Teoría de Telecomunicaciones
|
|
|
- José Miguel Cruz Espejo
- hace 8 años
- Vistas:
Transcripción
1 El Ruido y su Filtraje Universidad del Cauca Teoría de Telecomunicaciones 1
2 Introducción El Ruido Las señales eléctricas no deseadas suelen ser generadas por diversas fuentes, generalmente clasificadas por las interferencias hechas por el hombre o por ruido generado naturalmente. Un ruido inevitable en las comunicaciones eléctricas es el ruido térmico, generado por el movimiento de los electrones en un medio de conducción.
3 Para el análisis del ruido térmico se considera que es generado por el movimiento aleatorio de cargas particulares, en un medio de conducción. La teoría cinética dice que: La energía promedio de una partícula a la temperatura absoluta proporcional a kt. T es Entonces el ruido térmico debe incluir este producto en su definición. 3
4 Jhon Jhonson y Henrry Nyquist se dedicaron al estudio sobre los resistores metálicos y llegaron a la siguiente conclusión: Cuando una resistencia de valor R es sometida a una temperatura T, el movimiento aleatorio de los electrones produce un voltaje de ruido entre un par de terminales abiertos. Y este voltaje tiene una distribución gaussiana con media cero y varianza dada por: v ( kt ) v 3h R v T esta dado en grados kelvin h 6.6x10 34 J constante de Planck 4
5 Esta constante de Planck proviene de la teoría cuántica que define que el promedio cuadrado de la densidad espectral de ruido es: Rh f Gv ( f ) V / Hz h f / kt e 1 Asumiendo frecuencias bajas esta expresión queda resumida a: h f G v ( f ) RkT 1 kt f kt h 5
6 Estas ecuaciones omiten el termino correspondiente a energía en el punto cero, que es independiente de la temperatura y no desempeña ningún rol en la transferencia de ruido térmico a una carga. Sin embargo en sistemas de comunicaciones la temperatura se estandariza a la temperatura del ambiente: T 0 90 º K(63º F) Para el caso del infrarrojo esta temperatura no se conserva, por ende el promedio del voltaje cuadrado de la densidad espectral de ruido térmico es: h f G v ( f ) RkT V / Hz 1 kt 6
7 Esta definición presenta problemas porque al integrar frecuencia genera una varianza indeterminada. en toda Pero para el análisis que se quiere hacer esta aproximación es valida G v ( f ) Equivalente Thevenin y Norton de resistencia: Gv ( f ) Gi ( f ) R kt R 7
8 Otra manera mas clara y rápida de definir el ruido térmico, es utilizar la potencia disponible, la cual se puede determinar aplicando el concepto de máxima transferencia de potencia. la máxima potencia es entregada cuando la impedancia de la carga es el complejo conjugado de la impedancia de la fuente. P a v s ( t) / vs ( t) R s 4R s 8
9 Aplicando este teorema en nuestro circuito se tiene: G ( f ) 1 v Ga ( f ) kt W / 4R Hz Indica que la máxima densidad potencia entregada a una carga 1 adaptada, sin tener en cuenta su valor es de: kt 9
10 Ruido Blanco En los sistemas de comunicaciones existen muchos otros ruidos que tienen una distribución gaussiana y que tienen una densidad espectral plana sobre un amplio rango de frecuencias. A este tipo de ruidos cuyo comportamiento se despliega a lo largo del espectro, se le conoce como Ruido Blanco. Este tipo de ruido es muy exacto para los sistemas de comunicaciones y la suposición de gaussiano permite aplicar los conceptos previos. 10
11 Ruido Blanco Entonces la densidad espectral de ruido blanco esta dada por: N0 G( f ) N 0 representa la densidad espectral unilateral de ruido constante. Como la función de densidad es conocida, la función de autocorrelación se obtiene mediante Fourier. jft R( ) ( N 0 / ) e df ( N 0 / ) ( ) 11
12 Ruido Blanco Este resultado indica que la autocorrelación solo tiene sentido en cero y por lo tanto cualquier par de muestras de un ruido blanco serán no correlacionadas y estadísticamente independientes. Cuando el ruido blanco es mostrado en el osciloscopio, los barridos sucesivos son siempre diferentes uno de otro, aunque se observe que la forma de onda es la misma, sin importar la velocidad de barrido que se emplee, puesto que todas las tasas de variación de tiempo (componentes de frecuencia) están contenidas en igual proporción, similarmente si el ruido blanco se lleva a un parlante siempre suena lo mismo, algo como una caída de agua. 1
13 Ruido Blanco Este resultado indica que la autocorrelación solo tiene sentido en cero y por lo tanto cualquier par de muestras de un ruido blanco serán no correlacionadas y estadísticamente independientes. El valor de N 0 depende de dos factores: El tipo de ruido El tipo de densidad espectral Para un resistor térmico: N 4RkT N 4k / R v 0i 0 T 13
14 Ruido Blanco Por definición cualquier fuente de ruido térmico tiene densidad espectral unilateral dada por: G a Pero para aquellos ruidos que no son del tipo térmico, debido a que su potencia no depende de la temperatura, se establece un parámetro de temperatura de ruido para cualquier ruido blanco. T N Entonces dad la temperatura de fuente de ruido se tiene: ( f ) kt G a ( f ) N 0 k k N 0 kt N 14
15 Ruido Blanco Considere un ruido blanco gaussiano con densidad espectral ( f ) N 0 / Aplicado a un filtro con función de transferencia obtenida sería G x H( f ), la respuesta N 0 G y ( f ) H ( f o 1 R ) F ) N ( H( f ) y R y (0) N 0 H ( f ) El ruido deja de ser blanco para convertirse en coloreado df 15
16 Ruido Blanco Para un filtro pasabajas de ganancia unitaria con ancho de banda B, se tienen que: N f G y ( f ) B 0 R y ( ) N0Bsinc B Se causa que la salida de ruido este correlacionada sobre intervalos de: 1/B y N0B 16
17 Ruido térmico en un circuito RC Considérese el siguiente circuito RC con una resistencia a temperatura T. En este equivalente Thevenin, la fuente de ruido se aplica a un filtro pasabajas RC no ruidoso. Para dicho filtro la función de transferencia es: H( f ) [1 ( f / B) ] 1 17
18 Ruido térmico en un circuito RC La densidad espectral de salida será: G ( f Y la inversa sería: y ) H ( f ) R( ) G x ( f ) RkTBe RkT 1 ( f / B) -B Esto muestra que el voltaje de ruido filtrado, tiene apreciable correlación en un intervalo aproximadamente igual a RC. Entonces se puede decir que y(t) es gaussiana de media cero y: kt C e B - / RC 1 RC y R (0) y kt C 18
19 Ruido térmico en un circuito RC Se puede notar que el resultado no depende del valor de la resistencia aunque el origen de ruido sea una resistencia térmica. Suponga una temperatura de ruido igual a la temperatura ambiente y una capactancia de 0.1μF entonces y 1 4* *10 y el valor rms seria de aproximadamente 0.μV, que es un valor típico de voltaje de ruido. 19
EL4005 Principios de Comunicaciones Clase No.15: Ruido Blanco y Procesos Gaussianos
EL4005 Principios de Comunicaciones Clase No.15: Ruido Blanco y Procesos Gaussianos Patricio Parada Departamento de Ingeniería Eléctrica Universidad de Chile 6 de Octubre de 2010 1 of 21 Contenidos de
Teoría de la Comunicación. a) Si X es una variable aleatoria con una distribución uniforme en el intervalo [ 2, 2], calcule las probabilidades
.6. Ejercicios Ejercicio.1 Se tiene una variable aleatoria X. a) Si X es una variable aleatoria con una distribución uniforme en el intervalo [, ], calcule las probabilidades i) P (X >1) ii) P (X > 1)
TEOREMAS DE REDES EN C.A. Mg. Amancio R. Rojas Flores
TEOREMAS DE REDES EN C.A Mg. Amancio R. Rojas Flores TEOREMA DE SUPERPOSICION 2 El teorema de superposición enuncia lo siguiente: El voltaje a través (o corriente a través) un elemento es determinado sumando
Efectos del ruido en las comunicaciones electrónicas. Alfonso Cuesta Hernández
Efectos del ruido en las comunicaciones electrónicas Alfonso Cuesta Hernández 17 de abril de 2001 2 www.ponchocuesta.50megs.com En general, el ruido eléctrico se define como cualquier energía eléctrica
ELECTRÓNICA III TEMA 2
ELECTRÓNICA III TEMA 2 Ganancia, atenuación. Definiciones y uso de los decibeles. Conceptos básicos de ruido eléctrico. Orígenes de los ruidos. Definiciones de relación señal ruido, cifra de ruido índice
Parámetros de Sistemas de Comunicaciones Banda Base
Parámetros de Sistemas de Comunicaciones Banda Base Objetivo El alumno identificará los principales parámetros empleados para evaluar el desempeño de un sistema de comunicaciones banda base. Estos parámetros
POTENCIA DE UN PROCESO ALEATORIO. Análisis Espectral 1 / 30
POTENCIA DE UN PROCESO ALEATORIO Análisis Espectral 1 / 30 POTENCIA DE UN PROCESO ALEATORIO Recordemos: Para señales determinísticas.... la potencia instantánea es Para una señal aleatoria, es una VA para
Última modificación: 1 de julio de
Contenido SEÑALES DIGITALES Y CAPACIDAD DE CANAL 1.- Señales digitales de 2 y más niveles. 2.- Tasa de bit e intervalo de bit. 3.- Ancho de banda de una señal digital. 4.- Límites en la tasa de transmisión.
Energía, potencia, distorsión y factor de potencia. Consideraciones generales. Potencia instantánea en cualquier elemento:
Energía, potencia, distorsión y factor de potencia. Consideraciones generales. Potencia instantánea en cualquier elemento: p(t) = v(t)i(t) Energía en un elemento (acumulada o disipada) t 2 E = p(τ ) dτ
Circuitos de RF y las Comunicaciones Analógicas. Capítulo 3 Filtros en RF
Capítulo 3 Filtros en RF 37 38 FILTROS EN RF Filtrado en RF: circuito que modifica la magnitud y la fase de las componentes de las frecuencias de la señal de RF que pasa a través de ellos. Un filtro de
Marco Antonio Andrade Barrera 1 Diciembre de 2015
Diseño, simulación, construcción, medición y ajuste de un filtro pasa-bajas activo de segundo orden con coeficientes de Bessel, configuración Sallen-Key, ganancia unitaria y una frecuencia de corte f c
Contenido. Alfaomega. Circuitos Eléctricos - Dorf. Prefacio xiii
Prefacio xiii CAPÍTULO 1 Variables de circuitos eléctricos... 1 1.1 Introducción... 1 1.2 Circuitos eléctricos y corriente... 1 1.3 Sistemas de unidades... 5 1.4 Voltaje... 7 1.5 Potencia y energía...
Contenido. Circuitos Eléctricos - Dorf. Alfaomega
CAPÍTULO 1 Variables de circuitos eléctricos... 1 1.1 Introducción... 1 1.2 Circuitos eléctricos y corriente... 1 1.3 Sistemas de unidades... 5 1.4 Voltaje... 7 1.5 Potencia y energía... 7 1.6 Análisis
Teniendo en cuenta que si el voltaje se mide en Volts y la corriente en Amperes las unidades de resistencia resultan ser
Ley de Ohm La resistencia eléctrica de un resistor se define como la razón entre la caída de tensión, entre los extremos del resistor, y la corriente que circula por éste, tal que Teniendo en cuenta que
La ley de desplazamiento de Wien (Premio Nobel 1911):
Trabajo de laboratorio Nro 1: Verificación de la ley de Stefan Boltzmann y determinación de la constante de Planck mediante el análisis de la radiación del cuerpo negro Introducción Toda superficie cuya
Capítulo 2 Análisis espectral de señales
Capítulo 2 Análisis espectral de señales Objetivos 1. Se pretende que el alumno repase las herramientas necesarias para el análisis espectral de señales. 2. Que el alumno comprenda el concepto de espectro
Unidad 3. Técnicas de Modulación
Unidad 3. 3.1 Modulación de Onda Continua. 3.2 Modulación por Pulsos. 1 Antes de transmitir una señal con información a través de un canal de comunicación se aplica algun tipo de modulación. Esta operación
Circuitos Eléctricos: Respuesta en Frecuencia
Instituto Tecnológico Metropolitano [email protected] Función de Transferencia H (ω) = Y (ω) X (ω) La función de transferencia H(ω) de un circuito es la relación de una salida fasorial entre Y(ω)
1.- CORRIENTE CONTINUA CONSTANTE Y CORRIENTE CONTINUA PULSANTE
UNIDAD 5: CIRCUITOS PARA APLICACIONES ESPECIALES 1.- CORRIENTE CONTINUA CONSTANTE Y CORRIENTE CONTINUA PULSANTE La corriente que nos entrega una pila o una batería es continua y constante: el polo positivo
Tema 3. Series de Fourier. Análisis de Espectros. Indice:
Indice: Espectros de Frecuencia Discreta Representación de una señal compuesta en el Tiempo y la Frecuencia Espectro de Amplitud y Fase Espectro Unilateral o de una Cara Espectro de Frecuencia de dos Caras.
FISICA GENERAL III 2012 Guía de Trabajo Practico No 9 ANÁLISIS DE CIRCUITOS RL, RC Y RCL SERIE Y PARALELO. R. Comes y R. Bürgesser
FISICA GENERAL III 2012 Guía de Trabajo Practico No 9 ANÁLISIS DE CIRCUITOS RL, RC Y RCL SERIE Y PARALELO. R. Comes y R. Bürgesser Objetivos: Estudiar el comportamiento de distintos elementos (resistores,
MÉTODOS Y CRITERIOS DE EVALUACIÓN FUNDAMENTOS FÍSICOS DE LA INGENIERÍA 1º ITI ELECTRICIDAD.
MÉTODOS Y CRITERIOS DE EVALUACIÓN FUNDAMENTOS FÍSICOS DE LA INGENIERÍA 1º ITI ELECTRICIDAD. Tal y como aparece detallado en el programa de contenidos de la asignatura Fundamentos Físicos de la Ingeniería
Incidencia de Anestesia General en Operación Cesárea: Registro de Tres Años. Castillo Alvarado, Frencisco Miguel. CAPÍTULO III
CAPÍTULO III ESTADÍSTICA DE LOS PORTADORES DE CARGA DEL SEMICONDUCTOR 1. Introducción. Cada material suele presentar varias bandas, tanto de conducción (BC) como de valencia (BV), pero las más importantes
Capítulo 1 Marco teórico
Capítulo 1 Marco teórico 1.1 Onda de Densidad de Carga A bajas temperaturas los metales pueden sufrir un cambio de fase, una transición que los lleva a un nuevo orden. Metales como el plomo o aluminio
Guía 3 - Densidad espectral de potencia, transformación de procesos, ergodicidad
Guía 3 - Densidad espectral de potencia, transformación de procesos, ergodicidad Nivel de dificultad de los ejercicios Estrellas Dificultad Normal Intermedio Desafío Densidad espectral de potencia, transformación
Distribución y Transporte de Portadores de Carga
Distribución y Transporte de Portadores de Carga Lección 01.2 Ing. Jorge Castro-Godínez EL2207 Elementos Activos Escuela de Ingeniería Electrónica Instituto Tecnológico de Costa Rica I Semestre 2014 Jorge
Teniendo en cuenta que si el voltaje se mide en Volts y la corriente en Amperes las unidades de resistencia resultan ser
Ley de Ohm La resistencia se define como la razón entre la caída de tensión, entre los dos extremos de una resistencia, y la corriente que circula por ésta, tal que 1 Teniendo en cuenta que si el voltaje
INDICE Capitulo 1. Variables y Leyes de Circuitos 1.1. Corriente, Voltaje y Potencia 1.2. Fuentes y Cargas (1.1) 1.3. Ley de Ohm y Resistores (1.
INDICE Capitulo 1. Variables y Leyes de Circuitos 1 1.1. Corriente, Voltaje y Potencia 3 Carga y corriente * Energía y voltaje * Potencia eléctrica * Prefijos de magnitud 1.2. Fuentes y Cargas (1.1) 11
3. ANÁLISIS DE SEÑALES
3. ANÁLISIS DE SEÑALES 3.1 REGISTRO Y TRATAMIENTO DE SEÑALES Una señal se define como la historia de los valores de aceleración que mide un acelerómetro en determinado tiempo para un punto específico.
INTRODUCCIÓN: OBJETIVOS:
INTRODUCCIÓN: En el desarrollo de esta práctica se observará experimentalmente el comportamiento del transistor bipolar BJT como amplificador, mediante el diseño, desarrollo e implementación de dos amplificadores
INDICE Capitulo 1. Variables del Circuito Eléctrico Capitulo 2. Elementos del Circuito Capitulo 3. Circuitos Resistivos
INDICE Capitulo 1. Variables del Circuito Eléctrico 1 1.1. Albores de la ciencia eléctrica 2 1.2. Circuitos eléctricos y flujo de corriente 10 1.3. Sistemas de unidades 16 1.4. Voltaje 18 1.5. Potencia
ELO 385 Laboratorio de Procesamiento Digital de Señales Laboratorio 5: Transformada Discreta de Fourier Parte I
1 ELO 385 Laboratorio de Procesamiento Digital de Señales Laboratorio 5: Transformada Discreta de Fourier Parte I Este laboratorio está compuesto por dos sesiones en la cuales se estudiará la transformada
RECEPTOR OPTIMO PARA TRANSMISION DE PULSOS POR CANALES AWGN
RECEPTOR OPTIMO PARA TRANSMISION DE PULSOS POR CANALES AWGN El receptor óptimo se determina bajo las siguientes premisas: Se asume que a la entrada del receptor llega una señal que es el pulso modificado
INDICE Capítulo 1. Variables del Circuito Eléctrico Capítulo 2. Elementos de Circuitos Capítulo 3. Circuitos Resistivos
INDICE Capítulo 1. Variables del Circuito Eléctrico 1 Introducción 1 1.1. Reto de diseño: Controlador de una válvula para tobera 2 1.2. Albores de la ciencia eléctrica 2 1.3. Circuitos eléctricos y flujo
de diseño CAPÍTULO 4. Métodos de análisis de los circuitos resistivos 4.1. Reto de diseño: Indicación del ángulo de un potenciómetro 4.2. Circuitos el
CAPÍTULO 1. VARIABLES DEL CIRCUITO ELÉCTRICO 1.1. Reto de diseño: Controlador de una válvula para tobera 1.2. Albores de la ciencia eléctrica 1.3. Circuitos eléctricos y flujo de corriente 1.4. Sistemas
CELDAS FOTOVOLTAICAS. Juntura p-n (cont.) Corriente
Juntura p-n (cont.) Corriente Los portadores minoritarios pueden generarse térmicamente o por efecto fotoeléctrico. Una vez generados en la zona de vaciamiento (o en sus inmediaciones y alcanzan dicha
Asignatura: Teoría de Circuitos
Asignatura: Teoría de Circuitos Titulación: Ingeniero Técnico Industrial Especialidad: Electrónica Industrial Profesor(es) responsable(s): María Josefa Martínez Lorente Curso:2º Departamento: Ingeniería
ÍNDICE Capítulo 2 La transformada de Laplace 1 Capítulo 2 Series de Fourier 49 Capítulo 3 La integral de Fourier y las transformadas de Fourier 103
ÍNDICE Capítulo 2 La transformada de Laplace... 1 1.1 Definición y propiedades básicas... 1 1.2 Solución de problemas con valores iniciales usando la transformada de Laplace... 10 1.3 Teoremas de corrimiento
Corriente y Resistencia
Presentación basada en el material contenido en: Serway, R. Physics for Scientists and Engineers. Saunders College Pub. 3rd edition. Corriente y Resistencia La corriente eléctrica La Corriente Eléctrica
transmisión de señales
Introducción al análisis y transmisión de señales La transmisión de información La información se puede transmitir por medio físico al variar alguna de sus propiedad, como el voltaje o la corriente. Este
SEÑALES Y RUIDO. SEÑAL Dominios de los datos. SEÑAL Dominios eléctricos. Fuente de energía. Sistema objeto de estudio. Información analítica
SEÑALES Y RUIDO Estímulo Respuesta Fuente de energía Sistema objeto de estudio Información analítica SEÑAL Dominios de los datos Dominios no eléctricos SEÑAL Dominios eléctricos Intensidad de corriente
1.7 Perturbaciones. Otras perturbaciones. La atenuación Distorsión de amplitud. El retardo Distorsión de fase. El ruido
1.7 Perturbaciones La transmisión de una señal supone el paso de la misma a través de una determinado medio, por ejemplo: un cable, el aire, etc. Debido a diferentes fenómenos físicos, la señal que llega
Circuitos Electrónicos II. Ruido Eléctrico
Circuitos Electrónicos II Ruido Eléctrico Ruido Eléctrico Definiremos ruido como toda señal no deseada que existe en un circuito. Existen diferentes formas de ruido, las más destacadas son: Ruido captado
TEMA 5. RUIDO INTRÍNSECO EN DISPOSITIVOS ELECTRÓNICOS.
UIDO INTÍNSEO EN DISPOSITIVOS ELETÓNIOS TEMA 5 UIDO INTÍNSEO EN DISPOSITIVOS ELETÓNIOS Entendemos por ruido cualquier señal indeseada que se suma a la que transporta la información útil Podemos diferenciar
EL42A - Circuitos Electrónicos
EL42A - Circuitos Electrónicos Clase No. 4: Circuitos limitadores Patricio Parada [email protected] Departamento de Ingeniería Eléctrica Universidad de Chile 11 de Agosto de 2009 1 / Contenidos Circuitos
Fundamentos de audio digital
Fundamentos de audio digital Seminario de Audio 2005 Ernesto López Martín Rocamora Sistemas de audio digital Pilares de la digitalización: Muestreo Cuantización Tipos fundamentales de distorsión: Presencia
EL42A - Circuitos Electrónicos
EL42A - Circuitos Electrónicos Clase No. 4: Circuitos limitadores Patricio Parada [email protected] Departamento de Ingeniería Eléctrica Universidad de Chile 11 de Agosto de 2009 1 / Contenidos Circuitos
CAPITULO XIII RECTIFICADORES CON FILTROS
CAPITULO XIII RECTIFICADORES CON FILTROS 13.1 INTRODUCCION En este Capítulo vamos a centrar nuestra atención en uno de los circuitos más importantes para el funcionamiento de los sistemas electrónicos:
Comunicaciones Digitales
Trabajo Práctico Codificación de Fuente Comunicaciones Digitales E.1 Una fuente tiene un alfabeto {a1,a, a3, a4, a5, a6} con sus correspondientes probabilidades {0.1,0.,0.3,0.05,0.15,0.}. Encontrar la
0.1 Ejercicios sobre sensores de temperatura
0.1 Ejercicios sobre sensores de temperatura Ítemes de calicación falsa-verdadera 1. La temperatura es una magnitud que cuantica la energía total de un cuerpo. 2. La radiación térmica es una forma de transporte
FILTROS ACTIVOS FILTROS ACTIVOS
Basados en AO. FILTROS ACTIVOS VENTAJAS: La señal de entrada no se ve atenuada => ganancia. Flexibilidad en el ajuste de ganancia y frecuencia. Habilidad de multiplicar funciones de transferencia en cascada
TEMA 5: ANÁLISIS DE LA CALIDAD EN MODULACIONES ANALÓGICAS
TEMA 5: ANÁLISIS DE LA CALIDAD EN MODULACIONES ANALÓGICAS Parámetros de calidad: SNR y FOM Análisis del ruido en modulaciones de amplitud Receptores de AM y modelo funcional SNR y FOM para detección coherente
Última actualización: 12 de agosto de
Contenido DETERIORO DE LA TRANSMISIÓN 1.- Introducción 2.- Atenuación. 3.- Distorsión. 4.- Ruido. 5.- Relación señal a ruido S/N. Objetivo.- Al finalizar, el estudiante será capaz de describir las principales
Programa de Acceso Inclusivo, Equidad y Permanencia PAIEP U. de Santiago. Corriente directa
Corriente directa La corriente alterna es muy útil para transmitir la energía eléctrica, pues presenta menos pérdidas disipativas, y permite una fácil conversión entre voltaje y corriente por medio de
Desarrollo de la Práctica Unidad de aprendizaje: Practica número: 11, 12 y 13 Nombre de la practica:
Desarrollo de la Práctica Unidad de aprendizaje: Practica número: 11, 12 y 13 Nombre de la practica: 11. Comprobar el teorema de máxima transferencia de potencia. 12. Observar y medir los voltajes en terminales
ESTRUCTURA DEL ÁTOMO
ESTRUCTURA DEL ÁTOMO BANDAS DE VALENCIA Y DE CONDUCCIÓN MECANISMOS DE CONDUCCIÓN EN UN SEMICONDUCTOR SEMICONDUCTORES *Semiconductor *Cristal de silicio *Enlaces covalentes. Banda de valencia *Semiconductor
PRBLEMAS PROPUESTOS DE CIRCUITOS ELÉCTRICOS
PRBLEMAS PROPUESTOS DE CIRCUITOS ELÉCTRICOS Sobre el circuito de la figura: Obtener el equivalente Thévenin del circuito entre los terminales de V CA. Sobre el circuito anterior se añade una resistencia
IDENTIFICACION DE SISTEMAS IDENTIFICACION NO PARAMETRICA
IDENTIFICACION DE SISTEMAS IDENTIFICACION NO PARAMETRICA Ing. Fredy Ruiz Ph.D. [email protected] Maestría en Ingeniería Electrónica Pontificia Universidad Javeriana 2013 SISTEMAS LTI En general un
Lección 3: Formato y Modulación en Banda Base. Parte I
Lección 3: Formato y Modulación en Banda Base. Parte I Gianluca Cornetta, Ph.D. Dep. de Ingeniería de Sistemas de Información y Telecomunicación Universidad San Pablo-CEU Contenido Sistemas en Banda Base
DEFINICIONES Y CONCEPTOS (SISTEMAS DE PERCEPCIÓN - DTE) Curso
DEFINICIONES Y CONCEPTOS (SISTEMAS DE PERCEPCIÓN - DTE) Curso 2009-10 1. Generalidades Instrumentación: En general la instrumentación comprende todas las técnicas, equipos y metodología relacionados con
Redes y Comunicaciones
Departamento de Sistemas de Comunicación y Control Redes y Comunicaciones Solucionario Tema 3: Datos y señales Tema 3: Datos y señales Resumen La información se debe transformar en señales electromagnéticas
ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL INSTITUTO DE CIENCIAS FÍSICAS II TÉRMINO FÍSICA C Primera evaluación SOLUCIÓN
ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL INSTITUTO DE CIENCIAS FÍSICAS II TÉRMINO 2012-2013 FÍSICA C Primera evaluación SOLUCIÓN Ejercicio 1 (4 puntos) Un par de cargas eléctricas de igual magnitud q y
TRABAJO PRÁCTICO Nº 3 FILTROS
TRABAJO PRÁCTICO Nº 3 FILTROS El objetivo de esta práctica es que vuelva a estudiar algunos circuitos sencillos que seguramente vio en Física 3 y en Laboratorio 3, pero desde otro punto de vista. La idea
i = Is e v nv T ANÁLISIS MATEMÁTICO UTILIZANDO LA CARACTERÍSTICA REAL DEL DIODO (APROXIMACIONES SUCESIVAS)
ANÁLISIS MATEMÁTICO UTILIZANDO LA CARACTERÍSTICA REAL DEL DIODO (APROXIMACIONES SUCESIVAS) i Is e v nv T 1 Voltaje térmico VT kt/q k : Constante de Boltzman 1,38 x 10-23 joules/kelvin T temperatura en
Mediciones en el amplificador de potencia de audio
Mediciones en el amplificador de potencia de audio Polarización: Se controlará que todas las corrientes y tensiones se correspondan con los valores calculados y/o simulados en el diseño del circuito. Se
EJERCICIOS ANALITICOS. a a f ( ) R τ de x ( t ) y x ( t ) mostrados en la Figura. Figura 2. Densidad Espectral de Energía de g(t) - ( t)
PONTIFICIA UNIVERSIDAD JAVERIANA- FACULTAD DE INGENIERÍA. DEPARTAMENTO DE ELECTRÓNICA. - SECCIÓN DE COMUNICACIONES. FUNDAMENTOS DE COMUNICACIONES. TALLER NO. 1 TRANSFORMADA DE FOURIER APLICADA A TELE COMUNICACIONES
PRÁCTICA No. 5 SENTIDOS DE REFERENCIA
PRÁCTICA No. 5 SENTIDOS DE REFERENCIA 1.- OBJETIVO: Determinar experimentalmente la relación tensióncorriente en elementos pasivos y valor de una impedancia. SESIÓN No. 1: RELACIÓN DE FASE TENSIÓN-CORRIENTE
El amplificador operacional
Tema 7 El amplificador operacional Índice 1. Introducción... 1 2. El amplificador diferencial... 2 3. El amplificador operacional... 5 3.1. Configuración inversora... 7 3.2. Configuración no inversora...
Comunicaciones Digitales
Trabajo Práctico 4 Comunicaciones Digitales Transmisión en Banda Base E.1.En un sistema PAM binario, la entrada al detector es y m = a m + n m + i m, donde a m = ±1 es la señal deseada, n m es una variable
Reguladores de voltaje
Reguladores de voltaje Comenzamos con un voltaje de ca y obtenemos un voltaje de cd constante al rectificar el voltaje de ca y luego filtrarlo para obtener un nivel de cd, y, por último, lo regulamos para
Circuito de Offset
Figura 3.3 Conexión del Amplificador Los cálculos para la ganancia son simples y se muestran en la ecuación (3.), en estas se puede observar que para el cálculo de la ganancia es necesario establecer el
EL4005 Principios de Comunicaciones Clase No.3: Modelos de Canales y Modulación de Amplitud I
EL4005 Principios de Comunicaciones Clase No.3: Modelos de Canales y Modulación de Amplitud I Patricio Parada Departamento de Ingeniería Eléctrica Universidad de Chile 18 de Agosto de 2010 1 of 25 Contenidos
REPASO DE REDES ELÉCTRICAS
Conceptos fundamentales REPASO DE REDES ELÉCTRICAS Rama: Cada uno de los componentes de un circuito entre dos terminales Nodo: Unión de tres o más ramas. Se escoge uno como referencia Malla: cualquier
DIODOS REALES RELACIÓN CORRIENTE-VOLTAJE DE LA JUNTURA PN. I = Is e v /nv t. Escalas expandidas o comprimidas para ver mas detalles
DIODOS REALES RELACIÓN CORRIENTE-VOLTAJE DE LA JUNTURA PN I = Is e v /nv t 1 Escalas expandidas o comprimidas para ver mas detalles DEPENDENCIA DE LA TEMPERATURA MODELO EXPONENCIAL MODELO LINEAL POR SEGMENTOS
DIODOS EL DIODO IDEAL
DIODOS EL DIODO IDEAL Con este modelo VD = 0,7 V EL MODELO DE VOLTAJE CONSTANTE EL RECTIFICADOR VOLTAJE EN LA CARGA Y EN EL DIODO Voltaje en la carga Voltaje en el diodo RECTIFICADOR DE MEDIA ONDA VALOR
Distribución y Transporte de Portadores de Carga
Distribución y Transporte de Portadores de Carga Lección 01.2 Ing. Jorge Castro-Godínez Escuela de Ingeniería Electrónica Instituto Tecnológico de Costa Rica II Semestre 2013 Jorge Castro-Godínez Distribución
INDICE Capitulo 1. Introducción Capitulo 2. Descripción matemática de señales 2.1. Introducción y objetivos
INDICE Prefacio XIII Capitulo 1. Introducción 1 1.1. Definición de señales y sistemas 1 1.2. Tipos de señales 1 1.3. Ejemplo de una señal y un sistema 8 1.4. Uso de MATLAB 13 Capitulo 2. Descripción matemática
Repaso de Teoría de la Probabilidad
Repaso de Teoría de la Probabilidad Luis Mendo Tomás Escuela Politécnica Superior Universidad Autónoma de Madrid Febrero de 2008 1. Introducción Este documento contiene, de forma esquemática, los conceptos
1. Un condensador de 3µF se carga a 270V y luego se descarga a través de una resistencia
Física 3 - Turno : Mañana Guia N 6 - Primer cuatrimestre de 2010 Transitorios, Circuitos de Corriente Alterna, Transformadores 1. Un condensador de 3µF se carga a 270V y luego se descarga a través de una
2.3 Filtros. 2 Electrónica Analógica TEMA II. Electrónica Analógica. Transformada de Laplace. Transformada de Laplace. Transformada inversa
TEMA II Electrónica Analógica 2.3 Filtros -Transformada de Laplace. -Teoremas valor inicial y valor final. -Resistencia, condensador, inductor. -Función de transferencia -Diagramas de Bode -Filtros pasivos.
DIODOS REALES RELACIÓN CORRIENTE-VOLTAJE DE LA JUNTURA PN
DIODOS REALES RELACIÓN CORRIENTE-VOLTAJE DE LA JUNTURA PN V T = KT q V T =25,2 mv a 300ºK I D = Is(e V D nv T 1) Escalas expandidas o comprimidas para ver mas detalles DEPENDENCIA DE LA TEMPERATURA MODELO
TRANSFERENCIA DE CALOR
Conducción Convección Radiación TRANSFERENCIA DE CALOR Ing. Rubén Marcano Temperatura es una propiedad que depende del nivel de interacción molecular. Específicamente la temperatura es un reflejo del nivel
Introducción a la Física Experimental. Experimento guiado. Abril M. López Quelle
Introducción a la Física Experimental. Experimento guiado. Abril 2009. M. López Quelle Circuito RC en corriente alterna. Comportamiento de un filtro RC. 1.- Breve introducción teóricateoría previa Utilizamos
PREPARACIÓN DE LA PRÁCTICA 2: DIODOS Y ZENERS RECTIFICADORES Y REGULADORES. Hoja de datos del diodo rectificador 1N400X. Valores Máximos Absolutos
PREPARACIÓN DE LA PRÁCTICA 2: DIODOS Y ZENERS RECTIFICADORES Y REGULADORES Hoja de datos del diodo rectificador 1N400X Valores Máximos Absolutos Características Térmicas Características Eléctricas Hoja
FÍSICA CUÁNTICA. Física de 2º de Bachillerato
FÍSICA CUÁNTICA Física de º de Bachillerato Física Cuántica Insuficiencia de la Física Clásica Teoría de la Radiación Térmica Radiación del Cuerpo Negro Efecto fotoeléctrico Teoría de Einstein Los espectros
V cc t. Fuente de Alimentación
Fuente de Alimentación de Tensión Fuente de alimentación: dispositivo que convierte la tensión alterna de la red de suministro (0 ), en una o varias tensiones, prácticamente continuas, que alimentan a
