Expresiones Regulares
|
|
|
- Daniel González Zúñiga
- hace 8 años
- Vistas:
Transcripción
1 Conjuntos Regulares y Una forma diferente de expresar un lenguaje Universidad de Cantabria
2 Conjuntos Regulares y Esquema 1 Motivación 2 Conjuntos Regulares y 3 4
3 Conjuntos Regulares y Motivación El problema que se pretende resolver mediante la introducción de las expresiones regulares es el de obtener algún tipo de descriptores para los lenguajes generados por las gramáticas regulares.
4 Conjuntos Regulares y Motivación Cuales son los lenguajes más sencillos? Los conjuntos finitos, La concatenación de palabras de diferentes lenguajes, La repetición de elementos una y otra vez (operación estrella).
5 Conjuntos Regulares y Motivación Cuales son los lenguajes más sencillos? Los conjuntos finitos, La concatenación de palabras de diferentes lenguajes, La repetición de elementos una y otra vez (operación estrella).
6 Conjuntos Regulares y Motivación Cuales son los lenguajes más sencillos? Los conjuntos finitos, La concatenación de palabras de diferentes lenguajes, La repetición de elementos una y otra vez (operación estrella).
7 Conjuntos Regulares y Ejemplo de operaciones Supongamos que el alfabeto sobre el que definimos nuestro lenguaje Σ = {a, b} y tenemos estos lenguajes L 1 := aa, ab, L 2 := ba, bb. Podemos definir estos nuevos lenguajes: L 1 L 2 := {aa, ab, ba, bb}, L 1 L 2 := {aaba, abbb, abba, aabb}, L 1 := {aa, ab, aaaa, aaab, abaa, abab,...}.
8 Conjuntos Regulares y Ejemplo de operaciones Supongamos que el alfabeto sobre el que definimos nuestro lenguaje Σ = {a, b} y tenemos estos lenguajes L 1 := aa, ab, L 2 := ba, bb. Podemos definir estos nuevos lenguajes: L 1 L 2 := {aa, ab, ba, bb}, L 1 L 2 := {aaba, abbb, abba, aabb}, L 1 := {aa, ab, aaaa, aaab, abaa, abab,...}.
9 Conjuntos Regulares y Ejemplo de operaciones Supongamos que el alfabeto sobre el que definimos nuestro lenguaje Σ = {a, b} y tenemos estos lenguajes L 1 := aa, ab, L 2 := ba, bb. Podemos definir estos nuevos lenguajes: L 1 L 2 := {aa, ab, ba, bb}, L 1 L 2 := {aaba, abbb, abba, aabb}, L 1 := {aa, ab, aaaa, aaab, abaa, abab,...}.
10 Conjuntos Regulares y Definición Definición (Conjuntos regulares) Sea Σ un alfabeto finito. Un conjunto regular es cualquier conjunto definido solamente a partir de concatenación, unión y la operación estrella sobre conjuntos regulares.
11 Conjuntos Regulares y Definición Definición () Sea Σ un alfabeto finito. Llamaremos expresión regular sobre el alfabeto Σ a toda palabra sobre el alfabeto Σ 1 definido por la siguiente igualdad: Σ 1 := {, λ, +,, (, ), } Σ, conforme a las reglas siguientes: Son expresiones regulares, λ, a para cualquier símbolo a en el alfabeto Σ. Si α y β son expresiones regulares, también lo son: (α + β) es una expresión regular, (α β) es una expresión regular, (α) es una expresión regular.
12 Conjuntos Regulares y Ejemplo Ejemplo Tomemos el alfabeto Σ := {a, b}. Son expresiones regulares las secuencias de símbolos (palabras) siguientes: a a + b a, ab ba,...
13 Conjuntos Regulares y La Semántica de las Definición Sea Σ un alfabeto finito. A cada expresión regular sobre el alfabeto α le asignaremos un lenguaje formal L(α) Σ conforme a las siguientes reglas: Aplicando las reglas recursivas, si α y β son dos expresiones regulares sobre el alfabeto Σ usaremos las reglas siguientes: L(α + β) = L(α) L(β), L(α β) = L(α) L(β), L(α ) = L(α). También mencionamos que el operador tiene preferencia sobre y éste sobre +.
14 Conjuntos Regulares y Ejemplo Ejemplo Sea α := 0 10 la expresión regular sobre el alfabeto Σ := {0, 1}. Entonces, L(0 10 ) = L(0) L(1) L(0) = {0 m 10 n : n, m N}.
15 Conjuntos Regulares y No Unicidad Un conjunto regular puede estar definido por dos expresiones regulares, como por ejemplo 1 y (1 ).
16 Conjuntos Regulares y Equivalencia Definición Diremos que dos expresiones regulares α y β son tautológicamente equivalentes (o, simplemente, equivalentes) si se verifica: L(α) = L(β). Escribamos α β para indicar equivalencia tautológica.
17 Conjuntos Regulares y Las expresiones regulares tienen varias propiedades que permiten operar y, a veces, reducir expresiones regulares.
18 Conjuntos Regulares y Asociativa: α (β γ) (α β) γ, α + (β + γ) = (α + β) + γ.
19 Conjuntos Regulares y Conmutativa (sólo para +) α + β β + α.
20 Conjuntos Regulares y Elementos Neutros: α + α, α λ α, α.
21 Conjuntos Regulares y Idempotencia: α + α α.
22 Conjuntos Regulares y Distributivas: α (β + γ) α β + α γ. (α + β) γ α γ + β γ.
23 Conjuntos Regulares y Invariantes para : λ λ,, (α ) = α
24 Conjuntos Regulares y La notación α + : α α α α α +. α = λ + α + y la relación de con la suma: (α + β) (α β ).
Expresiones Regulares y Derivadas Formales
y Derivadas Formales Las Derivadas Sucesivas. Universidad de Cantabria Esquema 1 2 3 Derivadas Sucesivas Recordemos que los lenguajes de los prefijos dan información sobre los lenguajes. Derivadas Sucesivas
Procesadores de Lenguaje
Procesadores de Lenguaje Repaso TALF Cristina Tîrnăucă Dept. Matesco, Universidad de Cantabria Fac. Ciencias Ing. Informática Primavera de 2013 La Jerarquía de Chomsky Cuatro niveles de lenguajes formales
Inducción en definiciones y demostraciones AUTÓMATAS Y LENGUAJES FORMALES PRELIMINARES MATEMÁTICOS. Números naturales. Inducción matemática
Inducción en definiciones y demostraciones AUTÓMATAS Y LENGUAJES FORMALES PRELIMINARES MATEMÁTICOS Francisco Hernández Quiroz Departamento de Matemáticas Facultad de Ciencias, UNAM E-mail: [email protected]
Autómatas de Pila y Lenguajes Incontextuales
Autómatas de Pila y Lenguajes Incontextuales Elvira Mayordomo Universidad de Zaragoza 5 de noviembre de 2012 Contenido de este tema 1. Introducción a los autómatas de pila 2. Definiciones 3. Equivalencia
Equivalencia Entre PDA y CFL
Equivalencia Entre PDA y CFL El Lenguaje aceptado por un Autómata con Pila Universidad de Cantabria Esquema 1 Introducción 2 3 Lenguaje Aceptado por un Autómata Como en los autómatas finitos, se puede
Lenguajes y Gramáticas
Lenguajes y Gramáticas Teoría de Lenguajes Fernando Naranjo Introduccion Se desarrollan lenguajes de programación basados en el principio de gramática formal. Se crean maquinas cada vez mas sofisticadas
Tema 2. Fundamentos de la Teoría de Lenguajes Formales
Departamento de Tecnologías de la Información Tema 2. Fundamentos de la Teoría de Lenguajes Formales Ciencias de la Computación e Inteligencia Artificial Índice 2.1. Alfabeto 2.2. Palabra 2.3. Operaciones
Estructuras Algebraicas
Tema 1 Estructuras Algebraicas Definición 1 Sea A un conjunto no vacío Una operación binaria (u operación interna) en A es una aplicación : A A A Es decir, tenemos una regla que a cada par de elementos
Conjunto R 3 y operaciones lineales en R 3
Conjunto R 3 y operaciones lineales en R 3 Objetivos. Definir el conjunto R 3 y operaciones lineales en R 3. Requisitos. Conjunto de los números reales R, propiedades de las operaciones aritméticas en
Lenguajes (gramáticas y autómatas)
Lenguajes (gramáticas y autómatas) Elvira Mayordomo Universidad de Zaragoza 19 de septiembre de 2013 Elvira Mayordomo (Universidad de Zaragoza) Lenguajes (gramáticas y autómatas) 19 de septiembre de 2013
Expresiones regulares, gramáticas regulares
Expresiones regulares, gramáticas regulares Los LR en la jerarquía de Chomsky La clasificación de lenguajes en clases de lenguajes se debe a N. Chomsky, quien propuso una jerarquía de lenguajes, donde
Sumario: Teoría de Autómatas y Lenguajes Formales. Capítulo 2: Lenguajes Formales. Capítulo 2: Lenguajes Formales
Teoría de Autómatas y Lenguajes Formales Capítulo 2: Lenguajes Formales Holger Billhardt [email protected] Sumario: Capítulo 2: Lenguajes Formales 1. Concepto de Lenguaje Formal 2. Operaciones sobre
Autómatas Mínimos. Encontrar el autómata mínimo. Universidad de Cantabria. Introducción Minimización de Autómatas Deterministas Resultados Algoritmo
Autómatas Mínimos Encontrar el autómata mínimo. Universidad de Cantabria Introducción Dado un lenguaje regular sabemos encontrar un autómata finito. Pero, hay autómatas más sencillos que aceptan el mismo
Capítulo 7: Expresiones Regulares
Capítulo 7: Expresiones Regulares 7.1. Concepto de expresión regular 7.1.1. Definición 7.1.2. Lenguaje descrito 7.1.3. Propiedades 7.2. Teoremas de equivalencia 7.2.1. Obtener un AFND a partir de una expresión
Expresiones Regulares y Derivadas Formales
Motivación e Ideas y Derivadas Formales La Derivación como Operación. Universidad de Cantabria Esquema Motivación e Ideas 1 Motivación e Ideas 2 3 Motivación Motivación e Ideas Sabemos como son los conjuntos
Lenguajes, Gramáticas y Autómatas Conceptos
Lenguajes, Gramáticas y Autómatas Conceptos Departamento de Informática e Ingeniería de Sistemas C.P.S. Universidad de Zaragoza Última revisión: Febrero. 2004 11/02/2004 1 Índice Alfabetos, palabras y
LENGUAJES FORMALES Y AUTÓMATAS
LENGUAJES FORMALES Y AUTÓMATAS Departamento de Lenguajes y Sistemas Informáticos Escuela Técnica Superior de Ingeniería Informática Universidad de Sevilla Víctor J. Díaz Madrigal José Miguel Cañete Valdeón
Ingeniería en Computación. Autómatas y Lenguajes Formales. Unidad de competencia IV: Conocer, utilizar y diseñar gramáticas de libre contexto
Universidad Autónoma del Estado de México Centro Universitario UAEM Texcoco Departamento de Ciencias Aplicadas. Ingeniería en Computación. Autómatas y Lenguajes Formales. Unidad de competencia IV: Conocer,
Compiladores: Análisis Sintáctico. Pontificia Universidad Javeriana Cali Ingenieria de Sistemas y Computación Prof. Gloria Inés Alvarez V.
Compiladores: Análisis Sintáctico Pontificia Universidad Javeriana Cali Ingenieria de Sistemas y Computación Prof. Gloria Inés Alvarez V. Sintaxis Define la estructura del lenguaje Ejemplo: Jerarquía en
Clase 17: Autómatas de pila
Solicitado: Ejercicios 14: Autómatas de pila de GLC M. en C. Edgardo Adrián Franco Martínez http://computacion.cs.cinvestav.mx/~efranco @efranco_escom [email protected] 1 Contenido Autómata de pila Definición
Fundamentos de Ciencias de la Computación Trabajo Práctico N 2 Lenguajes Libres del Contexto y Sensibles al Contexto Segundo Cuatrimestre de 2002
Departamento de Cs. e Ingeniería de la Computación Universidad Nacional del Sur Ejercicios Fundamentos de Ciencias de la Computación Trabajo Práctico N 2 Lenguajes Libres del Contexto y Sensibles al Contexto
Grupos libres. Presentaciones.
S _ Tema 12.- Grupos libres. Presentaciones. 12.1 Grupos libres. En el grupo Z de los enteros vimos una propiedad (cf. ejemplos.5), que lo caracteriza como grupo libre. Lo enunciamos al modo de una Propiedad
Teoría de Autómatas y Lenguajes Formales.
Teoría de Autómatas y Lenguajes Formales Ejercicios de Lenguajes Regulares Autores: Araceli Sanchis de Miguel Agapito Ledezma Espino Jose A. Iglesias Martínez Beatriz García Jiménez Juan Manuel Alonso
John Venn Matemático y filósofo británico creador de los diagramas de Venn
Georg Cantor Matemático Alemán creador de la teoría de conjuntos John Venn Matemático y filósofo británico creador de los diagramas de Venn August De Morgan Matemático ingles creador de leyes que llevan
Capítulo 1 Lenguajes formales 6
Capítulo 1 Lenguajes formales 6 1.8. Operaciones entre lenguajes Puesto que los lenguajes sobre Σ son subconjuntos de Σ, las operaciones usuales entre conjuntos son también operaciones válidas entre lenguajes.
TEMA 1. MATRICES, DETERMINANTES Y APLICACIÓN DE LOS DETERMINANTES. CONCEPTO DE MATRIZ. LA MATRIZ COMO EXPRESIÓN DE TABLAS Y GRAFOS.
TEMA 1. MATRICES, DETERMINANTES Y APLICACIÓN DE LOS DETERMINANTES. 1. MATRICES. CONCEPTO DE MATRIZ. LA MATRIZ COMO EXPRESIÓN DE TABLAS Y GRAFOS. DEFINICIÓN: Las matrices son tablas numéricas rectangulares
Tema 5 Lenguajes independientes del contexto. Sintaxis
Tema 5 Lenguajes independientes del contexto. Sintaxis 1 Gramáticas independientes del contexto Transformación de gramáticas independientes del contexto Autómatas de pila Obtención de un autómata de pila
Matrices y determinantes. Sistemas de ecuaciones lineales
Tema 0 Matrices y determinantes Sistemas de ecuaciones lineales 01 Introducción Definición 011 Se llama matriz a un conjunto ordenado de números, dispuestos en filas y columnas, formando un rectángulo
2. El conjunto de los números complejos
Números complejos 1 Introducción El nacimiento de los números complejos se debió a la necesidad de dar solución a un problema: no todas las ecuaciones polinómicas poseen una solución real El ejemplo más
La Jerarquía de Chomsky
La Apuntes sobre la Complejidad Universidad de Cantabria Esquema Motivación 1 Motivación 2 Ideas y Nociones Motivación Como se ha mencionado anteriormente, los lenguajes son conjuntos de palabras definidos
Definición Dados dos números naturales m y n, una matriz de orden o dimensión m n es una tabla numérica rectangular con m filas y n columnas.
Tema 1 Matrices 1.1. Conceptos básicos y ejemplos Definición 1.1.1. Dados dos números naturales m y n, una matriz de orden o dimensión m n es una tabla numérica rectangular con m filas y n columnas. NOTA:
Temas. Objetivo. Que el estudiante logre: 1) Identificar conceptos constructivos de la Teoría de la Computabilidad. 2) Definir autómatas de pila.
0 Temas Definición de autómata de pila Autómata de pila determinístico y no determinístico Objetivo Que el estudiante logre: 1) Identificar conceptos constructivos de la Teoría de la Computabilidad. 2)
Algebra Lineal. Gustavo Rodríguez Gómez. Verano 2011 INAOE. Gustavo Rodríguez Gómez (INAOE) Algebra Lineal Verano / 21
Algebra Lineal Gustavo Rodríguez Gómez INAOE Verano 2011 Gustavo Rodríguez Gómez (INAOE) Algebra Lineal Verano 2011 1 / 21 Espacios Vectoriales Espacios Vectoriales INAOE Gustavo Rodríguez Gómez (INAOE)
13.3. MT para reconocer lenguajes
13.3. MT para reconocer lenguajes Gramática equivalente a una MT Sea M=(Γ,Σ,,Q,q 0,f,F) una Máquina de Turing. L(M) es el lenguaje aceptado por la máquina M. A partir de M se puede crear una gramática
Espacios Vectoriales
Espacios Vectoriales Espacios Vectoriales Verónica Briceño V. noviembre 2013 Verónica Briceño V. () Espacios Vectoriales noviembre 2013 1 / 47 En esta Presentación... En esta Presentación veremos: Espacios
Transformaciones lineales y matrices
CAPíTULO 5 Transformaciones lineales y matrices 1 Matriz asociada a una transformación lineal Supongamos que V y W son espacios vectoriales de dimensión finita y que T : V W es una transformación lineal
Matriz A = Se denomina MATRIZ a todo conjunto de números o expresiones dispuestos en forma rectangular, formando filas y columnas.
MATRICES Matriz Se denomina MATRIZ a todo conjunto de números o expresiones dispuestos en forma rectangular, formando filas y columnas. a 11 a 12 a 1j a 1n a 21 a 22 a 2j a 2n A = a i1 a ij a in a m1 a
Teoría de anillos. Dominios, cuerpos y cuerpos de fracciones. Característica de un cuerpo.
1 Tema 5.-. Teoría de anillos. Dominios, cuerpos y cuerpos de fracciones. Característica de un cuerpo. 5.1. Anillos y cuerpos Definición 5.1.1. Un anillo es una terna (A, +, ) formada por un conjunto A
UNIDAD 4. Álgebra Booleana
UNIDAD 4 Álgebra Booleana ÁLGEBRA BOOLEANA El Álgebra Booleana se define como una retícula: Complementada: existe un elemento mínimo 0 y un elemento máximo I de tal forma que si a esta en la retícula,
EJERCICIOS del TEMA 3: Lenguajes independientes del contexto
EJERCICIOS del TEMA 3: Lenguajes independientes del contexto Sobre GICs (gramáticas independientes del contexto) 1. Sea G una gramática con las siguientes producciones: S ASB ε A aab ε B bba ba c ) d )
TEMA 1. NÚMEROS REALES Y COMPLEJOS
TEMA 1. NÚMEROS REALES Y COMPLEJOS 1.1 DEFINICIÓN AXIOMATICA DE LOS NÚMEROS REALES 1.1.1 Axiomas de cuerpo En admitimos la existencia de dos operaciones internas la suma y el producto, con estas operaciones
Tema 3.1 Introducción a los circuitos combinacionales. Algebra de Boole
Tema 3.1 Introducción a los circuitos combinacionales. Algebra de Boole Índice Algebra de Boole. Definición. Operaciones lógicas: OR, AND, XOR y NOT Puertas lógicas Algebra de Boole Postulados Teoremas
Problemas de Espacios Vectoriales
Problemas de Espacios Vectoriales 1. Qué condiciones tiene que cumplir un súbconjunto no vacío de un espacio vectorial para que sea un subespacio vectorial de este? Pon un ejemplo. Sean E un espacio vectorial
Lenguajes Regulares. Antonio Falcó. - p. 1
Lenguajes Regulares Antonio Falcó - p. 1 Cadenas o palabras I Una cadena o palabra es una sucesión finita de símbolos. cadena {c, a, d, e, n}. 10001 {0, 1} El conjunto de símbolos que empleamos para construir
Introducción a la Probabilidad
Introducción a la Probabilidad Tema 3 Ignacio Cascos Depto. Estadística, Universidad Carlos III 1 Ignacio Cascos Depto. Estadística, Universidad Carlos III 2 Objetivos Entender el concepto de experimento
b) Sea una relación de equivalencia en A y una operación en A. Decimos que y son compatibles si a b a c b c y c a c b para todo a, b, c A
APENDICE Relaciones y Operaciones Compatibles 1 Definición: a) Sea A un conjunto y una relación entre elementos de A. Decimos que es una relación de equivalencia si es: i Reflexiva: a A, a a. ii Simétrica:
TEORÍA DE AUTÓMATAS Y LENGUAJES FORMALES Grado en Ingeniería Informática Online, Curso Universidad Rey Juan Carlos
TEORÍA DE AUTÓMATAS Y LENGUAJES FORMALES Grado en Ingeniería Informática Online, Curso 202-203 Universidad Rey Juan Carlos GUÍA PARA LA REALIZACIÓN DE LA HOJA DE PROBLEMAS No 3 (Tema 3: Expresiones Regulares)
Álgebra de Boole. Adición booleana. Multiplicación booleana. Escuela Politécnica Superior
Álgebra de Boole El Álgebra de Boole es una forma muy adecuada para expresar y analizar las operaciones de los circuitos lógicos. Se puede considerar las matemáticas de los sistemas digitales. Operaciones
Gramáticas independientes del contexto AUTÓMATAS Y LENGUAJES FORMALES LENGUAJES INDEPENDIENTES DEL CONTEXTO Y AUTÓMATAS DE PILA. Otras definiciones I
Gramáticas independientes del contexto UTÓMTS Y LENGUJES FORMLES LENGUJES INDEPENDIENTES DEL CONTEXTO Y UTÓMTS DE PIL Francisco Hernández Quiroz Departamento de Matemáticas Facultad de Ciencias, UNM E-mail:
Tema 3: Espacios vectoriales
Tema 3: Espacios vectoriales K denotará un cuerpo. Definición. Se dice que un conjunto no vacio V es un espacio vectorial sobre K o que es un K-espacio vectorial si: 1. En V está definida una operación
CONCEPTOS BÁSICOS DE ESPACIOS VECTORIALES Alumno. Cristina Mª Méndez Suero
Fundamento Científico del Currículum de Matemáticas en Enseñanza Secundaria CONCEPTOS BÁSICOS DE ESPACIOS VECTORIALES Alumno. Cristina Mª Méndez Suero ESPACIOS VECTORIALES DEFINICIÓN... 1 PROPIEDADES DE
Conjuntos y matrices. Sistemas de ecuaciones lineales
1 Conjuntos y matrices Sistemas de ecuaciones lineales 11 Matrices Nuestro objetivo consiste en estudiar sistemas de ecuaciones del tipo: a 11 x 1 ++ a 1m x m = b 1 a n1 x 1 ++ a nm x m = b n Una solución
Teoría de Lenguajes. Clase Teórica 7 Autómatas de Pila y Lenguajes Independientes del Contexto Primer cuartimestre 2014
Teoría de Lenguajes Clase Teórica 7 Autómatas de Pila y Lenguajes Independientes del Contexto Primer cuartimestre 2014 aterial compilado por el Profesor Julio Jacobo, a lo largo de distintas ediciones
Definición de la matriz inversa
Definición de la matriz inversa Objetivos Aprender la definición de la matriz inversa Requisitos Multiplicación de matrices, habilidades básicas de resolver sistemas de ecuaciones Ejemplo El número real
Sobre funciones reales de variable real. Composición de funciones. Función inversa
Sobre funciones reales de variable real. Composición de funciones. Función inversa Cuando en matemáticas hablamos de funciones pocas veces nos paramos a pensar en la definición rigurosa de función real
Teoría de Autómatas y Lenguajes Formales. Introducción a las Gramáticas. Gramáticas incontextuales
Teoría de utómatas y Lenguajes Formales Introducción a las ramáticas. ramáticas incontextuales José M. Sempere Departamento de Sistemas Informáticos y Computación Universidad Politécnica de Valencia Introducción
EL CUERPO ORDENADO REALES
CAPÍTULO I. EL CUERPO ORDENADO DE LOS NÚMEROS REALES SECCIONES A. Elementos notables en R. B. Congruencias. Conjuntos numerables. C. Método de inducción completa. D. Desigualdades y valor absoluto. E.
Lenguajes No Regulares
Lenguajes No Regulares Problemas que los Autómatas No Resuelven. Universidad de Cantabria Esquema Lema del Bombeo 1 Lema del Bombeo 2 3 Introducción Todos los lenguajes no son regulares, simplemente hay
AUTÓMATAS DE PILA Y LENGUAJES INDEPENDIENTES DEL CONTEXTO
Autómatas de pila y lenguajes independientes del contexto -1- AUTÓMATAS DE PILA Y LENGUAJES INDEPENDIENTES DEL CONTEXTO AUTÓMATAS DE PILA - Son autómatas finitos con una memoria en forma de pila. - Símbolos
Apuntes de Matemática Discreta 2. Operaciones con Conjuntos
Apuntes de Matemática Discreta 2. Operaciones con Conjuntos Francisco José González Gutiérrez Cádiz, Octubre de 2004 Universidad de Cádiz Departamento de Matemáticas ii Lección 2 Operaciones con Conjuntos
Numeración. Número Es la idea que tenemos sobre la cantidad de los elementos de la naturaleza.
Numeración Denominamos Numeración al capítulo de la Aritmética que estudia la correcta formación, lectura y escritura de los números. Número Es la idea que tenemos sobre la cantidad de los elementos de
Grupos y Subgrupos El concepto de grupo Sea G un conjunto no vacío y sea G G G
Capítulo 1 Grupos y Subgrupos 001. El concepto de grupo Sea G un conjunto no vacío y sea G G G una operación interna en G para la cual denotaremos a la imagen de un par (x, y) mediante xy. Supongamos que
Forma binomial de números complejos (ejercicios)
Forma binomial de números complejos (ejercicios) Objetivos. Mostrar que los números reales x se pueden identificar con números complejos de la forma (x, 0), y cada número complejo (x, y) se puede escribir
Recordemos que utilizaremos, como es habitual, la siguiente notación para algunos conjuntos de números que son básicos.
Capítulo 1 Preliminares Vamos a ver en este primer capítulo de preliminares algunos conceptos, ideas y propiedades que serán muy útiles para el desarrollo de la asignatura. Se trata de resultados sobre
Matemáticas Discretas TC1003
Matemáticas Discretas TC1003 Lógica : Proposiciones, Conectivos, Tablas de Verdad y Departamento de Matemáticas / Centro de Sistema Inteligentes ITESM Lógica Matemáticas Discretas - p. 1/43 En esta lectura
Expresiones algebraicas. Copyright 2013, 2009, 2006 Pearson Education, Inc. 1
Expresiones algebraicas Copyright 2013, 2009, 2006 Pearson Education, Inc. 1 Variables Álgebra utiliza letras como x & y para representar números. Si una letra se utiliza para representar varios números,
Números naturales y recursividad
Números naturales y recursividad Rafael F. Isaacs G. Sonia M. Sabogal P. * Fecha: 8 de marzo de 2005 Números naturales Se sabe que los números naturales constituyen la estructura básica de la Matemática;
Tema I 1. EL CUERPO DE LOS REALES, EL CUERPO DE LOS COMPLEJOS
1 Tema I 1. EL CUERPO DE LOS REALES, EL CUERPO DE LOS COMPLEJOS 1.1 Los Números Naturales. Los números naturales aparecen por la necesidad que tiene el hombre (primitivo) tanto de contar como de ordenar
Estructuras algebraicas
Estructuras algebraicas Natalia Boal María Luisa Sein-Echaluce Universidad de Zaragoza 1 Relaciones binarias 11 Recordatorio Definición Dados dos conjuntos A y B se llama producto cartesiano de A por B
Clase 03: Alfabetos, símbolos y cadenas
Solicitado: Ejercicios 01: Cadenas M. en C. Edgardo Adrián Franco Martínez http://computacion.cs.cinvestav.mx/~efranco @efranco_escom [email protected] 1 Contenido Alfabetos, símbolos y cadenas Operaciones
Espacios vectoriales
Espacios vectoriales [Versión preliminar] Prof. Isabel Arratia Z. Algebra Lineal 1 En el estudio de las matrices y, en particular, de los sistemas de ecuaciones lineales realizamos sumas y multiplicación
Dos matrices son iguales cuando tienen la misma dimensión y los elementos que ocupan el mismo lugar en ambas son iguales
Introducción Las matrices aparecen por primera vez hacia el año 1850, introducidas por J.J. Sylvester. El desarrollo inicial de la teoría se debe al matemático W.R. Hamilton en 1853. En 1858, A. Cayley
ÁLGEBRA LINEAL I Algunas soluciones a la Práctica 3
ÁLGEBRA LINEAL I Algunas soluciones a la Práctica 3 Matrices y determinantes (Curso 2011 2012) 2. Sea A una matriz diagonal n n y supongamos que todos los elementos de su diagonal son distintos entre sí.
Anillo de polinomios con coeficientes en un cuerpo
Capítulo 2 Anillo de polinomios con coeficientes en un cuerpo En el conjunto Z se ha visto cómo la relación ser congruente módulo m para un entero m > 1, es compatible con las operaciones suma y producto.
Análisis Matemático I: Numeros Reales y Complejos
Contents : Numeros Reales y Complejos Universidad de Murcia Curso 2008-2009 Contents 1 Definición axiomática de R Objetivos Definición axiomática de R Objetivos 1 Definir (y entender) R introducido axiomáticamente.
Ejercicios de Lógica Proposicional *
Ejercicios de Lógica Proposicional * [email protected] Notación. El lenguaje proposicional que hemos definido, aquel que utiliza los cinco conectivos,,, y, se denota como L {,,,, }. Los términos
Demostraciones a Teoremas de Límites
Demostraciones a Teoremas de Límites Programa de Bachillerato.Universidad de Chile. Otoño, 009 En esta sección solo daremos los fundamentos teóricos que nos permiten resolver los problemas que se nos plantean,
Matrices y Determinantes
Capítulo 1 Matrices y Determinantes 11 Matrices Generalidades Definición 11 Sea E un conjunto cualquiera, m, n N Definimos matriz de orden m n sobre E a una expresión de la forma: a 11 a 12 a 1n a 21 a
Procesadores de Lenguaje
Procesadores de Lenguaje Analizadores sintácticos descendentes: LL(1) Cristina Tîrnăucă Dept. Matesco, Universidad de Cantabria Fac. Ciencias Ing. Informática Primavera de 2013 Analizadores sintácticos
DEFINICIONES TIPOS DE MATRICES DETERMINANTES Y PROPIEDADES OPERACIONES MATRICIALES INVERSA DE UNA MATRIZ SISTEMAS DE ECUACIONES
ALGEBRA DE MATRICES DEFINICIONES TIPOS DE MATRICES DETERMINANTES Y PROPIEDADES OPERACIONES MATRICIALES INVERSA DE UNA MATRIZ SISTEMAS DE ECUACIONES DEFINICIONES 2 Las matrices y los determinantes son herramientas
Transformaciones lineales
Semana 8 [1/62] 8 de septiembre de 27 Definiciones básicas Semana 8 [2/62] Definición Transformación lineal U, V dos espacios vectoriales sobre el mismo cuerpo Ã. T : U V es una transformación (o función)
Interrogación 2. Pontificia Universidad Católica de Chile Escuela de Ingeniería Departamento de Ciencia de la Computación. Segundo Semestre, 2003
Pontificia Universidad Católica de Chile Escuela de Ingeniería Departamento de Ciencia de la Computación Interrogación 2 IIC 2222 Teoría de Autómatas y Lenguajes Formales Segundo Semestre, 2003 Esta interrogación
Álgebras de Boole. Definición 1 Un álgebra de Boole es un conjunto parcialmente ordenado (B, ) que verifica las siguientes condiciones:
Álgebras de Boole Sea (P, ) un conjunto parcialmente ordenado y sea S un subconjunto de P. Una cota superior de S es un elemento c P tal que s c para todo s S. Una cota inferior de S es un elemento d P
INAOE. Gramáticas Libres de Contexto. Definición formal de CFGs. Derivaciones usando. Derivaciones. izquierda y. derecha.
s s INAOE en s (INAOE) 1 / 67 Contenido s en s 1 s 2 3 4 5 6 7 8 en s (INAOE) 2 / 67 s s s Hemos visto que muchos lenguajes no son regulares. Por lo que necesitamos una clase más grande de lenguages Las
Tema: Autómata de Pila
Facultad: Ingeniería Escuela: Computación Asignatura: Compiladores 1 Tema: Autómata de Pila Contenido La presente guía aborda los autómatas de pila, y se enfoca en la aplicación que se le puede dar a estas
520142: ALGEBRA y ALGEBRA LINEAL
520142: ALGEBRA y ALGEBRA LINEAL Segundo Semestre 2008, Universidad de Concepción CAPITULO 10: Espacios Vectoriales DEPARTAMENTO DE INGENIERIA MATEMATICA Facultad de Ciencias Físicas y Matemáticas 1 Definición
CURSO BÁSICO DE MATEMÁTICAS PARA ESTUDIANTES DE ECONÓMICAS Y EMPRESARIALES. Unidad didáctica 4. Números reales y números complejos
NÚMEROS REALES Como se ha señalado anteriormente la necesidad de resolver diversos problemas de origen aritmético y geométrico lleva a ir ampliando sucesivamente los conjuntos numéricos, N Z Q, y a definir
TEMA 2. ESPACIOS VECTORIALES
TEMA 2. ESPACIOS VECTORIALES CÉSAR ROSALES GEOMETRÍA I En este tema comenzaremos el estudio de los objetos que nos interesarán en esta asignatura: los espacios vectoriales. Estos son estructuras básicas
El Autómata con Pila
El Autómata con Pila Una Generalización del Autómata Finito Universidad de Cantabria Esquema 1 2 3 4 Los autómatas son abstracciones de maquinas de calcular, como hemos visto. Los más sencillos no tienen
MATRICES. Se simboliza tal matriz por y se le llamará una matriz x o matriz de orden x (que se lee por ).
1 MATRICES 1 Una matriz es una disposición rectangular de números (Reales); la forma general de una matriz con filas y columnas es Se simboliza tal matriz por y se le llamará una matriz x o matriz de orden
Tema 1: Matrices. El concepto de matriz alcanza múltiples aplicaciones tanto en la representación y manipulación de datos como en el cálculo numérico.
Tema 1: Matrices El concepto de matriz alcanza múltiples aplicaciones tanto en la representación y manipulación de datos como en el cálculo numérico. 1. Terminología Comenzamos con la definición de matriz
Definición de la matriz inversa
Definición de la matriz inversa Ejercicios Objetivos Aprender la definición de la matriz inversa Requisitos Multiplicación de matrices, matriz identidad, habilidades básicas de resolver sistemas de ecuaciones
