ELEMENTOS DE ANÁLISIS FUNCIONAL
|
|
|
- Alejandro Domínguez Medina
- hace 9 años
- Vistas:
Transcripción
1 ELEMENTOS DE ANÁLISIS FUNCIONAL Guillermo Ames Universidad Tecnológica Nacional - Facultad Regional Córdoba 2011 TEMA 1: NOCIONES BÁSICAS DE ESPACIOS MÉTRICOS
2 Espacios métricos: definición y ejemplos Definición (Espacios métricos, métrica) Un espacio métrico es un par (X, d) donde X es un conjunto y d es una métrica (o distancia) en X. Esto es, d : X X R es una función que cumple 1 Positividad: d(x, y) 0 y d(x, y) = 0 si y sólo si x = y. 2 Simetría: d(x, y) = d(y, x). 3 Desigualdad triangular: d(x, y) + d(y, z) d(x, z). Observaciones X es un conjunto arbitrario, no necesariamente es un espacio vectorial. En un mismo X pueden definirse distintas métricas, por eso denotamos (X, d) para designar un espacio con una métrica específica. Cuando no haya lugar a confusión, escribiremos simplemente X.
3 Subespacio de un espacio métrico: Si Y X es un subconjunto de X, la restricción d de d a Y es una métrica en Y, llamada métrica inducida, y esto hace de (Y, d) un subespacio métrico de (X, d). Ejemplos 1 R con la distancia usual: d(x, y) = x y. 2 R n con la distancia usual:x = (x 1,..., x n ), y = (y 1,..., y n ), d(x, y) = (x 1 y 1 ) (x n y n ) 2. 3 C con la distancia usual: d(z, w) = z w. 4 C n con la distancia usual: z = (z 1,..., z n ), w = (w 1,..., w n ), d(z, w) = z 1 w z n w n 2. 5 X = B(R) = {f : R R tal que f es acotada}, d(f, g) = sup{ f (x) g(x) : x R}.
4 Sucesiones en espacios métricos. Completitud Definición Una sucesión {x n } n N en un espacio métrico (X, d) es una función de N en X. Sucesión convergente: {x n } n N converge a x 0 si: ε > 0 N N : d(x n, x 0 ) < ε n N. Notación: ĺım x n = x 0 o x n n Se cumple: ĺım x 0. n n x n = x 0 si y sólo si d(x n, x 0 ) Sucesión de Cauchy: {x n } n N es sucesión de Cauchy si: ε > 0 N N : d(x n, x m ) < ε n, m N. Informalmente, d(x n, x m ) 0. n,m n 0. Se sigue cumpliendo en todo espacio métrico el siguiente: Teorema Toda sucesión convergente es de Cauchy.
5 Observación La recíproca de este teorema no es cierta en general. Dijimos que en R el hecho que toda sucesión de Cauchy converge era equivalente al axioma de completitud. Esto motiva la siguiente: Definición Diremos que (X, d) es un espacio métrico completo si toda sucesión de Cauchy en X es convergente. Ejemplos C, R n, C n son espacios métricos completos con la distancia eucĺıdea usual. Ejercicio: demostrar esta afirmación
6 Topología en espacios métricos Conjuntos abiertos y cerrados Definición (Bola y esfera) Sea X un espacio métrico, x 0 X y r > 0. Definimos los siguientes subconjuntos: 1 B(x o, r) = {x X : d(x, x 0 ) < r} (bola abierta) 2 B(xo, r) = {x X : d(x, x 0 ) r} (bola cerrada) 3 S(x o, r) = {x X : d(x, x 0 ) = r} (esfera) En los tres casos, x 0 se llama el centro y r el radio. Definición (Conjunto abierto, conjunto cerrado) Un subconjunto A de un espacio métrico X se dice abierto si x o A, existe r > 0 tal que B(x o, r) A. Un subconjunto B se dice cerrado si su complemento B c = X B = {x X : x / B} es abierto.
7 Definición Sea A un subconjunto de un espacio métrico X. Definimos: 1 Punto interior de A: x 0 es un punto interior de A si existe r > 0 tal que B(x o, r) A. Denotaremos A 0 al conjunto de puntos interiores de A. De la definición, resulta claro que A 0 A, y además A es abierto si y sólo si A = A 0. 2 Punto de acumulación de A: x 0 es un punto de acumulación (o punto ĺımite) de A si r > 0 se cumple que A (B(x 0, r) {x 0 }) φ (recordar: φ es el conjunto vacío). Denotaremos A al conjunto de puntos de acumulación de A. Observación No necesariamente A A. Más aún, A A si y sólo si A es cerrado. (demostración: ejercicio)
8 Definición (Clausura) Si A X, definimos Ā = A A (clausura de A). Observación Ā es un conjunto cerrado, y es el menor conjunto cerrado que contiene a A. En particular A es cerrado si y sólo si Ā = A. Definición (Conjunto denso) Si A X, diremos que A es denso en X si Ā = X. Proposición (Ejercicio) Son equivalentes: 1 A es denso. 2 x 0 X y r > 0 se cumple que A B(x 0, r) φ. 3 x 0 X, existe una sucesión {x n } n N en A, que converge a x 0.
9 Ejemplos Q es denso en R (aceptaremos esto sin demostración). Q n es denso en R n (ejercicio). Definición (Conjunto numerable) Un conjunto A se dice infinito numerable si existe una biyección de A en el conjunto N de números naturales. Un conjunto A se dice numerable si es finito o infinito numerable. Proposición A es numerable si y sólo existe una una función suryectiva de N en A, o equivalentemente, si existe una función inyectiva de A en N. Ejemplos N, Z son numerables. Q es numerable. R no es numerable. Luego C, R n y C n tampoco lo son.
10 Definición (Espacio separable) Un espacio métrico si existe un conjunto numerable que es denso en X. Ejemplos R es separable, pues Q es un subconjunto denso numerable. C, R n y C n son separables. Completación de un espacio métrico Si (X, d) es un espacio métrico no completo, se puede completar en el siguiente sentido (informal): Existe un espacio métrico completo ( X, d) tal que X contiene a X, de modo que éste resulta un subespacio métrico denso de X y d resulta la métrica inducida por d en X. Un enunciado matemáticamente más preciso de este hecho es más complicado y lo omitimos. Un ejemplo: R es la completación de Q.
11 Funciones continuas en espacios métricos Definición Sean (X, d X ) e (Y, d Y ) espacios métricos y T : X Y una función de X en Y. T es continua en x 0 si: ε > 0, existe δ > 0 tal que si d X (x, x 0 ) < δ, entonces d Y (T (x), T (x 0 )) < ε. Informalmente, ĺım x x0 T (x) = T (x 0 ) o d Y (T (x), T (x 0 )) 0 si d X (x, x 0 ) 0. T es continua si es continua en x 0 para todo x 0 X. Proposición Una función T : X Y es continua en x 0 si y sólo si para toda sucesión {x n } n N tal que ĺım n x n = x 0 se cumple ĺım T (x n) = T (x 0 ). n
12 Ejemplo (Ejercicio) X = C[a, b] = {f : [a, b] R : f es continua} es un espacio métrico con la distancia d (f, g) = máx{ f (t) g(t) : t [a, b]}. Sea T : X R definida por T (f ) = Entonces T es una función continua. b a f (t) dt.
1. La topología inducida.
PRACTICO 4. ESPACIOS METRICOS. 1. La topología inducida. Sea (M, d) un espacio métrico. La bola abierta de centro x y radio r es el conjunto B(x; r) = {y M : d(x, y) < r}. La bola cerrada de centro x y
Parte 2: Definición y ejemplos de topologías.
Parte 2: Definición y ejemplos de topologías. 22 de marzo de 2014 1. Definiciones y propiedades básicas. Definición 1 Sea X un conjunto. Una familia T de subconjuntos de X es una topología de X si se cumplen:
Espacios métricos completos
5 Espacios métricos completos Comenzamos introduciendo las sucesiones de Cauchy, que relacionamos con las sucesiones convergentes. En el caso de que coincidan, se trata de un espacio métrico completo.
Espacios completos. 8.1 Sucesiones de Cauchy
Capítulo 8 Espacios completos 8.1 Sucesiones de Cauchy Definición 8.1.1 (Sucesión de Cauchy). Diremos que una sucesión (x n ) n=1 en un espacio métrico (X, d) es de Cauchy si para todo ε > 0 existe un
1. Espacios topológicos compactos.
PRACTICO 6. COMPACIDAD. 1. Espacios topológicos compactos. Definición 1 Un cubrimiento de un conjunto X es una familia de subconjuntos de X cuya unión da X. Un cubrimiento de un espacio es abierto si cada
1 Continuidad uniforme
Centro de Matemática Facultad de Ciencias Universidad de la República Introducción a la Topología Curso 2016 NOTAS 6: ESPACIOS MÉTRICOS II: COMPLETITUD 1 Continuidad uniforme Denición. Sean (M, d 1 ) y
sup si A no es acotado.
Capítulo 6 Espacios completos 1. El teorema de Cantor En este capítulo estudiaremos más a fondo los espacios métricos completos. Lo primero que haremos es establecer la equivalencia entre completitud y
Subconjuntos notables de un Espacio Topológico
34 Capítulo 4 Subconjuntos notables de un Espacio Topológico 4.1 Adherencia Definición 4.1.1 (Punto adherente). Sea (X, τ) un espacio topológico, y sea S un subconjunto de X. Diremos que x X es un punto
CÁLCULO DIFERENCIAL EN VARIAS VARIABLES
UNIVERSIDAD CENTRAL DE VENEZUELA FACULTAD DE CIENCIAS ESCUELA DE MATEMÁTICA LABORATORIO DE FORMAS EN GRUPOS CÁLCULO DIFERENCIAL EN VARIAS VARIABLES Ramón Bruzual Marisela Domínguez Caracas, Venezuela Julio
Espacios compactos. 7.1 Espacios compactos
58 Capítulo 7 Espacios compactos 7.1 Espacios compactos Definición 7.1.1 (Recubrimiento). Sea X un conjunto y sea S X. Un recubrimiento de S es una familia A = {A i } i I de subconjuntos de X tales que
Introducción a la topología
Introducción a la topología Beatriz Abadie CENTRO DE MATEMÁTICAS FACULTAD DE CIENCIAS UNIVERSIDAD DE LA REPÚBLICA Agosto de 2013 i Índice general Capítulo 1. Elementos de la teoría de conjuntos 1 1.1.
Nociones de Topología
Nociones de Topología I) Espacios Me tricos Sea X un conjunto no vacío Sea la función d: X X R (p, q) d(p, q) (E1) p, q, r X i) p q, d(p, q) > 0 p = q, d(p, q) = 0 ii) Conmutatividad d(p, q) = d(q, p)
Tema IX: TOPOLOGÍA. Tema IX: TOPOLOGÍA
Tema IX: TOPOLOGÍA IX.1. Distancia euclídea en R n. Propiedades Definición DEF. Dados x, y R n, se define la distancia euclídea como: d(x, y) = (x 1 y 1 ) 2 + (x 2 y 2 ) 2 + + (x n y n ) 2 = xy n = 1:
Espacios Métricos. 25 de octubre de 2011
Espacios Métricos 25 de octubre de 2011 1. Nociones de espacios métricos Llamaremos espacio métrico a un conjunto X con una función d : X X R 0 (que llamaremos la métrica de X) que verifica las siguientes
1. Sucesiones y redes.
1. Sucesiones y redes. PRACTICO 7. REDES. Se ha visto que el concepto de sucesión no permite caracterizar algunas nociones topológicas, salvo en espacios métricos. Esto empieza con algunas definiciones
Elementos Básicos de Análisis Funcional en. Dr. Oldemar Rodríguez Rojas
Elementos Básicos de Análisis Funcional en Análisis Numérico Dr. Oldemar Rodríguez Rojas Agosto 2008 Contents 1 Elementos Básicos de Análisis Funcional 2 1.1 Espacios normados...........................
Ejercicios de Análisis Funcional
Ejercicios de Análisis Funcional Rafael Payá Albert Departamento de Análisis Matemático Universidad de Granada ANÁLISIS FUNCIONAL Relación de Ejercicios N o 1 1. Dar un ejemplo de una distancia en un espacio
Espacios compactos. Capítulo Cubiertas. En este capítulo estudiaremos el concepto de compacidad en un espacio métrico.
Capítulo 3 Espacios compactos 1. Cubiertas En este capítulo estudiaremos el concepto de compacidad en un espacio métrico. Definición 3.1. Sea (X, d) un espacio métrico y A X. Una cubierta de A es una familia
F-ESPACIOS. 1.- Introducción
F-ESPACIOS 1.- Introducción Recordemos que un subconjunto A de un espacio topológico X se llama diseminado o raro (nowhere dense en ingés) si A=. Un subconjunto que se pueda escribir como unión numerable
Sucesiones y convergencia
Capítulo 2 Sucesiones y convergencia 1. Definiciones Una de las ideas fundamentales del análisis es la de límite; en particular, el límite de una sucesión. En este capítulo estudiaremos la convergencia
1 Denición y ejemplos
Centro de Matemática Facultad de Ciencias Universidad de la República Introducción a la Topología Curso 206 NOTAS TEÓRICO-PRÁCTICAS 5: ESPACIOS MÉTRICOS Denición y ejemplos Comenzaremos estas notas recordando
Comisión de Pedagogía - Diego Chamorro Análisis Funcional (Nivel 2).
AMARUN www.amarun.org Comisión de Pedagogía - Diego Chamorro Análisis Funcional (Nivel 2). Lección n 3: Lema de Baire y Teorema clásicos del Análisis Funcional EPN, verano 2012 Definición 1 (Espacio de
1. Sucesiones. Sucesiones. Compacidad. {( 1) n, n N} = { 1, 1, 1, 1, 1, 1,... } es una sucesión de elementos del conjunto { 1, 1}, y la familia
1.. De una manera informal, una sucesión es una familia de elementos de un conjunto, ordenada según el índice de los números naturales. Los elementos pueden estar repetidos o no. Por ejemplo la familia
Espacios Pseudométricos
Capítulo 1 Espacios Pseudométricos Este primer capítulo se dedica a la exploración de una clase particular de espacios topológicos, cuya estructura está dada por una noción de distancia. Se pretende que
CÁLCULO DIFERENCIAL. Víctor Manuel Sánchez de los Reyes. Departamento de Análisis Matemático Universidad Complutense de Madrid
CÁLCULO DIFERENCIAL Víctor Manuel Sánchez de los Reyes Departamento de Análisis Matemático Universidad Complutense de Madrid Índice 1. Conceptos topológicos y métricos 5 1.1. Métricas, normas y productos
Reconocer y utilizar las propiedades sencillas de la topología métrica.
3 Funciones continuas De entre todas las aplicaciones que pueden definirse entre dos espacios métrico, las aplicaciones continuas ocupan un papel preponderante. Su estudio es fundamental no sólo en topología,
Problemas de TOPOLOGÍA Hoja 2
Problemas de TOPOLOGÍA Hoja 2 1. Sea X un conjunto, (Y, T Y ) un espacio topológico y f : X Y una aplicación. Probar que T = {f 1 (G) : G T Y } es una topología sobre X. Esta topología se llama topología
Espacios topológicos. 3.1 Espacio topológico
Capítulo 3 Espacios topológicos 3.1 Espacio topológico Definición 3.1.1. Un espacio topológico es un par (X, τ), donde X es un conjunto, y τ es una familia de subconjuntos de X que verifica las siguientes
1. ESPACIOS DE HILBERT Y OPERADORES
1. ESPACIOS DE HILBERT Y OPERADORES 1. DEFINICIÓN, PROPIEDADES Y EJEMPLOS Definición. Sea H un espacio vectorial sobre el cuerpo C de los números complejos, un producto escalar sobre H es una aplicación
Análisis Real: Primer Curso. Ricardo A. Sáenz
Análisis Real: Primer Curso Ricardo A. Sáenz Índice general Introducción v Capítulo 1. Espacios Métricos 1 1. Métricas 1 2. Métricas en espacios vectoriales 4 3. Topología 9 Ejercicios 16 Capítulo 2.
Análisis Real: Primer Curso. Ricardo A. Sáenz
Análisis Real: Primer Curso Ricardo A. Sáenz Índice general Introducción v Capítulo 1. Espacios Métricos 1 1. Métricas 1 2. Métricas en espacios vectoriales 4 3. Topología 9 Ejercicios 16 Capítulo 2.
Acotación y compacidad
Lección 8 Acotación y compacidad Para subconjuntos de un espacio métrico, estudiamos ahora la noción de acotación, que como ocurría con la complitud, no es una noción topológica, pero se conserva en un
MMAF: Espacios normados y espacios de Banach
MMAF: Espacios normados y espacios de Banach Licenciatura en Estadística R. Álvarez-Nodarse Universidad de Sevilla Curso 2011/2012 Espacios vectoriales Definición Sea V un conjunto de elementos sobre el
El espacio euclideano
Capítulo 1 El espacio euclideano 1. Definiciones básicas El espacio Euclideano, denotado por R n, está definido por el conjunto (1.1) R n = {x = (x 1, x 2,..., x n ) : x i R}. Es decir, R n es efectivamente
Normas Equivalentes. Espacios Normados de Dimensión Finita
Capítulo 2 Normas Equivalentes. Espacios Normados de Dimensión Finita Dos son los resultados más importantes que, sobre la equivalencia de normas, veremos en este capítulo. El primero de ellos establece
Ejercicios de Análisis Funcional. Curso
Ejercicios de Análisis Funcional Curso 2010-2011 1 1 Preliminares de espacios normados Problema 1.1. Demostrar que para 1 < p < la norma. p en R 2 verifica la siguiente propiedad: Si x, y R 2 con x y y
Teorema de Existencia y Unicidad Ecuaciones Diferenciales Ordinarias.
Teorema de Existencia y Unicidad Ecuaciones Diferenciales Ordinarias. Dr. Rafael Morones E. Dept. de Matemáticas ITAM August 5, 2002 1 Contenido 1 Preliminares. 3 1.1 Sucesiones...............................
Principio de acotación uniforme
Capítulo 4 Principio de acotación uniforme 4.1. Introducción. Teorema de Baire En este último capítulo vamos a establecer una serie de resultados sobre aplicaciones lineales y continuas entre espacios
Nociones topológicas elementales de R n
Nociones topológicas elementales de R n 1 Espacio vectorial R n Consideremos el conunto R n de las n-uplas de números reales, donde n es un número natural arbitrario fio. Los elementos de R n, que llamamos
Espacios compactos. Se pretenden alcanzar las siguientes competencias específicas:
4 Espacios compactos En este capítulo introducimos los conceptos de espacio y subespacio compacto. Se estudian propiedades de los conjuntos compactos, así como relación entre la compacidad y las funciones
Problemas con soluciones
Departamento de Matemática, Universidad Técnica Federico Santa María, MAT-223. Problemas con soluciones 1) Muestre que si A es una base de una toplogía en X, entonces la topología generada por A es iqual
Espacios compactos. 1. Cubiertas
Capítulo 3 Espacios compactos 1. Cubiertas En este capítulo estudiaremos el concepto de compacidad en un espacio métrico. La compacidad se puede estudiar desde dos puntos de vista: el topológico, a través
Espacios Topológicos 1. Punto de Acumulación. Al conjunto de puntos de acumulación de A se le denomina el conjunto derivado de A (A a Notación).
Espacios Topológicos 1 Punto de Acumulación Definición: Sea A un subconjunto arbitrario de R n, se dice que x R n es un punto de acumulación de A si toda bola abierta con centro x contiene un punto A distinto
Topología en R n. Continuidad de funciones de varias variables
. Continuidad de funciones de varias variables María Muñoz Guillermo [email protected] U.P.C.T. Matemáticas I (1 o Grado en Ingeniería Electrónica Industrial y Automática) M. Muñoz (U.P.C.T.) Continuidad
Espacios Metricos, Compacidad y Completez
46 CAPÍTULO 3. Espacios Metricos, Compacidad y Completez Una sucesión en un conjunto X es una función N X. Si la función se llama f entonces para sucesiones acostumbra denotarse {f(n)} n N en cambio de
INTRODUCCIÓN A LA TOPOLOGÍA. Centro de Matemática Facultad de Ciencias Universidad de la República
INTRODUCCIÓN A LA TOPOLOGÍA Guía teórico-práctica Centro de Matemática Facultad de Ciencias Universidad de la República 14 de julio de 2016 Estas notas son una guía del curso Introducción a la Topología
El Teorema de Baire Rodrigo Vargas
El Teorema de Baire Rodrigo Vargas Teorema 1 (Baire). Sea M un espacio métrico completo. Toda intersección numerable de abiertos densos es un subconjunto denso de M. Definición 1. Sea M un espacio métrico.
Continuidad y Continuidad Uniforme. Aplicaciones lineales continuas.
Continuidad y Continuidad Uniforme. Aplicaciones lineales continuas. Beatriz Porras 1 Límites Las definiciones de ĺımite de funciones de varias variables son similares a las de los ĺımites de funciones
Espacios Métricos. Jorge Alberto Guccione Juan José Guccione
Espacios Métricos Jorge Alberto Guccione Juan José Guccione Índice general Capítulo 1. Espacios métricos 1 1 Definición y ejemplos........................ 1 1.1 Producto de numerables espacios métricos..............
ECUACIONES EN DERIVADAS PARCIALES Tópicos previos
ECUACIONES EN DERIVADAS PARCIALES Tópicos previos Para tomar el curso de ecuaciones en derivadas parciales es importante la familiaridad del alumno con los conceptos que se detallan a continuación. Sugerimos
Una norma en un espacio lineal (o vectorial) X es una función. : X R con las siguientes propiedades: (a) x 0, para todo x X (no negatividad);
MATEMÁTICA APLICADA II Segundo cuatrimestre 20 Licenciatura en Física, Universidad Nacional de Rosario Espacios de Banach. Introducción Frecuentemente estamos interesados en qué tan grande. es una función.
Nociones topológicas elementales de R n
Nociones topológicas elementales de R n Cálculo II (2004) * 1. Espacio vectorial R n Consideremos el conjunto R n de las n-uplas de números reales, donde n es un número natural arbitrario fijo. Los elementos
1. Caracterización de compacidad en espacios métricos
Centro de Matemática Facultad de Ciencias Universidad de la República Introducción a la Topología Curso 2016 NOTAS TEÓRICO-PRÁCTICAS 10: COMPACIDAD II 1. Caracterización de compacidad en espacios métricos
Unidad 1: Espacios métricos
Unidad 1: Espacios métricos 1.1 Definición y Ejemplos. (1) Explicar que una métrica permite introducir una noción de cercanía entre los elementos de un conjunto. (2) Explicar que sobre un conjunto determinado
1 Números reales. Funciones y continuidad.
1 Números reales. Funciones y continuidad. En este tema nos centraremos en el estudio de la continuidad de funciones reales, es decir, funciones de variable real y valor real. Por ello es esencial en primer
Primeras nociones topológicas
Lección 5 Primeras nociones topológicas Vamos a estudiar ahora algunas nociones topológicas elementales, trabajando en un espacio métrico arbitrario. Empezamos estudiando el interior de un conjunto y los
El espacio de funciones continuas
Capítulo 4 El espacio de funciones continuas 1. Funciones continuas En este capítulo estudiaremos las funciones continuas en un espacio métrico, además de espacios métricos formados por funciones continuas.
1. Convergencia en medida
FACULTAD CS. FÍSICAS Y MATEMÁTICAS UNIVERSIDAD DE CHILE MA3801 Teoría de la Medida. Semestre 2009-02 Profesor: Jaime San Martín Auxiliares: Andrés Fielbaum y Cristóbal Guzmán Clase auxiliar 7 21 de Septiembre
ECUACIONES DIFERENCIALES ORDINARIAS. HOJA 8. Conjuntos invariantes
ECUACIONES DIFERENCIALES ORDINARIAS. HOJA 8. CONJUNTOS INVARIANTES Y CONJUNTOS LÍMITE. ESTABILIDAD POR EL MÉTODO DE LIAPUNOV. Conjuntos invariantes 1. Definición. Se dice que un conjunto D Ω es positivamente
Continuidad. 5.1 Continuidad en un punto
Capítulo 5 Continuidad 5.1 Continuidad en un punto Definición 5.1.1 (Aplicación continua en un punto). Sean (X, τ) e (Y, τ ) dos espacios topológicos, y sea f : X Y una aplicación entre ellos. Diremos
Tarea 1. A j. A k. b) Ley Distributiva. c) Ley Distributiva. (A i B j ). B j = (Topología.)
Tarea 1. (Teoría de Conjuntos.) Estos no son obligatorios, pero sería bueno que los hicieran, si es que son ciertos. a) Ley Asociativa. Sea I conjunto y {J i } familia de conjuntos. Si K := J i, entonces
Topologías. Segundo cuatrimestre Práctica Encuentre todas las topologías sobre conjuntos de a lo sumo cuatro elementos.
Topología Segundo cuatrimestre - 2011 Práctica 1 Topologías Ejemplos de topologías 1. Encuentre todas las topologías sobre conjuntos de a lo sumo cuatro elementos. 2. Sea X un conjunto. (a) Sea τ = {U
TOPOLOGÍA. Curso 2011/2012
TOPOLOGÍA Curso 2011/2012 Capítulo 1 Espacios métricos 1.1. Medir la proximidad Sea X un conjunto. Denotaremos por X X al conjunto de los pares de elementos de X. Definición 1.1.1. Una distancia sobre
SUBSUCESIONES. Las sucesiones convergentes son acotadas, como hemos visto. El recíproco no es cierto. No toda sucesión acotada es covergente.
ANÁLISIS MATEMÁTICO BÁSICO. SUBSUCESIONES. Las sucesiones convergentes son acotadas, como hemos visto. El recíproco no es cierto. No toda sucesión acotada es covergente. Ejemplo.. Sea la sucesión (x n
Métodos Matemáticos: Análisis Funcional
Licenciatura en Ciencias y Técnicas Estadísticas Universidad de Sevilla http://euler.us.es/ renato/clases.html Espacios eucĺıdeos Definición Se dice que un espacio vectorial E es un espacio eucĺıdeo si
Axiomas de separación
CAPíTULO 6 Axiomas de separación Tema 1. Axiomas de separación: conceptos básicos El objetivo de este capítulo es considerar ciertas propiedades topológicas que comparten algunos espacios topológicos y
Resumen de Análisis Matemático IV
Resumen de Análisis Matemático IV 1. Funciones inversas e implícitas y extremos condicionados 1.1. Teorema de la función inversa Teorema de la función inversa: Sea A abierto de R n, f : A R n tal que f
Algunas equivalencias topológicas del Axioma del Extremo Superior
Algunas equivalencias topológicas del Axioma del Extremo Superior MSc Luis Alejandro Acuña. Escuela de Matemática, Instituto Tecnológico de Costa Rica. En este artículo se presentan cuatro propiedades
1. Producto escalar, métrica y norma asociada
1. asociada Consideramos el espacio vectorial R n sobre el cuerpo R; escribimos los vectores o puntos de R n, indistintamente, como x = (x 1,..., x n ) = n x i e i i=1 donde e i son los vectores de la
Funciones en R n Conceptos métricos y topológicos Límites y continuidad en R 2. Funciones en R n : nociones topológicas
Funciones en R n : nociones topológicas 1 Funciones en R n 2 Conceptos métricos y topológicos 3 Límites y continuidad en R 2 Definición Definición Llamaremos función escalar real de n variables reales,
(x + y) + z = x + (y + z), x, y, z R N.
TEMA 1: EL ESPACIO R N ÍNDICE 1. El espacio vectorial R N 1 2. El producto escalar euclídeo 2 3. Norma y distancia en R N 4 4. Ángulo y ortogonalidad en R N 6 5. Topología en R N 7 6. Nociones topológicas
Continuidad de funciones reales y vectoriales de variable vectorial
Capítulo 6 Continuidad de funciones reales y vectoriales de variable vectorial 6.1. Introducción Hasta el momento hemos estudiado funciones reales de variable real, es decir, funciones de la forma f :
UNIVERSIDAD NACIONAL DE COLOMBIA Facultad de Ciencias - Departamento de Matemáticas TOPOLOGIA GENERAL
UNIVERSIDAD NACIONAL DE COLOMBIA Facultad de Ciencias - Departamento de Matemáticas TOPOLOGIA GENERAL G. PADILLA Resumen. Estas notas ueron realizadas entre 2006 y 2008, echa en la cual dicté dicho curso
Operadores y funcionales lineales continuos
Tema 3 Operadores y funcionales lineales continuos En este tema trabajamos con aplicaciones lineales entre espacios vectoriales. Puesto que los vectores de los espacios que nos interesan (espacios normados)
Tema 1 EL TEOREMA DE PEANO. 1 Compacidad en C(I; R N ): el Teorema de Ascoli-
Tema 1 EL TEOREMA DE PEANO En este tema vamos a probar que bajo la hipótesis de ser f continua en un entorno del punto (, y 0 ), se puede garantizar la existencia, aunque no necesariamente la unicidad,
Convergencia Sucesiones convergentes
Lección 6 Convergencia Vamos a estudiar la noción de convergencia de sucesiones en un espacio métrico arbitrario, generalizando la que conocemos en R. La definimos de forma que quede claro que se trata
Tema 6: Teorema de Representación de Riesz. 10 y 13 de mayo de 2010
Tema 6: Teorema de Representación de Riesz 10 y 13 de mayo de 2010 1 Funcionales lineales positivos 2 Regularidad de medidas de Borel 3 Funcionales lineales continuos Funciones continuas de soporte compacto
Práctica 2: Cardinalidad. Propiedades básicas de los conjuntos
Cálculo Avanzado Segundo Cuatrimestre de 2014 Práctica 2: Cardinalidad Propiedades básicas de los conjuntos Ejercicio 1. Demostrar las siguientes igualdades de conjuntos: i) B i I A i = i I(B A i ). ii)
Convergencia de sucesiones
TEMA 4. CONVERGENCIA DE SUCESIONES 65 Tema 4. Convergencia de sucesiones Definición 5.4.1. Sea X un conjunto: una sucesión en X es una aplicación s : N X; denotaremos x n := s(n) y por S := {x n } n N
Apéndice 2: Series de Fourier.
Apéndice 2: Series de Fourier. 19 de noviembre de 2014 1. Conjuntos ortonormales y proyecciones. Sea V un espacio vectorial con un producto interno . Sea {e 1,..., e n } un conjunto ortonormal, V
Límites y continuidad
Capítulo 3 Límites y continuidad Límite funcional; el problema de su existencia. Continuidad en un punto y continuidad global. Funciones continuas en conjuntos compactos. Existencia de extremos absolutos
Teorema de Hahn-Banach
Capítulo 3 Teorema de Hahn-Banach 3.1. Introducción Una vez introducidos los espacios vectoriales más importantes donde se tiene una estructura métrica a saber, los espacios de Hilbert y los espacios de
Cálculo diferencial e integral I. Eleonora Catsigeras
Cálculo diferencial e integral I Eleonora Catsigeras Universidad de la República Montevideo, Uruguay 01 de setiembre de 2011. CLASE 14 complementaria. Sobre sucesiones y conjuntos en la recta real. Sucesiones
Funciones continuas e inyectivas
Nuestro último teorema afirmaba que toda función continua en un intervalo cerrado y acotado tiene máximo y mínimo absolutos, pero nada nos informa sobre los puntos en los que se alcanzan. Bajo la hipótesis
Espacios conexos. 6.1 Conexos
Capítulo 6 Espacios conexos 6.1 Conexos Definición 6.1.1 (Conjuntos separados). Dado un espacio topológico (X, τ) y dos subconjuntos A, B X, diremos que A y B están separados si A B = A B = Es evidente
Espacios conexos. Capítulo Conexidad
Capítulo 5 Espacios conexos 1. Conexidad En este capítulo exploraremos el concepto de conexidad en un espacio métrico, y estudiaremos algunas de sus aplicaciones. Definición 5.1. Decimos que el espacio
Acerca del producto de funciones uniformemente continuas en subconjuntos de la recta real
UNIVERSIDAD CENTRAL DE VENEZUELA FACULTAD DE CIENCIAS ESCUELA DE MATEMÁTICA Acerca del producto de funciones uniformemente continuas en subconjuntos de la recta real Trabajo Especial de Grado presentado
Topología de un espacio métrico
Tema 2 Topología de un espacio métrico uestro próximo objetivo es estudiar ciertas propiedades topológicas de un espacio métrico, así llamadas porque sólo dependen de una familia de subconjuntos del espacio
Espacios de Hilbert. 1. Propiedades básicas
Capítulo 9 Espacios de Hilbert 1. Propiedades básicas En este capítulo estudiaremos las propiedades básicas, así como algunas aplicaciones, de la teoría de espacios de Hilbert. Definición 9.1. Decimos
FUNCIONES MEROMORFAS. EL TEOREMA DE LOS RESIDUOS Y ALGUNAS DE SUS CONSECUENCIAS
FUNCIONES MEROMORFAS. EL TEOREMA DE LOS RESIDUOS Y ALGUNAS DE SUS CONSECUENCIAS. FUNCIONES MEROMORFAS Definición.. Se dice que una función es meromorfa en un abierto Ω de C si f es holomorfa en Ω excepto
11.1. Funciones uniformemente continuas
Lección 11 Continuidad uniforme Completando el análisis de los principales teoremas que conocemos sobre continuidad de funciones reales de variable real, estudiamos ahora la versión general para espacios
El teorema de Lebesgue
Capítulo 3 El teorema de Lebesgue En este capítulo estudiaremos un teorema que nos dice exactamente qué funciones son integrables y cuán grande puede ser la frontera de un conjunto para que éste tenga
Resumen. Notas del curso dictado por la Dr. Beatriz Abadie en la facultad de ciencias en el semestre impar del año 2003.
Notas de topología Resumen Notas del curso dictado por la Dr. Beatriz Abadie en la facultad de ciencias en el semestre impar del año 2003. Índice general. Numerabilidad 2 2. Espacios métricos 3. Espacios
