USO DE FOTOCELDAS SEMICONDUCTORAS EN EL LABORATORIO PARA DEMOSTRAR FENÓMENOS DE FÍSICA MODERNA

Tamaño: px
Comenzar la demostración a partir de la página:

Download "USO DE FOTOCELDAS SEMICONDUCTORAS EN EL LABORATORIO PARA DEMOSTRAR FENÓMENOS DE FÍSICA MODERNA"

Transcripción

1 USO DE FOTOCELDAS SEMICONDUCTORAS EN EL LABORATORIO PARA DEMOSTRAR FENÓMENOS DE FÍSICA MODERNA S. Villagrán R., P.Pacheco H, M. Bustamante S (1) Inacap Ñuñoa Departamento de Matemática, Estadística y Física Facultad de Ingeniería Universidad de Las Américas sidney.villagrar@inacap.cl, patricio.pacheco03@inacap.cl (1) mbustama@uamericas.cl RESUMEN En los tiempos actuales donde la tecnología avanza a pasos agigantados gracias a la aplicación de las teorías y fenómenos obtenidos a partir de la revolución del pensamiento originada por científicos notables que se atrevieron a pensar y proponer explicaciones diferentes respecto de aquellos fenómenos del mundo atómico que el pensamiento clásico no descifraba. Temas que no pueden estar ausentes en los planes de estudio de ciencia básica para ingenieros ya sea desde el punto de vista de los contenidos teóricos de la física moderna como del trabajo experimental de laboratorio (1) y que demuestra en forma simple y a bajo costo variables características que singularizan esta nueva tecnología como por lo es, por ejemplo, la fotoconductividad en celdas semiconductoras sensibles a las luz blanca. En este trabajo se presenta un montaje simple donde se analiza la fotoconductividad de una placa de silicio cuando se hace incidir luz de distintas longitudes de onda, permitiendo medir el fenómeno del efecto fotoeléctrico y adicionalmente determinar a partir de un análisis de los datos obtenidos, una buena aproximación de una constante fundamental como lo es la constante de Planck h.

2 INTRODUCCIÓN Uno de los problemas fundamentales de la física moderna lo da el concepto de cuanto de energía, el fotón, asociado al comportamiento corpuscular de la luz. La energía de una onda electromagnética no es continua si no que esta cuantizada en pequeños paquetes de onda llamados fotones. Dicho fenómeno fue introducido por Max Planck aproximadamente en el año 1900 tratando de calcular o estudiar la distribución de energía en el espectro de radiación de cuerpo negro. Albert Einstein verifica esta idea planteada por M. Planck estudiando la cuantizacion de la energía con el efecto fotoeléctrico ( electrones liberados de una superficie conductora cuando sobre ella incide luz) el electrón absorbe un fotón adquiriendo energía suficiente para escapar (3). c La energía asociada a un foton es E = hf = h, donde f representa la frecuencia de la onda λ 8 electromagnética, c la velocidad de la luz cuyo valor es de 3 10 ( m / s) en el vacío y λ la longitud de onda. Además h representa la constante de planck cuyo valor es de h = ( J s) La luz, onda del espectro visible de la radiación electromagnética, tiene un comportamiento dual ondulatorio y corpuscular. El fenómeno de la emisión fotoeléctrica tiene una frecuencia umbral de radiación electromagnética por debajo de la cual no se produce emisión, por más intensa que sea dicha radiación. Es por ello las celdas fotoeléctricas semiconductoras de silicio son muy útiles por su respuesta a la radiación de luz visible. El fenómeno de emisión aumenta cuando se incrementa la intensidad de la radiación que incide sobre la superficie del material ya que existe más energía para la liberación de electrones (3). Las celdas solares son dispositivos que convierten energía solar en electricidad, ya sea directamente vía el efecto fotoconductividad, o indirectamente mediante la previa conversión de energía solar a calor o a energía química. La forma más común de las celdas solares se basa en el efecto fotovoltaje, en el cual la luz que incide sobre un dispositivo semiconductor de dos capas produce una diferencia del fotovoltaje o del potencial entre las capas. Este voltaje es capaz de conducir una corriente a través de un circuito externo de modo de producir trabajo útil. Figura Nº1: Panel solar Los orígenes de celdas solares (6,7) Aunque las celdas solares eficientes han estado disponibles recién desde mediados de los años 50, la investigación científica del efecto de la fotoconductividad comenzó en 1839, cuando el

3 científico francés, Henri Becquerel descubrió que una corriente eléctrica podría ser producida haciendo brillar una luz sobre ciertas soluciones químicas. Una pastilla de silicio que convertía el 6% de la luz solar que incidía sobre ella en electricidad fue desarrollada por Chapin, Pearson y Fuller en 1954, y esta es la clase de célula que fue utilizada en aplicaciones especializados tales como satélites orbitales a partir de Las celdas solares de silicio disponibles comercialmente en la actualidad tienen una eficiencia de conversión en electricidad a la luz solar que cae sobre ellas del orden de 18%, a una fracción del precio de hace treinta años. En la actualidad existen una gran variedad de métodos para la producción práctica de celdas solares de silicio (amorfas, monocristalinas o policristalinas), del mismo modo que para las celdas solares hechas de otros materiales (Seleniuro de Cobre e Indio, Teluro de Cadmio, Arseniuro de Galio, etc) (5). Cómo funcionan las celdas solares? (5) Para entender la operación de una célula fotovoltaica, necesitamos considerar la naturaleza del material y la naturaleza de la luz del sol. Las celdas solares están formadas por dos tipos de material, generalmente silicio tipo p y silicio tipo n. La luz de ciertas longitudes de onda puede ionizar los átomos en el silicio y el campo interno producido por la unión que separa algunas de las cargas positivas ("agujeros") de las cargas negativas (electrones) dentro del dispositivo fotovoltaico. Los agujeros se mueven hacia la capa positiva o capa de tipo p y los electrones hacia la negativa o capa tipo n. Aunque estas cargas opuestas se atraen mutuamente, la mayoría de ellas solamente se pueden recombinar pasando a través de un circuito externo fuera del material debido a la barrera de energía potencial interno. Por lo tanto si se hace un circuito se puede producir una corriente a partir de las celdas iluminadas, puesto que los electrones libres tienen que pasar a través del circuito para recombinarse con los agujeros positivos. Panel Solar Voltímetro Figura Nº2. Esquema de aparatos. Figura Nº3. Luz y emisión de Fotoelectrones Efecto fotovoltaico en una Fotocelda (6)

4 La cantidad de energía que entrega un dispositivo fotovoltaico esta determinado por: El tipo y el área del material La intensidad de la luz del sol La longitud de onda de la luz del sol Puesto que una sola célula fotovoltaica tiene un voltaje de trabajo cercano a 0.5 V, estas generalmente se conectan juntas en serie (positivo con negativo) para proporcionar voltajes más grandes. Los paneles se fabrican en una amplia gama de los tamaños para diversos propósitos que generalmente caen en una de tres categorías básicas: Paneles pequeños de 1-10 Watts y 3-12 Volts, con áreas de 100cm2 a 1000cm2 son hechos, ya sea cortando en pedazos celdas mono o policristalinas de 100cm2 y ensamblándolas en serie, o usando paneles amorfos de silicio. Los usos principales son en radios, juguetes, bombeadores pequeños, cercas eléctricas, calculadorass y cargadores de baterías. Los paneles grandes, de 10 a 60 Watts, y habitualmente 6 o 12 Volts, con áreas de 1000cm2 a 5000cm2 son generalmente construidos conectando de 10 a 36 celdas del mismo tamaño en serie. Se utilizan individualmente para bombeadores pequeños y energía de casas rodantes (luces y refrigeración) o en conjuntos para proporcionar energía a casas, comunicaciones, bombeadores grandes y fuentes de energía en área remotas. Proyecto experimental Se propone un montaje simple y a bajo costo donde sobre una foto celda semiconductora se hace incidir un haz de luz blanca colimada y filtrada a diferentes colores como el rojo (λ 700 nm, por ejemplo), verde, amarillo, azul. Midiendo el voltaje obtenido en la fotocelda como se muestra en la figura: Filtro Panel Voltímetro Luz Figura Nº4. Montaje Experimental

5 Si representamos gráficamente la longitud de onda incidente para cada filtro y el voltaje obtenido el la fotocelda, encontramos una relación lineal como se observa en el grafico: Tabla de datos Nº1 ev(volt)ef (Hz)E , Gráfico Energía v/s Frecuencia ev f (Hz) Al graficar energía en función de la frecuencia (cuociente entre velocidad de la luz c y la longitud de onda)se puede obtener los parámetros del ajuste donde la pendiente asociada tiene como resultado : TABLAS DE VALORES MEDIDOS Color 9 ( m ) c f ( Hz ) = 10 V ± ( V 10 ) ev 10 ( J ) Vε % λ λ 14 Rojo ,80...4,03 0,10 ± 2,40 1,60 2,4 Amarillo ,31...5,01 0,30 ± 2,72 4,81 0,91 Verde ,77...5,31 0,44 ± 3,19 7,05 0,73 Azul ,67...6,00 0,80 ± 4,56 12,80 0,57 El modelo experimental obtenido arroja los siguientes resultados:

6 ev = (6.50 ± 0.34 ) 10 ( J s ) f ( ± 1.96 ) ( J ) Al interpretar la función lineal se puede inferir que según la ecuación de Einstein para el efecto fotoeléctrico ev = hf φ, la pendiente asociada a la función es la constante de Planck, arrojando un valor experimental de: h = (6.50 ± 0.34 ) 10 ( J s ) Al comparar: ε h h h (6.63* * 10 )Joules seg 6.63* 10 Joules seg TABLAS EXPERIMENTAL % = = TABLAS 1.96% De los resultados observamos que el porcentaje de error (2, 4) obtenido bordea el 2% respecto del valor dado por tablas mas comúnmente usadas para h, la constante de Planck experimental no es exageradamente diferente. Más bien, dado el tipo de proceso experimental desarrollado, la luz incidente (no colimada) induce un valor muy grande de incerteza, aun así el orden de magnitud obtenido nos deja conformes y es un indicador de que el proceso, como ha sido, descrito funciona. CONCLUSIÓN Se muestra el desarrollo de un proyecto de muy bajo costo donde es posible obtener, indirectamente, constantes universales de alto grado de sensibilidad y dificultad como lo es la constante de Planck y confirmar un fenómeno de altas implicancias tecnológicas como es el de la emisión fotoeléctrica de los materiales por efecto de la radiación incidente sobre ella. Al menos, es claro, un tratamiento simplificado de un tema de por si complejo es posible, utilizando materiales semiconductores sensibles a la luz visible (3, 4). AGRADECIMIENTOS El primer autor de este trabajo desea expresar su agradecimiento al Director de Carrera del Área de Procesos Industriales de Inacap Sr. Eduardo Quiroz Saavedra por su fundamentada critica al manuscrito como por sus valiosos puntos de vista. BIBLIOGRAFÍA 1. English, Fenwich W., Hill, John C., "Calidad Total en la Educación ", Editorial Edamex, México, Canavos, George C., Probabilidad y Estadística,..., Mc Graw-Hill, 1995.

7 3. SERWAY, Raymond A. Física: Tomo II. Capitulo 1 al 22 (pp.1-645).5 Ed. México: McGraw- Hill, Taylor, John R, An introduction to Error Analysis, The study of uncertainties in Physical measurements, Second Edition, University Science Books, Sausalito, California, Kittel, Charles, Introducción a la Física del Estado Sólido, Editorial Reverte, Barcelona, Huster, J. F, Las Celdas Solares, Editorial Paraninfo, Madrid, España, Cobarg, C.C, Energía Solar bases y aplicaciones, Editorial Paraninfo, Madrid, 1983

CÁLCULO DE LA CONSTANTE DE PLANCK A TRAVÉS DEL EFECTO FOTOELÉCTRICO

CÁLCULO DE LA CONSTANTE DE PLANCK A TRAVÉS DEL EFECTO FOTOELÉCTRICO CÁLCULO DE LA CONSTANTE DE PLANCK A TRAVÉS DEL EFECTO FOTOELÉCTRICO HÉCTOR BARCO R.*, EDILBERTO ROJAS C.* PC: Planck, Einstein, Fotoeléctrico, Fotones RESUMEN En este artículo se presentan los resultados

Más detalles

Física Experimental IV. Práctica IV Determinación de h/e. Funes, Gustavo Giordano, Leandro Gulich, Damián Sotuyo, Sara.

Física Experimental IV. Práctica IV Determinación de h/e. Funes, Gustavo Giordano, Leandro Gulich, Damián Sotuyo, Sara. Física Experimental IV Práctica IV Determinación de h/e Funes, Gustavo Giordano, Leandro Gulich, Damián Sotuyo, Sara Departamento de Física Facultad de Ciencias Exactas UNLP Sinopsis En el siguiente informe

Más detalles

Laboratorio 1. Efecto fotoeléctrico

Laboratorio 1. Efecto fotoeléctrico Laboratorio 1 Efecto fotoeléctrico 1.1 Objetivos 1. Determinar la constante de Planck h 2. Determinar la dependencia del potencial de frenado respecto de la intensidad de la radiación incidente. 1.2 Preinforme

Más detalles

XIII OLIMPIADA CHILENA DE FISICA 2005 Sociedad Chilena de Física

XIII OLIMPIADA CHILENA DE FISICA 2005 Sociedad Chilena de Física XIII OLIMPIADA CHILENA DE FISICA 2005 Sociedad Chilena de Física PRUEBA EXPERIMENTAL A NOMBRE: RUT: CURSO: NUMERO TOTAL DE PAGINAS ESCRITAS: PUNTAJE TOTAL La constante de Planck de la física cuántica y

Más detalles

EJERCICIOS EFECTO FOTOELÉCTRICO

EJERCICIOS EFECTO FOTOELÉCTRICO EJERCICIOS EFECTO FOTOELÉCTRICO Teoría Distribución de la radiación de cuerpo negro, según Planck: Esta era una expresión empírica, para explicarla teóricamente, Planck propuso un modelo detallado de los

Más detalles

02/06/2014. Química Plan Común

02/06/2014. Química Plan Común Química Plan Común Limitaciones del Modelo Atómico de Rutherford Según el modelo atómico de Rutherford, los electrones se mueven en órbitas circulares y tienen una aceleración normal. Pero según los principios

Más detalles

Energía Solar. Conversión Fotovoltaica

Energía Solar. Conversión Fotovoltaica Energía Solar Conversión Fotovoltaica La transformación de la energía solar en electricidad se llama conversión fotovoltaica y es resultado del efecto fotovoltaico. Este efecto se lleva a cabo en dispositivos

Más detalles

FÍSICA MODERNA. a) Explique las transformaciones energéticas en el proceso de fotoemisión y calcule la

FÍSICA MODERNA. a) Explique las transformaciones energéticas en el proceso de fotoemisión y calcule la FÍSICA MODERNA 2001 1. Un haz de luz de longitud de onda 546 10-9 m incide en una célula fotoeléctrica de cátodo de cesio, cuyo trabajo de extracción es de 2 ev: a) Explique las transformaciones energéticas

Más detalles

Efecto Fotoeléctrico

Efecto Fotoeléctrico Universidad Nacional Autónoma de Honduras Facultad de Ciencias Escuela de Física Elaborado por: Ing Francisco Solórzano Efecto Fotoeléctrico I INTRODUCCIÓN El efecto fotoeléctrico fue descubierto en 1886

Más detalles

VERIFICACIÓN DEL EFECTO FOTO ELÉCTRICO CON LUZ ULTRAVIOLETA

VERIFICACIÓN DEL EFECTO FOTO ELÉCTRICO CON LUZ ULTRAVIOLETA VERIFICACIÓN DEL EFECTO FOTO ELÉCTRICO CON LUZ ULTRAVIOLETA PHOTO ELECTRIC EFFECT CHECK WITH ULTRAVIOLET LIGHT Resumen A. L. Marquez 1 Desde el punto de vista de estudiante se desarrollo un experimento

Más detalles

La perturbación electromagnética se propaga a la velocidad de la luz c. ADEMAS :c= f

La perturbación electromagnética se propaga a la velocidad de la luz c. ADEMAS :c= f EL EFECTO FOTOÈLECTRICO. ONDA ELECTROMAGNÈTICA: Es una variación en el tiempo de un campo eléctrico Una onda al oscilar genera un campo magnético. La perturbación electromagnética se propaga a la velocidad

Más detalles

Óptica Fenómenos luminosos. Juan Carlos Salas Galaz

Óptica Fenómenos luminosos. Juan Carlos Salas Galaz Óptica Fenómenos luminosos Juan Carlos Salas Galaz Física La física proviene del griego phisis y que significa realidad o naturaleza y una aproximación sería, la ciencia que estudia las propiedades del

Más detalles

TEORÍA CORPUSCULAR DE LA LUZ.

TEORÍA CORPUSCULAR DE LA LUZ. Marta Vílchez TEORÍA CORPUSCULAR DE LA LUZ. Max Planck (1858-1947) Albert Einstein (1879-1955) Arthur H. Compton (189-196) 1 Marta Vílchez Antecedentes de la teoría corpuscular. Radiación del cuerpo negro.

Más detalles

Efecto fotoeléctrico:

Efecto fotoeléctrico: ELECTRONES Y CUANTOS. EFECTO FOTOELÉCTRICO - EFECTO COMPTON - NATURALEZA DUAL DE LA LUZ En el siglo XIX ya era conocido el electrón. En 1897 Thomson midió la relación carga a masa: e m = 5.27 1017 u.e.s./g

Más detalles

Clase 4:Radiación del cuerpo, efecto fotoeléctrico y modelos atómicos

Clase 4:Radiación del cuerpo, efecto fotoeléctrico y modelos atómicos Clase 4:Radiación del cuerpo, efecto fotoeléctrico y modelos atómicos El experimento de Millikan Determina la carga del electrón 1.602 x 10-19 C Atomizador de gotas de aceite Fuente de Rayos X (ioniza

Más detalles

FÍSICA CUÁNTICA 1. Antecedentes y crisis. 2. Modelo atómico de Bohr. 3. Principios de la mecánica cuántica.

FÍSICA CUÁNTICA 1. Antecedentes y crisis. 2. Modelo atómico de Bohr. 3. Principios de la mecánica cuántica. FÍSICA CUÁNTICA 1. Antecedentes y crisis. 2. Modelo atómico de Bohr. 3. Principios de la mecánica cuántica. Física 2º bachillerato Física cuántica 1 0. CONOCIMIENTOS PREVIOS Los conocimientos previos que

Más detalles

Experimento 12 LÍNEAS ESPECTRALES. Objetivos. Teoría. Postulados de Bohr. El átomo de hidrógeno, H

Experimento 12 LÍNEAS ESPECTRALES. Objetivos. Teoría. Postulados de Bohr. El átomo de hidrógeno, H Experimento 12 LÍNEAS ESPECTRALES Objetivos 1. Describir el modelo del átomo de Bohr 2. Observar el espectro del H mediante un espectrómetro de rejilla 3. Medir los largos de onda de las líneas de la serie

Más detalles

MATERIA MOLÉCULAS ÁTOMOS PARTÍCULAS SUBATÓMICAS. Partícula Masa (g) Carga (Coulombs) Carga unitaria. Electrón

MATERIA MOLÉCULAS ÁTOMOS PARTÍCULAS SUBATÓMICAS. Partícula Masa (g) Carga (Coulombs) Carga unitaria. Electrón MATERIA MOLÉCULAS ÁTOMOS PARTÍCULAS SUBATÓMICAS Partícula Masa (g) Carga (Coulombs) Carga unitaria Electrón 9.10939 10-28 -1.6022 10-19 -1 Protón 1.67262 10-24 +1.6022 10-19 +1 Neutrón 1.67493 10-24 0

Más detalles

Efecto fotoeléctrico, fotones

Efecto fotoeléctrico, fotones CAPÍTULO 22 258 Capítulo 22 EFECTO FOTOELÉCTRICO, FOTONES interacciones campos y ondas / física 1º b.d. Efecto fotoeléctrico, fotones Introducción A finales del siglo XIX la comunidad científica estaba

Más detalles

Page 1 of 5 Departamento: Dpto Ing. Electrica y Electro Nombre del curso: OPTICA Y FÍSICA MODERNA CON LABORATORIO Clave: 004856 Academia a la que pertenece: Óptica y física moderna Requisitos: Ninguno

Más detalles

Teoría Cuántica y la Estructura Electrónica de los Atomos

Teoría Cuántica y la Estructura Electrónica de los Atomos Propiedades de la ondas Teoría Cuántica y la Estructura Electrónica de los Atomos Capítulo 7 Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Largo de onda (λ)

Más detalles

Universidad de San Carlos de Guatemala. Facultad de Ingeniería. Escuela de Ciencias. Departamento de Química. Catedrática: Tania de León.

Universidad de San Carlos de Guatemala. Facultad de Ingeniería. Escuela de Ciencias. Departamento de Química. Catedrática: Tania de León. Universidad de San Carlos de Guatemala. Facultad de Ingeniería. Escuela de Ciencias. Departamento de Química. Catedrática: Tania de León. Química General. Código: 0348. Primer semestre. Hoja de trabajo.

Más detalles

CIRCUITOS ELECTRÓNICOS, DIODO LED

CIRCUITOS ELECTRÓNICOS, DIODO LED Laboratorio electrónico Nº 3 CIRCUITOS ELECTRÓNICOS, DIODO LED Objetivo Aplicar los conocimientos de circuitos electrónicos Familiarizarse con los dispositivos y componentes electrónicos Objetivo específico

Más detalles

Recordando. Primer Modelo atómico (1900) Segundo Modelo atómico (1910) J. J. Thomson Budín de pasas. E. Rutherford Modelo planetario

Recordando. Primer Modelo atómico (1900) Segundo Modelo atómico (1910) J. J. Thomson Budín de pasas. E. Rutherford Modelo planetario ANTECEDENTES DEL MODELO ACTUAL DEL ATOMO Raquel Villafrades Torres Universidad Pontificia Bolivariana Química General Química General Ingeniera Química Raquel Villafrades Torres Abril de 2009 Primer Modelo

Más detalles

La Teoría Cuántica Preguntas de Multiopcion

La Teoría Cuántica Preguntas de Multiopcion Slide 1 / 71 La Teoría Cuántica Preguntas de Multiopcion Slide 2 / 71 1 El experimento de "rayos catódicos" se asocia con: A B C D E Millikan Thomson Townsend Plank Compton Slide 3 / 71 2 La carga del

Más detalles

Física 4 to de Media. Proyecto N o 3 Marzo-abril 2017 Prof. Félix R. Solano S.

Física 4 to de Media. Proyecto N o 3 Marzo-abril 2017 Prof. Félix R. Solano S. Física 4 to de Media. Proyecto N o 3 Marzo-abril 2017 Prof. Félix R. Solano S. La Ley de Ohm, postulada por el físico y matemático alemán Georg Simon Ohm, es una de las leyes fundamentales de la electrodinámica,

Más detalles

FÍSICA de 2º de BACHILLERATO FÍSICA CUÁNTICA

FÍSICA de 2º de BACHILLERATO FÍSICA CUÁNTICA FÍSICA de 2º de BACHILLERATO FÍSICA CUÁNTICA EJERCICIOS RESUELTOS QUE HAN SIDO PROPUESTOS EN LOS EXÁMENES DE LAS PRUEBAS DE ACCESO A ESTUDIOS UNIVERSITARIOS EN LA COMUNIDAD DE MADRID (1996 2013) DOMINGO

Más detalles

Relación Problemas Tema 11: Física Cuántica

Relación Problemas Tema 11: Física Cuántica 1.- Determinar la energía de un fotón para: a) Ondas de radio de 1500 khz b) Luz verde de 550 nm c) Rayos X de 0,06 nm Relación Problemas Tema 11: Física Cuántica Problemas (para todas, el medio de propagación

Más detalles

Teoría Cuántica y la Estructura Electrónica de los Atomos

Teoría Cuántica y la Estructura Electrónica de los Atomos Teoría Cuántica y la Estructura Electrónica de los Atomos Capítulo 7 Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Propiedades de la ondas Largo de onda (λ)

Más detalles

Física moderna. José Mariano Lucena Cruz Física 2 o Bachillerato

Física moderna. José Mariano Lucena Cruz Física 2 o Bachillerato José Mariano Lucena Cruz chenalc@gmail.com Física 2 o Bachillerato Radiación térmica Todo cuerpo, no importa a la temperatura que se encuentre, es fuente de radiación térmica. (Emite energía en forma de

Más detalles

Tema 14 11/02/2005. Tema 8. Mecánica Cuántica. 8.1 Fundamentos de la mecánica cuántica

Tema 14 11/02/2005. Tema 8. Mecánica Cuántica. 8.1 Fundamentos de la mecánica cuántica Tema 14 11/0/005 Tema 8 Mecánica Cuántica 8.1 Fundamentos de la mecánica cuántica 8. La ecuación de Schrödinger 8.3 Significado físico de la función de onda 8.4 Soluciones de la ecuación de Schrödinger

Más detalles

INTERACCION DE LAS RADIACIONES ELECTROMAGNETICAS CON LA MATERIA

INTERACCION DE LAS RADIACIONES ELECTROMAGNETICAS CON LA MATERIA NTERACCON DE LAS RADACONES ELECTROMAGNETCAS CON LA MATERA B.C. Paola Audicio Asistente de Radiofarmacia, CN Radiación ionizante: ionización del material atravesado M M + + e - excitación de las estructuras

Más detalles

1. Introducción. e. V 0 = h. ν - φ (1)

1. Introducción. e. V 0 = h. ν - φ (1) Efecto fotoeléctrico Juan Kamienkowski, Sebastián Romano y Matías Travizano, kamandu@yahoo.com, juka44@yahoo.com.ar, slick@ussrback.com Laboratorio 5, Departamento de física, UBA- 2002 Resumen En el presente

Más detalles

Clase Nº 4 PSU Ciencias: Física. Ondas III Luz. Profesor: Cristian Orcaistegui.

Clase Nº 4 PSU Ciencias: Física. Ondas III Luz. Profesor: Cristian Orcaistegui. Clase Nº 4 PSU Ciencias: Física Ondas III Luz Profesor: Cristian Orcaistegui. c.orcaisteguiv@gmail.com La óptica estudia la naturaleza de la luz, sus fuentes de producción, su propagación y los fenómenos

Más detalles

Ejercicios de Física cuántica y nuclear. PAU (PAEG)

Ejercicios de Física cuántica y nuclear. PAU (PAEG) 1. Las longitudes de onda del espectro visible están comprendidas, aproximadamente, entre 390 nm en el violeta y 740 nm en el rojo. Qué intervalo aproximado de energías, en ev, corresponde a los fotones

Más detalles

LICENCIATURA EN TECNOLOGÍA FÍSICA MODERNA. III. Antecedente de la Teoría Cuántica. IV. Mecánica Cuántica

LICENCIATURA EN TECNOLOGÍA FÍSICA MODERNA. III. Antecedente de la Teoría Cuántica. IV. Mecánica Cuántica III. y IV. Teoría Cuántica LICENCIATURA EN TECNOLOGÍA FÍSICA MODERNA III. Antecedente de la Teoría Cuántica IV. Mecánica Cuántica M. en C. Angel Figueroa Soto. angfsoto@geociencias.unam.mx Centro de Geociencias,

Más detalles

EFECTO FOTOELECTRICO. Producción de corriente eléctrica a partir de LUZ

EFECTO FOTOELECTRICO. Producción de corriente eléctrica a partir de LUZ EFECTO FOTOELECTRICO Producción de corriente eléctrica a partir de LUZ H.Hertz (1887): La luz facilita la descarga de esferas cargadas Lenard (1900): La luz arranca los electrones de los metales. Cómo?

Más detalles

Universidad Nacional Autónoma de Honduras Facultad de Ciencias Escuela de Física Practica de FS-321 Espectroscopia

Universidad Nacional Autónoma de Honduras Facultad de Ciencias Escuela de Física Practica de FS-321 Espectroscopia Universidad Nacional Autónoma de Honduras Facultad de Ciencias Escuela de Física Practica de FS-321 Espectroscopia Elaborada por: Mario Coto y Luis Alcerro I. Objetivos 1. Calibrar correctamente un espectroscopio

Más detalles

T = Al sustituir el valor de la longitud de onda para la que la energía radiada es máxima, l máx, se obtiene: = 1379 K 2, m

T = Al sustituir el valor de la longitud de onda para la que la energía radiada es máxima, l máx, se obtiene: = 1379 K 2, m 2 Física cuántica Actividades del interior de la unidad. Calcula la temperatura de un ierro al rojo vivo para el cual l máx = 2, µm. Para calcular la temperatura que solicita el enunciado, aplicamos la

Más detalles

FÍSICA CUÁNTICA. Física de 2º de Bachillerato

FÍSICA CUÁNTICA. Física de 2º de Bachillerato FÍSICA CUÁNTICA Física de º de Bachillerato Física Cuántica Insuficiencia de la Física Clásica Teoría de la Radiación Térmica Radiación del Cuerpo Negro Efecto fotoeléctrico Teoría de Einstein Los espectros

Más detalles

TRANSDUCTORES OPTOELECTRONICOS

TRANSDUCTORES OPTOELECTRONICOS TRANSDUCTORES OPTOELECTRONICOS Hay dos aspectos relacionados con la luz que se utilizan, juntos o separados, para explicar muchos fenómenos relacionados con ella. Fenómenos ópticos, tales como la interferencia

Más detalles

Radiación. Cuerpo Negro Espectros Estructura del Atomo Espectroscopia Efecto Doppler. L. Infante 1

Radiación. Cuerpo Negro Espectros Estructura del Atomo Espectroscopia Efecto Doppler. L. Infante 1 Radiación Cuerpo Negro Espectros Estructura del Atomo Espectroscopia Efecto Doppler L. Infante 1 Cuerpo Negro: Experimento A medida que el objeto se calienta, se hace más brillante ya que emite más radiación

Más detalles

Estructura de los átomos: Estructura electrónica

Estructura de los átomos: Estructura electrónica Estructura de los átomos: Modelos atómicos Después de los modelos iniciales de Thomson y Rutherford, en los que los electrones podían tener cualquier energía, una serie de hechos experimentales llevaron

Más detalles

UNIDADES RADIOMETRICAS Y FOTOMETRICAS. Electromagnetic_spectrum-es.svg (Imagen SVG, nominalmente pixels, tamaño de archivo: 231 KB)

UNIDADES RADIOMETRICAS Y FOTOMETRICAS. Electromagnetic_spectrum-es.svg (Imagen SVG, nominalmente pixels, tamaño de archivo: 231 KB) OPTOELECTRÓNICA OPTOELECTRÓNICA Tratamiento de la radiación electromagnética en el rango de las frecuencias ópticas y su conversión en señales eléctricas y viceversa. El rango del espectro electromagnético

Más detalles

TEMA 13. Fundamentos de física cuántica

TEMA 13. Fundamentos de física cuántica TEMA 13. Fundamentos de física cuántica 1. Limitaciones de la física clásica Física clásica Mecánica (Newton) + Electrodinámica (Maxwell) + Termodinámica (Clausius-Boltzmann) Estas tres ramas explicaban

Más detalles

Teoría cuántica y la estructura electrónica de los átomos. Capítulo 7

Teoría cuántica y la estructura electrónica de los átomos. Capítulo 7 Teoría cuántica y la estructura electrónica de los átomos Capítulo 7 Propiedades de las ondas Longitud de onda (λ) es la distancia que existe entre dos puntos idénticos en una serie de ondas. Amplitud:

Más detalles

Física Cuántica Problemas de Practica AP Física B de PSI

Física Cuántica Problemas de Practica AP Física B de PSI Física Cuántica Problemas de Practica AP Física B de PSI Nombre 1. El experimento de "rayos catódicos" se asocia con: (A) R. A. Millikan (B) J. J. Thomson (C) J. S. Townsend (D) M. Plank (E) A. H. Compton

Más detalles

Teoría cuántica y la estructura electrónica de los átomos

Teoría cuántica y la estructura electrónica de los átomos Teoría cuántica y la estructura electrónica de los átomos Capítulo 7 Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. PROPIEDADES DE LAS ONDAS Longitud de onda

Más detalles

UNIDAD 10 NATURALEZA DE LA LUZ

UNIDAD 10 NATURALEZA DE LA LUZ UNIDAD 10 NATURALEZA DE LA LUZ Lic. María Silvia Aguirre 1 Objetivos Específicos: Que el alumno logre: Definir correctamente el índice de refracción de una sustancia. Reconocer la variación de la sensibilidad

Más detalles

Preguntas del capítulo Ondas electromagnéticas

Preguntas del capítulo Ondas electromagnéticas Preguntas del capítulo Ondas electromagnéticas 1. Isaac Newton fue uno de los primeros físicos en estudiar la luz. Qué propiedades de la luz explicó usando el modelo de partícula? 2. Quién fue la primer

Más detalles

Modelo de Thomson Modelo de Rutherford. Estructura atómica. José Mariano Lucena Cruz 10 de mayo de 2010

Modelo de Thomson Modelo de Rutherford. Estructura atómica. José Mariano Lucena Cruz 10 de mayo de 2010 José Mariano Lucena Cruz chenalc@gmail.com 10 de mayo de 2010 Propiedades periódicas Aquellas cuyo valor se puede estimar según la posición que ocupen los elementos en la tabla periódica. Estas son: Tamaño

Más detalles

Unidad 1 Estructura atómica de la materia. Teoría cuántica

Unidad 1 Estructura atómica de la materia. Teoría cuántica Unidad 1 Estructura atómica de la materia. Teoría cuántica 1.El átomo y la constitución de la materia DALTON NO ACEPTADO POR LOS FÍSICOS que creían en la idea de que los átomos se encontraban como disueltos

Más detalles

Capítulo 1. Antecedentes de la Química Cuántica y primeras Teorías Atómicas

Capítulo 1. Antecedentes de la Química Cuántica y primeras Teorías Atómicas Capítulo 1. Antecedentes de la Química Cuántica y primeras Teorías Atómicas Objetivos: Recordar y actualizar los conocimientos sobre las características de electrones, protones y neutrones Describir la

Más detalles

TÉCNICO SUPERIOR UNIVERSITARIO EN MANTENIMIENTO ÁREA INDUSTRIAL EN COMPETENCIAS PROFESIONALES ASIGNATURA DE ELECTRICIDAD Y MAGNETISMO

TÉCNICO SUPERIOR UNIVERSITARIO EN MANTENIMIENTO ÁREA INDUSTRIAL EN COMPETENCIAS PROFESIONALES ASIGNATURA DE ELECTRICIDAD Y MAGNETISMO TÉCNICO SUPERIOR UNIVERSITARIO EN MANTENIMIENTO ÁREA INDUSTRIAL EN COMPETENCIAS PROFESIONALES ASIGNATURA DE ELECTRICIDAD Y MAGNETISMO 1. Competencias Plantear y solucionar problemas con base en los principios

Más detalles

FíSICA MODERNA. Maestría en Ciencias (Materiales) Otoño 2013 Dra. Lilia Meza Montes Instituto de Física Luis Rivera Terrazas

FíSICA MODERNA. Maestría en Ciencias (Materiales) Otoño 2013 Dra. Lilia Meza Montes Instituto de Física Luis Rivera Terrazas FíSICA MODERNA Maestría en Ciencias (Materiales) Otoño 2013 Dra. Lilia Meza Montes Instituto de Física Luis Rivera Terrazas Parte I. Introducción a la Mecánica Cuántica 1. Orígenes de las ideas cuánticas

Más detalles

Espectroscopía de Absorción Molecular

Espectroscopía de Absorción Molecular Espectroscopía de Absorción Molecular La espectroscopía consiste en el estudio cualitativo y cuantitativo de la estructura de los átomos o moléculas o de distintos procesos físicos y químicos mediante

Más detalles

TÉCNICO SUPERIOR UNIVERSITARIO EN PROCESOS INDUSTRIALES ÁREA SISTEMAS DE GESTIÓN DE LA CALIDAD EN COMPETENCIAS PROFESIONALES

TÉCNICO SUPERIOR UNIVERSITARIO EN PROCESOS INDUSTRIALES ÁREA SISTEMAS DE GESTIÓN DE LA CALIDAD EN COMPETENCIAS PROFESIONALES TÉCNICO SUPERIOR UNIVERSITARIO EN PROCESOS INDUSTRIALES ÁREA SISTEMAS DE GESTIÓN DE LA CALIDAD EN COMPETENCIAS PROFESIONALES ASIGNATURA DE ELECTRICIDAD Y MAGNETISMO 1. Competencias Plantear y solucionar

Más detalles

Ondas de Materia Ecuación de Schrödinger. Física Facultad de Ingeniería UNMDP

Ondas de Materia Ecuación de Schrödinger. Física Facultad de Ingeniería UNMDP Ondas de Materia Ecuación de Schrödinger Física 3 2011 Facultad de Ingeniería UNMDP Problemas abiertos de la física clásica a fines del siglo XIX Antecedentes de la mecánica cuántica Radiación de cuerpo

Más detalles

Física, Materia y Radiación

Física, Materia y Radiación Física, Materia y Radiación La Física a finales del s. XIX Las leyes fundamentales de la física parecen claras y sólidas: Las leyes del movimiento de Newton Las leyes de Maxwell de la electrodinámica Los

Más detalles

21/03/2017. Modelo Atómico. Donde se ubican en el Átomo E L E C T R O N E S. Modelo Atómico. Que energía tienen. Como interactúan

21/03/2017. Modelo Atómico. Donde se ubican en el Átomo E L E C T R O N E S. Modelo Atómico. Que energía tienen. Como interactúan Modelo Atómico 1 Modelo Atómico E L E C T R O N E S Donde se ubican en el Átomo Que energía tienen Como interactúan 2 1 Thompson (1898): Esfera uniforme de materia con carga (+) en la cual se encuentran

Más detalles

Energía Solar Fotovoltaica

Energía Solar Fotovoltaica Rincón Técnico Fuente: http://www.electricidad-gratuita.com/energia%20fotovoltaica.html Autor: El contenido de este artículo es un extracto tomado de: http://www.electricidad-gratuita.com/energia%20fotovoltaica.html

Más detalles

EFECTO FOTOELÉCTRICO MODELO ONDULATORIO DE LA LUZ VS EL MODELO CUÁNTICO

EFECTO FOTOELÉCTRICO MODELO ONDULATORIO DE LA LUZ VS EL MODELO CUÁNTICO 16 EFECTO FOTOELÉCTRICO MODELO ONDULATORIO DE LA LUZ VS EL MODELO CUÁNTICO OBJETIVOS Investigar el efecto fotoeléctrico externo utilizando un fotodiodo de vacío. Hallar la energía máxima de los fotoelectrones

Más detalles

ÓPTICA FÍSICA. (luz) Física 2º bachillerato Óptica física (luz) 1

ÓPTICA FÍSICA. (luz) Física 2º bachillerato Óptica física (luz) 1 ÓPTICA FÍSICA (luz) 1. Ondas electromagnéticas. 2. Espectro electromagnético 3. Naturaleza de la luz. 4. Propagación de la luz. 5. Fenómenos ondulatorios. 6. Fenómenos corpusculares. Física 2º bachillerato

Más detalles

ELECTRÓNICA BÁSICA UNIDAD DIDÁCTICA SEGUNDO PERIODO ( PERIODO 2)

ELECTRÓNICA BÁSICA UNIDAD DIDÁCTICA SEGUNDO PERIODO ( PERIODO 2) ELECTRÓNICA BÁSICA UNIDAD DIDÁCTICA SEGUNDO PERIODO ( PERIODO 2) CONTENIDO Simbología General. Conceptos y descripción de elementos eléctricos y electrónicos. Conceptos de Voltaje, corriente, Resistencia

Más detalles

FACULTAD DE INGENIERIA. DIVISION DE CIENCIAS BASICAS UNAM. (27 DE ENERO 2014). Estrategia de Planeación del Modelo Atómico de Bohr

FACULTAD DE INGENIERIA. DIVISION DE CIENCIAS BASICAS UNAM. (27 DE ENERO 2014). Estrategia de Planeación del Modelo Atómico de Bohr FACULTAD DE INGENIERIA. DIVISION DE CIENCIAS BASICAS UNAM. (27 DE ENERO 2014). Estrategia de Planeación del Modelo Atómico de Bohr PROFESOR. DR. RAMIRO MARAVILLA GALVAN MODELOS EN LA ENSEÑANZA. EL MODELO

Más detalles

FÍSICA MODERNA PREGUNTAS PROBLEMAS

FÍSICA MODERNA PREGUNTAS PROBLEMAS FÍSICA MODERNA PREGUNTAS 1. En que se parecen los fotones a otras partículas, como electrones? En que difieren? 2. La piel humana es relativamente insensible a la luz visible, pero la radiación Ultravioleta

Más detalles

Grupo 2. Dto. De Física - Facultad de Cs. Exactas - Universidad Nacional de La Plata

Grupo 2. Dto. De Física - Facultad de Cs. Exactas - Universidad Nacional de La Plata Determinación de h e a partir del efecto fotoeléctrico Grupo 2 Franchino Viñas, S. A. Muglia, J. f ranchsebs@yahoo.com.ar juan muglia@yahoo.com Panelo, M. Salazar Landea, I. mauropanelo@yahoo.com.ar peznacho@gmail.com

Más detalles

Problemas de Física moderna. Cuántica 2º de bachillerato. Física

Problemas de Física moderna. Cuántica 2º de bachillerato. Física 1 Problemas de Física moderna. Cuántica 2º de bachillerato. Física 1. Un protón que parte del reposo es acelerado por una diferencia de potencial de 10 V. determine: a) La energía que adquiere el protón

Más detalles

Transferencia de Calor por Radiación

Transferencia de Calor por Radiación INSTITUTO TECNOLÓGICO de Durango Transferencia de Calor por Radiación Dr. Carlos Francisco Cruz Fierro Revisión 1 67004.97 12-jun-12 1 INTRODUCCIÓN A LA RADIACIÓN ELECTROMAGNÉTICA 2 Dualidad de la Luz

Más detalles

q electrón m electrón = 1, , C 1, C kg

q electrón m electrón = 1, , C 1, C kg Descubrimiento del Electrón Tema : Estructura Atómica de la Materia Crookes (.875).- rayos catódicos Viajan en línea recta Tienen carga eléctrica negativa Poseen masa Stoney (.89).- electrones Thomson

Más detalles

TEORIA MECANO-CUÁNTICO

TEORIA MECANO-CUÁNTICO TEORIA MECANO-CUÁNTICO En los conciertos de música, aunque todos quisiéramos estar lo mas cerca posible del escenario, solo unos pocos pueden hacerlo, pues existe una distribución determinada para quienes

Más detalles

Modelo Atómico. Thompson (1898): Esfera uniforme de materia con carga (+) en la cual se encuentran embebidos los electrones con carga (-)

Modelo Atómico. Thompson (1898): Esfera uniforme de materia con carga (+) en la cual se encuentran embebidos los electrones con carga (-) Modelo Atómico 1 Thompson (1898): Esfera uniforme de materia con carga (+) en la cual se encuentran embebidos los electrones con carga () Electrón Conceptos:» Neutralidad eléctrica» Carga elemental del

Más detalles

Prueba experimental. Constante de Planck y comportamiento de un LED

Prueba experimental. Constante de Planck y comportamiento de un LED Prueba experimental. Constante de Planck y comportamiento de un LED Objetivo. Se va a construir un circuito eléctrico para alimentar LEDs de diferentes colores y obtener un valor aproximado de la constante

Más detalles

TEORÍAS DE LA LUZ. Teoría Corpuscular

TEORÍAS DE LA LUZ. Teoría Corpuscular TEORÍAS DE LA LUZ Las teorías propuestas por los científicos para explicar la naturaleza de la luz han ido cambiando a lo largo de la historia de la ciencia, a medida que se van descubriendo nuevas evidencias

Más detalles

PRÁCTICA DE LABORATORIO DE QUÍMICA ANÁLISIS POR ESPECTROFOTOMETRÍA DE ABSORCIÓN

PRÁCTICA DE LABORATORIO DE QUÍMICA ANÁLISIS POR ESPECTROFOTOMETRÍA DE ABSORCIÓN PRÁCTICA DE LABORATORIO DE QUÍMICA ANÁLISIS POR ESPECTROFOTOMETRÍA DE ABSORCIÓN 1. OBJETIVOS. Conocer y aplicar la ley de Lambert - Beer Determinar la concentración de una solución por espectrofotometría.

Más detalles

Teoría Atómica y Molecular

Teoría Atómica y Molecular Luz visible Nombre de la onda ondas de radio micro-ondas infrarojo ultravioleta Rayos X Rayos, metros 10 2 10 1 10 1 10 2 10 3 10 4 10 5 10 6 10 7 10 8 10 9 10 10 10 11 10 12 Largo de la onda Parque de

Más detalles

RADIACIÓN ELECTROMAGNÉTICA Y TÉCNICAS DE OBSERVACIÓN. Curso Introducción a la Astronomía 1

RADIACIÓN ELECTROMAGNÉTICA Y TÉCNICAS DE OBSERVACIÓN. Curso Introducción a la Astronomía 1 RADIACIÓN ELECTROMAGNÉTICA Y TÉCNICAS DE OBSERVACIÓN Curso 2011-12 Introducción a la Astronomía 1 Brillo Magnitud aparente El ojo detecta la luz de forma logarítmica, es decir, detecta cambios no de manera

Más detalles

La crisis de la Física Clásica. Introducción a la Física Moderna. La crisis de la Física Clásica. Introducción a la Física Moderna Cuestiones

La crisis de la Física Clásica. Introducción a la Física Moderna. La crisis de la Física Clásica. Introducción a la Física Moderna Cuestiones La crisis de la Física Clásica. Introducción a la Física Moderna Cuestiones (96-E) Comente las siguientes afirmaciones: a) La teoría de Planck de la radiación emitida por un cuerpo negro afirma que la

Más detalles

Radiación. La radiación electromagnética

Radiación. La radiación electromagnética Radiación Curso Introducción a las Ciencias de la Tierra y el Espacio II La radiación electromagnética Es el portador de la información de los objetos astronómicos. Es la forma en que la energía electromagnética

Más detalles

Práctica 2 Relación lineal (densidad)

Práctica 2 Relación lineal (densidad) Práctica 2 Relación lineal (densidad) Objetivos Determinar la densidad como una medición indirecta a través de mediciones directas. Aplicar el método de cuadrados mínimos para ver la correlación de las

Más detalles

EL ESPECTRO ELECTROMAGNÉTICO

EL ESPECTRO ELECTROMAGNÉTICO FACULTAD DE CIENCIAS QUÍMICAS Espectrometría Objeto de Estudio Nº 1 LECTURA N 2 EL ESPECTRO ELECTROMAGNÉTICO Bibliografía: http://almaak.tripod.com/temas/espectro.htm Facultad de Ciencias Químicas F.C.Q.

Más detalles

Thompson (1898) Rutherford (1911) Bohr (1913) Schrödinger (1926) NUMEROS CUANTICOS

Thompson (1898) Rutherford (1911) Bohr (1913) Schrödinger (1926) NUMEROS CUANTICOS Thompson (1898) Modelo Atómico Rutherford (1911) Bohr (1913) Propiedad corpuscular de las onda (PLANCK) Propiedad ondulatoria de las partículas (De Broglie) Schrödinger (1926) Números cuánticos 1 NUMEROS

Más detalles

RADIACIÓN ELECTROMAGNÉTICA

RADIACIÓN ELECTROMAGNÉTICA FACULTAD DE CIENCIAS QUÍMICAS Espectrometría Objeto de Estudio Nº 1 LECTURA N 1 RADIACIÓN ELECTROMAGNÉTICA Bibliografía: SKOOG, D.A.; Leary J.J.; ANÁLISIS INSTRUMENTAL, 4 ed.; Ed. McGraw-Hill (1994), págs.

Más detalles

Documento No Controlado, Sin Valor

Documento No Controlado, Sin Valor TÉCNICO SUPERIOR UNIVERSITARIO EN ENERGÍAS RENOVABLES ÁREA CALIDAD Y AHORRO DE ENERGÍA EN COMPETENCIAS PROFESIONALES ASIGNATURA DE ELECTRICIDAD Y MAGNETISMO 1. Competencias Plantear y solucionar problemas

Más detalles

OBJETIVOS GENERAL DEL CURSO (Competencia específicas a desarrollar en el curso)

OBJETIVOS GENERAL DEL CURSO (Competencia específicas a desarrollar en el curso) ENERGIA SOLAR Clave de la asignatura: EGJ-1304 SATCA: 4-2-6 OBJETIVOS GENERAL DEL CURSO (Competencia específicas a desarrollar en el curso) Conocer el efecto fotovoltaico para generación de electricidad,

Más detalles

UD6.- TEORIA DE SEMICONDUCTORES EL DIODO

UD6.- TEORIA DE SEMICONDUCTORES EL DIODO UD6. TEORIA DE SEMICONDUCTORES EL DIODO Centro CFP/ES CONSTITUCIÓN INTERNA DE LA MATERIA Moléculas y Átomos 1 CONSTITUCIÓN INTERNA DE LA MATERIA Clasificación de los cuerpos CONSTITUCIÓN INTERNA DE LA

Más detalles

Efecto fotoeléctrico con diodos led y comparación de resultados con y sin monocromador

Efecto fotoeléctrico con diodos led y comparación de resultados con y sin monocromador Efecto fotoeléctrico con diodos led y comparación de resultados con y sin monocromador Franco Blanco francoblnc@gmail.com Nicolas Unger nicounger@hotmail.com Laboratorio 5 - Dept. de Física - FCEyN - UBA

Más detalles

Bombeo solar utilizando materiales reciclados. Título del trabajo. Estom50. Pseudónimo de integrantes. Diseño innovador. Local. Física.

Bombeo solar utilizando materiales reciclados. Título del trabajo. Estom50. Pseudónimo de integrantes. Diseño innovador. Local. Física. Bombeo solar utilizando materiales reciclados Título del trabajo Estom50 Pseudónimo de integrantes Física Área Local Categoría Diseño innovador Modalidad 0051379 Folio de Inscripción 1 Bombeo solar utilizando

Más detalles

PRUEBAS DE ACCESO A LA UNIVERSIDAD MATERIAS DE MODALIDAD: FASES GENERAL Y ESPECÍFICA

PRUEBAS DE ACCESO A LA UNIVERSIDAD MATERIAS DE MODALIDAD: FASES GENERAL Y ESPECÍFICA PRUEBAS DE ACCESO A LA UNIVERSIDAD MATERIAS DE MODALIDAD: FASES GENERAL Y ESPECÍFICA CURSO 013 014 CONVOCATORIA: PROBLEMAS OPCIÓN A MATERIA: FÍSICA De las dos opciones propuestas, sólo hay que desarrollar

Más detalles

Espectroscopía y Medición de la Constante de Rydberg

Espectroscopía y Medición de la Constante de Rydberg Universidad Nacional Autónoma de Honduras Facultad de Ciencias Escuela de Física Espectroscopía y Medición de la Constante de Rydberg Elaborado por:miguel A. Serrano y Jorge A. Pérez Introducción Al estudiar

Más detalles

TÉCNICO SUPERIOR UNIVERSITARIO EN MECATRÓNICA ÁREA AUTOMATIZACIÓN EN COMPETENCIAS PROFESIONALES ASIGNATURA DE ELECTRICIDAD Y MAGNETISMO

TÉCNICO SUPERIOR UNIVERSITARIO EN MECATRÓNICA ÁREA AUTOMATIZACIÓN EN COMPETENCIAS PROFESIONALES ASIGNATURA DE ELECTRICIDAD Y MAGNETISMO TÉCNICO SUPERIOR UNIVERSITARIO EN MECATRÓNICA ÁREA AUTOMATIZACIÓN EN COMPETENCIAS PROFESIONALES ASIGNATURA DE ELECTRICIDAD Y MAGNETISMO 1. Competencias Plantear y solucionar problemas con base en los principios

Más detalles

PROBLEMAS DE ÓPTICA GEOMÉTRICA E INSTRUMENTAL

PROBLEMAS DE ÓPTICA GEOMÉTRICA E INSTRUMENTAL PROBLEMAS DE ÓPTICA GEOMÉTRICA E INSTRUMENTAL Unidad 1: Introducción a la Óptica Jaume Escofet Unidad 1: Introducción a la Óptica Uso de este material Copyright 2011 by Jaume Escofet El autor autoriza

Más detalles

La física del siglo XX

La física del siglo XX Unidad 11 La física del siglo XX chenalc@gmail.com Max Planck Albert Einstein Louis de Broglie Werner Heisenberg Niels Bohr Max Born Erwin Schrödinger Radiación del cuerpo negro Todo cuerpo, no importa

Más detalles

EVALUACIÓN. Nombre del alumno (a): Escuela: Grupo:

EVALUACIÓN. Nombre del alumno (a): Escuela: Grupo: EVALUACIÓN Nombre del alumno (a): Escuela: Grupo: PREGUNTAS Por: Yuri Posadas Velázquez Contesta lo siguiente y haz lo que se pide. 1. Menciona los problemas que la física clásica no pudo resolver y que

Más detalles

QUIMICA CUANTICA. Trabajos Prácticos: Resolución de problemas Cálculos computacionales

QUIMICA CUANTICA. Trabajos Prácticos: Resolución de problemas Cálculos computacionales Contenidos Mínimos: Formalismos Matemáticos de Química Cuántica Métodos computacionales Formalismos mecano cuánticos. Tratamiento atómico y molecular Aplicaciones a moléculas sencillas. Trabajos Prácticos:

Más detalles

INTRODUCCIÓN A LA TELEDETECCIÓN CUANTITATIVA

INTRODUCCIÓN A LA TELEDETECCIÓN CUANTITATIVA INTRODUCCIÓN A LA TELEDETECCIÓN CUANTITATIVA Haydee Karszenbaum Veronica Barrazza haydeek@iafe.uba.ar vbarraza@iafe.uba.ar Clase 1.2: ondas y leyes de la radiación Teledetección cuantitativa 1 Características

Más detalles

LABORATORIO DE FÍSICA 2 - E.T.S.E.T.-CURSO 2004/2005 PRÁCTICA 4 MICROONDAS

LABORATORIO DE FÍSICA 2 - E.T.S.E.T.-CURSO 2004/2005 PRÁCTICA 4 MICROONDAS MICROONDAS Libro de texto: Francis W. Sears, Mark W. Zemansky, et al., Física Universitaria, Tomo 2, 11ª edición, Pearson Educación, Mexico (2004), Capítulos: 32-6 El espectro electromagnético (páginas

Más detalles

1) Rellene la tabla siguiente y escriba los cuatro números cuánticos del electrón diferenciador (el más externo) de los siguientes elementos:

1) Rellene la tabla siguiente y escriba los cuatro números cuánticos del electrón diferenciador (el más externo) de los siguientes elementos: 1 Ejercicios resueltos 1) Rellene la tabla siguiente y escriba los cuatro números cuánticos del electrón diferenciador (el más externo) de los siguientes elementos: Nº atómico Z Nº másico A Protones Neutrones

Más detalles

El espectro electromagnético y los colores

El espectro electromagnético y los colores Se le llama espectro visible o luz visible a aquella pequeña porción del espectro electromagnético que es captada por nuestro sentido de la vista. La luz visible está formada por ondas electromagnéticas

Más detalles

Tema 1: Electrones, energía, átomos y sólidos

Tema 1: Electrones, energía, átomos y sólidos Tema 1: Electrones, energía, átomos y sólidos K. Kano: cap. 1 y cap. El modelo de Bohr Mecánica cuántica. Dualidad onda corpúsculo. Ecuación de Schrödinger en un átomo hidrogenoide. Números cuánticos Formación

Más detalles