 3 ó 4; 6 ó 7; 8 ó 9 ó 10; 5 ó 11 NOMBRE APELLIDOS FÍSICA y QUÍMICA 1º DE BACHILLERATO NA 1DA GLOBAL 1ª EVALUACIÓN 015-16 CONTESTAR: 1 ó ; 3 ó 4; 6 ó 7; 8 ó 9 ó 10; 5 ó 11 1- Sobre un cuerpo cuya masa es m = 5,0 kg, actúan una fuerza hacia

Más detalles

PRUEBA ESPECÍFICA PRUEBA 2016

PRUEBA ESPECÍFICA PRUEBA 2016 PRUEBA DE ACCESO A LA UNIVERSIDAD MAYORES PRUEBA ESPECÍFICA PRUEBA 2016 PRUEBA SOLUCIONARIO PROBAK 25 URTETIK Contesta 4 de los 5 ejercicios propuestos (Cada pregunta tiene un valor de 2,5 puntos, de los

Más detalles

Fuerza de roce. Multiplicación de vectores. Impulso Momentum Torque Trabajo Potencia

Fuerza de roce. Multiplicación de vectores. Impulso Momentum Torque Trabajo Potencia Multiplicación de vectores Fuerza de roce Impulso Momentum Torque Trabajo Potencia Disipación de energía y roce. Coeficientes de roce estático y dinámico. Magnitud y dirección de la fuerza de roce en cada

Más detalles

Primer Parcial Física 1 (FI01) 7 de mayo de 2016

Primer Parcial Física 1 (FI01) 7 de mayo de 2016 Ejercicio 1 Usted decide empezar a bucear, y necesita comprar un tanque de aire apropiado. En la tienda ofrecen tanques de aire puro comprimido ( =255kg/m 3, 78% N 2, 21% O 2, 1% otros) de 8L, 12L, 17L

Más detalles

DINÁMICA. m 3 m 2 m 1 T 2 T 1 50N. Rpta. a) 2,78m/s 2 b) T 1 =38,9N y T 2 = 22,2N

DINÁMICA. m 3 m 2 m 1 T 2 T 1 50N. Rpta. a) 2,78m/s 2 b) T 1 =38,9N y T 2 = 22,2N DINÁMICA 1. Sobre una masa de 2Kg actúan tres fuerzas tal como se muestra en la figura. Si la aceleración del bloque es a = -20i m/s 2, determinar: a) La fuerza F 3. Rpta. (-120i-110j)N b) La fuerza resultante

Más detalles

UD 10. Leyes de la dinámica

UD 10. Leyes de la dinámica UD 10. Leyes de la dinámica 1- Concepto de fuerza. 2- Primer principio de la dinámica. 3- Segundo principio de la dinámica. 4- Tercer principio de la dinámica. 5- Momento lineal. 6- Fuerzas: Peso, Normal,

Más detalles

Ejemplos 3. Cinética de una Partícula

Ejemplos 3. Cinética de una Partícula Ejemplos 3. Cinética de una Partícula 3.1. 2ª Ley de Newton 3.1.** El movimiento del bloque de masa 1kg, en su guía inclinada viene regido por la rotación del brazo ranurado alrededor de O en el plano

Más detalles

UNIVERSIDAD NACIONAL SAN CRISTOBAL DE HUAMANGA

UNIVERSIDAD NACIONAL SAN CRISTOBAL DE HUAMANGA UNIVERSIDAD NACIONAL SAN CRISTOBAL DE HUAMANGA FACULTAD DE INGENIERÍA DE MINAS, GEOLOGÍA Y CIVIL E.F.P INGENIERIA CIVIL CINETICA DE LA PARTICULA Y EL CUERPO RIGIDO ANDREW PYTEL AND JAAN KIUSALAAS Docente

Más detalles

2.004 MODELISMO, DINÁMICA Y CONTROL II Primavera Boletín de problemas 3

2.004 MODELISMO, DINÁMICA Y CONTROL II Primavera Boletín de problemas 3 2.004 MODELISMO, DINÁMICA Y CONTROL II Primavera 2003 Boletín de problemas 3 Problema 1 Las dos masas a la derecha del dibujo están ligeramente separadas e inicialmente en reposo. La masa de la izquierda

Más detalles

TRABAJO Y ENERGÍA. ENERGÍA: es la capacidad que tiene un sistema físico para realizar un trabajo TIPOS:

TRABAJO Y ENERGÍA. ENERGÍA: es la capacidad que tiene un sistema físico para realizar un trabajo TIPOS: TRABAJO Y ENERGÍA ENERGÍA: es la capacidad que tiene un sistema físico para realizar un trabajo TIPOS: Energía Cinética: es la energía que tienen los cuerpos en virtud de su movimiento. Energía Potencial:

Más detalles

60N. Solo hay que tener en cuenta las fuerzas perpendiculares a la barra y en qué sentido la hacen girar: M sen45 1,5 70cos ,51N m

60N. Solo hay que tener en cuenta las fuerzas perpendiculares a la barra y en qué sentido la hacen girar: M sen45 1,5 70cos ,51N m . Calcular en momento de las fuerzas que actúan sobre la barra de la figura que puede girar alrededor de un eje que pasa por el punto. qué fuerza aplicada en el centro de la barra impide el giro? Dinámica

Más detalles

Examen de Física-1, 1 Ingeniería Química Examen final. Enero de 2015 Problemas (Dos puntos por problema).

Examen de Física-1, 1 Ingeniería Química Examen final. Enero de 2015 Problemas (Dos puntos por problema). Examen de Física-, Ingeniería Química Examen final. Enero de 205 Problemas (Dos puntos por problema). Problema : La posición de una partícula móvil en el plano Oxy viene dada por : x(t) = 2 t 2 y(t) =

Más detalles

Trabajo y Energía 30º. Viento

Trabajo y Energía 30º. Viento Física y Química TEM 7 º de achillerato Trabajo y Energía.- Un barco y su tripulación se desplazan de una isla hasta otra que dista Km en línea recta. Sabiendo que la fuerza del viento sobre las velas

Más detalles

Ejercicios resueltos y comentados de los boletines correspondiente a la asignatura de Física 1 para todos los grados de ingeniería industrial

Ejercicios resueltos y comentados de los boletines correspondiente a la asignatura de Física 1 para todos los grados de ingeniería industrial Física 1 Industriales Ejercicios resueltos y comentados de los boletines correspondiente a la asignatura de Física 1 para todos los grados de ingeniería industrial Juan Leyva Boletín 5 Boletines /Industriales/

Más detalles

Trabajo Práctico de Aula N 7 Dinámica de un cuerpo rígido

Trabajo Práctico de Aula N 7 Dinámica de un cuerpo rígido Trabajo Práctico de Aula N 7 Dinámica de un cuerpo rígido 1) Un bloque de 2000 kg está suspendido en el aire por un cable de acero que pasa por una polea y acaba en un torno motorizado. El bloque asciende

Más detalles

Guia N 6 - Primer cuatrimestre de 2007 Sólidos rígidos planos. Energía potencial y mecánica.

Guia N 6 - Primer cuatrimestre de 2007 Sólidos rígidos planos. Energía potencial y mecánica. æ Mecánica CLásica Guia N 6 - Primer cuatrimestre de 2007 Sólidos rígidos planos. Energía potencial y mecánica. Problema 1: Dos barras delgadas uniformes de longitudes iguales, l=0.5 m, una de 4 kg y la

Más detalles

UD 2: Dinámica. =40000 kg arrastra dos vagones de masas iguales m V

UD 2: Dinámica. =40000 kg arrastra dos vagones de masas iguales m V IES ARQUITECTO PEDRO GUMIEL BA1 Física y Química UD 2: Dinámica 1. Una máquina de tren de masa m M =40000 kg arrastra dos vagones de masas iguales m V =30000 kg cada uno. Si la aceleración del tren es

Más detalles

Física para Ciencias: Momentum lineal y choques

Física para Ciencias: Momentum lineal y choques Física para Ciencias: Momentum lineal y choques Dictado por: Profesor Aldo Valcarce 2 do semestre 2014 Choques En un choque los objetos involucrados realizan mucha fuerza en un periodo de tiempo muy pequeño.

Más detalles

E1.3: Energía mecánica

E1.3: Energía mecánica I.E.S. ARQUITECTO PEDRO GUMIEL Física y Química BA1 E1.3: Energía mecánica 1. Se deja caer verticalmente una piedra de kg desde 50 m de altura. Calcula: a) Su energía mecánica en el punto inicial. En el

Más detalles

EXAMEN ORDINARIO DE FÍSICA I. PROBLEMAS 10/01/2017

EXAMEN ORDINARIO DE FÍSICA I. PROBLEMAS 10/01/2017 EXAMEN ORDINARIO DE FÍSICA I. PROBLEMAS 10/01/017 1.- Un muchacho de peso 360 N se balancea sobre una charca de agua con una cuerda atada en la rama de un árbol en el borde de la charca. La rama está a

Más detalles

Índice. Leyes de Newton Interacción Gravitatoria Reacción en Apoyos Leyes del Rozamiento. Ejemplos. Leyes de la Dinámica en SRNI.

Índice. Leyes de Newton Interacción Gravitatoria Reacción en Apoyos Leyes del Rozamiento. Ejemplos. Leyes de la Dinámica en SRNI. Índice Leyes de Newton Interacción Gravitatoria Reacción en Apoyos Leyes del Rozamiento Ejemplos Leyes de la Dinámica en SRNI Ejemplos Teorema de la Cantidad de Movimiento. Conservación. Teorema del Momento

Más detalles

Examen Dinámica 1º Bach Nombre y Apellidos:

Examen Dinámica 1º Bach Nombre y Apellidos: Examen Dinámica 1º Bach Nombre y Apellidos: 1. Sobre una masa m actúa una fuerza F produciéndole una aceleración a. Dos fuerzas F, formando un ángulo de 90º, actúan sobre la misma masa y le producen una

Más detalles

CANTIDAD DE MOVIMIENTO LINEAL O MOMENTUM

CANTIDAD DE MOVIMIENTO LINEAL O MOMENTUM CANTIDAD DE MOVIMIENTO LINEAL O MOMENTUM La cantidad de movimiento, momento lineal, ímpetu o moméntum es una magnitud vectorial, unidad SI: (kg m/s) que, en mecánica clásica, se define como el producto

Más detalles

ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL FACULTAD DE CIENCIAS NATURALES Y MATEMÁTICAS DEPARTAMENTO DE FÍSICA

ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL FACULTAD DE CIENCIAS NATURALES Y MATEMÁTICAS DEPARTAMENTO DE FÍSICA ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL FACULTAD DE CIENCIAS NATURALES Y MATEMÁTICAS DEPARTAMENTO DE FÍSICA TERCERA EVALUACIÓN DE FÍSICA A SEPTIEMBRE 17 DE 2014 SOLUCIÓN Pregunta 1 (8 puntos) P y R señalan

Más detalles

LAS FUERZAS y sus efectos

LAS FUERZAS y sus efectos LAS FUERZAS y sus efectos Definición de conceptos La Dinámica es una parte de la Física que estudia las acciones que se ejercen sobre los cuerpos y la manera en que estas acciones influyen sobre el movimiento

Más detalles

DINAMICA DEL PUNTO. Es el momento con respecto a un punto O de la cantidad de movimiento de una partícula móvil.

DINAMICA DEL PUNTO. Es el momento con respecto a un punto O de la cantidad de movimiento de una partícula móvil. DINMIC DEL PUNTO Leyes de Newton Primera ley o ley de inercia: si sobre un sistema material no actúa fuerza alguna sigue en reposo o movimiento rectilíneo uniforme si inicialmente lo estaba. Segunda ley

Más detalles

Cuestionario sobre las Leyes de Newton

Cuestionario sobre las Leyes de Newton Cuestionario sobre las Leyes de Newton 1. Enuncie las leyes de Newton y represente gráficamente o por medio de una ilustración Primera Ley: La primera ley de Newton, conocida también como Ley de inercia,

Más detalles

Problemas. Laboratorio. Física moderna 09/11/07 DEPARTAMENTO DE FÍSICA E QUÍMICA. Nombre:

Problemas. Laboratorio. Física moderna 09/11/07 DEPARTAMENTO DE FÍSICA E QUÍMICA. Nombre: Física moderna 9/11/7 DEPARTAMENTO DE FÍSICA E QUÍMICA Problemas Nombre: 1. Un muelle de constante k =, 1 3 N/m está apoyado en una superficie horizontal sin rozamiento. A 1, m hay un bucle vertical de

Más detalles

Dinámica de Rotación del Sólido Rígido

Dinámica de Rotación del Sólido Rígido Dinámica de Rotación del Sólido Rígido 1. Movimientos del sólido rígido.. Momento angular de un sólido rígido. Momento de Inercia. a) Cálculo del momento de inercia de un sólido rígido. b) Momentos de

Más detalles

Física y Química 1º Bachillerato LOMCE. FyQ 1. Tema 10 Trabajo y Energía. Rev 01. Trabajo y Energía

Física y Química 1º Bachillerato LOMCE. FyQ 1. Tema 10 Trabajo y Energía. Rev 01. Trabajo y Energía Física y Química 1º Bachillerato LOMCE IES de Castuera Tema 10 Trabajo y Energía FyQ 1 2015 2016 Rev 01 Trabajo y Energía 1 El Trabajo Mecánico El trabajo mecánico, realizado por una fuerza que actúa sobre

Más detalles

Preuniversitario Esperanza Joven Curso Física Intensivo, Módulo Electivo. Fuerza y Momentum

Preuniversitario Esperanza Joven Curso Física Intensivo, Módulo Electivo. Fuerza y Momentum Preuniversitario Esperanza Joven Curso Física Intensivo, Módulo Electivo Guía 3 Fuerza y Momentum Nombre: Fecha: Concepto de Fuerza Por nuestra experiencia diaria sabemos que el movimiento de un cuerpo

Más detalles

IES ALBA LONGA ARMILLA PRUEBA INICIAL DE FÍSICA Y QUÍMICA. 1º BACHILLERATO - FÍSICA

IES ALBA LONGA ARMILLA PRUEBA INICIAL DE FÍSICA Y QUÍMICA. 1º BACHILLERATO - FÍSICA PRUEBA INICIAL DE FÍSICA Y QUÍMICA. 1º BACHILLERATO - FÍSICA 1.- Transforma las siguientes cantidades en las unidades solicitadas (escribe el desarrollo completo): a) 60 Hm 3 a L. b) 5,6 10 5 ml a m 3.

Más detalles

Sistemas de Partículas

Sistemas de Partículas Sistemas de Partículas Los objetos reales de la naturaleza están formados por un número bastante grande de masas puntuales que interactúan entre sí y con los demás objetos. Cómo podemos describir el movimiento

Más detalles

FISICA 2º BACHILLERATO

FISICA 2º BACHILLERATO A) Definiciones Se llama movimiento periódico a aquel en que la posición, la velocidad y la aceleración del móvil se repiten a intervalos regulares de tiempo. Se llama movimiento oscilatorio o vibratorio

Más detalles

INDICE. Introducción 1. Movimiento vibratorio armónico simple (MVAS) 1. Velocidad en el MVAS 2. Aceleración en el MVAS 2. Dinámica del MVAS 3

INDICE. Introducción 1. Movimiento vibratorio armónico simple (MVAS) 1. Velocidad en el MVAS 2. Aceleración en el MVAS 2. Dinámica del MVAS 3 INDICE Introducción 1 Movimiento vibratorio armónico simple (MVAS) 1 Velocidad en el MVAS Aceleración en el MVAS Dinámica del MVAS 3 Aplicación al péndulo simple 4 Energía cinética en el MVAS 6 Energía

Más detalles

ENERGÍA Y CANTIDAD DE MOVIMIENTO

ENERGÍA Y CANTIDAD DE MOVIMIENTO Cátedra: MECANICA APLICADA MECANICA Y MECANISMOS 10:47 CUERPOS RIGIDOS ENERGÍA Y CANTIDAD DE MOVIMIENTO 2016 Hoja 1 OBJETIVOS Estudiar el método del Trabajo y la Energía Aplicar y analizar el movimiento

Más detalles

Ejercicio nº 1 Los vectores de posición y velocidad de un móvil en función del tiempo son:

Ejercicio nº 1 Los vectores de posición y velocidad de un móvil en función del tiempo son: Ejercicio nº 1 Los vectores de posición y velocidad de un móvil en función del tiempo son: R 2 = (20 + 10t)i + (100 4t )j y V = 10i 8t j Calcula: a) osición y velocidad en el instante inicial y a los 4

Más detalles

TRABAJO Y ENERGIA EN ROTACIÓN. Consideremos un cuerpo que gira alrededor de un eje tal como se muestra en la figura. La energía cinética de un

TRABAJO Y ENERGIA EN ROTACIÓN. Consideremos un cuerpo que gira alrededor de un eje tal como se muestra en la figura. La energía cinética de un TRABAJO Y ENERGIA EN ROTACIÓN. Consideremos un cuerpo que gira alrededor de un eje tal como se muestra en la figura. La energía cinética de un elemento de masa dm que gira a una distancia r del eje de

Más detalles

ESCUELA DE FÍSICA UNIVERSIDAD NACIONAL DE COLOMBIA SEDE MEDELLÍN

ESCUELA DE FÍSICA UNIVERSIDAD NACIONAL DE COLOMBIA SEDE MEDELLÍN ESCUELA DE FÍSICA UNIERSIDAD NACIONAL DE COLOMBIA SEDE MEDELLÍN RÁCTICA N 3 LABORATORIO DE FÍSICA MECÁNICA TEMA : COLISIONES EN DOS DIMENSIONES OBJETIO GENERAL Entender de manera experimental la enomenología

Más detalles

Ejercicio nº 1 Deducir la ecuación del movimiento asociado a la gráfica. Ejercicio nº 2 Deducir la ecuación del movimiento asociado a la gráfica.

Ejercicio nº 1 Deducir la ecuación del movimiento asociado a la gráfica. Ejercicio nº 2 Deducir la ecuación del movimiento asociado a la gráfica. 1(9) Ejercicio nº 1 Deducir la ecuación del movimiento asociado a la gráfica. X(m) 4 2 4 6 8 t(s) -4 Ejercicio nº 2 Deducir la ecuación del movimiento asociado a la gráfica. X(m) 3 1 2 3 t(s) -3 Ejercicio

Más detalles

ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL INSTITUTO DE CIENCIAS FÍSICAS II TÉRMINO PRIMERA EVALUACIÓN DE FÍSICA A SOLUCIÓN

ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL INSTITUTO DE CIENCIAS FÍSICAS II TÉRMINO PRIMERA EVALUACIÓN DE FÍSICA A SOLUCIÓN ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL INSTITUTO DE CIENCIAS ÍSICAS II TÉRMINO 2010-2011 PRIMERA EALUACIÓN DE ÍSICA A SOLUCIÓN Pregunta 1 (12 puntos) La trayectoria de un móvil viene descrita por las

Más detalles

a) Trazamos el diagrama del sólido libre correspondiente a todo el sistema y aplicamos la ecuación fundamental de la Dinámica: N C m g

a) Trazamos el diagrama del sólido libre correspondiente a todo el sistema y aplicamos la ecuación fundamental de la Dinámica: N C m g 1. res bloques A, B y C de masas 3, 2 y 1 kg se encuentran en contacto sobre una superficie lisa sin rozamiento. a) Qué fuerza constante hay que aplicar a A para que el sistema adquiera una aceleración

Más detalles

TEMA 5 SÓLIDO RÍGIDO CONSEJOS PREVIOS A LA RESOLUCIÓN DE LOS PROBLEMAS

TEMA 5 SÓLIDO RÍGIDO CONSEJOS PREVIOS A LA RESOLUCIÓN DE LOS PROBLEMAS TEMA 5 SÓLIDO RÍGIDO CONSEJOS PREVIOS A LA RESOLUCIÓN DE LOS PROBLEMAS Ten presente la distinción entre velocidad angular ω Z y velocidad ordinaria v X. Si un objeto tiene una velocidad v X el objeto en

Más detalles

ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL FACULTAD DE CIENCIAS NATURALES Y MATEMÁTICAS DEPARTAMENTO DE FÍSICA

ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL FACULTAD DE CIENCIAS NATURALES Y MATEMÁTICAS DEPARTAMENTO DE FÍSICA ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL FACULTAD DE CIENCIAS NATURALES Y MATEMÁTICAS DEPARTAMENTO DE FÍSICA PRIMERA EVALUACIÓN DE FÍSICA A DICIEMBRE 4 DE 013 SOLUCIÓN Pregunta 1 ( puntos) Mencione un

Más detalles

MECÁNICA CLÁSICA CINEMATICA. FAyA Licenciatura en Química Física III año 2006

MECÁNICA CLÁSICA CINEMATICA. FAyA Licenciatura en Química Física III año 2006 Física III año 26 CINEMATICA MECÁNICA CLÁSICA La cinemática estudia el movimiento de los cuerpos, sin tener en cuenta las causas que lo producen. Antes de continuar establezcamos la diferencia entre un

Más detalles

TEMA 2. Dinámica, Trabajo, Energía y Presión

TEMA 2. Dinámica, Trabajo, Energía y Presión TEMA 2. Dinámica, Trabajo, Energía y Presión 1. Objeto de la dinámica Dinámica es la parte de la mecánica que estudia el movimiento atendiendo a las causas que lo producen. Estas causas son las fuerzas.

Más detalles

FÍSICA - 2º BACHILLERATO MOVIMIENTO ARMÓNICO SIMPLE - HOJA 1

FÍSICA - 2º BACHILLERATO MOVIMIENTO ARMÓNICO SIMPLE - HOJA 1 FÍSICA - 2º BACHILLERATO MOVIMIENTO ARMÓNICO SIMPLE - HOJA 1 1. En un movimiento oscilatorio, Qué se entiende por periodo? Y por frecuencia? Qué relación existe entre ambas magnitudes? 2. Una partícula

Más detalles

Física e Química 1º Bach.

Física e Química 1º Bach. Física e Química 1º Bach. Dinámica 15/04/11 DEPARTAMENTO DE FÍSICA E QUÍMICA Nombre: Resuelve dos de los siguientes Problemas 1. Un cuerpo de 2,0 kg de masa reposa sobre un plano inclinado 30º unido por

Más detalles

Universidad Pontificia Bolivariana. Escuela de Ingenierías. Centro Ciencia Básica

Universidad Pontificia Bolivariana. Escuela de Ingenierías. Centro Ciencia Básica Universidad Pontificia Bolivariana. Escuela de Ingenierías. Centro Ciencia Básica Curso: Fundamentos de mecánica. 2015 20 Programación por semanas (teoría y práctica) Texto de apoyo Serway-Jewtt novena

Más detalles

Tema 3: Sistemas dinámicos. Algunos derechos reservados por funadium

Tema 3: Sistemas dinámicos. Algunos derechos reservados por funadium Algunos derechos reservados por funadium Procedimiento para resolver problemas de dinámica Cuando tengas que resolver un problema de aplicación de las leyes de la dinámica, es importante que sigas ordenadamente

Más detalles

Guía para oportunidades extraordinarias de Física 2

Guía para oportunidades extraordinarias de Física 2 Guía para oportunidades extraordinarias de Física 2 Capitulo 1 Vectores a) Introducción b) Cantidades vectoriales c) Métodos analíticos Capitulo 2 Dinámica a) Fuerza b) Leyes de Newton sobre el movimiento

Más detalles

10) Una masa de 1 kg cuelga de un resorte cuya constante elástica es k = 100 N/m, y puede oscilar libremente sin rozamiento. Desplazamos la masa 10

10) Una masa de 1 kg cuelga de un resorte cuya constante elástica es k = 100 N/m, y puede oscilar libremente sin rozamiento. Desplazamos la masa 10 PROBLEMAS M.A.S. 1) Una partícula animada de M.A.S. inicia el movimiento en el extremo positivo de su trayectoria, y tarda 0,25 s en llegar al centro de la misma. La distancia entre ambas posiciones es

Más detalles

EL CHOQUE. v 1 N 2 N 1. Antes del choque P 2 P 1 F 21 F 12. Choque. v 2. Después del choque

EL CHOQUE. v 1 N 2 N 1. Antes del choque P 2 P 1 F 21 F 12. Choque. v 2. Después del choque EL CHOQUE Una masa de 400 g se desliza sobre una superficie horizontal sin rozamiento con una velocidad de m/s y, choca con otra de 600 g inicialmente en reposo. a) Si el choque es central y elástico,

Más detalles

punto) [c] Calcule la máxima velocidad de oscilación trasversal de los puntos de la cuerda. (0,5 puntos)

punto) [c] Calcule la máxima velocidad de oscilación trasversal de los puntos de la cuerda. (0,5 puntos) Opción A. Ejercicio 1 Por una cuerda tensa se propaga, en el sentido positivo del eje x, una onda armónica transversal. Los puntos de la cuerda oscilan con una frecuencia f = 4 Hz. En la gráfica se representa

Más detalles

CINEMÁTICA. El periodo de un péndulo sólo depende de la longitud de la cuerda ( l ) y la aceleración de la gravedad ( g ).

CINEMÁTICA. El periodo de un péndulo sólo depende de la longitud de la cuerda ( l ) y la aceleración de la gravedad ( g ). CINEMÁTICA Es la rama de la mecánica que estudia el movimiento de los cuerpos sin tomar en cuenta las causas. Distancia: es una magnitud escalar que mide la separación entre dos cuerpos o entre dos lugares.

Más detalles

Tema 9: Introducción a la Dinámica

Tema 9: Introducción a la Dinámica Tema 9: Introducción a la Dinámica 1º Ingenieros Aeronáuticos Escuela Técnica Superior de Ingenieros Universidad de Sevilla 1 Situación en la asignatura Primer Parcial Introducción Mecánica Cinemática

Más detalles

ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL FACULTAD DE CIENCIAS NATURALES Y MATEMÁTICAS DEPARTAMENTO DE FÍSICA

ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL FACULTAD DE CIENCIAS NATURALES Y MATEMÁTICAS DEPARTAMENTO DE FÍSICA ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL FACULTAD DE CIENCIAS NATURALES Y MATEMÁTICAS DEPARTAMENTO DE FÍSICA PRIMERA EVALUACIÓN DE FÍSICA A DICIEMBRE 10 DE 2014 SOLUCIÓN TEMA 1 (8 puntos) Una persona corre

Más detalles

Carril de aire. Colisiones

Carril de aire. Colisiones Laboratori de Física I Carril de aire. Colisiones Objetivo Analizar la conservación de la cantidad de movimiento y estudiar las colisiones entre dos cuerpos. Material Carril de aire, soplador, dos puertas

Más detalles

PROBLEMAS: DINÁMICA_ENERGÍA_1 (Select)

PROBLEMAS: DINÁMICA_ENERGÍA_1 (Select) FÍSICA IES Los Álamos PROBLEMAS: DINÁMICA_ENERGÍA_1 (Select) 1. Explique y razone la veracidad o falsedad de las siguientes afirmaciones: a. El trabajo realizado por todas las fuerzas que actúan sobre

Más detalles

Física GUINV007F2-A16V1. Guía: Toda acción tiene una reacción

Física GUINV007F2-A16V1. Guía: Toda acción tiene una reacción ísica GUINV0072-A16V1 Guía: Toda acción tiene una reacción ísica - Segundo Medio Tiempo estimado: 15 minutos Sección 1 Observando y reflexionando Actividad A Relacionándonos con la ísica Junto con tu compañero(a),

Más detalles

Cinemática y Dinámica

Cinemática y Dinámica Cinemática y Dinámica Cinética de la partícula Objetivo: El alumno aplicará las leyes de Newton en la resolución de ejercicios de movimiento de la partícula en un plano, donde intervienen las causas que

Más detalles

Movimiento armónico simple

Movimiento armónico simple Movimiento armónico simple Cuestiones (99-R) Una partícula describa un movimiento armónico simple de amplitud A y frecuencia f. a) Represente gráficamente la posición y la velocidad de la partícula en

Más detalles

Sólido Rígido. Momento de Inercia 17/11/2013

Sólido Rígido. Momento de Inercia 17/11/2013 Sólido ígido Un sólido rígido es un sistema formado por muchas partículas que tiene como característica que la posición relativa de todas ellas permanece constante durante el movimiento. A B El movimiento

Más detalles

Tema 5: Dinámica del punto II

Tema 5: Dinámica del punto II Tema 5: Dinámica del punto II FISICA I, 1º Grado en Ingeniería Aeroespacial Escuela Técnica Superior de Ingeniería Universidad de Sevilla 1 Índice Leyes de Newton Dinámica del punto material Trabajo mecánico

Más detalles

g planeta = g tierra / 2 = 4 9 m/s 2 v planeta = 11 2 / 2 = 5 6 km/s

g planeta = g tierra / 2 = 4 9 m/s 2 v planeta = 11 2 / 2 = 5 6 km/s PAU MADRID JUNIO 2003 Cuestión 1.- Suponiendo un planeta esférico que tiene un radio la mitad del radio terrestre e igual densidad que la tierra, calcule: a) La aceleración de la gravedad en la superficie

Más detalles

MOMENTO LINEAL Y COLISIONES

MOMENTO LINEAL Y COLISIONES MOMENTO LINEAL Y COLISIONES Tomado de Física para ingenieria y ciencias, Volumen 1 Hans C. Ohanian John T. Markett Estimado alumno, a continuación se le pide que revise una serie de conceptos importantes

Más detalles

Dinámica del Sólido Rígido

Dinámica del Sólido Rígido Dinámica del Sólido Rígido El presente documento de clase sobre dinámica del solido rígido está basado en los contenidos volcados en la excelente página web del curso de Física I del Prof. Javier Junquera

Más detalles

Cinemática del movimiento armónico simple

Cinemática del movimiento armónico simple PROBLEMAS DE OSCILACIONES. Cinemática del movimiento armónico simple Autor: José Antonio Diego Vives Documento bajo licencia CC Attribution-Share Alike 3.0 (BY-SA) Problema 1 Un pequeño objeto de masa

Más detalles

Dinámica en dos o tres dimensiones

Dinámica en dos o tres dimensiones 7.0.2. Dinámica en dos o tres dimensiones Ejercicio 7.27 Un cuerpo de masa 8kg, describe una trayectoria cuyas ecuaciones paramétrica son: x =2+5t 2t 2 m e y = t 2 m.determinela fuerza aplicada sobre el

Más detalles

Para qué aprender FISICA? Materiales Potencia Rozamiento y Fricción Viscosidad Turbulencias Movimiento

Para qué aprender FISICA? Materiales Potencia Rozamiento y Fricción Viscosidad Turbulencias Movimiento Para qué aprender FISICA? Materiales Potencia Rozamiento y Fricción Viscosidad Turbulencias Movimiento OBJETIVOS Formular: Conceptos, Definiciones Leyes resolver PROBLEMAS Fomentar: Habilidades Destrezas

Más detalles

ACTIVIDADES RECAPITULACIÓN 2: TRABAJO Y ENERGÍA

ACTIVIDADES RECAPITULACIÓN 2: TRABAJO Y ENERGÍA ACTIVIDADES RECAPITULACIÓN : TRABAJO Y ENERGÍA A-1. A-. A-3. a) Porque la energía transferida al cuerpo se debe invertir en aumentar la energía potencial gravitatoria y en aumentar la energía cinética,

Más detalles

F= 2 N. La punta de la flecha define el sentido.

F= 2 N. La punta de la flecha define el sentido. DIÁMICA rof. Laura Tabeira La Dinámica es una parte de la Física que estudia las acciones que se ejercen sobre los cuerpos y la manera en que estas acciones influyen sobre el movimiento de los mismos.

Más detalles