Inducción de Árboles de Decisión ID3, C4.5

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Inducción de Árboles de Decisión ID3, C4.5"

Transcripción

1 Inducción de Árboles de Decisión ID3, C4.5

2 Contenido 1. Representación mediante árboles de decisión. 2. Algoritmo básico: divide y vencerás. 3. Heurística para la selección de atributos. 4. Espacio de búsqueda y bias inductivo. 5. Sobreajuste. 6. Mejoras a ID3. 7. Poda de árboles: C Interpretación geométrica aprendizaje con árboles. 9. Conclusiones y ejemplos de aplicación. Inducción de árboles de decisión 2

3 7. Poda de árboles: C4.5 Inducción de árboles de decisión 3

4 7. Poda de árboles: C4.5 Cuando el concepto objetivo no se puede describir con una función booleana, ID3 tiende a general árboles complicados que sobreajustan los datos. Ejemplo (concepto que no responde a una función booleana) 10 atributos, valores binarios, probabilidad 0.5 clase binaria, SI probabilidad 0.25, NO probabilidad instancias, selección aleatoria 500 ejemplos entrenamiento, restantes 500 para prueba. produce árbol con 119 nodos y tasa error 35% un árbol, con una única hoja, NO, tendría un error esperado del 25% Inducción de árboles de decisión 4

5 Simplificación de Árboles Métodos de simplificación o poda : Prepoda: no hacer crecer más una rama cuando la información disponible no es suficientemente fiable. Inconveniente: no se sabe cual es el mejor criterio. Postpoda: crear el árbol completo y eliminar subárboles poco fiables Mayor coste computacional, pero mejores resultados. Habitualmente se prefiere la Postpoda (poda) La Predoda puede terminar antes de encontrar el concepto El árbol completo puede contener atributos irrelevantes pero suele incluir los atributos necesarios para describir el concepto Inducción de árboles de decisión 5

6 Postpoda Se parte de un árbol completo Problema: algunos subárboles pueden no ser de interés Selección aleatoria de instancias, ruido Simplificar el árbol comenzando por los nodos hoja (botton-up) Dos operaciones de poda: Reemplazar subárbol (subtree replacement) Elevar subárbol (subtree raising) Realizar operación de poda según algún criterio Por ejemplo, estimación del error Inducción de árboles de decisión 6

7 Reemplazar subárbol Consiste en remplazar nodos internos por nodos hoja Comenzar nodos terminales de mayor profundidad Remplazar nodo padre por nodo terminal con clase con más ejemplos (si se cumple algún criterio) Cuando no se pueda simplificar más un subárbol, examinar nodos terminales de otros subárboles Inducción de árboles de decisión 7

8 Remplazar subárbol I [Witten, Frank, Mark. Data Mining, third edition, 2011] Inducción de árboles de decisión 8

9 Remplazar subárbol II Inducción de árboles de decisión 9

10 Remplazar subárbol III Inducción de árboles de decisión 10

11 Elevar subárbol Reemplazar nodo padre por subárbol Redistribuir ejemplos Más costoso Solo se intenta con las ramas más pobladas Inducción de árboles de decisión 11

12 Cuando realizar la operación de poda? Métodos basados en el error: Cuanto la estimación de la tasa de error no aumente al podar Estimación de la tasa de error de un subárbol (antes de la poda): media ponderada de la estimación de la tasa de error de sus hijos Inducción de árboles de decisión 12

13 Estimación tasa error subárbol antes de la poda, conocida en hojas e=0,51 (6 * 0,47 +2 * 0, * 0,47) / 14 e=0,47 6 ejemplos e=0,72 2 ejemplos e=0,47 6 ejemplos Inducción de árboles de decisión 13

14 Métodos de poda basados en el error Utilizan una estimación de la tasa de error de un árbol para realizar la poda Observar que la poda del árbol siempre incrementa la tasa de error del árbol calculada sobre los ejemplos de entrenamiento (aumenta error resubstitución). Distintas familias de técnicas según el método de estimación de errores: Entrenamiento y validación (reduced-error-pruning). Métodos pesimistas. Inducción de árboles de decisión 14

15 Poda mediante entrenamiento y validación Separar D en tres conjuntos disjuntos: T, conjunto de entrenamiento. V, conjunto de validación. P, conjunto para prueba (estimación del error). Crear árbol con T, hasta valor mínimo e r. Podar árbol hasta que la estimación de e D, según V, empeore. Inducción de árboles de decisión 15

16 Efecto de la poda mediante entrenamiento y validación [Mitchel, Machine Learning, 1997] Inducción de árboles de decisión 16

17 Inconvenientes de la poda mediante entrenamiento y validación Se precisa un número elevado de datos por la necesidad de usar tres conjuntos disjuntos. Alternativa: evitar el uso de V para guiar la poda. Método pesimista (Quinlan 87): realizan las operación de poda si una estimación pesimista del error después de la poda no es peor que la estimación pesimista del error antes de la poda Es decir, la poda reduce o mantiene la estimación de la tasa de error del subárbol afectado por la poda Inducción de árboles de decisión 17

18 C4.5 Método de inducción de árboles basado en ID3. Mejoras para atributos continuos, desconocidos, con múltiples valores. Poda pesimista. Generación de reglas. Algún parámetro adicional. Por ejemplo, Número mínimo ejemplos para dividir (2 por defecto) Última versión (investigación): C4.8 (implementado en WEKA como J4.8). Última versión comercial: C5.0 Inducción de árboles de decisión 18

19 Estimación pesimista del error en C4.5 Heurística. Parte de que la distribución del error puede describirse por una distribución binomial. Lo detallaremos en el siguiente tema. Por ahora: Clasificación instancia no vista: suceso aleatorio con dos posible resultados: clasificación correcta o incorrecta Pero: estima el error a partir de los datos de entrenamiento (error de resubstitución) Error hoja: (ejemplos entrenamiento mal clasificados por hoja)/ (ejemplos en la hoja) Pesimista?: reemplaza el error por el extremo superior de su intervalo de confianza considerando distribución binomial. Inducción de árboles de decisión 19

20 Estimación error nodo hoja: Extremo superior intervalo confianza e=[f + z 2 /2N +z( f/n f 2 /N + z 2 /4N 2 ) 1/2 ]/(1 + z 2 /N) con f: error en la hoja sobre el conjunto de entrenamiento N: instancias clasificadas por la hoja Si c=25%, z= 0.69 (c: probabilidad error verdadero en intervalo de confianza, z: unidades de desviación estándar, de las tablas) Por defecto: c=25%. Heurística ad hoc, pero que funciona bien Inducción de árboles de decisión 20

21 Ejemplo estimación error antes poda e=0,51 (6 * 0,47 +2 * 0, * 0,47) / 14 N=6 f=2/6=0,33 e=0,47 N=2 f=1/2=0,5 e=0,72 N=6 f=2/6=0,33 e=0,47 Inducción de árboles de decisión 21

22 Estimación error después poda N=14 f=5/14 e=0,46 (< 0.51 : podar) Inducción de árboles de decisión 22

23 Votación congreso: árbol sin podar [Quinlan, C4.5, 1993] 23

24 Votación congreso: árbol podado Inducción de árboles de decisión 24

25 Coste computacional n ejemplos entrenamiento, m atributos binarios Profundidad árbol: O(log n) Árbol equilibrado: suficientes ejemplos diversos Construcción árbol sin podar O(m n log n) Reemplazar subárbol O(n) Elevar subárbol O(n (log n) 2 ) Coste total: O(m n log n) + O(n (log n) 2 ) Inducción de árboles de decisión 25

26 9. Interpretación geométrica aprendizaje con árboles Inducción de árboles de decisión 26

27 Interpretación geométrica del aprendizaje en árboles (I) Descripción ejemplos: vector de características. Ejemplo: punto en espacio N-dimensional (N atributos). Interpretación geométrica del aprendizaje: dividir el espacio en regiones etiquetadas con una sola clase. Clasificación ejemplos no vistos: según región en que se sitúen. En el caso de los árboles: hiperrectángulos. Inducción de árboles de decisión 27

28 Ejemplo interpretación geométrica (I) Suponer dos atributos X, Y continuos, discretizados (X < C, Y < C`) Cada test: hiperplano ortogonal al eje del atributo C` C Inducción de árboles de decisión 28

29 Buen funcionamiento si las clases se distribuyen en hiperrectángulos C` C Inducción de árboles de decisión 29

30 Buen funcionamiento si las clases se distribuyen en hiperrectángulos C` C Inducción de árboles de decisión 30

31 Dificultades si el concepto objetivo no responde a hiperrectángulos Concepto objetivo: suponer recta pendiente no nula. C` C Inducción de árboles de decisión 31

32 Ejemplo interpretación geométrica (II) ID3 aproxima el concepto introduciendo tantos umbrales (y regiones) como sea necesario (sobrejuste) C` C Inducción de árboles de decisión 32

33 Cuándo no usar árboles Regiones con baja densidad de puntos: mucha holgura para determinar fronteras Regiones con puntos de distintas clases: distribución probabilística que no se representa bien con un árbol. Inducción de árboles de decisión 33

34 9. Conclusiones y ejemplos de aplicación Inducción de árboles de decisión 34

35 Conclusiones Método robusto y transportable a distintas tareas. Coste computacional pequeño (entrenamiento y prueba). Hipótesis comprensibles (especialmente en árboles pequeños). Uno de los métodos básicos que siempre es interesante probar. Comparable a redes de neuronas, como clasificador: Precisiones comparables, con ligera ventaja para Redes Árboles: menor coste computacional, conocimiento explícito. Redes: mayor coste computacional, conocimiento implícito. Especialmente adecuados si se requiere conocimiento explícito. Inducción de árboles de decisión 35

36 Ejemplos de aplicación Quinlan, 79, ID3, finales de ajedrez 1,4 millones posiciones, 49 atributos binarios: 715 configuraciones distintas Entrenamiento 20%, aleatorio Tasa acierto: 84% Induction of decision trees, Machine learning, 1, , Inducción de árboles de decisión 36

37 Ejemplos de aplicación Soybean (semillas de soja) R.S. Michalski and R.L. Chilausky, Diagnosis de enfermedades en las semillas de soja. 19 clases (15 significativas). 35 atributos. 307 Instancias. Tasa error 11% (C4.5) J.W. Shavlik, R.J. Mooney, and G.G. Towell. Symbolic and neural learning algorithms: an experimental comparison, machine learning. Machine Learning, 6(2): , 1991 Inducción de árboles de decisión 37

38 Ejemplos de aplicación Quinlan, hipotiroides, principio 80. Varios miles ejemplo. 7 atributos continuos, 23 discretos. 3-8 clases. Tasa error < 1% Quinlan J. R. Comparing connectionist and symbolic learning methods. In: Rivest R. L. ed. Computational Learning Theory and Natural Learning Systems, vol.1, Cambridge, MA: MIT Press, 1994, pp Inducción de árboles de decisión 38

39 Ejemplos de aplicación Console, Picardi, Theseider. Temporal Decision Trees: Model-based Diagnosis of Dynamic Systems On-Board. Journal of Artificial Intelligence Research 19 (2003) Árboles de decisión con restricciones temporales. Aplicación: Diagnosis on board para automóviles. Inducidos a partir de ejemplos generados mediante técnicas de diagnosis basada en modelos. Inducción de árboles de decisión 39

Aprendizaje Automatizado

Aprendizaje Automatizado Aprendizaje Automatizado Aprendizaje Automatizado Programas que mejoran su comportamiento con la experiencia. Dos formas de adquirir experiencia: A partir de ejemplos suministrados por un usuario (un conjunto

Más detalles

Métodos basados en instancias. K-vecinos, variantes

Métodos basados en instancias. K-vecinos, variantes Métodos basados en instancias K-vecinos, variantes Contenido 1. Caracterización 2. K-vecinos más próximos 3. Mejoras al algoritmo básico 4. Bibliografía 2 1. Caracterización Forma más sencilla de aprendizaje:

Más detalles

ALGORITMO ID3. Objetivo

ALGORITMO ID3. Objetivo ALGORITMO ID3 Desarrollado por J. Ross Quinlan en 1983. ID3 significa Induction Decision Trees. Pertenece a la familia TDIDT (Top- Down Induction of Decision Trees). Objetivo Construir un árbol de decisión

Más detalles

Aux 6. Introducción a la Minería de Datos

Aux 6. Introducción a la Minería de Datos Aux 6. Introducción a la Minería de Datos Gastón L Huillier 1,2, Richard Weber 2 glhuilli@dcc.uchile.cl 1 Departamento de Ciencias de la Computación Universidad de Chile 2 Departamento de Ingeniería Industrial

Más detalles

Métodos de Clasificación sin Métrica. Reconocimiento de Patrones- 2013

Métodos de Clasificación sin Métrica. Reconocimiento de Patrones- 2013 Métodos de Clasificación sin Métrica Reconocimiento de Patrones- 03 Métodos de Clasificación sin Métrica Datos nominales sin noción de similitud o distancia (sin orden). Escala nominal: conjunto de categorías

Más detalles

Aprendizaje automático mediante árboles de decisión

Aprendizaje automático mediante árboles de decisión Aprendizaje automático mediante árboles de decisión Aprendizaje por inducción Los árboles de decisión son uno de los métodos de aprendizaje inductivo más usado. Hipótesis de aprendizaje inductivo: cualquier

Más detalles

CRITERIOS DE SELECCIÓN DE MODELOS

CRITERIOS DE SELECCIÓN DE MODELOS Inteligencia artificial y reconocimiento de patrones CRITERIOS DE SELECCIÓN DE MODELOS 1 Criterios para elegir un modelo Dos decisiones fundamentales: El tipo de modelo (árboles de decisión, redes neuronales,

Más detalles

Proyecto 6. Árboles de decisión: Un árbol de decisión es un modelo de predicción utilizado en el ámbito de la inteligencia artificial.

Proyecto 6. Árboles de decisión: Un árbol de decisión es un modelo de predicción utilizado en el ámbito de la inteligencia artificial. Árboles de decisión: Un árbol de decisión es un modelo de predicción utilizado en el ámbito de la inteligencia artificial. Funcionamiento: Se realiza un test en cada nodo interno del árbol, a medida que

Más detalles

Aproximación evolutiva a la inducción constructiva basada en expresiones algebraicas

Aproximación evolutiva a la inducción constructiva basada en expresiones algebraicas Aproximación evolutiva a la inducción constructiva basada en expresiones algebraicas Manuel Baena García, Rafael Morales Bueno y Carlos Cotta Porras Workshop MOISES Septiembre 2004 1/15 Contenido Inducción

Más detalles

Aprendizaje basado en ejemplos.

Aprendizaje basado en ejemplos. Aprendizaje basado en ejemplos. In whitch we describe agents that can improve their behavior through diligent study of their own experiences. Porqué queremos que un agente aprenda? Si es posible un mejor

Más detalles

INDICE Capítulo I: Conceptos Básicos Capitulo II: Estadística Descriptiva del Proceso

INDICE Capítulo I: Conceptos Básicos Capitulo II: Estadística Descriptiva del Proceso INDICE Capítulo I: Conceptos Básicos 1.- Introducción 3 2.- Definición de calidad 7 3.- Política de calidad 10 4.- Gestión de la calidad 12 5.- Sistema de calidad 12 6.- Calidad total 13 7.- Aseguramiento

Más detalles

Cómo se usa Data Mining hoy?

Cómo se usa Data Mining hoy? Cómo se usa Data Mining hoy? 1 Conocer a los clientes Detectar segmentos Calcular perfiles Cross-selling Detectar buenos clientes Evitar el churning, attrition Detección de morosidad Mejora de respuesta

Más detalles

INSTITUTO NACIONAL DE ESTADÍSTICAS (INE) 29 de Abril de 2016

INSTITUTO NACIONAL DE ESTADÍSTICAS (INE) 29 de Abril de 2016 ANEXO ESTADÍSTICO 1 : COEFICIENTES DE VARIACIÓN Y ERROR ASOCIADO AL ESTIMADOR ENCUESTA NACIONAL DE EMPLEO (ENE) INSTITUTO NACIONAL DE ESTADÍSTICAS (INE) 9 de Abril de 016 1 Este anexo estadístico es una

Más detalles

SVM: Máquinas de Vectores Soporte. Carlos Alonso González Grupo de Sistemas Inteligentes Departamento de Informática Universidad de Valladolid

SVM: Máquinas de Vectores Soporte. Carlos Alonso González Grupo de Sistemas Inteligentes Departamento de Informática Universidad de Valladolid SVM: Máquinas de Vectores Soporte Carlos Alonso González Grupo de Sistemas Inteligentes Departamento de Informática Universidad de Valladolid Contenido 1. Clasificación lineal con modelos lineales 2. Regresión

Más detalles

Técnicas de Clasificación Supervisada DRA. LETICIA FLORES PULIDO

Técnicas de Clasificación Supervisada DRA. LETICIA FLORES PULIDO Técnicas de Clasificación Supervisada DRA. LETICIA FLORES PULIDO 2 Objetivo El objetivo principal de las técnicas de clasificación supervisada es obtener un modelo clasificatorio válido para permitir tratar

Más detalles

Números reales. Valor absoluto. Desigualdades. Distancias entre la recta real. Intervalos y entornos.

Números reales. Valor absoluto. Desigualdades. Distancias entre la recta real. Intervalos y entornos. MATEMÁTICAS I Contenidos. Aritmética y álgebra: Números reales. Valor absoluto. Desigualdades. Distancias entre la recta real. Intervalos y entornos. Resolución e interpretación gráfica de ecuaciones e

Más detalles

Bloque 1. Contenidos comunes. (Total: 3 sesiones)

Bloque 1. Contenidos comunes. (Total: 3 sesiones) 4º E.S.O. OPCIÓN A 1.1.1 Contenidos 1.1.1.1 Bloque 1. Contenidos comunes. (Total: 3 sesiones) Planificación y utilización de procesos de razonamiento y estrategias de resolución de problemas, tales como

Más detalles

Minería de Datos. Árboles de Decisión. Fac. Ciencias Ing. Informática Otoño de Dept. Matesco, Universidad de Cantabria

Minería de Datos. Árboles de Decisión. Fac. Ciencias Ing. Informática Otoño de Dept. Matesco, Universidad de Cantabria Minería de Datos Árboles de Decisión Cristina Tîrnăucă Dept. Matesco, Universidad de Cantabria Fac. Ciencias Ing. Informática Otoño de 2012 Twenty questions Intuición sobre los árboles de decisión Juego

Más detalles

ÍNDICE CAPÍTULO 1. INTRODUCCIÓN

ÍNDICE CAPÍTULO 1. INTRODUCCIÓN ÍNDICE CAPÍTULO 1. INTRODUCCIÓN 1.1. OBJETO DE LA ESTADÍSTICA... 17 1.2. POBLACIONES... 18 1.3. VARIABLES ALEATORIAS... 19 1.3.1. Concepto... 19 1.3.2. Variables discretas y variables continuas... 20 1.3.3.

Más detalles

PREPROCESADO DE DATOS PARA MINERIA DE DATOS

PREPROCESADO DE DATOS PARA MINERIA DE DATOS Ó 10.1007/978-3-319-02738-8-2. PREPROCESADO DE DATOS PARA MINERIA DE DATOS Miguel Cárdenas-Montes Frecuentemente las actividades de minería de datos suelen prestar poca atención a las actividades de procesado

Más detalles

PROBABILIDAD Y ESTADISTICA

PROBABILIDAD Y ESTADISTICA PLAN DE ESTUDIOS 2008 LICENCIADO EN INFORMÁTICA FACULTAD DE CONTADURÍA, ADMINISTRACIÓN E INFORMÁTICA ASIGNATURA: PROBABILIDAD Y ESTADISTICA ÁREA DEL MATEMÁTICAS CLAVE: I2PE1 CONOCIMIENTO: ETAPA FORMATIVA:

Más detalles

CÁLCULO DE PROBABILIDADES

CÁLCULO DE PROBABILIDADES CÁLCULO DE PROBABILIDADES Tipo de asignatura: Troncal Anual. Créditos ECTS: 15 I.- INTRODUCCIÓN AL CÁLCULO DE PROBABILIDADES. (16 horas presenciales) Tema 1.- La naturaleza del cálculo de probabilidades.

Más detalles

Aprendizaje: Boosting y Adaboost

Aprendizaje: Boosting y Adaboost Técnicas de Inteligencia Artificial Aprendizaje: Boosting y Adaboost Boosting 1 Indice Combinando clasificadores débiles Clasificadores débiles La necesidad de combinar clasificadores Bagging El algoritmo

Más detalles

JUEGOS. Área de aplicación de los algoritmos heurísticos Juegos bi-personales: oponente hostil

JUEGOS. Área de aplicación de los algoritmos heurísticos Juegos bi-personales: oponente hostil JUEGOS Área de aplicación de los algoritmos heurísticos Juegos bi-personales: oponente hostil I Oponente: Jugador: intenta mover a un estado que es el peor para Etiquetar cada nivel del espacio de búsqueda

Más detalles

Determinación del tamaño de muestra (para una sola muestra)

Determinación del tamaño de muestra (para una sola muestra) STATGRAPHICS Rev. 4/5/007 Determinación del tamaño de muestra (para una sola muestra) Este procedimiento determina un tamaño de muestra adecuado para la estimación o la prueba de hipótesis con respecto

Más detalles

2 Introducción a la inferencia estadística Introducción Teoría de conteo Variaciones con repetición...

2 Introducción a la inferencia estadística Introducción Teoría de conteo Variaciones con repetición... Contenidos 1 Introducción al paquete estadístico S-PLUS 19 1.1 Introducción a S-PLUS............................ 21 1.1.1 Cómo entrar, salir y consultar la ayuda en S-PLUS........ 21 1.2 Conjuntos de datos..............................

Más detalles

POBLACIÓN Y MUESTRAS EN LA INVESTIGACIÓN

POBLACIÓN Y MUESTRAS EN LA INVESTIGACIÓN POBLACIÓN Y MUESTRAS EN LA INVESTIGACIÓN Adela del Carpio Rivera Doctor en Medicina UNIVERSO Conjunto de individuos u objetos de los que se desea conocer algo en una investigación Población o universo

Más detalles

Aprendizaje Computacional. Eduardo Morales y Jesús González

Aprendizaje Computacional. Eduardo Morales y Jesús González Aprendizaje Computacional Eduardo Morales y Jesús González Objetivo General La capacidad de aprender se considera como una de los atributos distintivos del ser humano y ha sido una de las principales áreas

Más detalles

Teorema Central del Límite (1)

Teorema Central del Límite (1) Teorema Central del Límite (1) Definición. Cualquier cantidad calculada a partir de las observaciones de una muestra se llama estadístico. La distribución de los valores que puede tomar un estadístico

Más detalles

Otros aspectos. Procesado de la entrada Procesado de la salida. Carlos J. Alonso González Departamento de Informática Universidad de Valladolid

Otros aspectos. Procesado de la entrada Procesado de la salida. Carlos J. Alonso González Departamento de Informática Universidad de Valladolid Otros aspectos Procesado de la entrada Procesado de la salida Carlos J. Alonso González Departamento de Informática Universidad de Valladolid Contenido 1. Procesado de la entrada 1. Motivación y tareas

Más detalles

4ta. Práctica. Búsqueda en árbol con contrincante: MiniMax con poda Alfa-Beta. Inteligencia Artificial Prácticas 2004/2005

4ta. Práctica. Búsqueda en árbol con contrincante: MiniMax con poda Alfa-Beta. Inteligencia Artificial Prácticas 2004/2005 4ta. Práctica Búsqueda en árbol con contrincante: MiniMax con poda Alfa-Beta Inteligencia Artificial Prácticas 2004/2005 Decisiones Perfectas en Juegos de DOS Participantes Definición de Juego Estado Inicial:

Más detalles

matemáticas como herramientas para solución de problemas en ingeniería. PS Probabilidad y Estadística Clave de la materia: Cuatrimestre: 4

matemáticas como herramientas para solución de problemas en ingeniería. PS Probabilidad y Estadística Clave de la materia: Cuatrimestre: 4 PS0401 - Probabilidad y Estadística DES: Ingeniería Programa(s) Educativo(s): Ingeniería de Software Tipo de materia: Obligatoria Clave de la materia: PS0401 Cuatrimestre: 4 UNIVERSIDAD AUTÓNOMA DE Área

Más detalles

Facultad de Ciencias Sociales - Universidad de la República

Facultad de Ciencias Sociales - Universidad de la República Facultad de Ciencias Sociales - Universidad de la República Estadística y sus aplicaciones en Ciencias Sociales Edición 2016 Ciclo Avanzado 3er. Semestre (Licenciatura en Ciencia Política/ Licenciatura

Más detalles

SECUENCIACIÓN DE SISTEMAS DE TIPO JOB SHOP MEDIANTE APRENDIZAJE AUTOMÁTICO

SECUENCIACIÓN DE SISTEMAS DE TIPO JOB SHOP MEDIANTE APRENDIZAJE AUTOMÁTICO SECUENCIACIÓN DE SISTEMAS DE TIPO JOB SHOP MEDIANTE APRENDIZAJE AUTOMÁTICO Paolo Priore Moreno Raúl Pino Diez Alberto Gómez Gómez UNIVERSIDAD DE OVIEDO Una forma habitual de secuenciar de modo dinámico

Más detalles

Data Mining utilizando Redes Neuronales. Juan M. Ale ale@acm.org Facultad de Ingeniería Universidad de Buenos Aires

Data Mining utilizando Redes Neuronales. Juan M. Ale ale@acm.org Facultad de Ingeniería Universidad de Buenos Aires Data Mining utilizando Redes Neuronales Romina Laura Bot rbot@fi.uba.ar Juan M. Ale ale@acm.org Facultad de Ingeniería Universidad de Buenos Aires Resumen: Las Redes Neuronales son ampliamente utilizadas

Más detalles

MATEMÁTICAS 2º DE BACHILLERATO

MATEMÁTICAS 2º DE BACHILLERATO MATRICES 1. Matrices y tipos de matrices 2. Operaciones con matrices 3. Producto de matrices 4. Matriz traspuesta 5. Matriz inversa 6. Rango de matrices DETERMINANTES 7. Determinantes de orden 2 y 3 8.

Más detalles

TEMA 6. SVM Support Vector Machines (Máquinas de Vectores Soporte)

TEMA 6. SVM Support Vector Machines (Máquinas de Vectores Soporte) TEMA 6. SVM Support Vector Machines (Máquinas de Vectores Soporte) Francisco José Ribadas Pena Modelos de Razonamiento y Aprendizaje 5 Informática ribadas@uvigo.es 17 de abril de 2012 FJRP ccia [Modelos

Más detalles

Minería de Datos Web. 1 er Cuatrimestre 2015. Página Web. Prof. Dra. Daniela Godoy. http://www.exa.unicen.edu.ar/catedras/ageinweb/

Minería de Datos Web. 1 er Cuatrimestre 2015. Página Web. Prof. Dra. Daniela Godoy. http://www.exa.unicen.edu.ar/catedras/ageinweb/ Minería de Datos Web 1 er Cuatrimestre 2015 Página Web http://www.exa.unicen.edu.ar/catedras/ageinweb/ Prof. Dra. Daniela Godoy ISISTAN Research Institute UNICEN University Tandil, Bs. As., Argentina http://www.exa.unicen.edu.ar/~dgodoy

Más detalles

Aprendizaje Automatizado

Aprendizaje Automatizado Aprendizaje Automatizado Aprendizaje Automatizado Programas que mejoran su comportamiento con la experiencia. Dos formas de adquirir experiencia: A partir de ejemplos suministrados por un usuario (un conjunto

Más detalles

PLAN DE TRABAJO 9 Período 3/09/07 al 28/09/07

PLAN DE TRABAJO 9 Período 3/09/07 al 28/09/07 PLAN DE TRABAJO 9 Período 3/09/07 al 28/09/07 TEMAS A ESTUDIAR En esta guía nos dedicaremos a estudiar el tema de Estimación por intervalo y comenzaremos a estudiar las pruebas de hipótesis paramétricas.

Más detalles

CM0244. Suficientable

CM0244. Suficientable IDENTIFICACIÓN NOMBRE ESCUELA ESCUELA DE CIENCIAS NOMBRE DEPARTAMENTO Ciencias Matemáticas ÁREA DE CONOCIMIENTO MATEMATICAS, ESTADISTICA Y AFINES NOMBRE ASIGNATURA EN ESPAÑOL ESTADÍSTICA GENERAL NOMBRE

Más detalles

Análisis y Diseño de Algoritmos

Análisis y Diseño de Algoritmos Análisis y Diseño de Algoritmos Ordenamiento en Tiempo Lineal DR. JESÚS A. GONZÁLEZ BERNAL CIENCIAS COMPUTACIONALES INAOE Ordenamiento por Comparación (Comparison Sorts) Tiempo de ejecución HeapSort y

Más detalles

Resolución de problemas de búsqueda

Resolución de problemas de búsqueda Resolución de problemas de búsqueda Memoria de Prácticas de Segunda Entrega 26 de noviembre de 2007 Autores: Mariano Cabrero Canosa cicanosa@udc.es Elena Hernández Pereira elena@udc.es Directorio de entrega:

Más detalles

Prueba, caso de prueba, defecto, falla, error, verificación, validación.

Prueba, caso de prueba, defecto, falla, error, verificación, validación. Modelos de Prueba Prueba, caso de prueba, defecto, falla, error, verificación, validación. Prueba: Las Pruebas son básicamente un conjunto de actividades dentro del desarrollo de software, es una investigación

Más detalles

LOS SISTEMAS ADAPTATIVOS

LOS SISTEMAS ADAPTATIVOS 0010100100100101010110010001 0101010001010100101000101 0010100011110010110010001 11111111111010100010101001010010100010101010101 0010100011110101010101011100101001001010101100100010010100011110101010001

Más detalles

Tema 13: Distribuciones de probabilidad. Estadística

Tema 13: Distribuciones de probabilidad. Estadística Tema 13: Distribuciones de probabilidad. Estadística 1. Variable aleatoria Una variable aleatoria es una función que asocia a cada elemento del espacio muestral, de un experimento aleatorio, un número

Más detalles

Pruebas de Hipótesis. Diseño Estadístico y Herramientas para la Calidad. Pruebas de Hipótesis. Hipótesis

Pruebas de Hipótesis. Diseño Estadístico y Herramientas para la Calidad. Pruebas de Hipótesis. Hipótesis Diseño Estadístico y Herramientas para la Calidad Pruebas de Hipótesis Expositor: Dr. Juan José Flores Romero juanf@umich.mx http://lsc.fie.umich.mx/~juan M. en Calidad Total y Competitividad Pruebas de

Más detalles

Unidad IV: Distribuciones muestrales

Unidad IV: Distribuciones muestrales Unidad IV: Distribuciones muestrales 4.1 Función de probabilidad En teoría de la probabilidad, una función de probabilidad (también denominada función de masa de probabilidad) es una función que asocia

Más detalles

1. Los números reales. 2. Representación. 3. Densidad de los números racionales. 4. Propiedades de los números reales

1. Los números reales. 2. Representación. 3. Densidad de los números racionales. 4. Propiedades de los números reales EJES ARTICULADORES Y PRODUCTIVOS DEL AREA SISTEMA DE CONOCIMIENTOS GRADO: 10 11 1. Los números reales 1. Desigualdades. 2. Representación 2. Propiedades. 3. Densidad de los números racionales 4. Propiedades

Más detalles

Tema 12: Arboles de decisión

Tema 12: Arboles de decisión Razonamiento Automático Curso 2000 2001 Tema 12: Arboles de decisión José A. Alonso Jiménez Miguel A. Gutiérrez Naranjo Dpto. de Ciencias de la Computación e Inteligencia Artificial Universidad de Sevilla

Más detalles

Guía docente de la asignatura

Guía docente de la asignatura Guía docente de la asignatura Asignatura Materia Módulo Titulación TÉCNICAS DE APRENDIZAJE AUTOMÁTICO COMPUTACIÓN TECNOLOGÍAS ESPECÍFICAS GRADO EN INGENIERÍA INFORMÁTICA Plan 545 Código 46932 Periodo de

Más detalles

Estado 3.2 (coste = 9)

Estado 3.2 (coste = 9) Búsqueda heurística Fernando Berzal, berzal@acm.org Búsqueda heurística Búsqueda primero el mejor p.ej. búsqueda de coste uniforme [UCS] Heurísticas Búsqueda greedy El algoritmo A* Heurísticas admisibles

Más detalles

INFERENCIA ESTADISTICA

INFERENCIA ESTADISTICA 1 INFERENCIA ESTADISTICA Es una rama de la Estadística que se ocupa de los procedimientos que nos permiten analizar y extraer conclusiones de una población a partir de los datos de una muestra aleatoria,

Más detalles

Inteligencia Artificial. Aprendizaje neuronal. Ing. Sup. en Informática, 4º. Curso académico: 2011/2012 Profesores: Ramón Hermoso y Matteo Vasirani

Inteligencia Artificial. Aprendizaje neuronal. Ing. Sup. en Informática, 4º. Curso académico: 2011/2012 Profesores: Ramón Hermoso y Matteo Vasirani Inteligencia Artificial Aprendizaje neuronal Ing. Sup. en Informática, 4º Curso académico: 20/202 Profesores: Ramón Hermoso y Matteo Vasirani Aprendizaje Resumen: 3. Aprendizaje automático 3. Introducción

Más detalles

1. Introducción 2. Esquema básico 3. Codificación 4. Evaluación 5. Selección 6. Operadores 7. Ejemplo. Algoritmos genéticos

1. Introducción 2. Esquema básico 3. Codificación 4. Evaluación 5. Selección 6. Operadores 7. Ejemplo. Algoritmos genéticos 1. Introducción 2. Esquema básico 3. Codificación 4. Evaluación 5. Selección 6. Operadores 7. Ejemplo Algoritmos genéticos Introducción Propuestos por Holland, mediados 70, computación evolutiva Popularizados

Más detalles

4. NÚMEROS PSEUDOALEATORIOS.

4. NÚMEROS PSEUDOALEATORIOS. 4. NÚMEROS PSEUDOALEATORIOS. En los experimentos de simulación es necesario generar valores para las variables aleatorias representadas estas por medio de distribuciones de probabilidad. Para poder generar

Más detalles

Consideración del Margen de Desvanecimiento con ICS Telecom en Planeación de Redes de Microceldas (NLOS)

Consideración del Margen de Desvanecimiento con ICS Telecom en Planeación de Redes de Microceldas (NLOS) Consideración del Margen de Desvanecimiento con ICS Telecom en Planeación de Redes de Microceldas (NLOS) Agosto 2008 SEAN YUN Traducido por ANDREA MARÍN Modelando RF con Precisión 0 0 ICS Telecom ofrece

Más detalles

Búsqueda con adversario

Búsqueda con adversario Introducción Búsqueda con adversario Uso: Decidir mejor jugada en cada momento para cierto tipo de juegos Hay diferentes tipos de juegos según sus características: Numero de jugadores, toda la información

Más detalles

PROBABILIDAD Y ESTADÍSTICA

PROBABILIDAD Y ESTADÍSTICA PROBABILIDAD Y ESTADÍSTICA 4 horas a la semana 8 créditos Semestre variable según la carrera Objetivo del curso: Analizar y resolver problemas de naturaleza aleatoria en la ingeniería, aplicando conceptos

Más detalles

Evaluando las Hipótesis Inductivas. Tomás Arredondo Vidal 8/9/2011

Evaluando las Hipótesis Inductivas. Tomás Arredondo Vidal 8/9/2011 Evaluando las Hipótesis Inductivas Tomás Arredondo Vidal 8/9/2011 Evaluando las Hipótesis Inductivas Contenidos Estimando la Precisión Comparando Hipótesis Comparando Algoritmos de Clasificación Evaluando

Más detalles

Estructuras de datos Árboles B

Estructuras de datos Árboles B Estructuras de datos Árboles B Dra. Elisa Schaeffer elisa.schaeffer@gmail.com PISIS / FIME / UANL Árboles B p. 1 Árboles B Árboles B son árboles balanceados que no son binarios. Todos los vértices contienen

Más detalles

Árboles. Un grafo no dirigido es un árbol si y sólo si existe una ruta unica simple entre cualquiera dos de sus vértices.

Árboles. Un grafo no dirigido es un árbol si y sólo si existe una ruta unica simple entre cualquiera dos de sus vértices. ÁRBOLES Árboles Un grafo conectado que no contiene circuitos simples. Utilizados desde 1857, por el matemático Ingles Arthur Cayley para contar ciertos tipos de componentes químicos. Un árbol es un grafo

Más detalles

UNIVERSIDAD MAYOR DE SAN SIMÓN FACULTAD DE CIENCIAS Y TECNOLOGÍA INGENIERÍA DE SISTEMAS BÚSQUEDA PRIMERO EL MEJOR

UNIVERSIDAD MAYOR DE SAN SIMÓN FACULTAD DE CIENCIAS Y TECNOLOGÍA INGENIERÍA DE SISTEMAS BÚSQUEDA PRIMERO EL MEJOR UNIVERSIDAD MAYOR DE SAN SIMÓN FACULTAD DE CIENCIAS Y TECNOLOGÍA INGENIERÍA DE SISTEMAS BÚSQUEDA PRIMERO EL MEJOR INTEGRANTES: Caricari Cala Aquilardo Villarroel Fernandez Fructuoso DOCENTE: Lic. Garcia

Más detalles

Práctica 3: Almacenamiento de modelos con WEKA.

Práctica 3: Almacenamiento de modelos con WEKA. PROGRAMA DE DOCTORADO INTERUNIVERSITARIO APRENDIZAJE AUTOMÁTICO Y DATA MINING Práctica 3: Almacenamiento de modelos con WEKA. Objetivos: Almacenar modelos creados con WEKA. Utilizar un modelo previo para

Más detalles

Investigación Operativa

Investigación Operativa Investigación Operativa Unidad: Teoría de decisiones y modelos de programación lineal Docente: Johnny. Pacheco Contreras Unidad Teoría de decisiones y modelos de programación lineal. Logro Al finalizar

Más detalles

Modelos de PERT/CPM: Probabilístico

Modelos de PERT/CPM: Probabilístico INSTITUTO POLITÉCNICO NACIONAL ESCUELA SUPERIOR DE CÓMPUTO Modelos de PERT/CPM: Probabilístico M. En C. Eduardo Bustos Farías 1 Existen proyectos con actividades que tienen tiempos inciertos, es decir,

Más detalles

Fase 2. Estudio de mercado: ESTADÍSTICA

Fase 2. Estudio de mercado: ESTADÍSTICA 1. CONCEPTO DE ESTADÍSTICA. ESTADÍSTICA DESCRIPTIVA 2. 3. TABLA DE FRECUENCIAS 4. REPRESENTACIONES GRÁFICAS 5. TIPOS DE MEDIDAS: A. MEDIDAS DE POSICIÓN B. MEDIDAS DE DISPERSIÓN C. MEDIDAS DE FORMA 1 1.

Más detalles

18 Experimentos aleatorios. Sucesos y espacio muestral. Frecuencia y probabilidad de un suceso.

18 Experimentos aleatorios. Sucesos y espacio muestral. Frecuencia y probabilidad de un suceso. PRIMER CURSO DE E.S.O Criterios de calificación: 80% exámenes, 10% actividades, 10% actitud y trabajo 1 Números naturales. 2 Potencias de exponente natural. Raíces cuadradas exactas. 3 Divisibilidad. Concepto

Más detalles

CAPITULO 1: PERSPECTIVE GENERAL DE LA

CAPITULO 1: PERSPECTIVE GENERAL DE LA CONTENIDO CAPITULO 1: PERSPECTIVE GENERAL DE LA INVESTIGACION DE OPERACIONES 1 1.1 Modelos matemáticos de investigación de operaciones. 1 1.2 Técnicas de investigación de operaciones 3 1.3 Modelado de

Más detalles

Puntuación Z ESTADÍSTICA APLICADA A LA EDUCACIÓN I. L.A. y M.C.E. Emma Linda Diez Knoth

Puntuación Z ESTADÍSTICA APLICADA A LA EDUCACIÓN I. L.A. y M.C.E. Emma Linda Diez Knoth 1 Puntuación Z ESTADÍSTICA APLICADA A LA EDUCACIÓN I Qué es la Puntuación Z? 2 Los puntajes Z son transformaciones que se pueden hacer a los valores o puntuaciones de una distribución normal, con el propósito

Más detalles

Unidad 1: Espacio de Probabilidad

Unidad 1: Espacio de Probabilidad Unidad 1: Espacio de Probabilidad 1.1 Espacios de Probabilidad. (1) Breve introducción histórica de las probabilidades (2) Diferencial entre modelos matemáticos deterministicos y probabilísticos (3) Identificar

Más detalles

INSTITUTO POLITÉCNICO NACIONAL SECRETARIA ACADEMICA DIRECCIÓN DE ESTUDIOS PROFESIONALES EN INGENIERÍA Y CIENCIAS FÍSICO MATEMÁTICAS

INSTITUTO POLITÉCNICO NACIONAL SECRETARIA ACADEMICA DIRECCIÓN DE ESTUDIOS PROFESIONALES EN INGENIERÍA Y CIENCIAS FÍSICO MATEMÁTICAS ESCUELA: UPIICSA CARRERA: INGENIERÍA EN TRANSPORTE ESPECIALIDAD: COORDINACIÓN: ACADEMIAS DE MATEMÁTICAS DEPARTAMENTO: CIENCIAS BÁSICAS PROGRAMA DE ESTUDIO ASIGNATURA: ESTADÍSTICA APLICADA CLAVE: TMPE SEMESTRE:

Más detalles

Tema 5 Algunas distribuciones importantes

Tema 5 Algunas distribuciones importantes Algunas distribuciones importantes 1 Modelo Bernoulli Distribución Bernoulli Se llama experimento de Bernoulli a un experimento con las siguientes características: 1. Se realiza un experimento con dos

Más detalles

Análisis Probit. StatFolio de Ejemplo: probit.sgp

Análisis Probit. StatFolio de Ejemplo: probit.sgp STATGRAPHICS Rev. 4/25/27 Análisis Probit Resumen El procedimiento Análisis Probit está diseñado para ajustar un modelo de regresión en el cual la variable dependiente Y caracteriza un evento con sólo

Más detalles

Construcción de un árbol balanceado de subclasificadores para SVM multi-clase

Construcción de un árbol balanceado de subclasificadores para SVM multi-clase Construcción de un árbol balanceado de subclasificadores para SVM multi-clase Waldo Hasperué 1,2, Laura Lanzarini 1, 1 III-LIDI, Facultad de Informática, UNLP 2 Becario CONICET {whasperue, laural}@lidi.info.unlp.edu.ar

Más detalles

Proyecto PropULSA: Estadística y Probabilidad Breviario Académico

Proyecto PropULSA:  Estadística y Probabilidad Breviario Académico Estadística y Probabilidad Breviario Académico Estadística: Es la ciencia que tiene por objetivo recolectar, escribir e interpretar datos, con la finalidad de efectuar una adecuada toma de decisiones en

Más detalles

ÍNDICE INTRODUCCIÓN... 21

ÍNDICE INTRODUCCIÓN... 21 INTRODUCCIÓN... 21 CAPÍTULO 1. ORGANIZACIÓN DE LOS DATOS Y REPRESENTACIONES GRÁFICAS... 23 1. ORGANIZACIÓN DE LOS DATOS... 23 1.1. La distribución de frecuencias... 24 1.2. Agrupación en intervalos...

Más detalles

BÚSQUEDA INTELIGENTE BASADA EN METAHEURÍSTICAS

BÚSQUEDA INTELIGENTE BASADA EN METAHEURÍSTICAS Departamento de Inteligencia Artificial Grupo de Análisis de Decisiones y Estadística BÚSQUEDA INTELIGENTE BASADA EN METAHEURÍSTICAS PRÁCTICAS 1 Existen varias características que pueden causar dificultades

Más detalles

INDICE. Prólogo a la Segunda Edición

INDICE. Prólogo a la Segunda Edición INDICE Prólogo a la Segunda Edición XV Prefacio XVI Capitulo 1. Análisis de datos de Negocios 1 1.1. Definición de estadística de negocios 1 1.2. Estadística descriptiva r inferencia estadística 1 1.3.

Más detalles

Tema 2. Introducción a la Estadística Bayesiana

Tema 2. Introducción a la Estadística Bayesiana 2-1 Tema 2 Introducción a la Estadística Bayesiana El teorema de Bayes Ejemplo Interpretación Ejemplo: influencia de la distribución a priori Ejemplo: densidad de flujo Probabilidad bayesiana Ejemplo:

Más detalles

Estadística y sus aplicaciones en Ciencias Sociales 6. Prueba de hipótesis. Facultad de Ciencias Sociales, UdelaR

Estadística y sus aplicaciones en Ciencias Sociales 6. Prueba de hipótesis. Facultad de Ciencias Sociales, UdelaR Estadística y sus aplicaciones en Ciencias Sociales 6. Prueba de hipótesis Facultad de Ciencias Sociales, UdelaR Índice 1. Introducción: hipótesis estadística, tipos de hipótesis, prueba de hipótesis 2.

Más detalles

UNIVERSIDAD AUTÓNOMA DE BAJA CALIFORNIA SUR. Ingeniería Aplicada TEÓRICA SERIACIÓN 100% DE OPTATIVAS DISCIPLINARIAS

UNIVERSIDAD AUTÓNOMA DE BAJA CALIFORNIA SUR. Ingeniería Aplicada TEÓRICA SERIACIÓN 100% DE OPTATIVAS DISCIPLINARIAS UNIVERSIDAD AUTÓNOMA DE BAJA CALIFORNIA SUR DEPARTAMENTO ACADÉMICO DE SIS COMPUTACIONALES INGENIERÍA EN TECNOLOGÍA COMPUTACIONAL ASIGNATURA Algoritmo Genéticos ÁREA DE Ingeniería Aplicada CONOCIMIENTO

Más detalles

INTERVALOS DE CONFIANZA. La estadística en cómic (L. Gonick y W. Smith)

INTERVALOS DE CONFIANZA. La estadística en cómic (L. Gonick y W. Smith) INTERVALOS DE CONFIANZA La estadística en cómic (L. Gonick y W. Smith) EJEMPLO: Será elegido el senador Astuto? 2 tamaño muestral Estimador de p variable aleatoria poblacional? proporción de personas que

Más detalles

JUEGO DE BASKETBALL. Repaso de Distribuciones de Probabilidad Discretas y Continuas

JUEGO DE BASKETBALL. Repaso de Distribuciones de Probabilidad Discretas y Continuas JUEGO DE BASKETBALL Repaso de Distribuciones de Probabilidad Discretas y Continuas PREGUNTA #1 Qué es una variable aleatoria uniforme discreta? Cómo es su distribución? Qué es una variable aleatoria uniforme

Más detalles

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO FACULTAD DE ESTUDIOS SUPERIORES CUAUTITLÁN PLAN DE ESTUDIOS DE LA LICENCIATURA EN QUÍMICA INDUSTRIAL

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO FACULTAD DE ESTUDIOS SUPERIORES CUAUTITLÁN PLAN DE ESTUDIOS DE LA LICENCIATURA EN QUÍMICA INDUSTRIAL UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO FACULTAD DE ESTUDIOS SUPERIORES CUAUTITLÁN PLAN DE ESTUDIOS DE LA LICENCIATURA EN QUÍMICA INDUSTRIAL PROGRAMA DE LA ASIGNATURA DE: IDENTIFICACIÓN DE LA ASIGNATURA

Más detalles

Formulario. Estadística Administrativa. Módulo 1. Introducción al análisis estadístico

Formulario. Estadística Administrativa. Módulo 1. Introducción al análisis estadístico Formulario. Estadística Administrativa Módulo 1. Introducción al análisis estadístico Histogramas El número de intervalos de clase, k, se elige de tal forma que el valor 2 k sea menor (pero el valor más

Más detalles

Análisis de Decisiones II. Tema 17 Generación de números al azar. Objetivo de aprendizaje del tema

Análisis de Decisiones II. Tema 17 Generación de números al azar. Objetivo de aprendizaje del tema Tema 17 Generación de números al azar Objetivo de aprendizaje del tema Al finalizar el tema serás capaz de: Obtener números aleatorios a partir de un proceso de generación. Validar las características

Más detalles

MÓDULO III. MEDIDAS DE TENDENCIA CENTRAL, DISPERSIÓN Y ASIMETRÍA

MÓDULO III. MEDIDAS DE TENDENCIA CENTRAL, DISPERSIÓN Y ASIMETRÍA 1 UNIVERSIDAD NACIONAL EXPERIMENTAL DE LOS LLANOS OCCIDENTALES EZEQUIEL ZAMORA VICE-RECTORADO DE PLANIFICACIÓN Y DESARROLLO SOCIAL PROGRAMA CIENCIAS SOCIALES Y JURIDICAS SUBPROGRAMA ADMINISTRACIÓN SUBPROYECTO:

Más detalles

4º E.S.O. Matemáticas A

4º E.S.O. Matemáticas A 4º E.S.O. Matemáticas A Objetivos 1. Incorporar, al lenguaje y formas habituales de argumentación, las distintas formas de expresión matemática (numérica, algebraica, de funciones, geométrica...), con

Más detalles

PREDICCIÓN DE CRISIS EMPRESARIALES EN SEGUROS NO VIDA. UNA APLICACIÓN DEL ALGORITMO C4.5

PREDICCIÓN DE CRISIS EMPRESARIALES EN SEGUROS NO VIDA. UNA APLICACIÓN DEL ALGORITMO C4.5 PREDICCIÓN DE CRISIS EMPRESARIALES EN SEGUROS NO VIDA. UNA APLICACIÓN DEL ALGORITMO C4.5 Zuleyka Díaz Martínez 1, José Fernández Menéndez 2, José Antonio Gil Fana 3, Eva María del Pozo García 4. RESUMEN

Más detalles

MANEJO DE VARIABLES EN INVESTIGACIÓN CLÍNICA Y EXPERIMENTAL

MANEJO DE VARIABLES EN INVESTIGACIÓN CLÍNICA Y EXPERIMENTAL MANEJO DE VARIABLES EN INVESTIGACIÓN CLÍNICA Y EXPERIMENTAL Israel J. Thuissard David Sanz-Rosa IV JORNADAS INVESTIGACIÓN COEM UNIVERSIDADES 4 de marzo de 2016 Escuela de Doctorado e Investigación. Vicerrectorado

Más detalles

Tema 5. Contraste de hipótesis (I)

Tema 5. Contraste de hipótesis (I) Tema 5. Contraste de hipótesis (I) CA UNED de Huelva, "Profesor Dr. José Carlos Vílchez Martín" Introducción Bienvenida Objetivos pedagógicos: Conocer el concepto de hipótesis estadística Conocer y estimar

Más detalles

Tema 9: Contraste de hipótesis.

Tema 9: Contraste de hipótesis. Estadística 84 Tema 9: Contraste de hipótesis. 9.1 Introducción. El objetivo de este tema es proporcionar métodos que permiten decidir si una hipótesis estadística debe o no ser rechazada, en base a los

Más detalles

Probabilidad y Estadística

Probabilidad y Estadística Probabilidad y Estadística Tema 9 Experimentación y presentación de datos Objetivo de aprendizaje del tema Al finalizar el tema serás capaz de: Describir los conceptos de experimentación y determinación

Más detalles

ESTADÍSTICA I PRESENTACIÓN DE LA ASIGNATURA

ESTADÍSTICA I PRESENTACIÓN DE LA ASIGNATURA ESTADÍSTICA I PRESENTACIÓN DE LA ASIGNATURA Descripción de la asignatura Estadística I El objetivo de la asignatura es proporcionar al estudiante conocimiento Departamento de Estadística y comprensión

Más detalles

Aprendizaje Automático

Aprendizaje Automático Aprendizaje Automático Andrea Mesa 21 de mayo de 2010 Aprendizaje automático Otras denominaciones: machine learning, statistical learning, data mining, inteligencia artificial. Las técnicas de Aprendizaje

Más detalles

Ricardo Aler Mur CLASIFICADORES KNN-I

Ricardo Aler Mur CLASIFICADORES KNN-I Ricardo Aler Mur CLASIFICADORES KNN-I En esta clase se habla del aprendizaje de modelos de clasificación y regresión basados en instancias o ejemplares. En concreto: Se define la clasificación y regresión

Más detalles

PLANES CURRICULARES GRADO9º/ 01 PERIODO

PLANES CURRICULARES GRADO9º/ 01 PERIODO PLANES CURRICULARES GRADO9º/ 01 PERIODO Grado: 9º Periodo: 01 PRIMERO Aprobado por: G. Watson - Jefe Sección Asignatura: MATEMATICAS Profesor: Gloria rueda y Jesús Vargas ESTANDARES P.A.I. I.B. A. Conocimiento

Más detalles

Probabilidad II Algunas distribuciones notables. Antonio Cuevas Departamento de Matemáticas Universidad Autónoma de Madrid

Probabilidad II Algunas distribuciones notables. Antonio Cuevas Departamento de Matemáticas Universidad Autónoma de Madrid Probabilidad II Algunas distribuciones notables Antonio Cuevas Departamento de Matemáticas Universidad Autónoma de Madrid La distribución normal f (x; µ, σ) = 1 σ 2π e 1 2( x µ σ ) 2, x R, µ R, σ > 0 E(X

Más detalles