Nucleación heterogénea atérmica de solidificación Alan Didier Pérez Ávila

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Nucleación heterogénea atérmica de solidificación Alan Didier Pérez Ávila"

Transcripción

1 Nucleación heterogénea atérmica de solidificación Alan Didier Pérez Ávila Nociones básicas La solidificación de metales consta de tres etapas; formación de nucleaos estables en el fundido (nucleación), crecimiento del núcleo hasta dar origen a cristales y la formación de una estructura granular. El aspecto que cada grano adquiere después de la solidificación del metal depende de varios factores, de entre los que son importantes los gradientes térmicos. Existen dos mecanismos de nucleación en la solidificación de metales: Nucleación homogénea: Se da en el liquido fundido cuando el metal proporciona por si mismo los átomos para formar los núcleos. Cuando se enfría un metal liquido puro por debajo de su temperatura de de equilibrio de solidificación en un grado suficiente se crean numerosos núcleos homogéneos por movimiento lento de átomos que se mantienen juntos. La enucleación homogénea requiere habitualmente un elevado grado de sub-enfriamiento que puede llegar a ser de varios de cientos de grados centígrados para algunos metales. Para que un núcleo estable pueda transformarse en cristal debe alcanzar un tamaño crítico. Un conglomerado de átomos entrelazados entre sí menor que el tamaño crítico se llama embrión, y otro que sea mayor al tamaño crítico se llama núcleo. Debido a su inestabilidad, los embriones se están formando y redisolviendo constantemente en el metal fundido, debido a la agitación de los átomos. Nucleación heterogénea: Es la nucleación que tiene a lugar en un líquido sobre la superficie del recipiente que contiene impurezas insolubles, u otros materiales estructurales que disminuyen la energía libre para formar un núcleo estable. Para que se produzca la nucleación heterogénea, el agente de nucleación solido (impureza o recipiente) debe ser mojado por el metal líquido. Además el líquido debería poder solidificar fácilmente sobre el agente de nucleación. La nucleación heterogénea tiene a lugar sobre el agente de nucleación porque la energía superficial para formar un núcleo estable sobre el material es más baja que si el núcleo se formara sobre su propio núcleo puro (nucleación homogénea). En la formación de sólidos por precipitación de una única fase solida en una matriz liquida, el caso más común en la industria es la nucleación heterogénea, en la cual la precipitación tiene lugar en una cierta imperfección estructural como, por ejemplo, una superficie extraña. La imperfección reduce la energía superficial asociada a la creación de una nueva fase. El proceso de precipitación ocurre, en realidad, en dos etapas. La primera de ellas es la nucleación. Esta etapa inicial lleva asociada la creación aleatoria de muchos núcleos. Solo aquellos cuyo tamaño es superior a uno dado son estables y pueden continuar su crecimiento. Estos núcleos de tamaño crítico deben ser suficientemente grandes para compensar la energía de formación correspondiente a la interface solido-liquido. La velocidad de nucleación es el resultado de dos factores opuestos. En el punto exacto correspondiente a la temperatura de transformación, las fases solida y líquida están en equilibrio y no existe una fuerza neta que impulse el inicio de la transformación. Al enfriar el liquido por debajo de la temperatura de transformación cada vez más inestable. El principio clave es que una pequeña agrupación de átomos (el núcleo) será estable únicamente si su posterior crecimiento reduce la energía neta del sistema. La fuerza impulsora de la solidificación aumenta al

2 disminuir la temperatura, y la velocidad de nucleación se incrementa. Este aumento no puede continuar indefinidamente. El proceso de agrupación de átomos que conduce a la formación de un núcleo es un proceso de difusión a escala local. Como tal, su velocidad disminuirá al hacerlo la temperatura. Estas transformaciones del material pueden darse con difusión o sin ella. Las transformaciones gobernadas por la difusión llevan asociado un cambio en la estructura como consecuencia de la migración atómica a largo alcance. El proceso sin difusión es conocido como transformación martensítica. Este es un término genérico que se refiere a una amplia familia de transformaciones sin difusión que tienen lugar tanto en los metales como en los no metales. El ejemplo más común es la transformación específica de los aceros eutectoides. Por ejemplo el producto que se forma a partir de la austenita templada se denomina martensita. En lugar de la migración por difusión de los átomos de carbono para formar fases separadas α y Fe 3 C, la transformación martensítica lleva asociada una brusca reordenación de los átomos de Fe y de C desde la red fcc de la solución solida de Fe-γ que da a lugar a una solución solida de red tetragonal centrada en el cuerpo (bct) que corresponde con la martensita. La estructura cristalina relativamente compleja y la concentración sobresaturada de átomos de carbono en la martensita hacen q ésta tenga una naturaleza característicamente frágil. La martensita es una fase meta-estable; esto quiere decir que es estable con el tiempo pero que durante calentamientos posteriores se descompondrá en fases más estables α y Fe 3 C. Nucleación atérmica El termino de nucleación a térmica se uso por primera vez al discutir acerca de las transformaciones que se observaron que no ocurrieron a condiciones isotérmicas, solo en enfriamiento. En la nucleación atérmica los embriones sub-críticos son promovidos automáticamente a núcleo cuando al enfriar el tamaño crítico disminuye más de su propio tamaño. El rol de la nucleación atérmica ha sido considerado en ocasiones tan diverso como en la transformación de la martensita a acero y en la cristalización de polímeros. Para enfriamientos rápidos, la aproximación de estado cuasi-estacionario se rompe y los efectos transientes tienden a reducir el número de núcleos. Se ha analizado la competición entre cada efecto transiente y la verdadera nucleación atérmica, que incrementa el número de núcleos cuando no hay más evolución de la distribución del tamaño del embrión. También se ha observado que la nucleación atérmica heterogénea es significativa solo para la combinación de altos flujos de enfriamiento y largos sub-enfriamientos. En solidificación, la nucleación de la fase cristalina es casi siempre heterogénea. Es en este caso que una contribución atérmica de la taza de nucleación puede ser significativa en un amplio rango de condiciones. En el artículo [] analizaron la nucleación heterogénea de sustratos (agentes de nucleación) de tamaño definido. Fig.. Incremento de la curvatura en la interface líquidosólido []. Fig. 2. (a) Nucleación heterogénea sobre un agente de nucleación. (b) Área nucleante mojada para la solidificación que ocurre cuando γ LS + γ SN < γ LN. (c) Ejemplo de un núcleo heterogéneo crítico [].

3 Por simplicidad en el artículo se considero que las áreas nucleantes son círculos de radio. Cada área de la nucleación atérmica es mostrada en la fig.. Dada por sub-enfriamiento, donde el sólido puede ser formado sobre el sustrato, pero la propagación lateral del solido está limitada por el área nucleante. El sólido toma forma de una capa esférica y el grado de crecimiento está representado por h. Como h incremente el radio de curvatura de la interface líquido-sólido r LS disminuye. Este crecimiento se detiene cuando r LS a disminuido hasta r *, el radio critico de nucleación a un sub-enfriamiento T. Para un T pequeño el radio critico esta descrito por: () Donde γ LS es la energía libre por unidad de área de la interface líquido-sólido y S V es la entropía de fusión por unidad de volumen. Cuando r* ha disminuido a hasta ser igual a el sólido tendrá la forma de semiesfera (h = ) y r LS estará en su mínimo. El sub-enfriamiento critico T fg para el inicio de un crecimiento libre esta dado así: La nucleación heterogénea de solidificación sobre un sustrato es convencionalmente considerado en términos del modelo clásico con un embrión solido de forma de capa esférica mostrado en la fig.. (a) haciendo contacto con el sustrato formando un ángulo θ. Definiendo las energías libres γ SN para la interface sólido-nucleante y γ LN para la interface líquido-nucleante se tiene de la siguiente manera: De la ecuación anterior es importante anotar que θ solo está definida para. El radio de curvatura para la interface líquido-sólido para un núcleo crítico en la forma de capa esférica es igual que para el núcleo esférico de la nucleación homogénea. Para la nucleación efectiva la temperatura viene dada por la ecuación 2. Y el modelo se encuentra representado en la fig. 2. (a). La fig. 2. (c) muestra la capa esférica de núcleos sobre el sustrato con un radio. (2) (3) Contact Angle,.5.5 (i) (ii) nucleation not possible no barrier to free growth Fig 3. Comportamiento de los regímenes de nucleación en función del ángulo de contacto θ y del sub-enfriamiento reducido T/ T fg. (iii) Dimensionless cap energy, W cap /W * Tfg =.5 =.625 =.75 =.875 = Dimensionless cap height(h/ ) Fig. 4. Trabajo de formación adimensional de la capa sólida como función de la altura de capa adimensional a varios valores de sub-enfriamiento adimensional. En la fig. 3. En el régimen (i), el área nucleante es más pequeña para permitir una capa esférica de núcleo sobre este. En el régimen (ii) una capa esférica de núcleo puede formarse pero su crecimiento se detiene cuando este se esparce sobre el área nucleante y el tamaño del radio de

4 curvatura de la interface sólido-líquido disminuye hasta el r *. La línea de frontera entre el régimen (i) y (ii) viene dado por: (4) En el régimen (iii) > r * y no hay una frontera para el crecimiento; en este caso, la velocidad limite para la nucleación efectiva es la formación inicial de solido sobre el sustrato. El trabajo requerido para formar una capa de sólido (W cap ) de acuerdo a lo descrito en [] viene dado de la siguiente manera: ( ) (5) La forma universal de W cap se representa de una mejor manera en términos de cantidades adimensionales. Un forma adimensional del trabajo de formación se puede obtener normalizando respecto a W * Tfg, el trabajo critico para la nucleación homogénea de una esfera de crecimiento libre con sub-enfriamiento T fg. La altura de capa adimensional se denota como h/. La nucleación atérmica ocurre cuando el sub-enfriamiento adimensional T/ T fg =. El trabajo crítico para la nucleación homogénea viene dado por: De esta manera se obtiene una forma del trabajo de formación adimensional: (6) ( ) ( ) ( ) (7) La representación gráfica de la ecuación (7) está dada en la fig. 4. Cuando T/ T fg < podría haber activación térmica sobre la barrera de nucleación. 4 7 Dimensionless energy barrier, W cap /W * Tfg = nm = nm = nm Fig. 5. Trabajo critico adimensional de crecimiento libre en función del sub-enfriamiento adimensional Fig. 6. Tasa de cambio del equilibrio meta-estable de la altura de capa en función de sub-enfriamiento adimensional. La infinitesimalmente delgada capa de sólido al inicio sobre el área nucleante crece de manera natural a la condición meta-estable. De esta condición, el trabajo crítico de la nucleación térmica

5 W cap es la diferencia de energía entre los dos extremos, que se puede expresar en términos adimensionales como: [( ) ] ( ) (8) El trabajo crítico para la nucleación térmica viene dado en la ecuación (8) como una función del sub-enfriamiento adimensional, el cual está representado en la fig. 5. observándose una fuerte transición. Cuando la curva principal cae por debajo de un perfil determinado, la nucleación térmica probablemente es significativa. Se observa así, que la nucleación térmica solo cuando T/ T fg tiende a. Al considerar nucleación atérmica al inicio del crecimiento libre sobre enfriamiento, se asumió en [] que el sólido inactivo esta en configuración de equilibrio meta-estable en que r LS = r *. Como r * disminuye en el enfriamiento, este requiere que la altura de la capa aumente. Este incremento se encuentra descrito en la siguiente ecuación: ( ) ( ) [ ( ) ] (9) Y esta ecuación es la descrita en la fig. 6. Tanto la velocidad como dh/d T divergen a infinito cuando T tiende a T fg, por lo que es imposible para la capa inactiva siempre mantenerse en configuración meta-estable inhibiéndose la nucleación atérmica. En conclusión, en [] se observo que para el caso más usual de nucleación heterogénea de solidificación, la nucleación atérmica es probable que sea dominante. Para la reproducción de las gráficas del artículo se utilizo Matlab. Bibliografía [] Athermal heterogeneous nucleation of solidification / T.E. Quested, A.L. Greer / Acta Materialia 53 (25) [2] Fundamentos de la ciencia e ingeniería de los materiales / William F. Smith / 3ª Ed. [3] Introducción a la ciencia de materiales para ingenieros / James F. Shackelford / 6ª Ed.

Solidificación e Imperfecciones. en Sólidos

Solidificación e Imperfecciones. en Sólidos Preguntas definitivas Capítulo 2 Solidificación e Imperfecciones en Sólidos Ciencia de Materiales 28 PREGUNTA 2.1 Cuándo suele presentar interés el uso de un metal en estado puro?. Justifícalo. Pon un

Más detalles

los Aceros El porqué? Tratamientos térmicos Microestructura) Propiedades d Mecánicas FCEIA-UNR C Materiales FCEIA-UNR C-3.20.

los Aceros El porqué? Tratamientos térmicos Microestructura) Propiedades d Mecánicas FCEIA-UNR C Materiales FCEIA-UNR C-3.20. 11. Tratamientos t Térmicos de los Aceros El porqué? Tratamientos térmicos (Temperatura y tiempo) Microestructura) Propiedades d Mecánicas 1 El factor TIEMPO La mayoría de las transformaciones en estado

Más detalles

TEMA 9. TRANSFORMACIONES DE FASE Y TRATAMIENTOS TÉRMICOS EN ALEACIONES Fe-C

TEMA 9. TRANSFORMACIONES DE FASE Y TRATAMIENTOS TÉRMICOS EN ALEACIONES Fe-C TEMA 9. TRANSFORMACIONES DE FASE Y TRATAMIENTOS TÉRMICOS EN ALEACIONES Fe-C Los Diagramas de Fase representan estados y transformaciones en condiciones de equilibrio, pero no aportan información sobre

Más detalles

UNE RAFAEL MARÍA BARALT PROGRAMA DE INGENIERÍA Y TECNOLOGÍA INGENIERÍA EN MTTO MECÁNICO SOLIDIFICACIÓN. Elaborado por: Ing. Roger Chirinos.

UNE RAFAEL MARÍA BARALT PROGRAMA DE INGENIERÍA Y TECNOLOGÍA INGENIERÍA EN MTTO MECÁNICO SOLIDIFICACIÓN. Elaborado por: Ing. Roger Chirinos. UNE RAFAEL MARÍA BARALT PROGRAMA DE INGENIERÍA Y TECNOLOGÍA INGENIERÍA EN MTTO MECÁNICO SOLIDIFICACIÓN Elaborado por: Ing. Roger Chirinos. MSc Cabimas, Noviembre de 2013 SOLIDIFICACIÓN Fundamentos básicos

Más detalles

Cinética del cambio de fase TEMA 5

Cinética del cambio de fase TEMA 5 TEMA 5 CINETICA DEL CAMBIO DE FASE 1. INTRODUCCIÓN. El cambio estructural de un sistema se produce por la existencia de una fuerza conductora de ese cambio. Esta fuerza que impulsa el cambio es la diferencia

Más detalles

5b. DIAGRAMA HIERRO-CARBONO

5b. DIAGRAMA HIERRO-CARBONO 5b. DIAGRAMA HIERRO-CARBONO MATERIALES 13/14 ÍNDICE ACERO DIAGRAMA Fe-C FASES EN EL DIAGRAMA PROPIEDADES MECANICAS DE LAS FASES 2 1. ACERO Constituyentes de las aleaciones Fe-C (fases) Ferrita : Solución

Más detalles

MATERIALES METALICOS 2do Ingeniería Mecánica. Diagramas de Equilibrio de Fases

MATERIALES METALICOS 2do Ingeniería Mecánica. Diagramas de Equilibrio de Fases MATERIALES METALICOS 2do Ingeniería Mecánica Diagramas de Equilibrio de Fases Ing. Víctor Gómez Universidad Tecnológica Nacional Facultad Regional Tucumán Aleaciones Ø Aleación: Sustancia que tiene propiedades

Más detalles

PREGUNTAS PRUEBAS PAU MATERIALES

PREGUNTAS PRUEBAS PAU MATERIALES PREGUNTAS PRUEBAS PAU MATERIALES JUNIO 2010 FE Opción A Defina brevemente las siguientes propiedades que presentan los compuestos metálicos: a) Elasticidad (0,5 puntos) b) Tenacidad (0,5 puntos) c) Maleabilidad

Más detalles

TEMA 3: DIAGRAMAS DE EQUILIBRIO

TEMA 3: DIAGRAMAS DE EQUILIBRIO TEMA 3: DIAGRAMAS DE EQUILIBRIO 1.- Aleaciones Características Los metales puros tienen poca aplicación en la industria. La mayoría de ellos se combinan con otros metales o no metales para mejorar sus

Más detalles

CRISTALOQUÍMICA TEMA 9 POLIMORFISMO Y TRANSFORMACIONES POLIMÓRFICAS. TRANSFORMACIONES ORDEN - DESORDEN ÍNDICE

CRISTALOQUÍMICA TEMA 9 POLIMORFISMO Y TRANSFORMACIONES POLIMÓRFICAS. TRANSFORMACIONES ORDEN - DESORDEN ÍNDICE CRISTALOQUÍMICA TEMA 9 POLIMORFISMO Y TRANSFORMACIONES POLIMÓRFICAS. TRANSFORMACIONES ORDEN - DESORDEN 9.1 Introducción 9.2 Estabilidad y equilibrio ÍNDICE 9.3 Concepto de polimorfismo y de transformación

Más detalles

TEMA 2. FASES Y TRANSFORMACIONES DE FASES. DIAGRAMAS DE EQUILIBRIO.

TEMA 2. FASES Y TRANSFORMACIONES DE FASES. DIAGRAMAS DE EQUILIBRIO. TEMA 2. FASES Y TRANSFORMACIONES DE FASES. DIAGRAMAS DE EQUILIBRIO. Objetivos Este tema tiene por objeto conocer el interés e importancia de las aleaciones y las posibilidades de transformaciones y cambios

Más detalles

5.- Describir la solubilidad del Carbono en el Hierro en función de la temperatura y de sus distintos estados alotrópicos.

5.- Describir la solubilidad del Carbono en el Hierro en función de la temperatura y de sus distintos estados alotrópicos. DIAGRAMA HIERRO-CARBONO: 1.- Haciendo uso del diagrama Fe-C, verificar el enfriamiento lento ( en condiciones próximas al equilibrio) de las siguientes aleaciones: a) Acero de 0.17% de C b) Acero de 0.30%

Más detalles

TEMA 2: DIAGRAMAS DE FASES

TEMA 2: DIAGRAMAS DE FASES TEMA 2: DIAGRAMAS DE FASES 1.- LAS ALEACIONES 2.- FUSIÓN Y SOLIDIFICACIÓN 3.- DIAGRAMAS DE EQUILIBRIO O DE FASES 4.- TIPOS DE DIAGRAMAS 5.- REPASO - 1 - 1.- ALEACIONES Una aleación es una sustancia compuesta

Más detalles

IMPERFECCIONES EN SÓLIDOSS

IMPERFECCIONES EN SÓLIDOSS IMPERFECCIONES EN SÓLIDOSS UN ORDENAMIENTO PERFECTO DE LOS ÁTOMOS EN LOS MATERIALES CRISTALINOS SOLAMENTE PUEDE OCURRIR A UNA TEMPERATURA DE 0 K. TAL SÓLIDO IDEAL NO EXISTE: TODOS TIENEN GRAN NÚMERO DE

Más detalles

3.- Con el diagrama de equilibrio Cu-Ni, haga el análisis de fases para una aleación del 50% de Cu a: 1400ºC, 1300ºC, 1200ºC 1100ºC.

3.- Con el diagrama de equilibrio Cu-Ni, haga el análisis de fases para una aleación del 50% de Cu a: 1400ºC, 1300ºC, 1200ºC 1100ºC. 1.- Con el diagrama de equilibrio Cu-Ni que se adjunta, describir el enfriamiento lento de una aleación del 3% de Ni y determinar su composición a 12ºC. 2.- Una aleación compuesta de 2 Kg de Cu y 2 Kg

Más detalles

b) Aplicar la regla de las fases a cada una de las regiones, líneas y puntos significativos y determina el número de grados de libertad existentes.

b) Aplicar la regla de las fases a cada una de las regiones, líneas y puntos significativos y determina el número de grados de libertad existentes. 1.- El platino y el oro son totalmente solubles en estado sólido y en estado líquido. El punto de fusión del platino son 1774 C y el del oro 1063 C. Una aleación formada por un 40% de oro comienza a solidificar

Más detalles

Los constituyentes metálicos que se pueden presentar en los aceros al carbono son:

Los constituyentes metálicos que se pueden presentar en los aceros al carbono son: DE LOS ACEROS Los constituyentes metálicos que se pueden presentar en los aceros al carbono son: Ferrita Cementita Perlita Sorbita Troostita Martensita Bainita Austenita El análisis de las microestructuras

Más detalles

La reacción de formación de perlita en aleaciones Fe-C

La reacción de formación de perlita en aleaciones Fe-C La Transformación Eutectoide ( Tomado de Porter D. A et al Phase Transformations in metals and alloys. Reed Hill R. Principios de Metalurgia Física, Hume Rothery The Structures of alloys of iron ) La reacción

Más detalles

PROBLEMAS TEMA 2 TECNOLOGÍA INDUSTRIAL II

PROBLEMAS TEMA 2 TECNOLOGÍA INDUSTRIAL II 1. Dibujar un diagrama de equilibrio entre dos componentes cualesquiera A y B, solubles completamente en estado sólido que solidifican en su estado puro a 1000 y 1300 ºC, respectivamente. Situar en la

Más detalles

TRANSFORMACIONES EN ESTADO SOLIDO

TRANSFORMACIONES EN ESTADO SOLIDO TRANSFORMACIONES EN ESTADO SOLIDO Después de solidificada una aleación puede sufrir transformaciones posteriores. Se presenta en metales que tienen al menos un componente que sufre transformaciones alotrópicas

Más detalles

4. DIFUSION EN SÓLIDO

4. DIFUSION EN SÓLIDO 4. DIFUSION EN SÓLIDO MATERIALES 13/14 ÍNDICE 1. Conceptos generales. Mecanismos de difusión. 3. Leyes de Fick. 1. Estado estacionario.. Estado no estacionario. 4. Factores de difusión. 5. Aplicaciones

Más detalles

Departamento de Tecnologías 1 IES Valle del Sol. Selectividad 2015 SELECTIVIDAD 2014 SELECTIVIDAD 2013

Departamento de Tecnologías 1 IES Valle del Sol. Selectividad 2015 SELECTIVIDAD 2014 SELECTIVIDAD 2013 1 IES Valle del Sol No hay ejercicios de este tema No hay ejercicios de este tema. Selectividad 2015 SELECTIVIDAD 2014 SELECTIVIDAD 2013 1. Dos metales A y B solidifican a 1000 ºC y 500 ºC respectivamente

Más detalles

Estructuras Cristalinas. Julio Alberto Aguilar Schafer

Estructuras Cristalinas. Julio Alberto Aguilar Schafer Estructuras Cristalinas Julio Alberto Aguilar Schafer Modelo del estado líquido los metales Modelo del paso del estado líquido al estado sólido de los metales Equilibrio líquido-vapor Presión de vapor

Más detalles

TEMA IV.- ALEACIONES DE HIERRO Y CARBONO

TEMA IV.- ALEACIONES DE HIERRO Y CARBONO TEMA IV.- ALEACIONES DE HIERRO Y CARBONO El hierro puro apenas tiene aplicaciones industriales, pero formando aleaciones con el carbono (además de otros elementos), es el metal más utilizado en la industria

Más detalles

BLOQUE IV.- Materiales metálicos. Tema 10.- Fundiciones

BLOQUE IV.- Materiales metálicos. Tema 10.- Fundiciones BLOQUE IV.- Materiales metálicos * William F. Smith Fundamentos de la Ciencia e Ingeniería de Materiales. Tercera Edición. Ed. Mc-Graw Hill * James F. Shackerlford Introducción a la Ciencia de Materiales

Más detalles

DIFUSIÓN UNIVERSIDAD TECNOLÓGICA DE PEREIRA TECNOLOGIA MECANICA

DIFUSIÓN UNIVERSIDAD TECNOLÓGICA DE PEREIRA TECNOLOGIA MECANICA DIFUSIÓN UNIVERSIDAD TECNOLÓGICA DE PEREIRA TECNOLOGIA MECANICA 1 CONTENIDO Concepto de difusión Mecanismos de difusión Difusión en régimen permanente y en régimen transitório Fatores que influeyen en

Más detalles

Informe 3: Ensayo de dureza en Acero con distintos tratamientos termicos. Ciencias de los Materiales CM3201

Informe 3: Ensayo de dureza en Acero con distintos tratamientos termicos. Ciencias de los Materiales CM3201 Universidad de Chile Facultad de Ciencias Físicas y Matemáticas Departamento de Ciencia de los Materiales Informe 3: Ensayo de dureza en Acero con distintos tratamientos termicos Ciencias de los Materiales

Más detalles

Transformación en estado sólido: Aspectos Básicos

Transformación en estado sólido: Aspectos Básicos Transformación en estado sólido: Aspectos Básicos Tema: Transformación en estado sólido: aspectos básicos Abstract: En este tema se presentan los aspectos teóricos de la termodinámica asociada a los procesos

Más detalles

convección (4.1) 4.1. fundamentos de la convección Planteamiento de un problema de convección

convección (4.1) 4.1. fundamentos de la convección Planteamiento de un problema de convección convección El modo de transferencia de calor por convección se compone de dos mecanismos de transporte, que son, la transferencia de energía debido al movimiento aleatorio de las moléculas (difusión térmica)

Más detalles

Hoja de problemas Tema 7

Hoja de problemas Tema 7 Hoja 7 FUNDAMENTOS DE CIENCIA DE MATERIALES 1 Hoja de problemas Tema 7 1. Sea el diagrama de fases esquemático de la figura para el sistema A-B. (a) Indique la posición de las líneas de liquidus, solidus

Más detalles

TEMA 3: ALEACIONES Fe-C, PROPIEDADES Y CLASIFICACIÓN. 2.- Formas de encontrar el carbono en las aleaciones férreas

TEMA 3: ALEACIONES Fe-C, PROPIEDADES Y CLASIFICACIÓN. 2.- Formas de encontrar el carbono en las aleaciones férreas TEMA 3: ALEACIONES Fe-C, PROPIEDADES Y CLASIFICACIÓN 1.- Estados alotrópicos del Hierro (Fe) Según las condiciones de, el hierro puede presentar diferentes estados, con mayor o menor capacidad para disolver

Más detalles

GUÍA DE DISCUSIÓN DE PROBLEMAS 4 TEMA DIFUSIÓN EN MATERIALES DE INGENIERÍA

GUÍA DE DISCUSIÓN DE PROBLEMAS 4 TEMA DIFUSIÓN EN MATERIALES DE INGENIERÍA UNIVERSIDAD DON BOSCO FACULTAD DE INGENIERÍA ESCUELA DE INGENIERÍA MECÁNICA Asignatura: "Ciencia de los Materiales" I- SECCION DE PREGUNTAS: GUÍA DE DISCUSIÓN DE PROBLEMAS 4 TEMA DIFUSIÓN EN MATERIALES

Más detalles

Balance de masa con reacción química. Balances de masa con reacción química en reactores discontinuos y continuos.

Balance de masa con reacción química. Balances de masa con reacción química en reactores discontinuos y continuos. Balance de masa con química. Balances de masa con química en reactores discontinuos y continuos. La aparición de una química en un proceso impone las restricciones adicionales dadas por la ecuación estequiométrica

Más detalles

Equilibrio sólido- líquido en sistemas de dos componentes

Equilibrio sólido- líquido en sistemas de dos componentes Equilibrio sólido- líquido en sistemas de dos componentes Miscibilidad en fase líquida e inmiscibilidad en fase sólida: sean C y B dos sustancias miscibles en todas las proporciones en la fase líquida

Más detalles

Análisis Gravimétrico

Análisis Gravimétrico Análisis Gravimétrico Noviembre, 2012 Clasificación del Análisis Químico Análisis Químico Análisis químico cualitativo Análisis químico cuantitativo Qué hay? Cuánto hay? Identificar los componentes Cuantificar

Más detalles

CIDEAD. 2º BACHILLERATO.TECNOLOGÍA INDUSTRIAL II. Tema 5.- Los tratamientos térmicos de los aceros.

CIDEAD. 2º BACHILLERATO.TECNOLOGÍA INDUSTRIAL II. Tema 5.- Los tratamientos térmicos de los aceros. Desarrollo del tema: 1. Estados alotrópicos del hierro. 2. Aleaciones hierro carbono. Su composición 3. Constitución de las aleaciones hierro carbono. 4. Estructura de las aleaciones Fe C 5. Diagrama de

Más detalles

Propiedades de la materia. Características de sólidos, líquidos y gases

Propiedades de la materia. Características de sólidos, líquidos y gases Propiedades de la materia Características de sólidos, líquidos y gases Fluidos Líquidos Ej: H 2 O Estados de la materia Gases Ej: O 2 Amorfos Ej: caucho Cristalinos Ej: sal, azúcar Sólidos Metálicos Enlace

Más detalles

Tema 5. Aleaciones metálicas. El sistema Fe-C.

Tema 5. Aleaciones metálicas. El sistema Fe-C. Tema 5. Aleaciones metálicas. El sistema Fe-C. Problemas sobre aleaciones Fe-C, y cinética de las transformaciones (W.D. Callister Ed. Reverté - Cap 9 y 10). 9.47. Cuál es el porcentaje de carbono de un

Más detalles

TEMA 3: ALEACIONES Fe-C, PROPIEDADES Y CLASIFICACIÓN. 2.- Formas de encontrar el carbono en las aleaciones férreas

TEMA 3: ALEACIONES Fe-C, PROPIEDADES Y CLASIFICACIÓN. 2.- Formas de encontrar el carbono en las aleaciones férreas TEMA 3: ALEACIONES Fe-C, PROPIEDADES Y CLASIFICACIÓN 1.- Estados alotrópicos del Hierro (Fe) Según las condiciones de temperatura, el hierro puede presentar diferentes estados, con mayor o menor capacidad

Más detalles

CONSTRUCCIÓN DEL DIAGRAMA Fe- C. FASES DEL FE PURO

CONSTRUCCIÓN DEL DIAGRAMA Fe- C. FASES DEL FE PURO CONSTRUCCIÓN DEL DIAGRAMA Fe- C. FASES DEL FE PURO T Fe Líquido. Amorfo A 1536 C es la T de fusión del Fe. A 1536 C se forma Fe delta-fe - sólido si estoy disminuyendo T. Presenta estructura BCC Fe delta

Más detalles

TEMA 4. IMPERFECIONES EN SÓLIDOS

TEMA 4. IMPERFECIONES EN SÓLIDOS TEMA 4. IMPERFECIONES EN SÓLIDOS En el Tema 3 se ha descrito el SÓLIDO CRISTALINO mediante la aproximación del CRISTAL IDEAL, que tomamos como modelo de perfección cristalina Los sólidos cristalinos reales

Más detalles

LA MATERIA: ESTADOS DE AGREGACIÓN

LA MATERIA: ESTADOS DE AGREGACIÓN LA MATERIA: ESTADOS DE AGREGACIÓN 1. PROPIEDADES DE LA MATERIA Materia: es todo aquello que existe, tiene masa y ocupa un volumen, los distintos tipos de materia se llaman sustancias. El sistema material

Más detalles

CINÉTICA QUÍMICA. Dr. Hugo Cerecetto. Prof. Titular de Química

CINÉTICA QUÍMICA. Dr. Hugo Cerecetto. Prof. Titular de Química CINÉTICA QUÍMICA Dr. Hugo Cerecetto Prof. Titular de Química Temario 2) La reacción química: - Nociones de Termoquímica y Termodinámica. Conceptos de entalpía y entropía de reacción. Energía libre. Espontaneidad

Más detalles

Tema 3. Solidificación, defectos y difusión en sólidos

Tema 3. Solidificación, defectos y difusión en sólidos Tema 3. Solidificación, defectos y difusión en sólidos 2. Defectos a) Defectos puntuales b) Dislocaciones c) Defectos superficiales 3. Difusión en sólidos a) Generalidades b) Mecanismos de difusión c)

Más detalles

Aleaciones Hierro-carbono

Aleaciones Hierro-carbono TEMA 8 : ALEACIONES DE BASE HIERRO Introducción. Aleaciones de base hierro y sus tratamientos. Diagrama hierro carbono. Fundiciones. Tratamientos térmicos: recocido, temple, normalizado. Aleaciones Hierro-carbono

Más detalles

GUÍA DE DISCUSIÓN DE CONCEPTOS Y PROBLEMAS. " DIAGRAMA Fe - Fe 3 C "

GUÍA DE DISCUSIÓN DE CONCEPTOS Y PROBLEMAS.  DIAGRAMA Fe - Fe 3 C UNIVERSIDAD DON BOSCO FACULTAD DE INGENIERÍA ESCUELA DE INGENIERÍA MECÁNICA Asignatura: CIENCIA DE LOS MATERIALES CUESTIONARIO GUÍA DE DISCUSIÓN DE CONCEPTOS Y PROBLEMAS " DIAGRAMA Fe - Fe 3 C " 1.- Describir

Más detalles

Curso Hidrogeoquímica para Dummies

Curso Hidrogeoquímica para Dummies Curso Hidrogeoquímica para Dummies Sesión 7 Fundamentos de Cinética www.gidahatari.com Tasas de Reacción A + B C Para que se produzca una reacción se deben dar un conjunto de pasos. A + B k 1 C C k 1 A

Más detalles

Importancia del hierro en la metalurgia

Importancia del hierro en la metalurgia DIAGRAMA Fe - C Importancia del hierro en la metalurgia Afinidad química Capacidad de solubilidad de otros elementos Propiedad alotrópica en estado sólido Capacidad para variar sustancialmente la estructura

Más detalles

Capítulo 7 Diagramas de fase y transformaciones de fase

Capítulo 7 Diagramas de fase y transformaciones de fase Capítulo 7 Diagramas de fase y transformaciones de fase 1 Tema 7: Diagramas de fase y transformaciones de fase 1. Definiciones 2. Diagramas de fase 3. Cinética: nucleación y crecimiento 4. Tratamientos

Más detalles

Tema 4.- Solidificación y Difusión

Tema 4.- Solidificación y Difusión BLOQUE II.- ESTRUCTURA * William F. Smith Fundamentos de la Ciencia e Ingeniería de Materiales. Tercera Edición. Ed. Mc-Graw Hill * James F. Shackerlford Introducción a la Ciencia de Materiales para Ingenieros.

Más detalles

13. SINTERIZADO PULVIMETALURGIA CARACTERÍSTICAS CARACTERIZACÓN DE POLVOS PROPIEDADES DE LA MASA DE POLVOS

13. SINTERIZADO PULVIMETALURGIA CARACTERÍSTICAS CARACTERIZACÓN DE POLVOS PROPIEDADES DE LA MASA DE POLVOS 13. SINTERIZADO 1 Materiales I 13/14 ÍNDICE CARACTERÍSTICAS CARACTERIZACÓN DE POLVOS PROPIEDADES DE LA MASA DE POLVOS COMPRESIBILIDAD RESISTENCIA EN VERDE SINTERABILIDAD COMPACTACIÓN DE POLVOS METÁLICOS

Más detalles

TEMAS Diciembre Belén Molina Sánchez UNIVERSIDAD ANTONIO DE NEBRIJA ASIGNATURA: MATERIALES I

TEMAS Diciembre Belén Molina Sánchez UNIVERSIDAD ANTONIO DE NEBRIJA ASIGNATURA: MATERIALES I TEMAS 22-23 Diciembre 2005 Belén Molina Sánchez 1 CURVAS TEMPERATURA-TIEMPO-TRANSFORMACIÓN El tiempo: la tercera dimensión. En los diagramas de fases se exigía que los cambios de temperatura tuviesen lugar

Más detalles

Diagrama de fases Sn-Pb

Diagrama de fases Sn-Pb Práctica 4 Diagrama de fases Sn-Pb Objetivo Determinación del diagrama de fases Temperatura vs. Composición, a presión atmosférica, de la aleación Estaño - Plomo. Fundamento teórico Casi todos los metales

Más detalles

DIAGRAMA HIERRO-CARBONO

DIAGRAMA HIERRO-CARBONO DIAGRAMA HIERRO-CARBONO 1. Con el diagrama hierro-carbono simplificado de la figura, determina: a) Temperatura de solidificación del hierro puro b) Temperatura de solidificación de la ledeburita (el eutéctico)

Más detalles

Diagramas y transformaciones de fase 7. Transformaciones en estado sólido. Difusionales y no difusionales

Diagramas y transformaciones de fase 7. Transformaciones en estado sólido. Difusionales y no difusionales Diagramas y transformaciones de fase 7. Transformaciones en estado sólido. Difusionales y no difusionales Mª Concepción Merino Casals Departamento de Ciencia de los Materiales e Ingeniería Metalúrgica.

Más detalles

Capítulo 10. Efectos de superficie. Sistema respiratorio

Capítulo 10. Efectos de superficie. Sistema respiratorio Capítulo 10 Efectos de superficie. Sistema respiratorio 1 Tensión superficial El coeficiente de tensión superficial γ es la fuerza por unidad de longitud que hay que realizar para aumentar una superficie:

Más detalles

Un sistema se encuentra en un estado de equilibrio químico cuando su composición no varía con el tiempo.

Un sistema se encuentra en un estado de equilibrio químico cuando su composición no varía con el tiempo. Un sistema se encuentra en un estado de equilibrio químico cuando su composición no varía con el tiempo. N 2 g 3 H 2 g 2 NH 3 g 2 NH 3 g N 2 g 3 H 2 g concentración H 2 N 2 NH 3 concentración NH 3 H 2

Más detalles

El análisis de las curvas de Fanno se refiere a un flujo adiabático isoentrópico en un ducto de área constante.

El análisis de las curvas de Fanno se refiere a un flujo adiabático isoentrópico en un ducto de área constante. Líneas de Fanno. El análisis de las curvas de Fanno se refiere a un flujo adiabático isoentrópico en un ducto de área constante. Los principios que rigen el estudio de las curvas de Fanno se derivan de

Más detalles

Disoluciones. Química General II 2011

Disoluciones. Química General II 2011 Disoluciones Química General II 2011 Disolución Es una mezcla homogénea de dos o mas sustancias. Componentes: Soluto: Sustancia (s) presente (s) en menor cantidad en una disolución, son las sustancias

Más detalles

Tema 20 Propiedades eléctricas de los materiales.

Tema 20 Propiedades eléctricas de los materiales. Tema 20 Propiedades eléctricas de los materiales. Las propiedades eléctricas miden la respuesta del material cuando se le aplica un campo eléctrico. Conductividad eléctrica R i = V ; R= resistencia del

Más detalles

Estructuras Cristalinas más usuales de Metales Puros (y de sus soluciones sólidas) Cristales metálicos

Estructuras Cristalinas más usuales de Metales Puros (y de sus soluciones sólidas) Cristales metálicos Estructuras Cristalinas más usuales de Metales Puros (y de sus soluciones sólidas) Reglas generales Para un cristal al equilibrio químico, los átomos se ordenarán en forma regular y compacta, de manera

Más detalles

TEMA 1: ESTRUCTURA INTERNA DE LOS MATERIALES

TEMA 1: ESTRUCTURA INTERNA DE LOS MATERIALES PERIODO Departamento de Tecnología. IES Nuestra Señora de la Almudena Mª Jesús Saiz TEMA 1: ESTRUCTURA INTERNA DE LOS MATERIALES El átomo: Toda la materia está compuesta por átomos y éstos por partículas

Más detalles

FLUJO DE AGUA EN EL SUELO Y ZONA NO SATURADA

FLUJO DE AGUA EN EL SUELO Y ZONA NO SATURADA Lección 7. Flujo de agua en el suelo. Ley de Darcy. Conductividad hidráulica. Relación entre conductividad hidráulica y tensión. Ecuaciones que rigen la infiltración vertical. Ecuación de Richards. Capacidad

Más detalles

Capítulo II TRATAMIENTOS TÉRMICOS Y SELECCIÓN DEL MATERIAL PARA LA FABRICACIÓN DE LEVAS

Capítulo II TRATAMIENTOS TÉRMICOS Y SELECCIÓN DEL MATERIAL PARA LA FABRICACIÓN DE LEVAS Capítulo II TRATAMIENTOS TÉRMICOS Y SELECCIÓN DEL MATERIAL PARA LA FABRICACIÓN DE LEVAS 2.1) Introducción. Como se dijo en el capítulo anterior, para que un mecanismo leva-seguidor sea vida útil de la

Más detalles

ÓPTICA GEOMÉTRICA MODELO 2016

ÓPTICA GEOMÉTRICA MODELO 2016 ÓPTICA GEOMÉTRICA MODELO 2016 1- Se desea obtener una imagen virtual de doble tamaño que un objeto. Si se utiliza: a) Un espejo cóncavo de 40 cm de distancia focal, determine las posiciones del objeto

Más detalles

CRISTALOGRAFIA. Es un sólido compuesto de átomos, iones o moléculas ordenados de una cierta forma y que se repite en tres dimensiones.

CRISTALOGRAFIA. Es un sólido compuesto de átomos, iones o moléculas ordenados de una cierta forma y que se repite en tres dimensiones. CRISTALOGRAFIA CRISTAL SÓLIDO MONOCRISTALINO SÓLIDO POLICRISTALINO Es un sólido compuesto de átomos, iones o moléculas ordenados de una cierta forma y que se repite en tres dimensiones. Región donde el

Más detalles

CONCEPTOS DE GRAVIMETRÍA Capítulo 27 Harris Capítulo 12 Skoog CAPÍTULO 7 Y 11 HAGE & CARR. Quim 3025 Rolando Oyola 15 1.

CONCEPTOS DE GRAVIMETRÍA Capítulo 27 Harris Capítulo 12 Skoog CAPÍTULO 7 Y 11 HAGE & CARR. Quim 3025 Rolando Oyola 15 1. CONCEPTOS DE GRAVIMETRÍA Capítulo 27 Harris Capítulo 12 Skoog CAPÍTULO 7 Y 11 HAGE & CARR Quim 3025 Rolando Oyola Martínez@2014 15 1 Gravimetría Técnica por excelencia en los siglos 18 y 19. Análisis macro

Más detalles

DEFORMACION DEL ACERO DEFORMACION = CAMBIOS DIMENSIONALES+CAMBIOS ENLA FORMA

DEFORMACION DEL ACERO DEFORMACION = CAMBIOS DIMENSIONALES+CAMBIOS ENLA FORMA DEFORMACION DEL ACERO DEFORMACION = CAMBIOS DIMENSIONALES+CAMBIOS ENLA FORMA Según la norma DIN 17014, el término deformación se define como el cambio dimensional y de forma de un pieza del producto de

Más detalles

Materiales. Examen Final (28/06/2011) PARTE I: Seleccione la respuesta correcta. 0.2 p c/u. Una respuesta incorrecta elimina una correcta.

Materiales. Examen Final (28/06/2011) PARTE I: Seleccione la respuesta correcta. 0.2 p c/u. Una respuesta incorrecta elimina una correcta. Nombre: Materiales. Examen Final (28/06/2011) Grupo/profesor: PARTE I: Seleccione la respuesta correcta. 0.2 p c/u. Una respuesta incorrecta elimina una correcta. 1) Un material ferromagnético puede presentar

Más detalles

CAPITULO 5 PROCESO DE SECADO. Se entiende por secado de alimentos la extracción deliberada del agua que contienen,

CAPITULO 5 PROCESO DE SECADO. Se entiende por secado de alimentos la extracción deliberada del agua que contienen, CAPITULO 5 PROCESO DE SECADO 5.1 SECADO DE ALIMENTOS Se entiende por secado de alimentos la extracción deliberada del agua que contienen, operación que se lleva a cabo en la mayoría de los casos evaporando

Más detalles

QUÉ ES LA TEMPERATURA?

QUÉ ES LA TEMPERATURA? 1 QUÉ ES LA TEMPERATURA? Nosotros experimentamos la temperatura todos los días. Cuando estamos en verano, generalmente decimos Hace calor! y en invierno Hace mucho frío!. Los términos que frecuentemente

Más detalles

TEMA 8 SISTEMA PERIÓDICO Y ENLACES

TEMA 8 SISTEMA PERIÓDICO Y ENLACES TEMA 8 SISTEMA PERIÓDICO Y ENLACES 1. LA TABLA PERIÓDICA Elementos químicos son el conjunto de átomos que tienen en común su número atómico, Z. Hoy conocemos 111 elementos diferentes. Los elementos que

Más detalles

P V = n R T LEYES DE LOS GASES

P V = n R T LEYES DE LOS GASES P V = n R T LEYES DE LOS GASES Estado gaseoso Medidas en gases Leyes de los gases Ley de Avogadro Leyes de los gases Ley de Boyle y Mariotte Ley de Charles y Gay-Lussac (1ª) Ley de Charles y Gay-Lussac

Más detalles

Tema 5 Fases sólidas en los materiales. Formación de la microestructura.

Tema 5 Fases sólidas en los materiales. Formación de la microestructura. Tema 5 Fases sólidas en los materiales. Formación de la microestructura. os materiales en estado sólido poseen microestructura. a microestructura no es más que el conjunto de granos, o cristales, observados

Más detalles

DISOLUCIONES UNIDAD IV. Licda. Miriam Marroquín Leiva

DISOLUCIONES UNIDAD IV. Licda. Miriam Marroquín Leiva DISOLUCIONES UNIDAD IV 1 DISOLUCIÓN Es una mezcla homogénea de dos o más sustancias; el soluto y el disolvente. Es un término utilizado para describir un sistema en el cual una o más sustancias están mezcladas

Más detalles

Estructuras de equilibrio

Estructuras de equilibrio Estructuras de equilibrio Austenita. Fase de alta temperatura que se obtiene calentando entre 28 a 56 por encima de la temperatura A 3 del acero. Las temperaturas muy elevadas conducen al crecimiento de

Más detalles

1. Los elementos químicos

1. Los elementos químicos RESUMEN de la UNIDAD 3. ELEMENTOS Y COMPUESTOS 1. Los elementos químicos La materia está formada por partículas denominadas átomos que, a su vez, están formados por otras partículas más pequeñas: protones,

Más detalles

Líquido. Sólido. Gas Plasma. educacionsanitariaymas.blogspot.com.

Líquido. Sólido. Gas Plasma.  educacionsanitariaymas.blogspot.com. Líquido Sólido www.juntadeandalucia.es educacionsanitariaymas.blogspot.com Gas Plasma www.palimpalem.com En el estado sólido las moléculas se encuentran muy juntas, tienen mucha cohesión. Las partículas

Más detalles

Unidad 2. La materia

Unidad 2. La materia Física y Química Unidad 2: La materia Unidad 2. La materia Índice de contenido 1. Estados de agregación de la materia...3 2. Cambios de estado...4 3. Clasificación de la materia...6 3.1.- Métodos de separación

Más detalles

Tratamientos térmicos

Tratamientos térmicos Tratamientos térmicos Endurecimiento del acero Temple (revenido) Recocido Cementado Carburización por empaquetado Carburización en baño líquido Carburización por gas Carbonitrurado, cianurado y nitrurado

Más detalles

El átomo: sus partículas elementales

El átomo: sus partículas elementales El átomo: sus partículas elementales Los rayos catódicos estaban constituidos por partículas cargadas negativamente ( a las que se llamo electrones) y que la relación carga/masa de éstas partículas era

Más detalles

EL AGUA EN LA ÁTMOSFERA

EL AGUA EN LA ÁTMOSFERA Programa Regional de Meteorología / IANIGLA - CONICET EL AGUA EN LA ÁTMOSFERA www.prmarg.org E-mail: info@prmarg.org Av. Ruíz Leal s/n Parque General San Martín. Mendoza - Argentina Tel. (+54-261 ) 428

Más detalles

Thompson (1898) Rutherford (1911) Bohr (1913) Schrödinger (1926) NUMEROS CUANTICOS

Thompson (1898) Rutherford (1911) Bohr (1913) Schrödinger (1926) NUMEROS CUANTICOS Thompson (1898) Modelo Atómico Rutherford (1911) Bohr (1913) Propiedad corpuscular de las onda (PLANCK) Propiedad ondulatoria de las partículas (De Broglie) Schrödinger (1926) Números cuánticos 1 NUMEROS

Más detalles

Práctica No 12. Determinación experimental de la Presión de vapor de un líquido puro

Práctica No 12. Determinación experimental de la Presión de vapor de un líquido puro Práctica No 12 Determinación experimental de la Presión de vapor de un líquido puro 1. Objetivo general: Evaluar la entalpía de vaporización mediante el modelo de Clausius y Clapeyron. 2. Marco teórico:

Más detalles

UNE RAFAEL MARÍA BARALT PROGRAMA DE INGENIERÍA Y TECNOLOGÍA

UNE RAFAEL MARÍA BARALT PROGRAMA DE INGENIERÍA Y TECNOLOGÍA UNE RAFAEL MARÍA BARALT PROGRAMA DE INGENIERÍA Y TECNOLOGÍA Proyecto de Ingeniería en Gas INTRODUCCIÓN A LOS MATERIALES Elaborado por: Ing. Roger Chirinos. MSc Cabimas, Abril 2011 FUNDAMENTACIÓN Asignatura:

Más detalles

Función de dos variables

Función de dos variables Funciones de dos y más variables, dominio y rango, y curva de nivel Marlon Fajardo Molinares - fenix.75@hotmail.com 1. Función de dos variables 2. Funciones de varias variables 3. Método para hallar el

Más detalles

Una mezcla es un compuesto formado por varias sustancias con distintas propiedades

Una mezcla es un compuesto formado por varias sustancias con distintas propiedades COMPOSICIÓN DE LA MATERIA Mezclas homogéneas y heterogéneas Una mezcla es un compuesto formado por varias sustancias con distintas propiedades Algunos sistemas materiales como la leche a simple vista parecen

Más detalles

SEGUNDO DE BACHILLERATO QUÍMICA. a A + b B c C + d D

SEGUNDO DE BACHILLERATO QUÍMICA. a A + b B c C + d D TEMA 5. CINÉTICA QUÍMICA a A + b B c C + d D 1 d[a] 1 d[b] 1 d[c] 1 d[d] mol v = = = + = + a dt b dt c dt d dt L s El signo negativo en la expresión de velocidad es debido a que los reactivos desaparecen,

Más detalles

Colección de ejercicios UNIDAD 2

Colección de ejercicios UNIDAD 2 Facultad de Química, UNAM Curso: Química General I, gpo 8 Colección de ejercicios UNIDAD 2 1. Describe cuál fue la contribución al conocimiento de la estructura atómica hecha por cada uno de los siguientes

Más detalles

Campo de velocidades se puede representar mediante una función potencial φ, escalar

Campo de velocidades se puede representar mediante una función potencial φ, escalar Flujo Potencial Campo de velocidades se puede representar mediante una función potencial φ, escalar Condición necesaria flujo irrotacional, V=0. Hipótesis: Flujo irrotacional, incompresible y permanente

Más detalles

Electricidad y calor

Electricidad y calor Electricidad y calor Webpage: http://paginas.fisica.uson.mx/qb 2007 Departamento de Física Universidad de Sonora Temario A. Termodinámica 1. Temperatura y Ley Cero. (3horas) 1. Equilibrio Térmico y ley

Más detalles

Electricidad y calor. Webpage: Departamento de Física Universidad de Sonora

Electricidad y calor. Webpage: Departamento de Física Universidad de Sonora Electricidad y calor Webpage: http://paginas.fisica.uson.mx/qb 2007 Departamento de Física Universidad de Sonora Temario A. Termodinámica 1. Temperatura y Ley Cero. (3horas) 1. Equilibrio Térmico y ley

Más detalles

LEYES DE LOS GASES. El volumen es directamente proporcional a la cantidad de gas:

LEYES DE LOS GASES. El volumen es directamente proporcional a la cantidad de gas: LEYES DE LOS GASES LEY DE AVOGADRO: Esta ley, descubierta por Avogadro a principios del siglo XIX, establece la relación entre la cantidad de gas y su volumen cuando se mantienen constantes la temperatura

Más detalles

Tema 14 Endurecimiento por transformación de fase. Tratamientos térmicos.

Tema 14 Endurecimiento por transformación de fase. Tratamientos térmicos. Tema 14 Endurecimiento por transformación de fase. Tratamientos térmicos. Las fases en equilibrio solamente pueden darse cuando el material se enfría muy lentamente desde la fase de austenita. Cuando el

Más detalles

GUIA DE ESTUDIO Nº 7: Equilibrio Químico

GUIA DE ESTUDIO Nº 7: Equilibrio Químico Página26 GUIA DE ESTUDIO Nº 7: Equilibrio Químico I.- Conceptos básicos: Equilibrio químico y constante de equilibrio. Concentraciones en el equilibrio y evolución de un sistema hacia el equilibrio. Principio

Más detalles

2. Termodinámica macroscópica de gases

2. Termodinámica macroscópica de gases . Termodinámica macroscópica de gases Sugerencias para el trabajo en clase: Los siguientes problemas están pensados para abordar algunos aspectos particulares de la termodinámica de gases ideales y reales.

Más detalles

ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL INSTITUTO DE CIENCIAS FÍSICAS II TÉRMINO PRIMERA EVALUACIÓN DE FÍSICA GENERAL II SOLUCIÓN

ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL INSTITUTO DE CIENCIAS FÍSICAS II TÉRMINO PRIMERA EVALUACIÓN DE FÍSICA GENERAL II SOLUCIÓN ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL INSTITUTO DE CIENCIAS FÍSICAS II TÉRMINO 2011-2012 PRIMERA EVALUACIÓN DE FÍSICA GENERAL II SOLUCIÓN PRIMERA PARTE: Ejercicios de opción múltiple (2 puntos c/u)

Más detalles

1817: Döbreiner. Triadas de elementos con propiedades semejantes. 1865: Newlands. Ley de las octavas. Ordenó 55 elementos.

1817: Döbreiner. Triadas de elementos con propiedades semejantes. 1865: Newlands. Ley de las octavas. Ordenó 55 elementos. Evolución histórica de la Tabla Periódica 1817: Döbreiner. Triadas de elementos con propiedades semejantes. 1865: Newlands. Ley de las octavas. Ordenó 55 elementos. 1869: Mendeleev y Meyer: las propiedades

Más detalles