Las Gramáticas Formales
|
|
|
- María Cristina Mora Valdéz
- hace 8 años
- Vistas:
Transcripción
1 Definición de Las Como definir un Lenguaje Formal Universidad de Cantabria
2 Esquema Motivación Definición de 1 Motivación 2 Definición de 3
3 Problema Motivación Definición de Dado un lenguaje L, se nos presenta el problema de describirlo. Para resolverlo se pueden tomar dos caminos: Dar una forma de generar todas las palabras del lenguaje. Dar un algoritmo para demostrar que una palabra esta en el lenguaje.
4 Problema Motivación Definición de Dado un lenguaje L, se nos presenta el problema de describirlo. Para resolverlo se pueden tomar dos caminos: Dar una forma de generar todas las palabras del lenguaje. Dar un algoritmo para demostrar que una palabra esta en el lenguaje.
5 Definición de Diferencias entre los Métodos A simple vista, los dos métodos no son equivalentes. Podemos pensar por ejemplo en el lenguaje formado por los programas escritos en java que devuelven para cualquier entrada Hola Mundo.
6 Definición de Diferencias entre los Métodos También tenemos la otra cara de la moneda, saber reconocer no implica saber generar elementos del conjunto. Un ejemplo lo darían el lenguaje definido por los libros en español.
7 Definición de La Idea detrás de una Gramática Los lenguajes que vamos a tratar no son simples conjuntos de palabras. Las palabras están porque tienen una estructura, han sido generadas por unas reglas.
8 Definición de Las Definición () Una gramática formal es una cuaterna G = (V, Σ, Q 0, P), donde: V es un conjunto finito llamado alfabeto de símbolos no terminales o, simplemente, alfabeto de variables. Σ es otro conjunto finito, que verifica V Σ = y se suele denominar alfabeto de símbolos terminales. Q 0 V es una variable distinguida que se denomina símbolo inicial. P (V Σ) (V Σ) es un conjunto finito llamado conjunto de producciones (o, simplemente, sistema de reescritura).
9 Definición de Como Operar: Sistema de Transición Para poder definir la dinámica asociada a una gramática, necesitamos asociarle un sistema de transición.
10 Definición de Como Operar: Sistema de Transición Definición Sea G = (V, Σ, Q 0, P) una gramática, definiremos el sistema de transición asociado (S G, G ) dado por las propiedades siguientes: El espacio de configuraciones será dado por: S G := (V Σ). Dadas dos configuraciones s 1, s 2 S G, decimos que s 1 G s 2 si se verifica la siguiente propiedad: x, y, α, β S G = (V Σ), tales que s 1 := x α y, s 2 := x β y, (α, β) P.
11 Definición de Lenguaje generado por una Gramática Definición Dada una gramática G = (V, Σ, Q 0, P) y su espacio de configuraciones S G se define el lenguaje generado por una gramática al conjunto de configuraciones s 1 tales que: Q 0 G s 1, además s 1 Σ.
12 Ejemplos Motivación Definición de Ejemplo Consideremos la gramática: G = (V, Σ, Q 0, P), donde V := {Q 0 }, Σ := {a, b},, P := {(Q 0, aq 0 ), (Q 0, λ)}. El sistema de transición tiene por configuraciones S := {Q 0, a, b} y un ejemplo de una computación sería: aaq 0 bb aaaq 0 bb aaaaq 0 bb aaaaλbb = aaaabb. Nótese que las dos primeras veces hemos usado la regla de reescritura (Q 0, aq 0 ) y la última vez hemos usado (Q 0, λ).
13 Ejemplos Motivación Definición de Ejemplo Utilizando la misma gramática podemos también estudiar el lenguaje generado por la gramática: L = {a, aa, aaa,...}. Para generar una palabra con n letras a seguidas simplemente hacemos Q 0 aq 0... } a. {{.. a } Q 0 } a. {{.. a }. n veces n veces
14 Notación Motivación Definición de Por analogía con el sistema de transición, se suelen usar la notación A B en lugar de (A, B) P, para indicar una producción. Y, en el caso de tener más de una producción que comience en el mismo objeto, se suele usar A B C, en lugar de escribir A B, A C.
15 Definición de Mas Ejemplos Ejemplo Consideremos la gramática: G = (V, Σ, Q 0, P), donde V := {Q 0 }, Σ := {a, b},, P := {Q 0 aab, aa aaab λ}. Un ejemplo de una computación sería: Q 0 aab aaab aab. Curiosamente, el lenguaje especificado también puede ser especificado por esta otra gramática: V := {Q 0 }, Σ := {a, b},, P := {Q 0 b aa, A aa b}.
16 Definición de Notación BNF Es un modelo de notación que recuerda más los manuales de programación. En él, se introducen los siguientes cambios: Las variables X V se representan mediante X. Los símbolos terminales (del alfabeto Σ) no son modificados. El símbolo asociado a las producciones es reemplazado por =.
17 Definición de Ejemplo de Notación BNF Ejemplo La gramática que genera el lenguaje L = {λ, a, aa, aaa,...} se puede describir de la siguiente manera V = { Q }, Σ = {a, b}, donde las producciones serían: Q = a Q Q = λ.
18 Definición de Notación EBNF Es una extensión de la notación anterior. Básicamente, añade funcionalidad a la notación BNF, permitiendo repeticiones o diferentes opciones.
19 Definición de Notación EBNF Estas son las principales cambios con respecto a la notación BNF, Las variables X V no son modificadas. Los símbolos terminales (del alfabeto Σ) se representan entre comillas simples. El símbolo asociado a las producciones es remplazado por :. Se introducen nuevos símbolos para representar repeticiones (ninguna, una o mas repeticiones) + (una repetición al menos).? indica que la expresión puede ocurrir o no.
20 Definición de Notación EBNF También tiene una representación gráfica A : a B Figura: Representación A: a B
21 Definición de Notación EBNF B : C Figura: Representación B:C*
22 Definición de Notación EBNF D : F E Figura: Representación D:F E
Expresiones Regulares
Conjuntos Regulares y Una forma diferente de expresar un lenguaje Universidad de Cantabria Conjuntos Regulares y Esquema 1 Motivación 2 Conjuntos Regulares y 3 4 Conjuntos Regulares y Motivación El problema
Expresiones Regulares y Derivadas Formales
y Derivadas Formales Las Derivadas Sucesivas. Universidad de Cantabria Esquema 1 2 3 Derivadas Sucesivas Recordemos que los lenguajes de los prefijos dan información sobre los lenguajes. Derivadas Sucesivas
Expresiones Regulares y Gramáticas Regulares
y Gramáticas Regulares Sistemas Lineales. Universidad de Cantabria Esquema Idea 1 Idea 2 3 Problema Idea Nos preguntamos si las expresiones regulares generan los mismos lenguajes que las gramáticas regulares.
Equivalencia Entre PDA y CFL
Equivalencia Entre PDA y CFL El Lenguaje aceptado por un Autómata con Pila Universidad de Cantabria Esquema 1 Introducción 2 3 Lenguaje Aceptado por un Autómata Como en los autómatas finitos, se puede
Compiladores. Análisis Sintáctico Ascendente. Adrian Ulises Mercado Martínez. Facultad de Ingeniería, UNAM. 5 de septiembre de 2013
Compiladores Análisis Sintáctico Ascendente Adrian Ulises Mercado Martínez Facultad de Ingeniería, UNAM 5 de septiembre de 2013 Adrian Ulises Mercado Martínez (FI,UNAM) Compiladores 5/07/2013 1 / 34 Índice
Lenguajes y Compiladores Aspectos Formales (Parte 2) Compiladores
Facultad de Ingeniería de Sistemas Lenguajes y Aspectos Formales (Parte 2) 2007 1 Derivaciones El proceso de búsqueda de un árbol sintáctico para una cadena se llama análisis sintáctico. El lenguaje generado
Lenguajes Formales y Monoides
Universidad de Cantabria Esquema 1 2 3 La operación esencial sobre Σ es la concatenación o adjunción de palabras: : Σ Σ Σ (x, y) x y es decir, si x = x 1 x n e y = y 1 y m, entonces x y = x 1 x n y 1 y
LENGUAJES Y GRAMÁTICAS
LENGUAJES Y GRAMÁTICAS Orlando Arboleda Molina Escuela de Ingeniería de Sistemas y Computación de La Universidad del Valle 20 de septiembre de 2008 Contenido Lenguajes y Gramáticas Gramáticas Gramáticas
Fundamentos de Ciencias de la Computación Trabajo Práctico N 2 Lenguajes Libres del Contexto y Sensibles al Contexto Segundo Cuatrimestre de 2002
Departamento de Cs. e Ingeniería de la Computación Universidad Nacional del Sur Ejercicios Fundamentos de Ciencias de la Computación Trabajo Práctico N 2 Lenguajes Libres del Contexto y Sensibles al Contexto
1. Cadenas EJERCICIO 1
LENGUAJES FORMALES Y AUTÓMATAS CURSO 2006/2007 - BOLETÍN DE EJERCICIOS Víctor J. Díaz Madrigal y José Miguel Cañete Departamento de Lenguajes y Sistemas Informáticos 1. Cadenas La operación reversa aplicada
Tema 4: Gramáticas independientes del contexto. Teoría de autómatas y lenguajes formales I
Tema 4: Gramáticas independientes del contexto Teoría de autómatas y lenguajes formales I Bibliografía Hopcroft, J. E., Motwani, R., y Ullman, J. D. Introducción a la Teoría de Autómatas, Lenguajes y Computación.
Procesadores de Lenguaje
Procesadores de Lenguaje Repaso TALF Cristina Tîrnăucă Dept. Matesco, Universidad de Cantabria Fac. Ciencias Ing. Informática Primavera de 2013 La Jerarquía de Chomsky Cuatro niveles de lenguajes formales
LENGUAJES Y GRAMÁTICAS
LENGUAJES Y GRAMÁTICAS LENGUAJES Y GRAMÁTICAS La sintaxis de un lenguaje natural en lenguajes como el ingles, español, alemán o francés es extremadamente complicada, dado que es imposible especificar la
PROGRAMACIÓN II AÑO 2009 TALLER 3: TEORÍA DE LENGUAJES Y AUTÓMATAS
Licenciatura en Sistemas de Información PROGRAMACIÓN II AÑO 2009 TALLER 3: TEORÍA DE LENGUAJES Y AUTÓMATAS UNSE FCEyT 1. DESCRIPCIÓN Este taller consta de tres partes. En cada una de ellas se especifican
Modelos De Computación. Guía Modelos de Computación. Tema I: Lenguajes y Gramáticas
Guía Modelos de Computación Tema I: Lenguajes y Gramáticas Introducción La sintaxis de un lenguaje natural, esto es, la de los lenguajes hablados, como el inglés, el español, el alemán o el francés, es
TEORÍA DE AUTÓMATAS Y LENGUAJES FORMALES Práctica 5 - Simplificación de gramáticas incontextuales
TEORÍA DE AUTÓMATAS Y LENGUAJES FORMALES Práctica 5 - Simplificación de gramáticas incontextuales 1. Objetivos 2. Representación de los datos en Mathematica 3. Eliminación de símbolos inútiles 3.1. Símbolos
Introducción. Las gramáticas definen las reglas que definen a los lenguajes Las reglas pueden tener una diversa variedad de esquemas
Gramáticas Introducción Las gramáticas definen las reglas que definen a los lenguajes Las reglas pueden tener una diversa variedad de esquemas En algunos lenguajes, una sucesión de símbolos depende del
La Ambigüedad en el Parsing
La en el Parsing Definición y Ejemplos Universidad de Cantabria Outline El Problema 1 El Problema 2 3 El Problema En nuestra busqueda por encontrar la estructura exploraremos como elegir una derivación
Máquinas Secuenciales, Autómatas y Lenguajes. Tema 4: Expresiones Regulares. Luis Peña
Máquinas Secuenciales, Autómatas y Lenguajes Tema 4: Expresiones Regulares Luis Peña Sumario Tema 4: Expresiones Regulares. 1. Concepto de Expresión Regular 2. Teoremas de Equivalencia Curso 2012-2013
Compiladores: Análisis Sintáctico. Pontificia Universidad Javeriana Cali Ingenieria de Sistemas y Computación Prof. Gloria Inés Alvarez V.
Compiladores: Análisis Sintáctico Pontificia Universidad Javeriana Cali Ingenieria de Sistemas y Computación Prof. Gloria Inés Alvarez V. Sintaxis Define la estructura del lenguaje Ejemplo: Jerarquía en
Lenguajes Incontextuales
Tema 5: Gramáticas Formales Lenguajes Incontextuales Departamento de Sistemas Informáticos y Computación http://www.dsic.upv.es p.1/31 Tema 5: Gramáticas Formales Gramáticas. Tipos de Gramáticas. Jerarquía
Gramáticas tipo 0 o Estructura de frase En este tipo de gramáticas no hay restricción en su producciones y tienen la forma siguiente.
Gramáticas Libres de Contexto 1. Gramáticas. Como vimos en el capítulo anterior una gramática es un conjunto finito de reglas que describen todas las secuencias de símbolos que pertenecen a un lenguaje.
INTRODUCCIÓN A COMPILADORES Y LENGUAJES FORMALES LENGUAJES FORMALES
Todos los derechos de propiedad intelectual de esta obra pertenecen en exclusiva a la Universidad Europea de Madrid, S.L.U. Queda terminantemente prohibida la reproducción, puesta a disposición del público
Máquinas de estado finito y expresiones regulares
Capítulo 3 Máquinas de estado finito y expresiones regulares En este tema definiremos y estudiaremos máquinas de estado finito, llamadas también máquinas de estado finito secuenciales o autómatas finitos.
Clase 11: Gramáticas. Solicitado: Ejercicios 09: Gramáticas
Solicitado: Ejercicios 09: Gramáticas M. en C. Edgardo Adrián Franco Martínez http://computacion.cs.cinvestav.mx/~efranco @efranco_escom [email protected] 1 Contenido Gramática Elementos de una gramática
Autómatas Mínimos. Encontrar el autómata mínimo. Universidad de Cantabria. Introducción Minimización de Autómatas Deterministas Resultados Algoritmo
Autómatas Mínimos Encontrar el autómata mínimo. Universidad de Cantabria Introducción Dado un lenguaje regular sabemos encontrar un autómata finito. Pero, hay autómatas más sencillos que aceptan el mismo
GRAMATICAS LIBRES DEL CONTEXTO
GRMTICS LIBRES DEL CONTEXTO Estas gramáticas, conocidas también como gramáticas de tipo 2 o gramáticas independientes del contexto, son las que generan los lenguajes libres o independientes del contexto.
ANÁLISIS LÉXICO AUTÓMATAS FINITOS
Todos los derechos de propiedad intelectual de esta obra pertenecen en exclusiva a la Universidad Europea de Madrid, S.L.U. Queda terminantemente prohibida la reproducción, puesta a disposición del público
Lenguajes y Gramáticas
Lenguajes y Gramáticas Teoría de Lenguajes Fernando Naranjo Introduccion Se desarrollan lenguajes de programación basados en el principio de gramática formal. Se crean maquinas cada vez mas sofisticadas
Inducción en definiciones y demostraciones AUTÓMATAS Y LENGUAJES FORMALES PRELIMINARES MATEMÁTICOS. Números naturales. Inducción matemática
Inducción en definiciones y demostraciones AUTÓMATAS Y LENGUAJES FORMALES PRELIMINARES MATEMÁTICOS Francisco Hernández Quiroz Departamento de Matemáticas Facultad de Ciencias, UNAM E-mail: [email protected]
Máquinas de Turing Definición y descripción
Capítulo 12 Máquinas de Turing 12.1. Definición y descripción Definición 1 Se llama máquina de Turing a toda séptupla M = (Γ,Σ,,Q,q 0,f,F), donde: Γ es el alfabeto de símbolos de la cinta. Σ Γ es el alfabeto
Autómatas de Pila y Lenguajes Incontextuales
Autómatas de Pila y Lenguajes Incontextuales Elvira Mayordomo Universidad de Zaragoza 5 de noviembre de 2012 Contenido de este tema 1. Introducción a los autómatas de pila 2. Definiciones 3. Equivalencia
Expresiones regulares, gramáticas regulares Unidad 3
Expresiones regulares, gramáticas regulares Unidad 3 Los LR en la jerarquía de Chomsky La clasificación de lenguajes en clases de lenguajes se debe a N. Chomsky, quien propuso una jerarquía de lenguajes,
Alfabetos, cadenas y lenguajes
Capítulo 1 lfabetos, cadenas y lenguajes 1.1. lfabetos y cadenas Un alfabeto es un conjunto finito no vacío cuyos elementos se llaman símbolos. Denotamos un alfabeto arbitrario con la letra Σ. Una cadena
Propiedades de lenguajes independientes del contexto
Capítulo 12. Propiedades de lenguajes independientes del contexto 12.1. Identificación de lenguajes independientes del contexto Lema de bombeo. 12.2. Propiedades Cierre, Complemento de lenguajes, Sustitución,
Expresiones regulares, gramáticas regulares
Expresiones regulares, gramáticas regulares Los LR en la jerarquía de Chomsky La clasificación de lenguajes en clases de lenguajes se debe a N. Chomsky, quien propuso una jerarquía de lenguajes, donde
16 Análisis sintáctico I
2 Contenido Recordando la estructura de un compilador Recordando el análisis léxico l análisis sintáctico Comparación con el análisis léxico l Rol del Parser Lenguajes de programación Gramáticas structura
Computabilidad y lenguajes formales: Sesión 19. Gramáticas Incontextuales (Context Free Grammars)
Computabilidad y lenguajes formales: Sesión 19. Gramáticas Incontextuales (Context Free Grammars) Prof. Gloria Inés Alvarez V. Departamento de Ciencias e Ingeniería de la Computación Pontificia Universidad
Paréntesis: Una aplicación en lenguajes formales
Paréntesis: Una aplicación en lenguajes formales Vamos a ver una aplicación del Teorema de Immerman-Szelepcsényi en la área de lenguajes formales. IIC3242 Clases de Complejidad 35 / 69 Paréntesis: Una
Introducción a la Lógica y la Computación
Introducción a la Lógica y la Computación Parte III: Lenguajes y Autómatas Clase del 7 de Noviembre de 2014 Parte III: Lenguajes y Autómatas Introducción a la Lógica y la Computación 1/20 Lenguajes Formales
Introducción a la Lógica y la Computación
Introducción a la Lógica y la Computación Parte III: Lenguajes y Autómatas Clase del 4 de Noviembre de 2015 Parte III: Lenguajes y Autómatas Introducción a la Lógica y la Computación 1/21 Lenguajes Formales
CAPITULO 2: LENGUAJES
CAPITULO 2: LENGUAJES 2.1. DEFINICIONES PREIAS SIMBOLO: Es una entidad indivisible, que no se va a definir. Normalmente los símbolos son letras (a,b,c,.., Z), dígitos (0, 1,.., 9) y otros caracteres (+,
Lenguajes y Compiladores Aspectos Formales (Parte 1) Compiladores
Facultad de Ingeniería de Sistemas Lenguajes y Aspectos Formales (Parte 1) 1 Aspectos Formales Los compiladores traducen lenguajes que están formalmente definidos a través de reglas que permiten escribir
13.3. MT para reconocer lenguajes
13.3. MT para reconocer lenguajes Gramática equivalente a una MT Sea M=(Γ,Σ,,Q,q 0,f,F) una Máquina de Turing. L(M) es el lenguaje aceptado por la máquina M. A partir de M se puede crear una gramática
Lenguaje Regular. Sumario. Lenguaje Regular. Autómatas y Lenguajes Formales. Capítulo 8: Propiedades de los Lenguajes Regulares
Lenguaje Regular Capítulo 8: Propiedades de los Lenguajes Regulares José Miguel Buenaposada [email protected] Definición 1 (Lenguaje Regular) Un lenguaje L se denomina regular si y sólo si
06 Análisis léxico II
2 Contenido Alfabetos, símbolos y cadenas Operaciones con cadenas Concatenación de dos cadenas Prefijos y sufijos de una cadena Subcadena y subsecuencia Inversión de una cadena Potencia de una cadena Ejercicios
Escribir la expresión regular de un número entero que no acepte que el primer dígito sea cero salvo el número 0. Solución: 0 [1-9][0-9]*
Procesadores de lenguaje Ejercicios del Tema 2 Ejercicio 2.1 Sean L = {a, aa, b} y M = {ab, b }. Describe LM y M 3 por enumercaión LM = { aab, ab, aaab, bab, bb } M 3 = { ababab, ababb, abbab, abbb, babab,
Tema 2. Fundamentos de la Teoría de Lenguajes Formales
Departamento de Tecnologías de la Información Tema 2. Fundamentos de la Teoría de Lenguajes Formales Ciencias de la Computación e Inteligencia Artificial Índice 2.1. Alfabeto 2.2. Palabra 2.3. Operaciones
El Autómata con Pila: Transiciones
El Autómata con Pila: Transiciones El Espacio de Configuraciones Universidad de Cantabria Esquema Introducción 1 Introducción 2 3 Transiciones Necesitamos ahora definir, paso por paso, como se comporta
EJERCICIOS del TEMA 3: Lenguajes independientes del contexto
EJERCICIOS del TEMA 3: Lenguajes independientes del contexto Sobre GICs (gramáticas independientes del contexto) 1. Sea G una gramática con las siguientes producciones: S ASB ε A aab ε B bba ba c ) d )
GRAMÁTICAS LIBRES DE CONTEXTO
GRAMÁTICAS LIBRES DE CONTEXTO Definición Una gramática libre de contexto (GLC) es una descripción estructural precisa de un lenguaje. Formalmente es una tupla G=, donde Vn es el conjunto
autómatas finitos y lenguajes regulares LENGUAJES FORMALES Y
CONTENIDO Reconocedores [HMU2.1]. Traductores [C8]. Diagramas de Estado [HMU2.1]. Equivalencia entre AF deterministas y no deterministas [HMU2.2-2.3]. Expresiones [HMU3]. Propiedades de [HMU4]. Relación
Teoría de Autómatas y Compiladores [ICI-445] Capítulo 1: Lenguajes y Gramáticas Formales
Teoría de Autómatas y Compiladores [ICI-445] Capítulo 1: Lenguajes y Gramáticas Formales Dr. Ricardo Soto [[email protected]] [http://www.inf.ucv.cl/ rsoto] Escuela de Ingeniería Informática Pontificia
CONJUNTOS. Por ejemplo, el E del ejemplo 2 se escribe.
CONJUNTOS La teoría de conjuntos nos permite describir de forma precisa conjuntos de números, de personas, de objetos, etc que comparten una propiedad común. Esto puede ser de gran utilidad al establecer
Autómatas de Pila. Descripciones instantáneas o IDs. El Lenguaje de PDA. Equivalencia entre PDAs y CFGs INAOE (INAOE) 1 / 50
INAOE (INAOE) 1 / 50 Contenido 1 2 3 4 (INAOE) 2 / 50 Pushdown Automata Las gramáticas libres de contexto tienen un tipo de autómata que las define llamado pushdown automata. Un pushdown automata (PDA)
Lenguajes (gramáticas y autómatas)
Lenguajes (gramáticas y autómatas) Elvira Mayordomo Universidad de Zaragoza 19 de septiembre de 2013 Elvira Mayordomo (Universidad de Zaragoza) Lenguajes (gramáticas y autómatas) 19 de septiembre de 2013
Teoría de Autómatas y Lenguajes Formales. Introducción a las Gramáticas. Gramáticas incontextuales
Teoría de utómatas y Lenguajes Formales Introducción a las ramáticas. ramáticas incontextuales José M. Sempere Departamento de Sistemas Informáticos y Computación Universidad Politécnica de Valencia Introducción
Agenda. BNF y EBNF Brevemente, lo necesario para especificar el lenguaje sobre el que vamos a trabajar.
Agenda BNF y EBNF Brevemente, lo necesario para especificar el lenguaje sobre el que vamos a trabajar. JLEX y JCUP Breve descripción del las herramientas para generar el parser o analizador sintáctico.
Nivel del ejercicio : ( ) básico, ( ) medio, ( ) avanzado.
Universidad Rey Juan Carlos Curso 2010 2011 Teoría de Autómatas y Lenguajes Formales Ingeniería Técnica en Informática de Sistemas Hoja de Problemas 12 Propiedades de L.I.C. Nivel del ejercicio : ( ) básico,
Tema: Autómata de Pila
Facultad: Ingeniería Escuela: Computación Asignatura: Compiladores 1 Tema: Autómata de Pila Contenido La presente guía aborda los autómatas de pila, y se enfoca en la aplicación que se le puede dar a estas
TEORÍA DE AUTÓMATAS Y LENGUAJES
TEORÍA DE AUTÓMATAS Y LENGUAJES FORMALES Francisco Vico departamento Lenguajes y Ciencias de la Computación área de conocimiento Ciencias de la Computación e Inteligencia Artificial ETSI Informática Universidad
Interrogación 2. Pontificia Universidad Católica de Chile Escuela de Ingeniería Departamento de Ciencia de la Computación. Segundo Semestre, 2003
Pontificia Universidad Católica de Chile Escuela de Ingeniería Departamento de Ciencia de la Computación Interrogación 2 IIC 2222 Teoría de Autómatas y Lenguajes Formales Segundo Semestre, 2003 Esta interrogación
DEFINICIONES BÁSICAS E INTRODUCCIÓN A LENGUAJES FORMALES
1 DEFINICIONES BÁSICAS E INTRODUCCIÓN A LENGUAJES FORMALES Los LENGUAJES FORMALES están formados por PALABRAS, las palabras son CADENAS y las cadenas están constituidas por SÍMBOLOS de un ALFABETO. SÍMBOLOS
SSL Guia de Ejercicios
1 SSL Guia de Ejercicios INTRODUCCIÓN A LENGUAJES FORMALES 1. Dado el alfabeto = {a, b, c}, escriba las palabras del lenguaje L = {x / x }. 2. Cuál es la cardinalidad del lenguaje L = {, a, aa, aaa}? 3.
Tema 5: Autómatas a pila. Teoría de autómatas y lenguajes formales I
Tema 5: Autómatas a pila Teoría de autómatas y lenguajes formales I Bibliografía Hopcroft, J. E., Motwani, R., y Ullman, J. D. Introducción a la Teoría de Autómatas, Lenguajes y Computación. Addison Wesley.
TIPOS DE GRAMATICAS JERARQUIAS DE CHOMSKY
TIPOS DE GRAMATICAS JERARQUIAS DE CHOMSKY Para el estudio de este tema es necesario analizar dos tipos de gramáticas de la clasificación de Chomsky, las regulares y las independientes de contexto, las
Tema 5. Análisis semántico
Departamento de Tecnologías de la Información Tema 5 Análisis semántico Ciencias de la Computación e Inteligencia Artificial Índice 5.1 Características del análisis semántico 5.2 Gramáticas atribuidas
MODELOS DE COMPUTACION I Preguntas Tipo Test. 1. El lema de bombeo puede usarse para demostrar que un lenguaje determinado es regular.
MODELOS DE COMPUTACION I Preguntas Tipo Test Indicar si son verdaderas o falsas las siguientes afirmaciones: 1. El lema de bombeo puede usarse para demostrar que un lenguaje determinado es regular. 2.
Gramáticas independientes del contexto TEORÍA DE LA COMPUTACIÓN LENGUAJES INDEPENDIENTES DEL CONTEXTO Y AUTÓMATAS DE PILA. Otras definiciones I
Gramáticas independientes del contexto TEORÍ DE L COMPUTCIÓN LENGUJES INDEPENDIENTES DEL CONTEXTO Y UTÓMTS DE PIL Francisco Hernández Quiroz Departamento de Matemáticas Facultad de Ciencias, UNM E-mail:
No todos los LRs finitos se representan mejor con ERs. Observe el siguiente ejemplo:
1 Clase 3 SSL EXPRESIONES REGULARES Para REPRESENTAR a los Lenguajes Regulares. Se construyen utilizando los caracteres del alfabeto sobre el cual se define el lenguaje, el símbolo y operadores especiales.
Introducción a la lingüística computacional
Introducción a la lingüística computacional César Antonio Aguilar Facultad de Lenguas y Letras 17/08/2017 [email protected] Síntesis de la clase pasada (1) En la clase anterior nos dedicamos a
08 Análisis léxico IV
2 Contenido Expresiones regulares Lenguaje generado por una expresión regular Precedencia de las operaciones con las expresiones regulares Ejemplos Definiciones regulares Extensiones de las expresiones
Lógica Proposicional Lenguaje Proposicional Implicación semántica
Capítulo 1 Lógica Proposicional 1.1. Lenguaje Proposicional Un lenguaje proposicional consta de los siguientes símbolos: las proposicones atómicas, también llamados enunciados atómicos o simplemente variables
Apuntes de Lógica Matemática I
Apuntes de Lógica Matemática I Héctor Olvera Vital 1. Primeras definiciones Definición 1 Un alfabeto A es un conjunto de símbolos. Definición 2 Una expresión del alfabeto A es una sucesión finita de símbolos
Teoría de Lenguajes. Clase Teórica 7 Autómatas de Pila y Lenguajes Independientes del Contexto Primer cuartimestre 2014
Teoría de Lenguajes Clase Teórica 7 Autómatas de Pila y Lenguajes Independientes del Contexto Primer cuartimestre 2014 aterial compilado por el Profesor Julio Jacobo, a lo largo de distintas ediciones
5 Autómatas de pila 5.1 Descripción informal. 5.2 Definiciones
1 Curso Básico de Computación 5 Autómatas de pila 5.1 Descripción informal Un autómata de pila es esencialmente un autómata finito que controla una cinta de entrada provista de una cabeza de lectura y
El Autómata con Pila
El Autómata con Pila Una Generalización del Autómata Finito Universidad de Cantabria Esquema 1 2 3 4 Los autómatas son abstracciones de maquinas de calcular, como hemos visto. Los más sencillos no tienen
TEMA 6 GRAMÁTICAS INDEPENDIENTES DEL CONTEXTO
TEMA 6 GRAMÁTICAS INDEPENDIENTES DEL CONTEXTO TEMA 6.- GRAMÁTICAS INDEPENDIENTES DEL CONTEXTO 6.1. Gramáticas independientes del contexto. 6.2. Limpieza de Gramáticas Independientes del contexto. 6.3.
Teoría de Autómatas y Lenguajes Formales.
Teoría de Autómatas y Lenguajes Formales Ejercicios de Lenguajes Regulares Autores: Araceli Sanchis de Miguel Agapito Ledezma Espino Jose A. Iglesias Martínez Beatriz García Jiménez Juan Manuel Alonso
Modelos del Lenguaje. Qué es un ML? Modelos basados en N-gramas Modelos basados en Gramáticas Propuesta de T.D
Modelos del Lenguaje Qué es un ML? Modelos basados en N-gramas Modelos basados en Gramáticas Propuesta de T.D Modelos De Lenguaje Qué es un modelo de lenguaje? Mecanismo para definir la estructura del
Capítulo 9. Introducción a los lenguajes formales. Continuar
Capítulo 9. Introducción a los lenguajes formales Continuar Introducción Un lenguaje es un conjunto de símbolos y métodos para estructurar y combinar dichos símbolos. Un lenguaje también recibe el nombre
7. Máquinas de Turing.
7. Máquinas de Turing. Araceli Sanchis de Miguel Agapito Ledezma Espino José A. Iglesias Mar
Máquinas de Turing, recordatorio y problemas
Máquinas de Turing, recordatorio y problemas Elvira Mayordomo, Universidad de Zaragoza 5 de diciembre de 2014 1. Recordatorio de la definición de máquina de Turing Una máquina de Turing, abreviadamente
Proyecto Intermedio Algoritmo de Earley
Fundamentos de Computación Proyecto Intermedio: Algoritmo de Earley Profesor: Dr. José Torres Jiménez Alumnos: Edna Gutiérrez Gasca Aureny Magaly Uc Miam Jorge Rodríguez Núñez Proyecto Intermedio Algoritmo
Expresiones regulares y derivadas
Expresiones regulares y derivadas Teoría de Lenguajes 1 er cuatrimestre de 2002 1 Expresiones regulares Las expresiones regulares son expresiones que se utilizan para denotar lenguajes regulares. No sirven
Teoría de Modelos Finitos: Motivación
Teoría de Modelos Finitos: Motivación IIC3260 IIC3260 Teoría de Modelos Finitos: Motivación 1 / 29 Poder expresivo de una lógica: Caso finito Desde ahora en adelante nos vamos a concentrar en las estructuras
