Matemáticas Discretas TC1003
|
|
|
- Julio Gómez Padilla
- hace 9 años
- Vistas:
Transcripción
1 Matemáticas Discretas TC1003 Funciones 1-a-1, sobre e inversas Departamento de Matemáticas / Centro de Sistema Inteligentes ITESM Funciones 1-a-1, sobre e inversas Matemáticas Discretas - p. 1/14
2 Función 1 a 1 Sea F una función del conjunto X al conjunto Y. Diremos que F es una función 1-a-1 o inyectiva si para cualquier dos elementos x 1 y x 2 de X se cumple: si F(x 1 )=F(x 2 ) entonces x 1 = x 2 Funciones 1-a-1, sobre e inversas Matemáticas Discretas - p. 2/14
3 Función 1 a 1 Sea F una función del conjunto X al conjunto Y. Diremos que F es una función 1-a-1 o inyectiva si para cualquier dos elementos x 1 y x 2 de X se cumple: si F(x 1 )=F(x 2 ) entonces x 1 = x 2 Equivalentemente, si tomamos la contrapositiva: si x 1 x 2 entonces F(x 1 )F(x 2 ) Funciones 1-a-1, sobre e inversas Matemáticas Discretas - p. 2/14
4 Función 1 a 1 Sea F una función del conjunto X al conjunto Y. Diremos que F es una función 1-a-1 o inyectiva si para cualquier dos elementos x 1 y x 2 de X se cumple: si F(x 1 )=F(x 2 ) entonces x 1 = x 2 Equivalentemente, si tomamos la contrapositiva: si x 1 x 2 entonces F(x 1 )F(x 2 ) Simbólicamente F : X Y es 1-a-1 x 1 x 2, (F(x 1 )=F(x 2 ) x 1 = x 2 ) Funciones 1-a-1, sobre e inversas Matemáticas Discretas - p. 2/14
5 Tomando la negación de lo anterior: F : X Y no es 1-a-1 x 1 x 2, (F(x 1 )=F(x 2 ) x 1 x 2 ) Funciones 1-a-1, sobre e inversas Matemáticas Discretas - p. 3/14
6 x 1 x 2 X... F. F(x 1 ). F(x 2 ). siempre separa puntos Y x 1 x 2 X... F Y. F(x 1 ). Función no 1-a-1 colapsa al menos dos puntos Funciones 1-a-1, sobre e inversas Matemáticas Discretas - p. 4/14
7 a b c d X F Y u v w x y Ejemplo Cómo es F? a b c d X G Y u v w x y Cómo es G? Funciones 1-a-1, sobre e inversas Matemáticas Discretas - p. 5/14
8 Ejemplo Indique cómo son las funciones: f : Z Zdefinida por f (z)=2 z. f : Z Zdefinida por f (z)=4 z 5. f : Z Zdefinida por f (z)=z 2. f : N Zdefinida por f (z)=z 2. f : (R {0}) Rdefinida por f (x)= x+1. x x f : R Rdefinida por f (x)= x f : (R {1}) Rdefinida por f (x)= x+1 x 1. Funciones 1-a-1, sobre e inversas Matemáticas Discretas - p. 6/14
9 Sea F una función del conjunto X al conjunto Y. Diremos que F es una función Sobre o suprayectiva si y sólo si para cualquier elemento y de Y es posible encontrar un elemento x de X tal que y=f(x). Funciones 1-a-1, sobre e inversas Matemáticas Discretas - p. 7/14
10 Sea F una función del conjunto X al conjunto Y. Diremos que F es una función Sobre o suprayectiva si y sólo si para cualquier elemento y de Y es posible encontrar un elemento x de X tal que y = F(x). Simbólicamente F : X Y es sobre y Y, x X, tal que y=f(x) Funciones 1-a-1, sobre e inversas Matemáticas Discretas - p. 7/14
11 Tomando la negación de lo anterior: F : X Y no es sobre y Y, x X, F(x)y Funciones 1-a-1, sobre e inversas Matemáticas Discretas - p. 8/14
12 X X F Y Y F sobre: Cada y de Y es imagen de al menos un x de X F F no sobre: Hay almenos un y de Y que no es imagen de ningún x de X Funciones 1-a-1, sobre e inversas Matemáticas Discretas - p. 9/14
13 a b c d X F Y u v w x y Ejemplo Cómo es F? a b c d X G Y u w y Cómo es G? Funciones 1-a-1, sobre e inversas Matemáticas Discretas - p. 10/14
14 Ejemplo Indique cómo son las funciones: f : R Rdefinida por f (x)=4 x 1. f : Z Zdefinida por f (z)=4 z 1. f : R Zdefinida por f (x)= x. Funciones 1-a-1, sobre e inversas Matemáticas Discretas - p. 11/14
15 Función Biyectiva Sea F una función del conjunto X al conjunto Y. Diremos que F es una función biyectiva o correspondencia 1-a-1 si y sólo si F es inyectiva y también sobre. Funciones 1-a-1, sobre e inversas Matemáticas Discretas - p. 12/14
16 Función Teorema Sea F una función del conjunto X al conjunto Y biyectiva. Entonces: {(y, x) Y X (x, y) F} es una función de Y en X. Funciones 1-a-1, sobre e inversas Matemáticas Discretas - p. 13/14
17 Función Teorema Sea F una función del conjunto X al conjunto Y biyectiva. Entonces: {(y, x) Y X (x, y) F} es una función de Y en X. La función que refiere el teorema anterior se llamará la función inversa de F y se simbolizará por F 1. Funciones 1-a-1, sobre e inversas Matemáticas Discretas - p. 13/14
18 Ejemplo log a (x) vs a x sen(x) vs arcsen(x) o sen 1 (x) Funciones 1-a-1, sobre e inversas Matemáticas Discretas - p. 14/14
Matemáticas Discretas TC1003
Matemáticas Discretas TC003 : Conceptos Departamento de Matemáticas / Centro de Sistema Inteligentes ITESM : Conceptos Matemáticas Discretas - p. /5 Una función f del conjunto X al conjunto Y es una relación
Imagenes inversas de funciones. x f 1 (A) f(x) A
Imagenes inversas de funciones Denición. Sean f : X Y y A una parte del codominio Y. Imagen inversa ó preimagen del subconjunto A Y, es el conjunto de los elementos del dominio cuyas imagenes pertenecen
Matemáticas Discretas TC1003
Matemáticas Discretas TC1003 Relaciones entre Conjuntos: Propiedades Departamento de Matemáticas / Centro de Sistema Inteligentes ITESM Relaciones entre Conjuntos: Propiedades Matemáticas Discretas - p.
P(f) : P(B) P(A) (A.2)
TEMA 2. APLICACIONES 227 Tema 2. Aplicaciones Definición A.2.1. Una correspondencia entre dos conjuntos A y B es un subconjunto del producto cartesiano A B. Una aplicación f entre dos conjuntos A y B es
Universidad Nacional Autónoma de México Licenciatura en Economía Cálculo Diferencial e Integral Funciones de una Variable Real
1 Universidad Nacional Autónoma de México Licenciatura en Economía Cálculo Diferencial e Integral Funciones de una Variable Real No sé cómo puedo ser visto por el mundo, pero en mi opinión, me he comportado
INSTITUTO FRANCISCO POSSENTI A.C. Per crucem ad lucem PREPARATORIA (1085) GUÍA DE MATEMÁTICAS VI (1619) I. PROGRESIONES
INSTITUTO FRANCISCO POSSENTI A.C. Per crucem ad lucem PREPARATORIA (08) GUÍA DE MATEMÁTICAS VI (69) Sucesión: finita e infinita. Serie. Define progresión aritmética y geométrica. I. PROGRESIONES. Forma
Matemáticas Discretas TC1003
Matemáticas Discretas TC1003 Negación e Implicaciones con Cuantificadores Departamento de Matemáticas / Centro de Sistema Inteligentes ITESM Negación e Implicaciones con Cuantificadores Matemáticas Discretas
Tema 8.- Anillos y cuerpos
Tema 8.- Anillos y cuerpos Definición.- Un anillo es una terna (A, +, ) formada por un conjunto A y dos operaciones internas y binarias +, verificando: 1. El par (A, +) es un grupo abeliano, cuyo elemento
Matemáticas Discretas TC1003
Matemáticas Discretas TC1003 Módulo I: Departamento de Matemáticas ITESM Módulo I: Matemáticas Discretas - p. 1/24 La forma proposicional más importante es la condicional. La Módulo I: Matemáticas Discretas
Matemáticas Discretas TC1003
Matemáticas Discretas TC1003 Métodos de Demostración Departamento de Matemáticas / Centro de Sistema Inteligentes ITESM Métodos de Demostración Matemáticas Discretas - p. 1/13 Introducción En esta sección
Por ser un cociente entre dos longitudes, el radián no tiene dimensión. De la definición obtenemos la relación entre radianes y grados:
E.T.S.I. Industriales y Telecomunicación Curso 011-01 Medida de ángulos Unidad Como unidad del tamaño de un ángulo se utiliza el radián, más natural y con más sentido geométrico que el grado. Recordemos
Tema X: LÍMITES Y CONTINUIDAD DE FUNCIONES X.1. Generalidades sobre funciones reales de variable real
Tema X: LÍMITES Y CONTINUIDAD DE FUNCIONES X.1. Generalidades sobre funciones reales de variable real En la primera parte de este tema vamos a tratar con funciones reales de variable real, esto es, funciones
Unidad 2. FUNCIONES Conceptos
Unidad 2. FUNCIONES Competencia específica a desarrollar Comprender el concepto de función real y tipos de funciones, así como estudiar sus propiedades y operaciones. Función 2.1. Conceptos Se puede considerar
Matemáticas Discretas TC1003
Matemáticas Discretas TC1003 Relaciones entre Conjuntos: Propiedades Departamento de Matemáticas / Centro de Sistema Inteligentes ITESM Relaciones entre Conjuntos: Propiedades Matemáticas Discretas - p.
Matemática Discreta Práctico 2: Conjuntos y Funciones
Matemática Discreta Práctico 2: Conjuntos y Funciones 1. Indique cuáles de los siguientes conjuntos son iguales a {1, 2, 3}: A = {3,2,1} B = {3,2,1,2,3} C = { x Z x 2 9 } D = N (,7/2] 2. Para el conjunto
Capítulo 4: Conjuntos
Capítulo 4: Conjuntos Miguel Ángel Olalla Acosta [email protected] Departamento de Álgebra Universidad de Sevilla Septiembre de 2014 Olalla (Universidad de Sevilla) Capítulo 4: Conjuntos Septiembre de
Tema 1: Conjuntos. Miguel Ángel Olalla Acosta Departamento de Álgebra Universidad de Sevilla. Septiembre de 2017
Tema 1: Conjuntos Miguel Ángel Olalla Acosta [email protected] Departamento de Álgebra Universidad de Sevilla Septiembre de 2017 Olalla (Universidad de Sevilla) Tema 1: Conjuntos Septiembre de 2017 1
Inyectivas, Suprayectivas, Biyectivas, Inversas. Relaciones Funcionales. f : A B se lee f es una función con dominio A y codominio B
Relaciones Funcionales Sean A, B dos conjuntos no vacíos, que llamaremos dominio y contradominio respectivamente. Entenderemos por función de A en B toda regla que hace corresponder a cada elemento del
Capítulo 2. Funciones
Capítulo 2. Funciones Objetivo: El alumno analizará las características principales de las funciones reales de variable real y formulará modelos matemáticos. Contenido: 2.1 Definición de función real de
Matemáticas Discretas TC1003
Matemáticas Discretas TC1003 Relaciones entre Conjuntos: Conceptos Básicos Departamento de Matemáticas / Centro de Sistema Inteligentes ITESM Relaciones entre Conjuntos Matemáticas Discretas - p. 1/14
Tema 1: Conjuntos. Miguel Ángel Olalla Acosta Departamento de Álgebra Universidad de Sevilla. Septiembre de 2016
Tema 1: Conjuntos Miguel Ángel Olalla Acosta [email protected] Departamento de Álgebra Universidad de Sevilla Septiembre de 2016 Olalla (Universidad de Sevilla) Tema 1: Conjuntos Septiembre de 2016 1
Teoría de anillos. Dominios, cuerpos y cuerpos de fracciones.
Tema 5.-. Teoría de anillos. Dominios, cuerpos y cuerpos de fracciones. 5.1. Anillos y cuerpos Definición 5.1.1. Un anillo es una terna (A, +, ) formada por un conjunto A y dos operaciones binarias +,
Toda función es una relación, pero no toda relación es una función. Las relaciones multiformes NO son funciones. Relación uno a uno (biunívoca)
CONCEPTO TRADICIONAL DE FUNCIÓN Cuando dos variables están relacionadas en tal forma que a cada valor de la primera corresponde un valor de la segunda, se dice que la segunda es función de la primera.
CURSO CERO DE MATEMATICAS. Apuntes elaborados por Domingo Pestana Galván. y José Manuel Rodríguez García
INGENIEROS INDUSTRIALES Y DE TELECOMUNICACIONES CURSO CERO DE MATEMATICAS Apuntes elaborados por Domingo Pestana Galván y José Manuel Rodríguez García UNIVERSIDAD CARLOS III DE MADRID Escuela Politécnica
INSTITUTO FRANCISCO POSSENTI A.C. Per crucem ad lucem PREPARATORIA (1085) GUÍA DE MATEMÁTICAS VI (1600 ) I. RELACIONES Y FUNCIONES
INSTITUTO FRANCISCO POSSENTI A.C. Per crucem ad lucem PREPARATORIA (085) GUÍA DE MATEMÁTICAS VI (600 ) I. RELACIONES Y FUNCIONES Funciones y relaciones. Dominio y rango. Determinar si es función o relación
Unidad II. 2.1 Concepto de variable, función, dominio, condominio y recorrido de una función.
Unidad II Funciones 2.1 Concepto de variable, función, dominio, condominio y recorrido de una función. Función En matemática, una función (f) es una relación entre un conjunto dado X (llamado dominio)
INSTITUTO FRANCISCO POSSENTI A.C. Per crucem ad lucem PREPARATORIA (1085) GUÍA DE MATEMÁTICAS VI (1600) I. RELACIONES Y FUNCIONES
INSTITUTO FRANCISCO POSSENTI A.C. Per crucem ad lucem PREPARATORIA (085) GUÍA DE MATEMÁTICAS VI (600) I. RELACIONES Y FUNCIONES Funciones y relaciones. Dominio y rango. Determinar si es función o relación
Ejercicios Selección Unica de funciones. ExMa-MA SELECCION UNICA
Ejercicios Selección Unica de funciones. ExMa-MA0125 1 SELECCION UNICA A continuación se presentan 54 preguntas de selección única. En cada caso, escoja la respuesta correcta. No lo realice con calculadora.
Funciones elementales
Tema Funciones elementales.1. Función real de variable real Una función real de variable real es cualquier aplicación f : D R! R. Se dice que el conjunto D es el dominio de f. El rango de f es el conjunto
FUNCIONES ( ) Racionales: ( ) Irracionales: ( ) Logarítmicas: ( )
FUNCIONES Definición. Función real de variable real es una aplicación del conjunto de los números reales en sí mismo, de tal forma que a cada número real le hace corresponder otro número real. CORRESPONDENCIA
MATEMÁTICAS V GEOMETRÍA ANALÍTICA
BACHILLERATO UNAM MATEMÁTICAS V GEOMETRÍA ANALÍTICA I. TAREA SEMESTRAL 1 Antero Gutiérrez Talamantes Arturo Falcón Hernández Diciembre del 2006 NOMBRE: GRUPO La presente tarea debe entregarse totalmente
Matemáticas Discretas TC1003
Matemáticas Discretas TC1003 Teoría de s: Definiciones Básicas Departamento de Matemáticas / Centro de Sistema Inteligentes ITESM Teoría de s: Definiciones Básicas Matemáticas Discretas - p. 1/28 En esta
Reconocer y utilizar las propiedades sencillas de la topología métrica.
3 Funciones continuas De entre todas las aplicaciones que pueden definirse entre dos espacios métrico, las aplicaciones continuas ocupan un papel preponderante. Su estudio es fundamental no sólo en topología,
Inducción Matemática Conjuntos Funciones. Matemática Discreta. Agustín G. Bonifacio UNSL. Repaso de Inducción, Conjuntos y Funciones
UNSL Repaso de Inducción, y Inducción Matemática (Sección 1.7 del libro) Supongamos que queremos demostrar enunciados del siguiente tipo: P(n) : La suma de los primeros n números naturales es n(n+1)
Función Logaritmo y exponencial. Función logaritmo natural
Función Logaritmo y exponencial Función logaritmo natural En términos matemáticos la función logaritmo natural es una herramienta de mayor utilidad que el logaritmo del álgebra elemental, el cual está
PLAN DE CURSO PC-01 FO-TESE-DA-09 DIRECCIÓN ACADÉMICA DIVISIÓN DE INGENIERÍA ELECTRÓNICA. Según Corresponda CALCULO DIFERENCIAL TURNO: 1101/1 151
No. DE EMPLEADO: SEMANA: 5 NO. DE ALUMNOS: O PROPOSITO GENERAL DE LA 1. Números reales. Comprender las propiedades de los números reales para resolver desigualdades de primer y segundo grado con una incógnita
Función Real de variable Real. Definiciones
Función Real de variable Real Definiciones Función Sean A y B dos conjuntos cualesquiera. Una aplicación de A en B es una relación que asocia a cada elemento (x=variable independiente) de A un único valor
Matemáticas Básicas para Computación
Matemáticas Básicas para Computación MATEMÁTICAS BÁSICAS PARA COMPUTACIÓN 1 Sesión No. 9 Nombre: Funciones Objetivo: Durante la sesión el participante identificará las características y los tipos de funciones
Capítulo 1: Fundamentos: Lógica y Demostraciones Clase 3: Relaciones, Funciones, y Notación Asintótica
Capítulo 1: Fundamentos: Lógica y Demostraciones Clase 3: Relaciones, Funciones, y Notación Asintótica Matemática Discreta - CC3101 Profesor: Pablo Barceló P. Barceló Matemática Discreta - Cap. 1: Fundamentos:
Toda función es una relación, pero no toda relación es una función. Las relaciones multiformes NO son funciones. Relación uno a uno (biunívoca)
CONCEPTO TRADICIONAL DE FUNCIÓN Cuando dos variables están relacionadas en tal forma que a cada valor de la primera corresponde un valor de la segunda, se dice que la segunda es función de la primera.
Introducción a la Matemática Discreta
Introducción a la Matemática Discreta Teoría de Conjuntos Luisa María Camacho Camacho Introd. a la Matemática Discreta 1 / 20 Introducción a la Matemática Discreta Temario Tema 1. Teoría de Conjuntos.
ACLARACIONES SOBRE EL EXAMEN
1 (1 punto) Desarrolle el siguiente tema de teoría: Teorema de Taylor y aplicación. 2 (1.2 puntos) Considere los números complejos z = 1 + i y w = 3(cos( π) + i sen( π )). Calcule 3 3 a) z + w b) z 4 c)
TEMA 2. TEORÍA DE CONJUNTOS
TEMA 2. TEORÍA DE CONJUNTOS 1. Introducciónalalógica de proposiciones 1.1 Definición. Una proposición es una oración declarativa de la cual se puede decir sin ambigüedad si es verdadera o falsa. 1.2 Definición.
Conjuntos. 17 {perro, gato, 17, x 2 }
Conjuntos Qué es un conjunto? Informalmente, es una agrupación de cosas, o una descripción que dice qué elementos están y qué elementos no están. Para describir un conjunto usamos llavecitas y enumeramos
Funciones Inversas. Derivada de funciones inversas
Capítulo 15 Funciones Inversas En este capítulo estudiaremos condiciones para la derivación de la inversa de una función de varias variables y, en particular, extenderemos a estas funciones la fórmula
1.1 Definición de una función de variable real Dominio Rango 1.2 Representación grafica de funciones Grafica de una función 1.2.
1.1 Definición de una función de variable real 1.1.1 Dominio 1.1.2 Rango 1.2 Representación grafica de funciones 1.2.1 Grafica de una función 1.2.2 Criterio de la recta vertical 1.3 Tipos de funciones
Teoría de anillos. Dominios, cuerpos y cuerpos de fracciones. Característica de un cuerpo.
1 Tema 5.-. Teoría de anillos. Dominios, cuerpos y cuerpos de fracciones. Característica de un cuerpo. 5.1. Anillos y cuerpos Definición 5.1.1. Un anillo es una terna (A, +, ) formada por un conjunto A
Matemáticas Discretas TC1003
Matemáticas Discretas TC1003 Inducción Matemática: Sucesiones y s Departamento de Matemáticas / Centro de Sistema Inteligentes ITESM Inducción Matemática: Sucesiones y s Matemáticas Discretas - p. 1/19
Tema 1: Conjuntos. Miguel Ángel Olalla Acosta Departamento de Álgebra Universidad de Sevilla. Septiembre de 2018
Tema 1: Conjuntos Miguel Ángel Olalla Acosta [email protected] Departamento de Álgebra Universidad de Sevilla Septiembre de 2018 Olalla (Universidad de Sevilla) Tema 1: Conjuntos Septiembre de 2018 1
Fundamentos de Lógica y Teoría de Conjuntos
Índice general 1. Lógica y Teoría de conjuntos 3 1.1. Introducción a la Lógica............................ 3 1.1.1. Repaso histórico (Ref. Grimaldi pág. 187).............. 3 1.1.2. Conceptos básicos (Ref.
Continuidad. 5.1 Continuidad en un punto
Capítulo 5 Continuidad 5.1 Continuidad en un punto Definición 5.1.1 (Aplicación continua en un punto). Sean (X, τ) e (Y, τ ) dos espacios topológicos, y sea f : X Y una aplicación entre ellos. Diremos
EJERCICIOS PROPUESTOS DE MATEMÁTICA I
UNIVERSIDAD INCA GARCILASO DE LA VEGA INGENIERIA DE SISTEMAS, COMPUTO Y TELECOMUNICACIONES LIC. MIGUEL CANO EJERCICIOS PROPUESTOS DE MATEMÁTICA I TEMA: FUNCIONES ESPECIALES 1) FUNCIÓN LINEAL 01.- Si f(x)
Matemáticas Discretas TC1003
Matemáticas Discretas TC1003 Lógica : Proposiciones, Conectivos, Tablas de Verdad y Departamento de Matemáticas / Centro de Sistema Inteligentes ITESM Lógica Matemáticas Discretas - p. 1/43 En esta lectura
ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL INSTITUTO DE CIENCIAS MATEMÁTICAS FACULTAD DE ECONOMÍA Y NEGOCIOS
ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL INSTITUTO DE CIENCIAS MATEMÁTICAS FACULTAD DE ECONOMÍA Y NEGOCIOS FUNDAMENTOS MATEMÁTICOS PARA ECONOMÍA Y NEGOCIOS TERCERA EVALUACIÓN 0/ABRIL/0 VERSION ALUMNO:
Matemática Discreta TEORÍA DE CONJUNTOS
Matemática Discreta Instructor: Marcos Villagra Clase # Escriba: Arturo Ramón González Osorio 30/10/17 TEORÍA DE CONJUNTOS Definición 1 Conjuntos: Es una colección de elementos que pueden ser finitos o
Construcción axiomática del conjunto de los números naturales a partir de una condición sobre su cardinalidad
Recibido: 8 de febrero 2016 Aceptado: 27 de febrero 2016 Construcción axiomática del conjunto de los números naturales a partir de una condición sobre su cardinalidad Axiomatic construction of the set
Las funciones. 1. Constantes y variables.- Constante es una letra o símbolo que representa un número fijo y determinado.
Las funciones 1. Constantes y variables.- Constante es una letra o símbolo que representa un número fijo y determinado. Variable es una letra o símbolo que representa cada uno de los números de un conjunto.
MatemáticaDiscreta&Lógica 1. Funciones. Aylen Ricca. Tecnólogo en Informática San José
MatemáticaDiscreta&Lógica 1 Funciones Aylen Ricca Tecnólogo en Informática San José 2014 http://www.fing.edu.uy/tecnoinf/sanjose/index.html FUNCIÓN.::. Definición. Sean A y B conjuntos no vacíos, una funciónf
Semana 5: La composición como una operación
Semana 5: La composición como una operación 1. Tipos de funciones De manera intuitiva, nos referimos por inversa de una función a otra función que deshace los cambios hechos por la función original, a
FUNCIONES REALES DE VARIABLE REAL: APLICACIONES Y DIDÁCTICA.
FUNCIONES REALES DE VARIABLE REAL: APLICACIONES Y DIDÁCTICA. AUTORIA FERNANDO VALLEJO LÓPEZ TEMÁTICA DIDÁCTICA DE LA MATEMÁTICA. ETAPA ESO Y BACHILLERATO. Resumen EN ÉSTE ARTÍCULO, ESTUDIAMOS LAS FUNCIONES
Función inversa. ExMa-MA0125 W. Poveda 1
Función inversa. ExMa-MA01 W. Poveda 1 Objetivos. Interpretar y aplicar los conceptos de función inyectiva, función sobreyectiva función biyectiva, función invertible Función Inyectiva De nición. Sea una
Funciones Reales de Variable real
Semana05[1/29] 30 de marzo de 2007 Funciones Definición de funciones Semana05[2/29] Sean A y B dos conjuntos no vacios de naturaleza arbitraria. Una función de A en B es una correspondencia entre los elementos
INSTITUTO FRANCISCO POSSENTI, A.C. Per crucem ad lucem. Preparatoria (1085)
INSTITUTO FRANCISCO POSSENTI, A.C. Per crucem ad lucem Preparatoria (1085) GUÍA DE MATEMÁTICAS V CLAVE: 1500 Unidad I: RELACIONES Y FUNCIONES Considera las gráficas de las siguientes funciones y determina
TEMA 3 Elementos de la teoría de los conjuntos. *
TEM 3 Elementos de la teoría de los conjuntos. * Conjuntos. Un conjunto es cualquier colección, bien definida, de objetos llamadas elementos o miembros del conjunto. Una manera de describir un conjunto
Matemáticas Discretas Relaciones y funciones
Coordinación de Ciencias Computacionales - INAOE Matemáticas Discretas y funciones Cursos Propedéuticos 2010 Ciencias Computacionales INAOE y funciones Propiedades de relaciones Clases de equivalencia
Integrales indenidas
Integrales indenidas Adriana G. Duarte 7 de agosto de 04 Resumen Antiderivación. Integrales indenidas, propiedades. Técnicas de integración: inmediatas,por sustitución, por partes. Ejemplos y ejercicios.
GIMNASIO VIRTUAL SAN FRANCISCO JAVIER Valores y Tecnología para la Formación Integral del Ser Humano UNIDAD I FUNCIONES
UNIDAD I FUNCIONES Una función es una correspondencia entre dos conjuntos, que asocia a cada elemento del primer conjunto exactamente un elemento del otro conjunto. Una función f definida entre dos conjuntos
Matemáticas Discretas TC1003
Matemáticas Discretas TC1003 Módulo I: s Válidos Departamento de Matemáticas ITESM Módulo I: s Válidos Matemáticas Discretas - p. 1/50 En matemáticas y en lógica un argumento no es una disputa. Más bien,
ANÁLISIS PROF. GUSTAVO FRANCO
FUNCIONES REALES () 1 ANÁLISIS 1 017 PROF. GUSTAVO FRANCO Se consideran las siguientes funciones f : X X, dadas por sus gráficas. Para cada una: (1) Indica cuáles son continuas en a según tu idea previa
PRIMERA EVALUACIÓN DE MATEMÁTICAS PARA INGENIERÍA (PARALELO ING- 26M) GUAYAQUIL, 28 DE JUNIO DE 2016 HORARIO: 08H30 10H30 VERSIÓN UNO ( )
ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL FACULTAD DE CIENCIAS NATURALES Y MATEMÁTICAS DEPARTAMENTO DE MATEMÁTICAS CURSO DE NIVELACIÓN 2016 1S PRIMERA EVALUACIÓN DE MATEMÁTICAS PARA INGENIERÍA (PARALELO
Funciones reales de variable real
Capítulo 2 Funciones reales de variable real 2.. Definición. Dominio, imagen y gráfica. Informalmente, una función entre dos conjuntos A y B es una regla que a ciertos elementos del conjunto A les asigna
INSTITUTO FRANCISCO POSSENTI A.C. Per crucem ad lucem PREPARATORIA (1085) GUÍA DE MATEMÁTICAS V (1500)
INSTITUTO FRANCISCO POSSENTI A.C. Per crucem ad lucem PREPARATORIA (1085) GUÍA DE MATEMÁTICAS V (1500) UNIDAD I: RELACIONES Y FUNCIONES. Considera las siguientes funciones y gráficas para determinar en
( ) ( ) a ( ) a : Estoy enfermo. b : Tengo una infección. c : Tomo una pastilla.
ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL FACULTAD DE CIENCIAS NATURALES Y MATEMÁTICAS DEPARTAMENTO DE MATEMÁTICAS CURSO DE NIVELACIÓN 2016 1S PRIMERA EVALUACIÓN DE MATEMÁTICAS PARA INGENIERÍA (PARALELO
Notas de Álgebra Básica I
Notas de Álgebra Básica I Carlos Ruiz de Velasco y Bellas Departamento de Matemáticas, Estadística y Computación Facultad de Ciencias Universidad de Cantabria 14 de septiembre de 2006 2 Capítulo 1 Conjuntos,
CENTRO UNIVERSITARIO DEL CENTRO DE MÉXICO. División Bachillerato. Notas de Apoyo. Matemáticas IV. Luisa Edith Martínez Navarro
CENTRO UNIVERSITARIO DEL CENTRO DE MÉXICO División Bachillerato Notas de Apoyo Matemáticas IV Luisa Edith Martínez Navarro Septiembre 2015 Índice general Introducción 4 1. Operaciones con Distintos tipos
Funciones de Variable Real
Tema 1 Funciones de Variable Real 1.1. La Recta Real Los números reales se pueden ordenar como los puntos de una recta. Los enteros positivos {1, 2, 3, 4,...} que surgen al contar, se llaman números naturales
Algebra Lineal XI: Funciones y Transformaciones Lineales
Algebra Lineal XI: Funciones y Transformaciones Lineales José María Rico Martínez Departamento de Ingeniería Mecánica Facultad de Ingeniería Mecánica Eléctrica y Electrónica Universidad de Guanajuato email:
Teoría Tema 2 Concepto de función
página 1/7 Teoría Tema Concepto de función Índice de contenido Función, dominio e imagen... Función inyectiva...4 Función sobreyectiva...6 Función biyectiva...7 página /7 Función, dominio e imagen Una
Ejercicio 2 (Examen de septiembre de 2009) Razona cuáles de los siguientes conjuntos son subespacios vectoriales:
Ejercicio 1 De los siguientes subconjuntos de R 3 decida cuales son subespacios y cuales no: a) U 1 = {(x,y,z) / x = 1 = y+z} b) U 2 = {(x,y,z) / x+3y = 0,z 0} c) U 3 = {(x,y,z) / x+2y+3z= 0 = 2x+y} d)
una aplicación biyectiva h : A A.
Álgebra Básica Examen de septiembre 9-9-016 apellidos nombre Observaciones: -) Los cuatro ejercicios tienen el mismo valor. Cada ejercicio será puntuado sobre 10 para después calcular la nota global. -)
Propiedades de imágenes y preimágenes
Propiedades de imágenes y preimágenes Objetivos. Demostrar las propiedades principales de las imágenes y preimágenes, por ejemplo que f[a B] = f[a] f[b]. Requisitos. Definición y ejemplos de imágenes y
