1 Denición y ejemplos
|
|
|
- José Manuel Navarrete Parra
- hace 9 años
- Vistas:
Transcripción
1 Centro de Matemática Facultad de Ciencias Universidad de la República Introducción a la Topología Curso 206 NOTAS TEÓRICO-PRÁCTICAS 5: ESPACIOS MÉTRICOS Denición y ejemplos Comenzaremos estas notas recordando la denición de métrica en un espacio. Denición. Una métrica en un conjunto X es una función d : X X R tal que (i) d(x, y) 0 para todo x, y X, con d(x, x) = 0 y d(x, y) > 0 si x y. (ii) d(x, y) = d(y, x) para todo x, y en X. (iii) d(x, y) d(x, z) + d(z, y) para todo x, y, z en X. En tal caso diremos que (X, d) es un espacio métrico. Veamos algunos ejemplos. Ejemplo : Métrica 0 Dado un conjunto X, denimos d(x, y) = si x y, y d(x, x) = 0. Es fácil ver que d es una métrica en X. Ejemplo 2: Métricas en R n En R n podemos denir las siguientes métricas d(x, y) := ( n i= x i y i 2 ) /2 ; d (x, y) := n i= x i y i ; d (x, y) := max i=,...,n x i y i. Ejemplo 3: Métrica inducida Sea (X, d) es un espacio métrico, y A X. La restricción de d a A A es una métrica, y por lo tanto (A, d A A ) es un espacio métrico. Ejemplo 4: Convergencia uniforme Sea X un conjunto, y sea B(X, R) el conjunto de funciones f : X R acotadas. 2 B(X, R) denimos la métrica d(f, g) := sup f(x) g(x). x X Ejemplo 5: Espacios normados Sea V un espacio vectorial real o complejo. Una norma en V es una función real : V R que verica A esta propiedad se le llama desigualdad triangular. 2 Decimos que f : X R es acotada si existe K > 0 tal que f(x) K para todo x X. En
2 (i) x 0, y x = 0 sii x = 0 en V ; (ii) λx = λ x, para todo λ escalar, y x V ; (iii) x + y x + y, para todo x, y en V. Si (V, ) es un espacio normado entonces d(x, y) := x y es una métrica en V. Observar que las métricas denidas en R n en el Ejemplo 2. son métricas que provienen de las normas respectivas x := ( n i= x i 2 ) /2 ; x := n i= x i ; x := max i:,...,n x i. El conjunto B(X, R) es un espacio vectorial deniendo de manera natural las operaciones punto a punto. De esta forma podemos ver facilmente que la métrica denida en el Ejemplo 4. proviene de la norma f := sup x X f(x). Ejemplo 6: Espacios l (N), l 2 (N), l (N) Sea l (N) el espacio de la sucesiones complejas x = {x n } n N tales que n= x n <. Es fácil dotar a este espacio con una estructura de espacio vectorial deniendo la suma y producto por número coordenada a coordenada. En l (N) se dene la norma x := n= x n. Análogamente se denen l 2 (N) := {{x n } : x n 2 < }; l (N) := {{x n } : sup n x n < }, Al igual que l (N) es fácil ver que estos conjuntos son espacios vectoriales con las operaciones habituales. Se denen para estos espacios las normas siguientes x 2 := ( x n 2 ) /2, donde x = {x n } l 2 (N). x := sup n x n < }, donde x = {x n } ell (N). Ejemplo 7: Pull-back de una métrica Sea X un conjunto, (M, d) un espacio métrico, y f : X M una función inyectiva. Para cada x, y X, la función d (x, y) =: d(f(x), f(y)) dene una métrica en X. (Comparar con Ejemplo 3. más arriba). Ejercicio. Probar en cada caso de los ejemplos anteriores que las funciones denidas son realmente métricas. Ejercicio 2. Si consideramos el conjunto R([0, ]) denido por las funciones f : [0, ] R tales que su parte positva y negativa 3 sean integrables Riemann, entonces podemos denir d(f, g) := f(x) g(x) dx. ¾Es d una métrica? En caso contrario, ¾en qué subconjunto 0 de R([0, ]) sería una métrica? 3 Dada f : [0, ] R, la parte positiva f + se dene como f + (x) = max{0, f(x)}. Análogamente, la parte negativa f se dene por f (x) = max{0, f(x)}. Observar que f = f + f 2
3 2 Topología Métrica Denición. Si (X, d) es un espacio métrico, denimos la bola de centro x y radio r como el conjunto B(x, r) := {y X : d(x, y) < r}. Denición. Recordar que el conjunto de bolas de un espacio métrico forman una base de X. A la topología generada por esta base se le llama topología métrica. 4 Ejercicio 3. Probar que la topología métrica generada por la métrica del Ejemplo es la topología discreta. Ejercicio 4. Probar que la topología usual de R es generada por la métrica d(x, y) := x y. Denición. Diremos que dos distancias d y d 2 son equivalentes si existe una constante C tal que para todo par de puntos x, y M se tiene C d (x, y) d 2 (x, y) Cd (x, y) Ejercicio 5. Vericar que la relación denida arriba es realmente una relación de equivalencia. Ejercicio 6. Probar que dos métricas equivalentes inducen la misma topología. Probar que el recíproco no es cierto. (Sugerencia: observar que si d es una métrica entonces d (x, y) = min{, d(x, y)} es una métrica que genera la misma topología que d). Ejercicio 7. Probar que las métricas d, d, d denidas en R n generan la topología producto en R n. Ejercicio 8. Probar que en el espacio de las funciones reales continuas de [0, ], las topologías generadas por las distancias d (f, g) := 0 f(x) g(x) dx y d (f, g) := sup x [0,] f(x) g(x) no son las mimsmas. ¾Alguna de las topologías generadas por estas métricas es más na que la otra? 2. Funciones Continuas Recordar que la noción de continuidad de una función entre espacios topológicos generados por métricas coincide con la denición ɛ δ de continuidad, es decir que una función entre espacios métricos f : (X, d X ) (Y, d Y ) es continua con respecto a las topologías métricas si y sólo si dado x X se tiene que ε > 0, δ > 0 tal que si d X (x, y) < δ entonces d Y (f(x), f(y)) < ε. Ejercicio 9. Sea f : X Y, donde X es un espacio topológicos generados por una métrica. Entonces f es continua si y sólo si para toda sucesión convergente x n x, se tiene que la sucesión f(x n ) converge a f(x). (Sugerencia: usar Ejercicio. del práctico 3.) 4 Cuando no especiquemos la topología en un espacio métrico signica que estamos trabajando con la topología métrica asociada. 3
4 Denición. Una funcíon entre espacios métricos f : (M, d ) (N, d 2 ) es Lipschitz si existe una constante K > 0 tal que para todo par de puntos x, y M se cumple d 2 (f(x), f(y)) Kd (x, y) Diremos que es bi-lipschitz si existe C tal que C d (x, y) d 2 (f(x), f(y)) Cd (x, y) Observar que dos métricas d y d 2 en M son equivalentes si y sólo si id : (M, d ) (M, d 2 ) es bi-lipschitz. También suele decirse que dos métricas son bi-lipschitz equivalentes en este caso Un ejemplo de funciones bi-lipschitz son las isometrías, es decir, las funciones sobreyectivas entre espacios métricos f : (M, d ) (N, d 2 ) que cumplen d 2 (f(x), f(y)) = d (x, y) para todo par de puntos x, y M. Cuando exista una isometría entre espacios métricos diremos que son isométricos, lo que signica que no pueden distinguirse desde el punto de vista de los espacios métricos. El siguiente ejercicio muestra en particular que espacios isométricos son espacios homeomorfos con las respectivas topologías métricas. Ejercicio 0. Probar que una función Lipschitz es contínua (recordar el ejercicio de 6 del práctico 3), y que una función sobreyectiva y bi-lipschitz es un homeomorsmo. 3 Topologías Metrizables Denición. Diremos que un espacio topológico es metrizable cuando la topología está generada por alguna métrica. Como hemos visto a lo largo del curso, los espacios métricos tienen ciertas propiedades agradables que permiten estudiarlos con mayor facilidad. Es por esta razón que es razonable presguntarse cuándo un espacio topológico es metrizable. En los siguientes ejercicios mostraremos ejemplos de espacios que son y que no son metrizables. Ejercicio : Recordar la denición de métrica producto dada en el ejercicio 6 del práctico 3. Probar que la topología inducida por el producto de nitas métricas es justamente la topología producto. Ejercicio 2: Consideremos una sucesión de espacios métricos {(M n, d n )} n N y X = Π n M n con la topología producto. Encontrar una métrica en X que induzca la topología producto. Ejercicio 3: Sea X un producto no numerable de espacios métricos. ¾Es X metrizable para la topología producto? (Sugerencia: revisar el ejercicio 6 del práctico 4.) ¾Qué nos dice lo anterior de la "topología de la convergencia puntual" de funciones de X en Y, donde X es un conjunto no numerable e Y es un espacio métrico? 4
5 4 Ejercicios Opcionales Ejercicio 4: Métricas conformes en el plano Sea Ω C un abierto y ρ : Ω [0, + ) una función C 2. curva diferencible α : [a, b] Ω como Denimos la longitud de una long(α) = b a ρ(α(s)) α (s) ds. Probar que la longitud de una curva no depende de la parametrización. Observar que esta denición se puede extender a curvas diferenciables a trozos. Ahora dados dos puntos x, y Ω denimos d ρ (x, y) como el inmo de las longitudes de las curvas diferenciables a trozos que unen x con y. Probar que d ρ es una métrica. Un ejemplo clásico es el llamado Plano Hiperbólico: Ω = H = {z C : Im(z) > 0}, ρ(z) = Im(z). Probar que si z y z 2 tienen parte real nula entonces la distancia d ρ (z, z 2 ) es realizada por cualquier parametrización inyectiva del segmento que une dichos puntos. Concluir que el semi-eje vertical es una curva que minimiza la distancia entre cualquier par de sus puntos. Una curva con esta propiedad es llamada geodésica. Puede verse (pero no lo pedimos aquí) que las geodésicas del plano hiperbólico son las rectas verticales y las semicircunferencias con centro en el eje real. El plano hiperbólico es un modelo de geometría no euclideana donde por un punto exterior a una geodésica pasan innitas geodésicas que no cortan a la primera, es dicir, innitas geodésicas paralelas a la primera. Ejercicio 5: Cuasi-métricas Una cuasi-métrica es una función d : X X R que cumple: (i) d(x, y) 0 para todo x, y X, con d(x, x) = 0 y d(x, y) > 0 si x y. (ii) d(x, y) = d(y, x) para todo x, y en X. (iii) Existe M tal que d(x, y) M(d(x, z) + d(z, y)) para todo x, y, z en X. A diferencia de las métricas, las cuasi-métricas no necesariamente generan topología. Para ver un ejemplo tomemos en d : C C R denido por { x y si x, y R, d(x, y) = 2 x y si no. Probar que d es una cuasi-métrica cuyas bolas no son base para ninguna topología. 5
Reconocer y utilizar las propiedades sencillas de la topología métrica.
3 Funciones continuas De entre todas las aplicaciones que pueden definirse entre dos espacios métrico, las aplicaciones continuas ocupan un papel preponderante. Su estudio es fundamental no sólo en topología,
Continuidad. 5.1 Continuidad en un punto
Capítulo 5 Continuidad 5.1 Continuidad en un punto Definición 5.1.1 (Aplicación continua en un punto). Sean (X, τ) e (Y, τ ) dos espacios topológicos, y sea f : X Y una aplicación entre ellos. Diremos
Espacios completos. 8.1 Sucesiones de Cauchy
Capítulo 8 Espacios completos 8.1 Sucesiones de Cauchy Definición 8.1.1 (Sucesión de Cauchy). Diremos que una sucesión (x n ) n=1 en un espacio métrico (X, d) es de Cauchy si para todo ε > 0 existe un
ELEMENTOS DE ANÁLISIS FUNCIONAL
ELEMENTOS DE ANÁLISIS FUNCIONAL Guillermo Ames Universidad Tecnológica Nacional - Facultad Regional Córdoba 2011 TEMA 1: NOCIONES BÁSICAS DE ESPACIOS MÉTRICOS Espacios métricos: definición y ejemplos Definición
Resumen de Análisis Matemático IV
Resumen de Análisis Matemático IV 1. Funciones inversas e implícitas y extremos condicionados 1.1. Teorema de la función inversa Teorema de la función inversa: Sea A abierto de R n, f : A R n tal que f
Espacios métricos completos
5 Espacios métricos completos Comenzamos introduciendo las sucesiones de Cauchy, que relacionamos con las sucesiones convergentes. En el caso de que coincidan, se trata de un espacio métrico completo.
Espacios topológicos. 3.1 Espacio topológico
Capítulo 3 Espacios topológicos 3.1 Espacio topológico Definición 3.1.1. Un espacio topológico es un par (X, τ), donde X es un conjunto, y τ es una familia de subconjuntos de X que verifica las siguientes
Problemas con soluciones
Departamento de Matemática, Universidad Técnica Federico Santa María, MAT-223. Problemas con soluciones 1) Muestre que si A es una base de una toplogía en X, entonces la topología generada por A es iqual
1 Números reales. Funciones y continuidad.
1 Números reales. Funciones y continuidad. En este tema nos centraremos en el estudio de la continuidad de funciones reales, es decir, funciones de variable real y valor real. Por ello es esencial en primer
Introducción a la topología
Introducción a la topología Beatriz Abadie CENTRO DE MATEMÁTICAS FACULTAD DE CIENCIAS UNIVERSIDAD DE LA REPÚBLICA Agosto de 2013 i Índice general Capítulo 1. Elementos de la teoría de conjuntos 1 1.1.
Subconjuntos notables de un Espacio Topológico
34 Capítulo 4 Subconjuntos notables de un Espacio Topológico 4.1 Adherencia Definición 4.1.1 (Punto adherente). Sea (X, τ) un espacio topológico, y sea S un subconjunto de X. Diremos que x X es un punto
Apéndice 2: Series de Fourier.
Apéndice 2: Series de Fourier. 19 de noviembre de 2014 1. Conjuntos ortonormales y proyecciones. Sea V un espacio vectorial con un producto interno . Sea {e 1,..., e n } un conjunto ortonormal, V
Axiomas de separación
CAPíTULO 6 Axiomas de separación Tema 1. Axiomas de separación: conceptos básicos El objetivo de este capítulo es considerar ciertas propiedades topológicas que comparten algunos espacios topológicos y
Funciones de Clase C 1
Capítulo 7 Funciones de Clase C 1 Vamos a considerar ahora la extensión a varias variables del concepto de función de clase C 1. Cada vez que establezcamos una propiedad de las funciones diferenciables,
1. Sucesiones y redes.
1. Sucesiones y redes. PRACTICO 7. REDES. Se ha visto que el concepto de sucesión no permite caracterizar algunas nociones topológicas, salvo en espacios métricos. Esto empieza con algunas definiciones
INTRODUCCIÓN A LA TOPOLOGÍA. Centro de Matemática Facultad de Ciencias Universidad de la República
INTRODUCCIÓN A LA TOPOLOGÍA Guía teórico-práctica Centro de Matemática Facultad de Ciencias Universidad de la República 14 de julio de 2016 Estas notas son una guía del curso Introducción a la Topología
Sucesiones y convergencia
Capítulo 2 Sucesiones y convergencia 1. Definiciones Una de las ideas fundamentales del análisis es la de límite; en particular, el límite de una sucesión. En este capítulo estudiaremos la convergencia
CÁLCULO II. Grado M+I. Sucesiones y series de funciones. Sucesiones y series de funciones 1 / 27. Grado M+I () CÁLCULO II
CÁLCULO II Grado M+I Sucesiones y series de funciones Sucesiones y series de funciones 1 / Sucesiones funciones. Convergencia puntual Sucesión de funciones Definición Una sucesión de funciones será cualquier
1. ESPACIOS DE HILBERT Y OPERADORES
1. ESPACIOS DE HILBERT Y OPERADORES 1. DEFINICIÓN, PROPIEDADES Y EJEMPLOS Definición. Sea H un espacio vectorial sobre el cuerpo C de los números complejos, un producto escalar sobre H es una aplicación
Espacios compactos. Capítulo Cubiertas. En este capítulo estudiaremos el concepto de compacidad en un espacio métrico.
Capítulo 3 Espacios compactos 1. Cubiertas En este capítulo estudiaremos el concepto de compacidad en un espacio métrico. Definición 3.1. Sea (X, d) un espacio métrico y A X. Una cubierta de A es una familia
Funciones de Variable Real
Tema 1 Funciones de Variable Real 1.1. La Recta Real Los números reales se pueden ordenar como los puntos de una recta. Los enteros positivos {1, 2, 3, 4,...} que surgen al contar, se llaman números naturales
Comisión de Pedagogía - Diego Chamorro Análisis Funcional (Nivel 2). Lección n 1: Aplicaciones Lineales EPN, verano 2012
AMARUN www.amarun.org Comisión de Pedagogía - Diego Chamorro Análisis Funcional (Nivel 2). Lección n 1: Aplicaciones Lineales EPN, verano 212 Introducción Algunas fechas: 197: Noción de Operador lineal
Por ser f continua y R compacto, existen x 0, y 0 en R tales que f(x 0 ) = sup{f(t) : t R} y f(y 0 ) = inf{f(t) : t R}
Proposición. Sea un rectángulo en R n, y sea f : R una función continua. Entonces f es integrable en. Conjuntos de Demostración: Como f es continua en, y es compacto, f es acotada en, y uniformemente continua.
Análisis Real: Primer Curso. Ricardo A. Sáenz
Análisis Real: Primer Curso Ricardo A. Sáenz Índice general Introducción v Capítulo 1. Espacios Métricos 1 1. Métricas 1 2. Métricas en espacios vectoriales 4 3. Topología 9 Ejercicios 16 Capítulo 2.
Convergencia de sucesiones
TEMA 4. CONVERGENCIA DE SUCESIONES 65 Tema 4. Convergencia de sucesiones Definición 5.4.1. Sea X un conjunto: una sucesión en X es una aplicación s : N X; denotaremos x n := s(n) y por S := {x n } n N
Resumen. Notas del curso dictado por la Dr. Beatriz Abadie en la facultad de ciencias en el semestre impar del año 2003.
Notas de topología Resumen Notas del curso dictado por la Dr. Beatriz Abadie en la facultad de ciencias en el semestre impar del año 2003. Índice general. Numerabilidad 2 2. Espacios métricos 3. Espacios
(a, 0) + (b, 0) = (a + b, 0), (a, 0) (b, 0) = (ab, 0),
NÚMEROS COMPLEJOS 1. Preliminares Definición. Se llama número complejo a todo par ordenado de números reales. Si z = (a, b) es un número complejo, se dice que a es la parte real de z y b es la parte imaginaria
MMAF: Espacios normados y espacios de Banach
MMAF: Espacios normados y espacios de Banach Licenciatura en Estadística R. Álvarez-Nodarse Universidad de Sevilla Curso 2011/2012 Espacios vectoriales Definición Sea V un conjunto de elementos sobre el
Una norma en un espacio lineal (o vectorial) X es una función. : X R con las siguientes propiedades: (a) x 0, para todo x X (no negatividad);
MATEMÁTICA APLICADA II Segundo cuatrimestre 20 Licenciatura en Física, Universidad Nacional de Rosario Espacios de Banach. Introducción Frecuentemente estamos interesados en qué tan grande. es una función.
Espacios compactos. 1. Cubiertas
Capítulo 3 Espacios compactos 1. Cubiertas En este capítulo estudiaremos el concepto de compacidad en un espacio métrico. La compacidad se puede estudiar desde dos puntos de vista: el topológico, a través
Integral de Lebesgue
Integral de Lebesgue Problemas para examen n todos los problemas se supone que (, F, µ) es un espacio de medida. Integración de funciones simples positivas. La representación canónica de una función simple
ECUACIONES EN DERIVADAS PARCIALES Tópicos previos
ECUACIONES EN DERIVADAS PARCIALES Tópicos previos Para tomar el curso de ecuaciones en derivadas parciales es importante la familiaridad del alumno con los conceptos que se detallan a continuación. Sugerimos
Objetivos. 1. Variable Aleatoria y Función de Probabilidad. Tema 4: Variables aleatorias discretas Denición de Variable aleatoria
Tema 4: Variables aleatorias discretas Objetivos Dominar el uso de las funciones asociadas a una variable aleatoria discreta para calcular probabilidades. Conocer el signicado y saber calcular la esperanza
Problemas de VC para EDVC elaborados por C. Mora, Tema 4
Problemas de VC para EDVC elaborados por C. Mora, Tema 4 Ejercicio Determinar las funciones enteras f para las que Solución f( + w) = f()f(w), w C. En primer lugar, f(0) = f(0 + 0) = f(0)f(0) = f(0) 2,
1. Convergencia en medida
FACULTAD CS. FÍSICAS Y MATEMÁTICAS UNIVERSIDAD DE CHILE MA3801 Teoría de la Medida. Semestre 2009-02 Profesor: Jaime San Martín Auxiliares: Andrés Fielbaum y Cristóbal Guzmán Clase auxiliar 7 21 de Septiembre
Semana 09 [1/28] Sucesiones. 29 de abril de Sucesiones
Semana 09 [1/28] 29 de abril de 2007 Semana 09 [2/28] Definición Sucesión Una sucesión real es una función: f : N R n f (n) Observaciones Para distinguir a una sucesión de las demás funciones, se ocupará
Cálculo II. Tijani Pakhrou
Cálculo II Tijani Pakhrou Índice general 1. Nociones topológicas en R n 1 1.1. Distancia y norma euclídea en R n.................... 1 1.2. Bolas abiertas y cerradas en R n..................... 3 1.3.
ELEMENTOS DE GEOMETRÍA. Eduardo P. Serrano
ELEMENTOS DE GEOMETRÍA Eduardo P. Serrano Este Apunte de Clase está dirigido a los alumnos de la materia Elementos de Cálculo Numérico para Biólogos. Tiene por objeto exponer algunos conceptos básicos
1. Algunas deniciones y resultados del álgebra lineal
. Algunas deniciones y resultados del álgebra lineal Denición. (Espacio vectorial o espacio lineal sobre R) Un espacio vectorial o espacio lineal sobre el campo de los números reales, R, es un conjunto
El Teorema de la Convergencia Dominada
Capítulo 22 l Teorema de la Convergencia Dominada Los dos teoremas de convergencia básicos en la integración Lebesgue son el teorema de la convergencia monótona (Lema 19.10), que vimos el capítulo y el
El Teorema de Baire Rodrigo Vargas
El Teorema de Baire Rodrigo Vargas Teorema 1 (Baire). Sea M un espacio métrico completo. Toda intersección numerable de abiertos densos es un subconjunto denso de M. Definición 1. Sea M un espacio métrico.
2. Cálculo diferencial de funciones de varias variables. Mayo, 2009
Cálculo 2. Cálculo diferencial de funciones de varias variables Mayo, 2009 Definición IR 2 = {(x 1,x 2 )/x 1 IR,x 2 IR} Sean dos puntos a y b, de coordenadas respectivas (a 1,a 2 ) y (b 1,b 2 ). Definición
Espacios vectoriales reales.
Tema 3 Espacios vectoriales reales. 3.1 Espacios vectoriales. Definición 3.1 Un espacio vectorial real V es un conjunto de elementos denominados vectores, junto con dos operaciones, una que recibe el nombre
SISTEMAS DINÁMICOS DISCRETOS: UNA INTRODUCCIÓN
SISTEMAS DINÁMICOS DISCRETOS: UNA INTRODUCCIÓN AUBIN ARROYO Y JOSÉ SEADE ÍNDICE 1. Dinámica en la recta real 2 1.1. Puntos fijos 2 1.2. Transformaciones lineales 3 1.3. Hiperbolicidad 6 1.4. El método
Espacios conexos. Capítulo Conexidad
Capítulo 5 Espacios conexos 1. Conexidad En este capítulo exploraremos el concepto de conexidad en un espacio métrico, y estudiaremos algunas de sus aplicaciones. Definición 5.1. Decimos que el espacio
Teoremas de convergencia y derivación bajo el signo integral
Capítulo 8 Teoremas de convergencia y derivación bajo el signo integral En este capítulo estudiaremos sucintamente bajo qué circunstancias puede intercambiarse el orden de la integral con las operaciones
Análisis II Análisis matemático II Matemática 3.
1 Análisis II Análisis matemático II Matemática 3. 1er. cuatrimestre de 2008 Práctica 1 - urvas, integral de longitud de arco e integrales curvilíneas. urvas Definición 1. Una curva R 3 es un conjunto
Benemérita Universidad Autónoma de Puebla
Benemérita Universidad Autónoma de Puebla FACULTAD DE CIENCIAS FÍSICO MATEMÁTICAS LICENCIATURA EN MATEMÁTICAS FUNCIONES LIPSCHITZ SOBRE ESPACIOS MÉTRICOS TESIS QUE PARA OBTENER EL TÍTULO DE LICENCIADO
Inyectivas, Suprayectivas, Biyectivas, Inversas. Relaciones Funcionales. f : A B se lee f es una función con dominio A y codominio B
Relaciones Funcionales Sean A, B dos conjuntos no vacíos, que llamaremos dominio y contradominio respectivamente. Entenderemos por función de A en B toda regla que hace corresponder a cada elemento del
Sucesiones en R n. Ejemplos.-Considerando el espacio R 2 sea la sucesión {x k } 1 dada por x k = ( k, 1 k) podemos listar como sigue:
Sucesiones en R n Definición. Una sucesión en R n es cualquier lista infinita de vectores en R n x, x,..., x,... algunos de los cuales o todos ellos pueden coincidir entre si. Dada una sucesión x, x,...,
1 Curvas planas. Solución de los ejercicios propuestos.
1 Curvas planas. Solución de los ejercicios propuestos. 1. Se considera el lugar geométrico de los puntos del plano tales que la suma del cuadrado de las distancias a los puntos P 1 = (, 0) y P = (, 0)
Cálculo en varias variables
Cálculo en varias variables Dpto. Matemática Aplicada Universidad de Málaga Resumen Límites y continuidad Funciones de varias variables Límites y continuidad en varias variables 1 Límites y continuidad
Cálculo vs Análisis. Trabajos
1. Analizar los dos libros que aparecen en la bibliografía del curso, Cálculo Vectorial, de Marsden, J.E. y Tromba, A.J., y Análisis clásico elemental, de Marsden, J.E. y Hoffman, M.J. Hacer un informe
8. Geometrías no euclidianas. Modelo de Poincaré de la Geometría Hiperbólica
LECTURA N 14 Capítulo 8 de LA GEOMETRÍA EN LA FORMACIÓN DE PROFESORES de Luis SANTALÓ - Red Olímpica. Buenos Aires. 1993 8. Geometrías no euclidianas. Modelo de Poincaré de la Geometría Hiperbólica Bibliografía:
Las variedades lineales en un K-espacio vectorial V pueden definirse como sigue a partir de los subespacios de V.
Capítulo 9 Variedades lineales Al considerar los subespacios de R 2, vimos que éstos son el conjunto {(0, 0)}, el espacio R 2 y las rectas que pasan por el origen. Ahora, en algunos contextos, por ejemplo
Ejercicios Resueltos de Cálculo III.
Ejercicios Resueltos de Cálculo III. 1.- Considere y. a) Demuestre que las rectas dadas se cortan. Encuentre el punto de intersección. b) Encuentre una ecuación del plano que contiene a esas rectas. Como
1. Funciones de varias variables
Coordinación de Matemáticas III (MAT 023) 1 er Semestre de 2013 1. Funciones de varias variables 1.1. Definiciones básicas Definición 1.1. Consideremos una función f : U R n R m. Diremos que: 1. f es una
Integrales múltiples
ntegrales múltiples Cálculo (2003) El objetivo de este capítulo es definir y aprender a calcular integrales de funciones reales de varias variables, que llamamos integrales múltiples. Las motivación más
Volumen y conjuntos de medida cero
Capítulo 2 Volumen y conjuntos de medida cero En la recta real normalmente las funciones se integran sobre intervalos. En R n es deseable poder considerar integrales de funciones sobre conjuntos más complicados
Funciones reales de variable real
84 Matemáticas I : Cálculo diferencial en IR Tema 8 Funciones reales de variable real 8. Los números reales Los números reales son de sobra conocidos, sus operaciones básicas así como su identificación
Topología de un espacio métrico
Tema 2 Topología de un espacio métrico uestro próximo objetivo es estudiar ciertas propiedades topológicas de un espacio métrico, así llamadas porque sólo dependen de una familia de subconjuntos del espacio
Teorema del Valor Medio
Tema 6 Teorema del Valor Medio Abordamos en este tema el estudio del resultado más importante del cálculo diferencial en una variable, el Teorema del Valor Medio, debido al matemático italo-francés Joseph
Teoremas de Convergencia
Capítulo 24 Teoremas de Convergencia El teorema de la convergencia monótona (Lema 21.3) establece ciertas condiciones sobre una sucesión de funciones medibles para que se puedan permutar los símbolos y
Tema 4. Espacio Proyectivo.
Tema 4. Espacio Proyectivo. Definición y modelos. *) El origen de la geometría proyectiva está relacionado con el estudio de la perspectiva, para conseguir cuadros o planos realistas del mundo 3-dimensional;
3. Funciones de varias variables
Métodos Matemáticos (Curso 2013 2014) Grado en Óptica y Optometría 17 3. Funciones de varias variables Función real de varias variables reales Sea f una función cuyo dominio es un subconjunto D de R n
CÁLCULO Primer curso de Ingeniero de Telecomunicación Examen Final. 7 de Julio de 2000 Primera parte
ÁLULO Primer curso de Ingeniero de Telecomunicación Examen Final. 7 de Julio de 000 Primera parte Ejercicio 1. Entre todos los rectángulos del plano YOZ,inscritos en la parábola z = a y (siendo a>0) yconbaseenelejeoy
Índice general 1. El Espacio Normado 2. La Diferencial de Fréchet 3. Teoremas de Taylor
Índice general 1. El Espacio Normado R n 1 1. Normas equivalentes....................... 6 2. Continuidad y limites de funciones............... 9 2.1. Reglas de cálculo para límites.............. 13 2.2.
Unidad II. 2.1 Concepto de variable, función, dominio, condominio y recorrido de una función.
Unidad II Funciones 2.1 Concepto de variable, función, dominio, condominio y recorrido de una función. Función En matemática, una función (f) es una relación entre un conjunto dado X (llamado dominio)
3er Concurso Unversitario de Matemáticas Galois-Noether 2013 Segunda Etapa
3er Concurso Unversitario de Matemáticas Galois-Noether 013 Segunda Etapa Sábado 17 de agosto 013 Bienvenido a la Segunda Etapa del Concurso Universitario de Matemáticas Galois-Noether Responde a las preguntas
Cálculo Diferencial: Enero 2016
Cálculo Diferencial: Enero 2016 Selim Gómez Ávila División de Ciencias e Ingenierías Universidad de Guanajuato 9 de febrero de 2016 / Conjuntos y espacios 1 / 21 Conjuntos, espacios y sistemas numéricos
Acerca del producto de funciones uniformemente continuas en subconjuntos de la recta real
UNIVERSIDAD CENTRAL DE VENEZUELA FACULTAD DE CIENCIAS ESCUELA DE MATEMÁTICA Acerca del producto de funciones uniformemente continuas en subconjuntos de la recta real Trabajo Especial de Grado presentado
Lección 4. Integrales múltiples. 4. Superficies parametrizadas.
GRADO DE INGENIERÍA AEROESPACIAL CURSO 0 MATEMÁTICAS III DPTO DE MATEMÁTICA APLICADA II Lección 4 Integrales múltiples 4 Superficies parametrizadas Representación paramétrica de una superficie La primera
Funciones convexas Definición de función convexa. Tema 10
Tema 10 Funciones convexas Los resultados obtenidos en el desarrollo del cálculo diferencial nos permiten estudiar con facilidad una importante familia de funciones reales de variable real definidas en
José Humberto Serrano Devia Página 1
Similitudes entre el espacio y las series de Fourier Funciones Ortogonales En esta sección se muestra la forma en que los conceptos vectoriales de producto interno, o producto escalar, y el de ortogonalidad
Derivada de la función compuesta. Regla de la cadena
Derivada de la función compuesta. Regla de la cadena Cuando en las matemáticas de bachillerato se introduce el concepto de derivada, su significado y su interpretación geométrica, se pasa al cálculo de
10. Series de potencias
FACULTAD DE CIENCIAS FÍSICAS Y MATEMÁTICAS UNIVERSIDAD DE CHILE Cálculo Diferencial e Integral 7-2 Basado en el apunte del curso Cálculo (2do semestre), de Roberto Cominetti, Martín Matamala y Jorge San
Tema 5. Cónicas. Asi, para las identificaciones habituales, (punto proyectivo recta vectorial punto de un plano afín ampliado), RP 2 R3 {0}
Tema 5. Cónicas. Introducción. Ejemplos.- El cono C = {(x, y, z) R 3 /x 2 + y 2 = z 2 } está formado por las rectas vectoriales 0 (x 1,x 2, 1) [x 1,x 2, 1] RP 2 con (x 1,x 2, 1) C Π 1 = C 1, circunferencia
1. Conjuntos y funciones
Centro de Matemática Facultad de Ciencias Universidad de la República Introducción a la Topología Curso 2016 PRACTICO 1: CONJUNTOS. 1 1. Conjuntos y funciones Ejercicio 1. Si I es un conjunto y A α es
Teoría de la Probabilidad Tema 2: Teorema de Extensión
Teoría de la Probabilidad Tema 2: Teorema de Extensión Alberto Rodríguez Casal 25 de septiembre de 2015 Definición Una clase (no vacía) A de subconjuntos de Ω se dice que es un álgebra si A es cerrada
ÁLGEBRA LINEAL II Práctica
ÁLGEBRA LINEAL II Práctica 3.1-3.2 Geometría afín. (Curso 2012 2013) 1. En un espacio afín real de dimensión 3, se consideran dos sistemas de referencia R = O, ē 1, ē 2, ē 3 } y R = P, ū 1, ū 2, ū 3 },
Definición de la integral de Riemann (Esto forma parte del Tema 1)
de de de Riemann (Esto forma parte del Tema 1) Departmento de Análise Matemática Facultade de Matemáticas Universidade de Santiago de Compostela Santiago, 2011 Esquema de Objetivos del tema: Esquema de
Tema 3. GEOMETRIA ANALITICA.
Álgebra lineal. Curso 087-009. Tema. Hoja 1 Tema. GEOMETRIA ANALITICA. 1. Hallar la ecuación de la recta: a) que pase por ( 4, ) y tenga pendiente 1. b) que pase por (0, 5) y tenga pendiente. c) que pase
Integrales dobles. Integrales dobles
Integrales dobles Integrales iteradas b g2 (x) a g 1 (x) f(x, y) dydx ó d h2 (y) c h 1 (y) f(x, y) dxdy Los límites interiores de integración pueden ser variables respecto a la variable exterior de integración,
ALGEBRA LINEAL - 2do Cuatrimestre 2014 Práctica 2 - Espacios vectoriales
Departamento de Matemática - Facultad de Ciencias Exactas y Naturales - UBA 1 ALGEBRA LINEAL - 2do Cuatrimestre 2014 Práctica 2 - Espacios vectoriales Espacios vectoriales 1. Sea V un espacio vectorial
Terminaremos el capítulo con una breve referencia a la teoría de cardinales.
TEMA 5. CARDINALES 241 Tema 5. Cardinales Terminaremos el capítulo con una breve referencia a la teoría de cardinales. Definición A.5.1. Diremos que el conjunto X tiene el mismo cardinal que el conjunto
UNIVERSIDAD DE GUANAJUATO FACULTAD DE MATEMÁTICAS
UNIVERSIDAD DE GUANAJUATO FACULTAD DE MATEMÁTICAS CONSTRUCCIÓN DE UNA INFINIDAD DE ESPACIOS ARBITRARIAMENTE DISTORSIONABLES NO ISOMORFOS ENTRE SÍ. T E S I S QUE PARA OBTENER EL GRADO DE LICENCIADO EN MATEMÁTICAS.
Análisis Matemático I: La integral de Riemann
Contents : La integral de Riemann Universidad de Murcia Curso 2006-2007 Contents 1 Definición de la integral y propiedades Objetivos Definición de la integral y propiedades Objetivos 1 Definir y entender
x, y = x 0 y 0 + x 1 y 1 + x 2 y 2 + x 3 y 3. Es fácil ver que verifica 1. Es simétrica. x, y = y, x para todo x, y R 4.
1 Tema 2. Sección 1. Espacio vectorial de Minkowski. Manuel Gutiérrez. Departamento de Álgebra, Geometría y Topología. Universidad de Málaga. 29071-Málaga. Spain. Abril de 2010. En este capítulo se recordará
Diferenciación de funciones de varias variables
Diferenciación de funciones de varias variables Grado en Matemáticas. Prof. Renato Álvarez Nodarse Versión del 13/10/2015 Departamento de Análisis Matemático Facultad de Matemáticas (despacho: Módulo 15,
1. Curvas Regulares y Simples
1. Regulares y Simples en R n. Vamos a estudiar algunas aplicaciones del calculo diferencial e integral a funciones que están definidas sobre los puntos de una curva del plano o del espacio, como por ejemplo
2. Continuidad y derivabilidad. Aplicaciones
Métodos Matemáticos (Curso 2013 2014) Grado en Óptica y Optometría 7 2. Continuidad y derivabilidad. Aplicaciones Límite de una función en un punto Sea una función f(x) definida en el entorno de un punto
(FUNCIONES DE VARIAS VARIABLES) Grado en Ingeniería Eléctrica Grado en Ingeniería Electrónica Industrial y Automática Grado en Ingeniería Mecánica
CÁLCULO II (FUNCIONES DE VARIAS VARIABLES) Grado en Ingeniería Eléctrica Grado en Ingeniería Electrónica Industrial y Automática Grado en Ingeniería Mecánica Curso 2010-11 Sebastián Lajara López Aurora
Algebra lineal y conjuntos convexos
Apéndice A Algebra lineal y conjuntos convexos El método simplex que se describirá en el Tema 2 es de naturaleza algebraica y consiste en calcular soluciones de sistemas de ecuaciones lineales y determinar
Derivada y diferencial
Derivada y diferencial Una cuestión, que aparece en cualquier disciplina científica, es la necesidad de obtener información sobre el cambio o la variación de determinadas cantidades con respecto al tiempo
Unidad V. 5.1 Recta tangente y recta normal a una curva en un punto. Curvas ortogonales.
Unidad V Aplicaciones de la derivada 5.1 Recta tangente y recta normal a una curva en un punto. Curvas ortogonales. Una tangente a una curva es una recta que toca la curva en un solo punto y tiene la misma
