Matemáticas Discretas TC1003
|
|
|
- Ricardo Macías Olivares
- hace 9 años
- Vistas:
Transcripción
1 Matemáticas Discretas TC1003 Lógica : Proposiciones, Conectivos, Tablas de Verdad y Departamento de Matemáticas / Centro de Sistema Inteligentes ITESM Lógica Matemáticas Discretas - p. 1/43
2 En esta lectura veremos los elementos básicos de lo que se llama Lógica o Cálculo. Iniciaremos con lo que entendemos por proposición y conectivo lógico. A partir de eso veremos lo que se conoce como tabla de verdad. Con eso se verá lo que se entiende como equivalencia lógica que es base para reducción de circuitos lógicos y que es usado para entender los casos de los ifs en los programas de computadora. Lógica Matemáticas Discretas - p. 2/43
3 Una sentencia declarativa es una oración que afirma algo. Son sentencias declarativas: El curso de Matemáticas Discretas está fácil. El caballo blanco es verde. Si la luna está llena y no llueve, entonces saldré a caminar. El Último Teorema de Fermat es cierto. Esta frase es falsa. x+3 es impar. Lógica Matemáticas Discretas - p. 3/43
4 No son sentencias declarativas: Está lloviendo? Hola!, cómo estás? Tierno sáuz, casi ámbar, casi luz... Qué es en el fondo actuar, sino mentir? Y qué es actuar bien, sino mentir convenciendo? Lógica Matemáticas Discretas - p. 4/43
5 Una proposición es una sentencia declarativa que debe ser verdadera o falsa pero no ambas. Son proposiciones: El curso de Matemáticas Discretas está fácil. Si la luna está llena y no llueve, entonces saldré a caminar. El Último Teorema de Fermat es cierto. Lógica Matemáticas Discretas - p. 5/43
6 No son proposiciones: Esta frase es falsa Si la frase es cierta, lo que en ella se dice debe ser cierto, así debe ser falsa. Si la frase es falsa, lo contrario a lo que en ella se afirma es cierto, por consiguiente es cierta. x+3 es un número impar Si x=2la afirmación es cierta. Si x=3la afirmación es falsa. Lógica Matemáticas Discretas - p. 6/43
7 En nuestro manejo de proposiciones utilizaremos símbolos para representarlas. Estos símbolos se llamarán variables proposicionales. Así pondremos p : El curso de Matemáticas Discretas está fácil. Indicará que la variable proposicional p representa la proposición El curso de Matemáticas Discretas está fácil. Lógica Matemáticas Discretas - p. 7/43
8 Proposiciones y Compuestas Una proposición primitiva es una proposición que no se puede descomponer en hechos más simples. El curso de matemáticas discretas está fácil. El caballo blanco es verde. Una proposición compuesta es una proposición que no es primitiva. Si la luna está llena y no llueve, salgo a caminar. Yo contraté el cable básico, como tú. Lógica Matemáticas Discretas - p. 8/43
9 El valor de verdad de una proposición es una asignación a uno de los dos posibles valores verdadero o falso. Esta asignación dependerá de lo que en la misma proposición se afirme: si es cierto diremos que tiene valor de verdad verdadero y si es falso diremos que tiene valor de verdad falso. Lógica Matemáticas Discretas - p. 9/43
10 Lógicos Los operadores lógicos sirven para construir proposiciones complejas. Negación: p (Léase no p ) Disjunción: p q (Léase p o q ) Conjunción: p q (Léase p y q ) Estos operadores pueden usarse una o varias veces en forma combinada o no para construir proposiciones más complejas, por ejemplo p (q (r ( p))) Lógica Matemáticas Discretas - p. 10/43
11 Para reducir el número de paréntesis se conviene en una jerarquía de operadores para indicar el orden de precedencia de uno sobre otro. Mayor Jeraquía Menor Jerarquía Ante una disputa de operandos gana el que tiene una mayor jerarquía. Así La expresión p q r p q p s q r Se interpreta como p (q r) ( p) q (p ( s)) (( q) r) Los paréntesis deben ser utilizados para forzar el orden de las operaciones. Lógica Matemáticas Discretas - p. 11/43
12 operadores Supongamos que p: Está caluroso q: Está soleado r: Está lluvioso s: Está húmedo Entonces la representación de las siguientes afirmaciones queda: Está lluvioso y soleado : r q Está soleado o está lluvioso : q r Está soleado y no está caluroso : q p Ni está soleado ni está caluroso : q p Está soleado pero está lluvioso : q r Está lluvioso pero no está caluroso : r p Lógica Matemáticas Discretas - p. 12/43
13 Fórmula Bien Formada Una fórmula bien formada ( ó por sus síglas en íngles WFF) o también llamada forma proposicional es una expresión donde aparecen variables proposicionales, las constantes T(verdadero) o F (falso), operadores lógicos y paréntesis: bien balancedos los paréntesis, los operadores lógicos indicados y con el número de argumentos correctos. Son s: No FBSs: p, p q, p (q (( r) s)) p q, r (q ), (s r) (q p) Lógica Matemáticas Discretas - p. 13/43
14 Una tabla de verdad de una proposición es una descripción organizada de los valores de verdad de la proposición para todos los valores posibles de la variables proposicionales que aparecen en ella. Lógica Matemáticas Discretas - p. 14/43
15 de la Negación p p F T T F Lógica Matemáticas Discretas - p. 15/43
16 de la Disjunción p q p q F F F F T T T F T T T T Sólo es F cuando sus argumentos son ambos falsos. Lógica Matemáticas Discretas - p. 16/43
17 de la Conjunción p q p q F F F F T F T F F T T T Sólo es T cuando sus argumentos son ambos verdaderos. Lógica Matemáticas Discretas - p. 17/43
18 Ejemplo de Calcule la tabla de verdad de (p q) (p q): p q p q q p q (p q) (p q) F F F F T F T F T T T T Lógica Matemáticas Discretas - p. 18/43
19 Lógica Dos formas proposicionalesαyβse dicen lógicamente equivalentes si y sólo si tienen valores de verdad idénticos para cualquier sustitución de valores de verdad de sus variables proposicionales. Esto se simbolizará α β Lógica Matemáticas Discretas - p. 19/43
20 De la misma definición de equivalencia entre s se deduce el procedimiento de verificación: Construir las tablas de verdad de ambas expresiones: como dos columnas en una misma tabla. Comparar las tablas renglón por renglón. Si renglón a reglón tienen el mismo valor de verdad, son equivalentes. Si hay al menos un renglón donde difieran, no son equivalentes. Lógica Matemáticas Discretas - p. 20/43
21 Utilizadas Comprueba la validez de la ley conmutativa: p q q p p q p q q p F F F F F T F F T F F F T T T T Lógica Matemáticas Discretas - p. 21/43
22 Comprueba la validez de la ley conmutativa: p q q p p q p q q p F F F F F T T T T F T T T T T T Lógica Matemáticas Discretas - p. 22/43
23 Comprueba la validez de la ley asociativa: (p q) r p (q r) p q r p q (p q) r q r p (q r) F F F F F F F F F T F F F F F T F F F F F F T T F F T F T F F F F F F T F T F F F F T T F T F F F T T T T T T T Lógica Matemáticas Discretas - p. 23/43
24 Comprueba la validez de la ley asociativa: (p q) r p (q r) p q r p q (p q) r q r p (q r) F F F F F F F F F T F T T T F T F T T T T F T T T T T T T F F T T F T T F T T T T T T T F T T T T T T T T T T T Lógica Matemáticas Discretas - p. 24/43
25 Comprueba la validez de la ley distributiva: α=p (q r) (p q) (p r)=β p q r q r α p q p r β F F F F F F F F F F T T F F F F F T F T F F F F F T T T F F F F T F F F F F F F T F T T T F T T T T F T T T F T T T T T T T T T Lógica Matemáticas Discretas - p. 25/43
26 Comprueba la validez de la ley distributiva: α=p (q r) (p q) (p r)=β p q r q r α p q p r β F F F F F F F F F F T F F F T F F T F F F T F F F T T T T T T T T F F F T T T T T F T F T T T T T T F F T T T T T T T T T T T T Lógica Matemáticas Discretas - p. 26/43
27 Comprueba la validez de la ley de De Morgan: (p q) p q p q p q (p q) p q p q F F F T T T T F T F T T F T T F F T F T T T T T F F F F Lógica Matemáticas Discretas - p. 27/43
28 Comprueba la validez de la ley de De Morgan: (p q) p q p q p q (p q) p q p q F F F T T T T F T T F T F F T F T F F T F T T T F F F F Lógica Matemáticas Discretas - p. 28/43
29 Comprueba la validez de la ley de Absorción: p (p q) p p q p q p (p q) F F F F F T F F T F F T T T T T Lógica Matemáticas Discretas - p. 29/43
30 Comprueba la validez de la ley de Absorción: p (p q) p p q p q p (p q) F F F F F T T F T F T T T T T T Lógica Matemáticas Discretas - p. 30/43
31 Comprueba la validez de la ley de la doble negación: ( p) p p p ( p) F T F T F T Lógica Matemáticas Discretas - p. 31/43
32 Comprueba la validez de la ley de la negación o ley de inversa: p p F p p p p F T F T F F Lógica Matemáticas Discretas - p. 32/43
33 Comprueba la validez de la ley de la negación o ley de inversa: p p T p p p p F T T T F T Lógica Matemáticas Discretas - p. 33/43
34 Comprueba la validez de la ley de idempotencia: p p p p F T p p F T Lógica Matemáticas Discretas - p. 34/43
35 Comprueba la validez de la ley de idempotencia: p p p p F T p p F T Lógica Matemáticas Discretas - p. 35/43
36 Comprueba la validez de la ley de identidad: p T p p T p T F T F T T T Lógica Matemáticas Discretas - p. 36/43
37 Comprueba la validez de la ley de identidad: p F p p F p F F F F T F T Lógica Matemáticas Discretas - p. 37/43
38 Tomaremos como válidas dos reglas importantes que cumple la equivalencia de expresiones lógicas: Propiedad transitiva de la equivalencia Siα βyβ γ, entoncesα γ. Propiedad de sustitución Siα βyf(α) es una expresión lógica donde aparece α, entonces F(α) F(β). Aquí F(β) es la expresión que se obtuvo de sustuituir β donde aparecía α en F(α). Lógica Matemáticas Discretas - p. 38/43
39 de Veamos ahora algunos ejemplos de simplicación cuya justificación se basa en las leyes lógicas recien vistas. Lógica Matemáticas Discretas - p. 39/43
40 En el siguiente argumento se simplifica una. Indique en orden las leyes que justifican cada paso. 1) Ley de identidad 2) Ley de De Morgan 3) Ley de la doble negación 4) Ley distributiva 5) Ley asociativa 6) Ley de dominación 7) Ley conmutativa 8) Ley de inversas 9) Ley de idempotencia 10) Ley de absorción (r p) (r p) r ( p p) por 10 r (p p) por 7) r T por 8 r por 1 Lógica Matemáticas Discretas - p. 40/43
41 En el siguiente argumento se simplifica una. Indique en orden las leyes que justifican cada paso. 1) Ley de identidad 2) Ley de De Morgan 3) Ley de la doble negación 4) Ley distributiva 5) Ley asociativa 6) Ley de dominación 7) Ley conmutativa 8) Ley de inversas 9) Ley de idempotencia 10) Ley de absorción (t ( ( t q))) (t q) (t ( ( t) q)) (t q) por 2 (t (t q)) (t q) por 3 ((t t) q) (t q) por 5 (t q) (t q) por 9 t ( q q) por 4 t T por 8 t por 1 Lógica Matemáticas Discretas - p. 41/43
42 Una se dice ser una tautología si se evalua en verdadero para todos los valores de verdad posibles para sus variables proposicionales; por otro lado se llama contradicción si es falsa siempre, y se llama contingencia cuando su tabla de verdad tiene tanto verdaderos como falsos. En términos de equivalencias: α es una tautología si y sólo siα T;αes una contradicción si y sólo si α F; yαes una contingencia si y sólo siαno es equivalente ni a T ni a F. Lógica Matemáticas Discretas - p. 42/43
43 Temas Vistos Concepto de proposición y Fórmulas Bien Formadas Conectivos Lógicos: Disjunción, Conjunción y Negación) Lógica argumentada de una Tautología, Contradicción, y Contingencia Lógica Matemáticas Discretas - p. 43/43
Matemáticas Discretas TC1003
Matemáticas Discretas TC1003 Módulo I: s Válidos Departamento de Matemáticas ITESM Módulo I: s Válidos Matemáticas Discretas - p. 1/50 En matemáticas y en lógica un argumento no es una disputa. Más bien,
ALGEBRA y ALGEBRA LINEAL. Primer Semestre CAPITULO I LOGICA Y CONJUNTOS.
ALGEBRA y ALGEBRA LINEAL 520142 Primer Semestre CAPITULO I LOGICA Y CONJUNTOS. DEPARTAMENTO DE INGENIERIA MATEMATICA Facultad de Ciencias Físicas y Matemáticas Universidad de Concepción 1 La lógica es
MATEMÁTICAS BÁSICAS. 23 de febrero de Universidad Nacional de Colombia MATEMÁTICAS BÁSICAS
23 de febrero de 2009 Parte I Lógica Proposiciones Considere las siguientes frases Páseme el lápiz. 2 + 3 = 5 1 2 + 1 3 = 2 5 Qué hora es? En Bogotá todos los días llueve Yo estoy mintiendo Maradona fue
Ampliación Matemática Discreta. Justo Peralta López
Justo Peralta López UNIVERSIDAD DE ALMERíA DEPARTAMENTO DE ÁGEBRA Y ANÁLISIS MATEMÁTICO 1 Introducción 2 Definición semántica de las proposiciones 3 Diagrama de valores de certeza 4 Evaluación de fórmulas.
Lógica Proposicional. Sergio Stive Solano Sabié. Marzo de 2012
Lógica Proposicional Sergio Stive Solano Sabié Marzo de 2012 Lógica Proposicional Sergio Stive Solano Sabié Marzo de 2012 Proposiciones Definición 1.1 Una proposición (o declaración) es una oración declarativa
Matemáticas Discretas. Oscar Bedoya
Matemáticas Discretas Oscar Bedoya [email protected] http://eisc.univalle.edu.co/~oscarbed/md/ * Lógica proposicional * Concepto de proposición * Valores de verdad * Operadores lógicos
ANOTACIONES BÁSICAS SOBRE LÓGICA PROPOSICIONAL FILOSOFÍA 1º BACHILLERATO
Pág. 1 Lógica Proposicional La lógica proposicional es la más antigua y simple de las formas de lógica. Utilizando una representación primitiva del lenguaje, permite representar y manipular aserciones
Apuntes de Lógica Proposicional
Apuntes de Lógica Proposicional La lógica proposicional trabaja con expresiones u oraciones a las cuales se les puede asociar un valor de verdad (verdadero o falso); estas sentencias se conocen como sentencias
Introducción a la Lógica
Tema 0 Introducción a la Lógica En cualquier disciplina científica se necesita distinguir entre argumentos válidos y no válidos. Para ello, se utilizan, a menudo sin saberlo, las reglas de la lógica. Aquí
Lógica. Matemática discreta. Matemática discreta. Lógica
Lógica Matemática discreta Lógica: rama de las matemáticas instrumento para representar el lenguaje natural proporciona un mecanismo de deducción 2 y de predicados Razonamientos Cálculo proposicional Cálculo
Ejercicios de Lógica Proposicional *
Ejercicios de Lógica Proposicional * [email protected] Notación. El lenguaje proposicional que hemos definido, aquel que utiliza los cinco conectivos,,, y, se denota como L {,,,, }. Los términos
ALGEBRA DE BOOLE George Boole C. E. Shannon E. V. Hungtington [6]
ALGEBRA DE BOOLE El álgebra booleana, como cualquier otro sistema matemático deductivo, puede definirse con un conjunto de elementos, un conjunto de operadores y un número de axiomas no probados o postulados.
Cálculo Proposicional
Universidad Técnica ederico Santa María Departamento de Informática undamentos de Informática 1 Cálculo Proposicional Dr. Gonzalo Hernández Oliva Dr. Gonzalo Hernández USM I-1 Cálculo Proposicional 1 1)
Coordinación de Matemática I (MAT021) 1 er Semestre de 2013 Semana 1: Lunes 11 Viernes 16 de Marzo. Contenidos
Coordinación de Matemática I (MAT021) 1 er Semestre de 2013 Semana 1: Lunes 11 Viernes 16 de Marzo Complementos Contenidos Clase 1: Elementos de lógica: Conectivos, tablas de verdad, tautologías y contingencias.
Lógica proposicional. Ivan Olmos Pineda
Lógica proposicional Ivan Olmos Pineda Introducción Originalmente, la lógica trataba con argumentos en el lenguaje natural es el siguiente argumento válido? Todos los hombres son mortales Sócrates es hombre
Capítulo 1 Lógica Proposicional
Capítulo 1 Lógica Proposicional 1.1 Introducción El ser humano, a través de su vida diaria, se comunica con sus semejantes a través de un lenguaje determinado (oral, escrito, etc.) por medio de frases
Capítulo 4. Lógica matemática. Continuar
Capítulo 4. Lógica matemática Continuar Introducción La lógica estudia la forma del razonamiento, es una disciplina que por medio de reglas y técnicas determina si un teorema es falso o verdadero, además
MATERIAL DE APOYO PARA EL PRIMER CURSO DE MATEMÁTICAS COMPUTACIONALES.
MATERIAL DE APOYO PARA EL PRIMER CURSO DE MATEMÁTICAS COMPUTACIONALES. Ing. HUGO HUMBERTO MORALES PEÑA MAESTRÍA EN ENSEÑANZA DE LAS MATEMÁTICAS Línea de Matemáticas Computacionales UNIVERSIDAD TECNOLÓGICA
INTRODUCCION A LA INTELIGENCIA ARTIFICIAL MÓDULO 6- CÁLCULO DE PREDICADOS Y LÓGICA DE PRIMER ORDEN
INTRODUCCION A LA INTELIGENCIA ARTIFICIAL MÓDULO 6- CÁLCULO DE PREDICADOS Y LÓGICA DE PRIMER ORDEN Referencias: Inteligencia Artificial Russell and Norvig Cap.6. Artificial Intellingence Nils Nilsson Ch.4
Proposicional. Curso Mari Carmen Suárez de Figueroa Baonza
Semántica Proposicional Curso 2014 2015 Mari Carmen Suárez de Figueroa Baonza [email protected] Contenidos Introducción Interpretación de FBFs proposicionales Validez Satisfacibilidad Validez y Satisfacibilidad
Matemáticas Discretas TC1003
Matemáticas Discretas TC13 Matrices: Conceptos y Operaciones Básicas Departamento de Matemáticas ITESM Matrices: Conceptos y Operaciones Básicas Matemáticas Discretas - p. 1/25 Una matriz A m n es un arreglo
Tema 3.1 Introducción a los circuitos combinacionales. Algebra de Boole
Tema 3.1 Introducción a los circuitos combinacionales. Algebra de Boole Índice Algebra de Boole. Definición. Operaciones lógicas: OR, AND, XOR y NOT Puertas lógicas Algebra de Boole Postulados Teoremas
1.1.1 Conectivos lógicos, formas proposicionales y tablas de verdad.
Tema 1 Lógica. 1.1 Cálculo proposicional. Definición 1.1 Una proposición es una frase o sentencia declarativa que es verdadera o falsa pero no ambas cosas a la vez. Los dos posibles valores de verdad que
LÓGICA PROPOSICIONAL
LÓGICA PROPOSICIONAL QUE ES LA LÓGICA? El sentido ordinario de la palabra lógica se refiere a lo que es congruente, ordenado, bien estructurado. Lo ilógico es lo mismo que incongruente, desordenado, incoherente.
Material diseñado para los estudiantes del NUTULA, alumnos del profesor Álvaro Moreno.01/10/2010 Lógica Proposicional
Lógica Proposicional INTRODUCCIÓN El humano se comunica con sus semejantes a través de un lenguaje determinado (oral, simbólico, escrito, etc.) construido por frases y oraciones. Estas pueden tener diferentes
Matemáticas Básicas para Computación
Matemáticas Básicas para Computación MATEMÁTICAS BÁSICAS PARA COMPUTACIÓN 1 Sesión No. 6 Nombre: Álgebra Booleana Objetivo Durante la sesión el participante identificará las principales características
Conjuntos, relaciones y funciones Susana Puddu
Susana Puddu 1. Repaso sobre la teoría de conjuntos. Denotaremos por IN al conjunto de los números naturales y por ZZ al de los enteros. Dados dos conjuntos A y B decimos que A está contenido en B o también
Benemérita Universidad Autónoma de Puebla
Tarea No. 1 Matemáticas Elementales Profesor Fco. Javier Robles Mendoza Benemérita Universidad Autónoma de Puebla Facultad de Ciencias de la Computación Lógica y Conjuntos 1. Considere las proposiciones
LÓGICA MATEMÁTICA O FORMAL O SIMBÓLICA
LÓGICA MATEMÁTICA O FORMAL O SIMBÓLICA La lógica formal o simbólica, a diferencia de la lógica clásica, utiliza un lenguaje artificial, es decir, está rigurosamente construido, no admite cambios en el
Asignatura: Matemática Fundamental [405036M-02] Taller 1 Lenguaje Simbólico y lógica proposicional
Asignatura: Matemática Fundamental [405036M-02] Taller 1 Lenguaje Simbólico y lógica proposicional 1. Responda las siguientes preguntas: a) Qué es un lenguaje formal? b) Qué es lenguaje matemático? c)
Matemáticas Básicas para Computación
Matemáticas Básicas para Computación MATEMÁTICAS BÁSICAS PARA COMPUTACIÓN 1 Sesión No. 5 Nombre: Tablas de verdad Objetivo Al término de la sesión el participante aplicará los conceptos de lógica a través
RAZONAMIENTO LÓGICO LECCIÓN 1: ANÁLISIS DEL LENGUAJE ORDINARIO. La lógica se puede clasificar como:
La lógica se puede clasificar como: 1. Lógica tradicional o no formal. 2. Lógica simbólica o formal. En la lógica tradicional o no formal se consideran procesos psicológicos del pensamiento y los métodos
Operaciones con conjuntos (ejercicios)
Operaciones con conjuntos (ejercicios) Ejemplo: Definición de la diferencia de conjuntos. Sean y conjuntos. Entonces \ := { x: x x / }. Esto significa que para todo x tenemos la siguiente equivalencia:
REGLAS Y LEYES LOGICAS
LOGICA II REGLAS Y LEYES LOGICAS Una regla lógica, o regla de inferencia (deductiva), es una forma válida de razonamiento que es empleada para inferir deductivamente ciertos enunciados a partir de otros.
2. Si P; Q; R son verdaderas y S; T son falsas, determine el valor de verdad de la proposición: [P =) (R =) T )] () [(:P ^ S) =) (Q =) :T )]
Instituto Tecnológico de Costa Rica Escuela de Matemática I semestre 2012 Cálculo Diferencial e Integral. Prof. Juan José fallas. 1 Leyes de la lógica y reglas de inferencia 2 Ejercicios 1 Leyes de la
L OGICA Proposiciones
CAPíTULO 4 LÓGICA Uno de los procesos por los cuales adquirimos conocimiento es el proceso de razonamiento. A su vez, hay una variedad de modos o formas mediante las cuales razonamos o argumentamos a favor
Matemáticas Discretas TC1003
Matemáticas Discretas TC1003 Funciones 1-a-1, sobre e inversas Departamento de Matemáticas / Centro de Sistema Inteligentes ITESM Funciones 1-a-1, sobre e inversas Matemáticas Discretas - p. 1/14 Función
John Venn Matemático y filósofo británico creador de los diagramas de Venn
Georg Cantor Matemático Alemán creador de la teoría de conjuntos John Venn Matemático y filósofo británico creador de los diagramas de Venn August De Morgan Matemático ingles creador de leyes que llevan
Índice Proposiciones y Conectores Lógicos Tablas de Verdad Lógica de Predicados Inducción
Curso 0: Matemáticas y sus Aplicaciones Tema 5. Lógica y Formalismo Matemático Leandro Marín Dpto. de Matemática Aplicada Universidad de Murcia 2012 1 Proposiciones y Conectores Lógicos 2 Tablas de Verdad
RAZONAMIENTO MATEMÁTICO
RAZONAMIENTO MATEMÁTICO I. LÓGICA PROPOSICIONAL A. Proposiciones B. Conectivos proposicionales B.. Negación B.2. Conjunción B.3. Disyunción B.4. Condicional B.5. Bicondicional B.6. Otros conectivos C.
Definiciones Una relación R en un conjunto A es una relación de orden si verifica las propiedades reflexiva, antisimétrica y transitiva.
RELACIONES DE ORDEN Definiciones Una relación R en un conjunto A es una relación de orden si verifica las propiedades reflexiva, antisimétrica y transitiva. Un conjunto parcialmente ordenado ( A, R ) es
No ~ Si entonces Sí y sólo si
Principios de lógica. Principios de la lógica y o Objetivo general Establecer el valor de verdad de muchos de los enunciados lógicos, utilizando las leyes de la lógica y las de las inferencias, ya sea
ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL FACULTAD DE CIENCIAS NATURALES Y MATEMÁTICAS DEPARTAMENTO DE MATEMÁTICAS CURSO DE NIVELACIÓN S
ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL FACULTAD DE CIENCIAS NATURALES Y MATEMÁTICAS DEPARTAMENTO DE MATEMÁTICAS CURSO DE NIVELACIÓN 014 1S PRIMERA EVALUACIÓN DE MATEMÁTICAS PARA CIENCIAS, INGENIERÍAS
Taller Matemático. Lógica. Cristóbal Pareja Flores antares.sip.ucm.es/cpareja Facultad de Estadística Universidad Complutense de Madrid
Taller Matemático Lógica Cristóbal Pareja Flores antares.sip.ucm.es/cpareja Facultad de Estadística Universidad Complutense de Madrid 1. Lógica 14 amigos aportan la misma cantidad de dinero, sobre un fondo
Si..., siempre que, con tal que, puesto que, ya que, porque, cuando, de, a menos que, a no ser que, salvo que, solamente.
1.2 Proposiciones condicionales y equivalencia lógica. Proposición Condicional o implicación lógica Una proposición condicional, es aquella que está formada por dos proposiciones atómicas o moleculares,
encontramos dos enunciados. El primero (p) nos afirma que Pitágoras era griego y el segundo (q) que Pitágoras era geómetra.
Álgebra proposicional Introducción El ser humano, a través de su vida diaria, se comunica con sus semejantes a través de un lenguaje determinado (oral, escrito, etc.) por medio de frases u oraciones. Estas
ESCUELA MILITAR DE INGENIERÍA MISCELÁNEAS DE PROBLEMAS 2013 ÁLGEBRA I
ESCUELA MILITAR DE INGENIERÍA Elaborado por: Lic. Bismar Choque Nina MISCELÁNEAS DE PROBLEMAS 2013 ÁLGEBRA I A pesar de que la refutación por ejemplo del contrario es un procedimiento válido, los teoremas
El conjuntos de los estudiantes inteligentes de la UPR Río Piedras. El conjunto de los mejores baloncelistas de la NBA.
1 Conjuntos Un conjunto es una colección de objetos bien definida. Ejemplos de conjuntos: El conjuntos de todos los estudiantes matriculados en el programa immersión. El conjunto de todos los pueblos de
TEMA 3 ÁLGEBRA DE CONMUTACIÓN
TEMA 3 ÁLGEBRA DE CONMUTACIÓN TEMA 3: Álgebra de Boole ÍNDICE. POSTULADOS DEL ÁLGEBRA DE CONMUTACIÓN 2. ÁLGEBRA DE BOOLE BIVALENTE O ÁLGEBRA DE CONMUTACIÓN 2. Teoremas del álgebra de conmutación 3. VARIABLES
Capítulo 2 Conjuntos. 2.1 Introducción. 2.2 Determinación de conjuntos. Definición:
Capítulo 2 Conjuntos 2.1 Introducción El concepto de conjunto, de singular importancia en la ciencia matemática y objeto de estudio de una de sus disciplinas más recientes, está presente, aunque en forma
Algoritmos y Estructura de Datos I
Clase práctica de Especificación - Lógica proposicional Viernes 20 de Marzo de 2015 Menú del día Fórmulas bien formadas Tablas de verdad Tautologías, Contingencias y Contradicciones Relación de fuerza
UNIDAD 4. Álgebra Booleana
UNIDAD 4 Álgebra Booleana ÁLGEBRA BOOLEANA El Álgebra Booleana se define como una retícula: Complementada: existe un elemento mínimo 0 y un elemento máximo I de tal forma que si a esta en la retícula,
La Lógica estudia la forma del razonamiento. La Lógica Matemática es la disciplina que trata de métodos de razonamiento. En un nivel elemental, la
LÓGICA MATEMÁTICA OBJETIVOS Definirás proposición simple. Definirás proposiciones compuestas: Disyunción y conjunción. Relacionarás dichas proposiciones con las operaciones de conjuntos: unión e intersección.
Facultad de Informática. Módulo 1 Lógica. Matemática 0 UNLP. Curso de Ingreso 2013 Matemática 0 Página 1
Matemática 0 UNLP Curso de Ingreso 2013 Matemática 0 Página 1 Contenido 1.1 Álgebra de proposiciones 3 Expresiones No Proposicionales 4 Enunciados Abiertos 4 Clasificación de las Proposiciones 4 1.2 Conectivos
Universidad Nacional Abierta y a Distancia UNAD-Lógica Matemática - Georffrey Acevedo G. A que viene la lógica?
A que viene la lógica? Autor: Georffrey Acevedo G. Noviembre 16 de 2008. Los conceptos de proposiciones, conectivos e inferencias confluyen al analizar un razonamiento. Para tener claridad sobre los conceptos
GUIA DE TRABAJOS TEORICO PRACTICO N 1: LÓGICA DE LAS PROPOSICIONES
CENTRO EDUCATIVO DE NIVEL TERCIARIO N 2 INTRODUCCIÓN A LA LOGICA SIMBOLICA PRIMER AÑO AÑO: 2005 GUIA DE TRABAJOS TEORICO PRACTICO N 1: LÓGICA DE LAS PROPOSICIONES La lógica es una ciencia formal, o sea,
Semana02[1/23] Conjuntos. 9 de marzo de Conjuntos
Semana02[1/23] 9 de marzo de 2007 Introducción Semana02[2/23] La teoría de conjuntos gira en torno a la función proposicional x A. Los valores que hacen verdadera la función proposicional x A son aquellos
Lógica Matemática, Sistemas Formales, Cláusulas de Horn
Lógica Matemática, Sistemas Formales, Cláusulas de Horn Lic. José Manuel Alvarado La lógica se ocupa de las argumentaciones válidas. Las argumentaciones ocurren cuando se quiere justificar una proposición
Conjuntos. () April 4, / 32
Conjuntos En general, un conjunto A se de ne seleccionando los elementos de un cierto conjunto U de referencia (o universal) que cumplen una determinada propiedad. () April 4, 2014 1 / 32 Conjuntos En
ESTRUCTURA Y TECNOLOGÍA DE LOS COMPUTADORES I. TEMA 4 Algebra booleana y puertas lógicas
ESTRUCTURA Y TECNOLOGÍA DE LOS COMPUTADORES I TEMA 4 Algebra booleana y puertas lógicas TEMA 4. Algebra booleana y puertas lógicas 4.1 Definición de álgebra de Boole 4.2 Teoremas del álgebra de Boole 4.3
Guía para el estudiante
Guía para el estudiante Guía realizada por Jefferson Bustos Profesional en Matemáticas Master en Educación Nombre: Fecha: Curso: Dentro del lenguaje común, las palabras y frases pueden tener diversas interpretaciones.
Lógica. Lógica Proposicional. Cuáles de las siguientes frases son proposiciones? Proposición
Lógica Lógica Proposicional Escuela de Ingeniería Industrial Pontificia Universidad Católica de Valparaíso, Chile [email protected] Proposición Definición: Una proposición o enunciado es una frase que a la
Notas de Álgebra Básica I
Notas de Álgebra Básica I Carlos Ruiz de Velasco y Bellas Departamento de Matemáticas, Estadística y Computación Facultad de Ciencias Universidad de Cantabria 14 de septiembre de 2006 2 Capítulo 1 Conjuntos,
Forma lógica de enunciados
Forma lógica de enunciados Marisol Miguel Cárdenas Lenguaje natural y lenguaje formal El lenguaje natural es aquel que utilizamos cotidianamente. Surge históricamente dentro de la sociedad y es aprendido
Electrónica Digital - Guión
Electrónica Digital - Guión 1. Introducción. 2. El álgebra de Boole. 3. Propiedades del álgebra de Boole. 4. Concepto de Bit y Byte. 5. Conversión del sistema decimal en binario y viceversa. 6. Planteamiento
Estructuras Algebraicas
Tema 1 Estructuras Algebraicas Definición 1 Sea A un conjunto no vacío Una operación binaria (u operación interna) en A es una aplicación : A A A Es decir, tenemos una regla que a cada par de elementos
INTRODUCCIÓN A LA LÓGICA
UNIVERSIDAD NACIONAL DE RÍO CUARTO FACULTAD DE CIENCIAS EXACTAS, FÍSICO-QUÍMICAS Y NATURALES DEPARTAMENTO DE MATEMÁTICA INTRODUCCIÓN A LA LÓGICA Para el ingreso a las carreras de Matemática Material preparado
EJEMPLO DE PREGU,TAS
EJEMPLO DE PREGU,TAS MATEMÁTICAS PRIMERO, SEGU,DO Y TERCERO DE BACHILLERATO 1. Lógica proposicional Esta competencia se refiere al conocimiento que usted posee sobre el lenguaje de las proposiciones y
Algebra de Boole. » a + a = 1» a a = 0
Algebra de Boole Dos elementos: 0 y 1 Tres operaciones básicas: producto ( ) suma ( + ) y negación ( ` ) Propiedades. Siendo a, b, c números booleanos, se cumple: Conmutativa de la suma: a + b = b + a
Tema 2: Equivalencias y formas normales
Lógica informática Curso 2003 04 Tema 2: Equivalencias y formas normales José A. Alonso Jiménez Andrés Cordón Franco Dpto. de Ciencias de la Computación e Inteligencia Artificial Universidad de Sevilla
TEMAS DE MATEMÁTICAS (Oposiciones de Secundaria)
TEMAS DE MATEMÁTICAS (Oposiciones de Secundaria) TEMA 70 LÓGICA PROPOSICIONAL. EJEMPLOS Y APLICACIONES AL RAZONAMIENTO MATEMÁTICO. 1. Introducción. 2. El Lenguaje para la Lógica de Proposiciones. 2.1.
INSTITUCION EDUCATIVA LA PRESENTACION NOMBRE ALUMNA: ASIGNATURA: MATEMATICAS. NOTA
INSTITUCION EDUCATIA LA PRESENTACION NOMBRE ALUMNA: AREA : MATEMATICAS ASIGNATURA: MATEMATICAS. NOTA DOCENTE: HUGO HERNAN BEDOYA TIPO DE GUIA: CONCEPTUAL - EJERCITACION PERIODO GRADO ECHA N DURACION 1
CAPÍTULO 2 NOCIONES BÁSICAS DE TEORÍA DE CONJUNTOS
CAPÍTULO 2 NOCIONES BÁSICAS DE TEORÍA DE CONJUNTOS 2.1. NOCIONES PRIMITIVAS Consideraremos tres nociones primitivas: Conjunto, Elemento y Pertenencia. Conjunto Podemos entender al conjunto como, colección,
INTRODUCCION AL ALGEBRA.
INTRODUCCION AL ALGEBRA. 2- TEORIA DE CONJUNTOS. Apuntes de la Cátedra. Alberto Serritella. Colaboraron: Cristian Mascetti. Vanesa Bergonzi Edición Previa CECANA CECEJS CET Junín 2010. UNNOBA Universidad
3.1 Reglas de equivalencia
3.1 Reglas de equivalencia En esta sección estudiarás y aplicarás algunas reglas de equivalencia de proposiciones lógicas. Es decir, vamos a empezar a aplicar algunas reglas que nos permitirán transformar
Análisis Matemático I: Numeros Reales y Complejos
Contents : Numeros Reales y Complejos Universidad de Murcia Curso 2008-2009 Contents 1 Definición axiomática de R Objetivos Definición axiomática de R Objetivos 1 Definir (y entender) R introducido axiomáticamente.
Funciones y Cardinalidad
Funciones y Cardinalidad Definición 1 Llamaremos función f entre dos conjuntos A y B a una relación que verifica las siguientes propiedades: i) Dom(f) = A ii) Si (a, b), (a, c) f entonces b = c Dicho de
b) Sea una relación de equivalencia en A y una operación en A. Decimos que y son compatibles si a b a c b c y c a c b para todo a, b, c A
APENDICE Relaciones y Operaciones Compatibles 1 Definición: a) Sea A un conjunto y una relación entre elementos de A. Decimos que es una relación de equivalencia si es: i Reflexiva: a A, a a. ii Simétrica:
LICENCIATURA EN MATEMÁTICA. Práctico N 1 Lenguaje de la lógica. proposicional VICTOR GALARZA ROJAS 1 5 / 0 5 /
Práctico N 1 Lenguaje de la lógica LICENCIATURA EN MATEMÁTICA proposicional VICTOR GALARZA ROJAS 1 5 / 0 5 / 2 0 1 0 PRÁCTICO N 1 1. Fundamentación: fundamentar la expresión Por lo tanto del siguiente
CAPÍTULO I ÁLGEBRA DE PROPOSICIONES
ÁLGEBRA DE PROPOSICIONES 1 CAPÍTULO I ÁLGEBRA DE PROPOSICIONES 1.1 PROPOSICIÓN Proosición (o enunciado) es una afirmación verbal a la ue uede asociarse un valor de verdad, es decir, uede ser verdadera
MLM 1000 - Matemática Discreta
MLM 1000 - Matemática Discreta L. Dissett Clase 04 Resolución. Lógica de predicados c Luis Dissett V. P.U.C. Chile, 2003 Aspectos administrativos Sobre el tema vacantes: 26 personas solicitaron ingreso
Cálculo Diferencial: Enero 2016
Cálculo Diferencial: Enero 2016 Selim Gómez Ávila División de Ciencias e Ingenierías Universidad de Guanajuato 9 de febrero de 2016 / Conjuntos y espacios 1 / 21 Conjuntos, espacios y sistemas numéricos
CURSO NIVELACIÓN LÓGICA MATEMÁTICA PROYECTO UNICOMFACAUCA TU PROYECTO DE VIDA LAS PROPOSICIONES
LAS PROPOSICIONES Objetivo Brindar al estudiante un concepto claro en la formulación, interpretación y aplicabilidad de las proposiciones. La interpretación de las proposiciones compuestas permite al estudiante
EJERCICIOS SOBRE PROPOSICIÓN. DEFINICIÓN Y CLASES
INSTRUCCIÓN. Resuelve los problemas propuestos del modo siguiente: primero en forma individual, luego en forma grupal y por último preséntalo en forma grupal en un máximo de cinco (05) integrantes. EJERCICIOS
APENDICE REGLAS Y LEYES DE LA LOGICA DE PRIMER ORDEN
LOGICA (FCE-UBA) APENDICE REGLAS Y LEYES DE LA LOGICA DE PRIMER ORDEN Una regla lógica, o regla de inferencia (deductiva), es una forma válida de razonamiento que es empleada para inferir deductivamente
DIAGRAMAS DE FLUJO ELEMENTOS E INSTRUCCIONES A USAR EN UN DIAGRAMA DE FLUJO
DIAGRAMAS DE LUJO Un Diagrama de lujo es la representación gráfica de los pasos a seguir para lograr un objetivo, que habitualmente es la solución de un problema. Por Logical se entiende, en algunos libros,
Lógica Proposicional. Guía Lógica Proposicional. Tema III: Cuantificadores
Guía Lógica Proposicional Tema III: Cuantificadores 1.7.2. CUANTIFICADORES Los cuantificadores permiten afirmaciones sobre colecciones enteras de objetos en lugar de tener que enumerar los objetos por
Horas Trabajo Estudiante: 128
PROGRAMAS DE:: CIIENCIIAS BÁSIICAS E IINGENIIERÍÍAS DEPARTAMENTO DE MATEMÁTIICAS Y ESTADÍÍSTIICA CONTENIIDOSS PPROGRAMÁTIICOSS PPOR UNIIDADESS DE APPRENDIIZAJJE Curso: Créditos: 3 Lógica Matemática Horas
Expresiones algebraicas. Copyright 2013, 2009, 2006 Pearson Education, Inc. 1
Expresiones algebraicas Copyright 2013, 2009, 2006 Pearson Education, Inc. 1 Variables Álgebra utiliza letras como x & y para representar números. Si una letra se utiliza para representar varios números,
ÁLGEBRA BOOLEANA El álgebra booleana es un sistema matemático deductivo centrado en los valores cero y uno (falso y verdadero). Un operador binario "
ÁLGEBRA BOOLEANA El álgebra booleana es un sistema matemático deductivo centrado en los valores cero y uno (falso y verdadero). Un operador binario " " definido en éste juego de valores acepta un par de
10.4 Sistemas de ecuaciones lineales
Programa Inmersión, Verano 2016 Notas escritas por Dr. M Notas del cursos. Basadas en los prontuarios de MATE 001 y MATE 02 Clase #11: martes, 14 de junio de 2016. 10.4 Sistemas de ecuaciones lineales
Inducción Matemática Conjuntos Funciones. Matemática Discreta. Agustín G. Bonifacio UNSL. Repaso de Inducción, Conjuntos y Funciones
UNSL Repaso de Inducción, y Inducción Matemática (Sección 1.7 del libro) Supongamos que queremos demostrar enunciados del siguiente tipo: P(n) : La suma de los primeros n números naturales es n(n+1)
ELEMENTOS DE LA TEORÍA DE CONJUNTOS
ELEMENTOS DE LA TEORÍA DE CONJUNTOS 1 CONJUNTO EJEMPLOS NOTACIÓN NOTACIÓN TABULAR O POR EXTENSIÓN DE UN CONJUNTO Cuando se define el conjunto por la efectiva enumeración de sus elementos separándolos por
Los Números Enteros (Z)
Los Números Enteros (Z) Los números enteros: representación gráfica, orden, modulo o valor absoluto. Operaciones en Z, procedimientos y propiedades de estas. Prioridades de operaciones y paréntesis. Problemas
CONCEPTOS BÁSICOS DE ESPACIOS VECTORIALES Alumno. Cristina Mª Méndez Suero
Fundamento Científico del Currículum de Matemáticas en Enseñanza Secundaria CONCEPTOS BÁSICOS DE ESPACIOS VECTORIALES Alumno. Cristina Mª Méndez Suero ESPACIOS VECTORIALES DEFINICIÓN... 1 PROPIEDADES DE
Unidad 2.- Lógica y tablas de verdad. Lógica
Lógica Algebra Booleana Las álgebras booleanas, estudiadas por primera vez en detalle por George Boole, constituyen un área de las matemáticas que ha pasado a ocupar un lugar prominente con el advenimiento
Álgebra y Trigonometría Clase 7 Sistemas de ecuaciones, Matrices y Determinantes
Álgebra y Trigonometría Clase 7 Sistemas de ecuaciones, Matrices y Determinantes CNM-108 Departamento de Matemáticas Facultad de Ciencias Exactas y Naturales Universidad de Antioquia Copyleft c 2008. Reproducción
IIC 2252 - Matemática Discreta
IIC 2252 - Matemática Discreta L. Dissett Clase 04 Lógica de predicados. Reglas de inferencia en lógica de predicados. Lógica de predicados Definiciones básicas: Un predicado es una afirmación que depende
PREPARATORIA ABIERTA Cuestionario matemáticas I. Modulo I al XVI MODULO I
PREPARATORIA ABIERTA Cuestionario matemáticas I Modulo I al XVI MODULO I 1. - Es una colección o agregado de ideas u objetos de cualquier especie siempre y cuando estén tan claros y definidos como para
