Apuntes de Lógica Matemática I
|
|
|
- Nicolás Velázquez Toledo
- hace 8 años
- Vistas:
Transcripción
1 Apuntes de Lógica Matemática I Héctor Olvera Vital 1. Primeras definiciones Definición 1 Un alfabeto A es un conjunto de símbolos. Definición 2 Una expresión del alfabeto A es una sucesión finita de símbolos de A (incluyendo el vacío) A = i N A i { }. Notación: Las sucesiones de símbolos las escribiremos de forma compacta, por ejemplo, la sucesión (,, A 0, ) la escribiremos como ( A 0 ) Definición 3 Un lenguaje formal, L es una pareja ordenada (A, E),donde A es un alfabeto, E A es el conjunto de las expresiones bien formadas (o fórmulas). Ejemplo 1 (Douglas Hofstadter) A = {M, I, U}, E = A. Ejemplo 2 A e = {), (,,,,, A 0, A 1, A 2,..}. Definamos E e a través de las siguientes reglas: R 1 A 0, A 1, A 2,... son expresiones bien formadas (o fórmulas) R 2 R 3 Si α es una expresión bine formada (o fórmula), entonces ( α) es una expresión bien formada. Si α y β son expresiones bien formadas, entonces (α β), (α β), (α β) y (α β), son expresiones bien formadas. R 4 Ninguna expresión es bien formada, a menos que R 1, R 2, R 3 obliguen a ello. L 0 = (A e, E e ) 2. Lógica de Enunciados 2.1. Motivación Queremos construir un lenguaje formal al cual podamos traducir oraciones del español y modelar el pensamiento deductivo. Por ejemplo, Se observaron rastros de Potacio se puede traducir usando un símbolo, digamos K. Un enunciado relacionado podría ser No se observaron rastros de Potacio y podríamos traducir como ( K). También se podría pensar en traducir como J, pero nos interesa descomponer los enunciados en partes atómicas hasta donde sea posible. Haremos la convención de que ningún símbolo es una sucesión finita de los demás símbolos. 1
2 2.2. Símbolos de la Lógica de Enunciados La siguiente tabla muestra los símbolos de la Lógica de Enunciados y la traducción de los conectivos de enunciado, que utilizaremos para traducir. Símbolos Lógicos Símbolos no lógicos Conectivos de enunciado Puntuación Símbolos de Enunciado Negación no Conjunción y Disyunción o (inclusivo) ), ( A 0, A 1, A 2,... Condicional sólo si Bicondicional si y sólo si 2.3. Traducción (a) O bien la evidencia obtenida es admisible, o bien el sospechoso debe ser liberado, pero no ambas cosas. E: la evidencia obtenida es admisible L: el sospechoso debe ser liberado ((E L) ( (E L))) (b) Este articulo constituye riqueza si y sólo si es transferible, de abastecimiento limitado, y produce placer o evita dolor. A: Este articulo constituye riqueza T: Este articulo es transferible L: Este articulo es de abastecimiento limitado P: Este articulo produce placer D: Este articulo evita dolor (A (T (L (P D)))) (c) No habrá agua, a menos de que llueva. A: habrá agua L: llueva (( L) ( A)) (d) Iré al cine contigo, si llevas tu auto, pero no va tu mamá o tu hermano. C: Iré al cien contigo A: llevas tu auto M: Va tu mamá H: va tu hermano 3. Construcción de fórmulas ((A (( M) ( H))) C) Las reglas para construir fórmulas en la Lógica de Enunciados son las descritas en el Ejemplo 2. Estas reglas se formalizan gracias al concepto de función. Definamos las cinco operaciones de construcción de fórmulas como sigue: Definición 4 Sean E, E, E, E definidas como sigue: y E, funciones de las expresiones en las expresiones, Si α es una fórmula, entonces E (α) = ( α). Si α y β son fórmulas, entonces E (α, β) = (α β), donde {,,, } El conjunto de las expresiones bien formadas, o fórmulas, se puede definir por recursión como sigue: 2
3 1. Todos los símbolos de enunciados son fórmulas. 2. Si α es una fórmula, entonces el resultado de aplicar la operación de construcción E a α es una fórmula. 3. Si α y β son fórmulas, entonces el resultado de aplicar las operaciones de construcción E, E, E y E a α y a β, también son fórmulas. 4. Solo son fórmulas aquellas que se puedan obtener con estas reglas. Cómo saber si una expresión es una fórmula? Si existe una forma de obtener la expresión a través de las operaciones de construcción de fórmulas, podríamos estar seguros de que sí es una fórmula. Afirmación 1 ((A 1 A 10 ) (( A 3 ) (A 8 A 3 ))) es una fórmula. Para demostrar que es una fórmula basta mostrar su árbol de construcción: ((A 1 A 10 ) (( A 3 ) (A 8 A 3 ))) (A 1 A 10 ) E (( A 3 ) (A 8 A 3 )) E E A 1 A 10 ( A 3 ) (A 8 A 3 ) E E A 3 A 8 A 3 La idea del árbol de construcción se puede formalizar con la noción de sucesión de construcción. Definición 5 Unas sucesión de construcción es una sucesión finita E 1, E 2,..., E n de expresiones tal que, para cada i n se cumple al menos uno de los siguientes hechos: (i) E i es un símbolo de enunciado. (ii) E i = E (E j ) para algún j < i. (iii) E i = E (E j, E k ) para algunos j < i y k < i. Una sucesión de construcción para la fórmula ((A 1 A 10 ) (( A 3 ) (A 8 A 3 ))) es A 1, A 10, (A 1 A 10 ), A 3, ( A 3 ), A 8, (A 8 A 3 ), (( A 3 ) (A 8 A 3 )), ((A 1 A 10 ) (( A 3 ) (A 8 A 3 ))) Observación 1 Toda fórmula tiene una sucesión de construcción y el resultado de una sucesión de construcción es una fórmula. 3
4 La forma en la que se construyen las fórmulas nos recuerda a los números naturales. Podemos hacer la siguiente analogía: Naturales Fórmulas Base 0 Símbolos de Enunciado Construcción Sucesor E, E, E, E y E Gracias a esta analogía podemos pensar en proponer un resultado similar al principio de inducción para naturales, pero para adaptarlo primero definiremos cerrado bajo una función. Definición 6 Un conjunto S es cerrado bajo una función f, n-aria, si y sólo si cada vez que x 1,..., x n S entonces f(x 1,..., x n ) S. Teorema 1 (Principio de Inducción) Si S es un conjunto de fórmulas que contiene a todos los símbolos de enunciado y es cerrado bajo las cinco operaciones de construcción de fórmulas, entonces S es el conjunto de todas las fórmulas. Consideremos una fórmula α arbitraria. Entonces α es el último término de alguna sucesión de construcción E 1,..., E n. Procedamos por inducción numérica fuerte. Supongamos que E j S para toda j < i. Caso 1 E i es un símbolo de enunciado, entonces E i S. Caso 2 E i = E (E j ) para algún j < i, entonces E j S y por ser S cerrado bajo E, E i S. Caso 3 E i = E (E j, E) para algunos j, k < i, entonces E j, E k S y por ser S cerrado bajo E, E i S. Para cada i n, E i S, en particular E n = α S Ahora con el principio de inducción podremos probar resultados que nos ayudarán a conocer mejor las fórmulas y nos ayudarán a determinar cuando una expresión no es una fórmula. Teorema 2 Ninguna expresión con más paréntesis izquierdos que paréntesis derechos es una fórmula. Por inducción sobre la formación de fórmulas. Definamos B F órm como el conjunto de las fórmulas balanceadas (que tiene la misma cantidad de paréntesis derechos que de paréntesis izquierdos). A 0, A 1, A 2,... son fórmulas balanceadas, es decir, B contiene a todos los símbolos de enunciado. Supongamos que α y β son fórmulas balanceadas. ( α), (α β), (α β), (α β) y (α β) son fórmulas balanceadas, es decir, B es cerrado bajo las cinco operaciones de construcción de fórmulas. Entonces, por el principio de inducción, B = F órm Afirmación 2 Cualquier segmento inicial propio de una fórmula de la lógica proposicional tiene más paréntesis izquierdos que derechos. 4
5 Demostraremos que toda fórmula, o es un símbolo de enunciado o termina con un paréntesis derecho. Sea B el conjunto de los símbolos de enunciado y de las fórmulas que terminan con un paréntesis derecho. Por definición, B tiene a todos los símbolos de enunciado. Supongamos que α y β pertenecen a B. ( α) y (α β) 1 terminan con un paréntesis derecho. Por el principio de inducción, B = F órm Ahora bien, no hay segmentos iniciales de símbolos de enunciado y para las demás fórmulas ya vimos que terminan con un paréntesis derecho, por lo que cualquier segmento inicial no toma el último paréntesis, que es derecho, por lo que debe de tener más paréntesis izquierdos, pues las fórmulas son balanceadas. Corolario Ningún segmento inicial propio de una fórmula es una fórmula. Afirmación 3 Muestre que no hay fórmulas de longitud 2, 3 ni 6, pero cualquier otra longitud es posible. Sea B el conjunto de las fórmula que no tiene longitud 2, 3 ni 6. Sea A un símbolo de enunciado. long[a] = 1 por lo que A B. Por lo que B contiene a todos los símbolos de enunciado. Supongamos que α y β están en B, es decir, las longitud de α y β son diferentes a 2, 3 y 6. long[( α)] = long[α] + 3, como no existen fórmulas de longitud negativa y de longitud 0, long[( α)] 2, 3. Ahora bien, si la long[( α)] = 6, entonces long[α] = 3 lo cual contradice nuestra hipótesis de inducción. Por lo tanto ( α) tiene longitud diferente a 2, 3 y 6. long[(α β)] = long[α] + long[β] + 3, como no existen fórmulas de longitud negativa y de longitud 0, long[(α β)] 2, 3. Si long[(α β)] = 6, entonces long[α] o long[β] es 2, lo que contradice nuestra hipótesis de inducción. Por lo tanto (α β) tiene longitud diferente a 2, 3 y 6. Con lo que concluimos que B es cerrado bajo las cinco operaciones de construcción de fórmulas. Finalmente, por el principio de inducción, B = F órm Con esto concluimos que no hay fórmulas de longitud 2, 3 ni 6. Ahora demostremos que cualquier otra longitud es posible. Primero veamos los casos de 1, 4 y 5. (1) A 10 (4) ( A 1 ) (5) (A 0 A 1 ) Sea S F órm tal que A 0 S y α S si y sólo si existe una sucesión de construcción tal que E 1 = A 0, y E i+1 = E (E i ) o E i+1 = E (A 0, E i ). Por ejemplo, ( (A 0 ( A 0 ))) S ya que su sucesión de construcción es A 0, ( A 0 ), (A 0 ( A 0 )), ( (A 0 ( A 0 ))). Para simplificar la notación asociaremos a cada formula de S las operaciones con las que se construyeron, de esta forma a la fórmula ( (A 0 ( A 0 ))) le asociaremos la sucesiones y a la sucesión le asociaremos la fórmula (A 0 (A 0 ( ( (A 0 A 0 ))))). Probemos ahora que para cualquier numero natural n mayor que 6, hay una formula en S de longitud n. Por inducción sobre los naturales. 7 cumple la afirmación, pues ( ( A 0 )) S tiene longitud 7. Supongamos que hay una fórmula en S de longitud n y demostremos que hay una fórmula de longitud n + 1 en S. Sea α dicha fórmula. Fijémonos en la sucesión asociada a α, digamos 1 {,,, } 5
6 E 1 E 2... E m, si existe un i m tal que E i = entonces la fórmula asociada a la sucesión E 1 E 2... E i 1 E i+1... E m tiene longitud n + 1. Si en la sucesión asociada a α no aparece, entonces al menos hay dos, pues n es mayor que 6. Entonces la fórmula asociada a E 3... E m tiene longitud n
Conjuntos, relaciones y funciones Susana Puddu
Susana Puddu 1. Repaso sobre la teoría de conjuntos. Denotaremos por IN al conjunto de los números naturales y por ZZ al de los enteros. Dados dos conjuntos A y B decimos que A está contenido en B o también
ALGEBRA y ALGEBRA LINEAL. Primer Semestre CAPITULO I LOGICA Y CONJUNTOS.
ALGEBRA y ALGEBRA LINEAL 520142 Primer Semestre CAPITULO I LOGICA Y CONJUNTOS. DEPARTAMENTO DE INGENIERIA MATEMATICA Facultad de Ciencias Físicas y Matemáticas Universidad de Concepción 1 La lógica es
Coordinación de Matemática I (MAT021) 1 er Semestre de 2013 Semana 1: Lunes 11 Viernes 16 de Marzo. Contenidos
Coordinación de Matemática I (MAT021) 1 er Semestre de 2013 Semana 1: Lunes 11 Viernes 16 de Marzo Complementos Contenidos Clase 1: Elementos de lógica: Conectivos, tablas de verdad, tautologías y contingencias.
encontramos dos enunciados. El primero (p) nos afirma que Pitágoras era griego y el segundo (q) que Pitágoras era geómetra.
Álgebra proposicional Introducción El ser humano, a través de su vida diaria, se comunica con sus semejantes a través de un lenguaje determinado (oral, escrito, etc.) por medio de frases u oraciones. Estas
Tema 2: Teorema de estructura de los grupos abelianos finitamente generados.
ESTRUCTURAS ALGEBRAICAS GRADO EN MATEMÁTICAS. CURSO 215/216 Tema 2: Teorema de estructura de los grupos abelianos finitamente generados. 1.1. Grupo abeliano libre. Bases. Definición 1.1. El grupo Z n con
En general, un conjunto A se define seleccionando los elementos de un cierto conjunto U de referencia que cumplen una determinada propiedad.
nidad 3: Conjuntos 3.1 Introducción Georg Cantor [1845-1918] formuló de manera individual la teoría de conjuntos a finales del siglo XIX y principios del XX. Su objetivo era el de formalizar las matemáticas
Terminaremos el capítulo con una breve referencia a la teoría de cardinales.
TEMA 5. CARDINALES 241 Tema 5. Cardinales Terminaremos el capítulo con una breve referencia a la teoría de cardinales. Definición A.5.1. Diremos que el conjunto X tiene el mismo cardinal que el conjunto
Espacios Vectoriales
Espacios Vectoriales Espacios Vectoriales Verónica Briceño V. noviembre 2013 Verónica Briceño V. () Espacios Vectoriales noviembre 2013 1 / 47 En esta Presentación... En esta Presentación veremos: Espacios
Material diseñado para los estudiantes del NUTULA, alumnos del profesor Álvaro Moreno.01/10/2010 Lógica Proposicional
Lógica Proposicional INTRODUCCIÓN El humano se comunica con sus semejantes a través de un lenguaje determinado (oral, simbólico, escrito, etc.) construido por frases y oraciones. Estas pueden tener diferentes
Capítulo 4. Lógica matemática. Continuar
Capítulo 4. Lógica matemática Continuar Introducción La lógica estudia la forma del razonamiento, es una disciplina que por medio de reglas y técnicas determina si un teorema es falso o verdadero, además
Algoritmos y programas. Algoritmos y Estructuras de Datos I
Algoritmos y programas Algoritmos y Estructuras de Datos I Primer cuatrimestre de 2012 Departamento de Computación - FCEyN - UBA Programación funcional - clase 1 Funciones Simples - Recursión - Tipos de
Introducción a la Lógica
Tema 0 Introducción a la Lógica En cualquier disciplina científica se necesita distinguir entre argumentos válidos y no válidos. Para ello, se utilizan, a menudo sin saberlo, las reglas de la lógica. Aquí
Conjuntos. () April 4, / 32
Conjuntos En general, un conjunto A se de ne seleccionando los elementos de un cierto conjunto U de referencia (o universal) que cumplen una determinada propiedad. () April 4, 2014 1 / 32 Conjuntos En
Semana02[1/23] Conjuntos. 9 de marzo de Conjuntos
Semana02[1/23] 9 de marzo de 2007 Introducción Semana02[2/23] La teoría de conjuntos gira en torno a la función proposicional x A. Los valores que hacen verdadera la función proposicional x A son aquellos
Teoría de la Probabilidad Tema 2: Teorema de Extensión
Teoría de la Probabilidad Tema 2: Teorema de Extensión Alberto Rodríguez Casal 25 de septiembre de 2015 Definición Una clase (no vacía) A de subconjuntos de Ω se dice que es un álgebra si A es cerrada
Lógica Proposicional. Sergio Stive Solano Sabié. Marzo de 2012
Lógica Proposicional Sergio Stive Solano Sabié Marzo de 2012 Lógica Proposicional Sergio Stive Solano Sabié Marzo de 2012 Proposiciones Definición 1.1 Una proposición (o declaración) es una oración declarativa
Lógica Matemática, Sistemas Formales, Cláusulas de Horn
Lógica Matemática, Sistemas Formales, Cláusulas de Horn Lic. José Manuel Alvarado La lógica se ocupa de las argumentaciones válidas. Las argumentaciones ocurren cuando se quiere justificar una proposición
Introducción. El uso de los símbolos en matemáticas.
Introducción El uso de los símbolos en matemáticas. En el estudio de las matemáticas lo primero que necesitamos es conocer su lenguaje y, en particular, sus símbolos. Algunos símbolos, que reciben el nombre
Semana03[1/17] Funciones. 16 de marzo de Funciones
Semana03[1/17] 16 de marzo de 2007 Introducción Semana03[2/17] Ya que conocemos el producto cartesiano A B entre dos conjuntos A y B, podemos definir entre ellos algún tipo de correspondencia. Es decir,
Teoremas de Convergencia
Capítulo 24 Teoremas de Convergencia El teorema de la convergencia monótona (Lema 21.3) establece ciertas condiciones sobre una sucesión de funciones medibles para que se puedan permutar los símbolos y
Equivalencia Entre PDA y CFL
Equivalencia Entre PDA y CFL El Lenguaje aceptado por un Autómata con Pila Universidad de Cantabria Esquema 1 Introducción 2 3 Lenguaje Aceptado por un Autómata Como en los autómatas finitos, se puede
Índice Proposiciones y Conectores Lógicos Tablas de Verdad Lógica de Predicados Inducción
Curso 0: Matemáticas y sus Aplicaciones Tema 5. Lógica y Formalismo Matemático Leandro Marín Dpto. de Matemática Aplicada Universidad de Murcia 2012 1 Proposiciones y Conectores Lógicos 2 Tablas de Verdad
LÓGICA MATEMÁTICA O FORMAL O SIMBÓLICA
LÓGICA MATEMÁTICA O FORMAL O SIMBÓLICA La lógica formal o simbólica, a diferencia de la lógica clásica, utiliza un lenguaje artificial, es decir, está rigurosamente construido, no admite cambios en el
MATEMÁTICAS BÁSICAS. 23 de febrero de Universidad Nacional de Colombia MATEMÁTICAS BÁSICAS
23 de febrero de 2009 Parte I Lógica Proposiciones Considere las siguientes frases Páseme el lápiz. 2 + 3 = 5 1 2 + 1 3 = 2 5 Qué hora es? En Bogotá todos los días llueve Yo estoy mintiendo Maradona fue
Forma lógica de enunciados
Forma lógica de enunciados Marisol Miguel Cárdenas Lenguaje natural y lenguaje formal El lenguaje natural es aquel que utilizamos cotidianamente. Surge históricamente dentro de la sociedad y es aprendido
LICENCIATURA EN MATEMÁTICA. Práctico N 1 Lenguaje de la lógica. proposicional VICTOR GALARZA ROJAS 1 5 / 0 5 /
Práctico N 1 Lenguaje de la lógica LICENCIATURA EN MATEMÁTICA proposicional VICTOR GALARZA ROJAS 1 5 / 0 5 / 2 0 1 0 PRÁCTICO N 1 1. Fundamentación: fundamentar la expresión Por lo tanto del siguiente
Ampliación Matemática Discreta. Justo Peralta López
Justo Peralta López UNIVERSIDAD DE ALMERíA DEPARTAMENTO DE ÁGEBRA Y ANÁLISIS MATEMÁTICO 1 Introducción 2 Definición semántica de las proposiciones 3 Diagrama de valores de certeza 4 Evaluación de fórmulas.
Ejercicios de Lógica Proposicional *
Ejercicios de Lógica Proposicional * [email protected] Notación. El lenguaje proposicional que hemos definido, aquel que utiliza los cinco conectivos,,, y, se denota como L {,,,, }. Los términos
Guía para el estudiante
Guía para el estudiante Guía realizada por Jefferson Bustos Profesional en Matemáticas Master en Educación Nombre: Fecha: Curso: Dentro del lenguaje común, las palabras y frases pueden tener diversas interpretaciones.
Escenas de episodios anteriores
Clase 16/10/2013 Tomado y editado de los apuntes de Pedro Sánchez Terraf Escenas de episodios anteriores objetivo: estudiar formalmente el concepto de demostración matemática. caso de estudio: lenguaje
1. Sucesiones y redes.
1. Sucesiones y redes. PRACTICO 7. REDES. Se ha visto que el concepto de sucesión no permite caracterizar algunas nociones topológicas, salvo en espacios métricos. Esto empieza con algunas definiciones
Introd. al Pens. Científico Nociones básicas de la lógica ClasesATodaHora.com.ar
ClasesATodaHora.com.ar > Exámenes > UBA - UBA XXI > Introd. al Pensamiento Científico Introd. al Pens. Científico Nociones básicas de la lógica ClasesATodaHora.com.ar Razonamientos: Conjunto de propiedades
Conjuntos Infinitos. Ramón Espinoza Armenta AVC APOYO VIRTUAL PARA EL CONOCIMIENTO
Ramón Espinoza Armenta AVC APOYO VIRTUAL PARA EL CONOCIMIENTO El estudio de los conjuntos infinitos se inicia con Las Paradojas del Infinito, la última obra del matemático checo Bernard Bolzano, publicada
Límite superior y límite inferior de una sucesión
Límite superior y límite inferior de una sucesión Objetivos. Definir las nociones de los límites superior e inferior de una sucesión y estudiar sus propiedades básicas. Requisitos. Supremo e ínfimo de
Capítulo 2: Inducción y recursión Clase 2: El principio de Inducción Fuerte
Capítulo 2: Inducción y recursión Clase 2: El principio de Inducción Fuerte Matemática Discreta - CC3101 Profesor: Pablo Barceló P. Barceló Matemática Discreta - Cap. 2: Inducción y Recursión 1 / 20 Motivación
Espacios Vectoriales. AMD Grado en Ingeniería Informática. AMD Grado en Ingeniería Informática (UM) Espacios Vectoriales 1 / 21
Espacios Vectoriales AMD Grado en Ingeniería Informática AMD Grado en Ingeniería Informática (UM) Espacios Vectoriales 1 / 21 Objetivos Al finalizar este tema tendrás que: Saber si unos vectores son independientes.
Fundamentos de Ciencias de la Computación Trabajo Práctico N 2 Lenguajes Libres del Contexto y Sensibles al Contexto Segundo Cuatrimestre de 2002
Departamento de Cs. e Ingeniería de la Computación Universidad Nacional del Sur Ejercicios Fundamentos de Ciencias de la Computación Trabajo Práctico N 2 Lenguajes Libres del Contexto y Sensibles al Contexto
Una topología de los números naturales*
Una topología de los números naturales* Divulgación Gabriel Ruiz Hernández Instituto de Matemáticas, UNAM 1 de septimebre de 1997 resumen En este trabajo vamos a describir un espacio topológico X con las
INSTITUCIÓN EDUCATIVA GABRIEL TRUJILLO CORREGIMIENTO DE CAIMALITO, PEREIRA
INSTITUCIÓN EDUCATIVA GABRIEL TRUJILLO CORREGIMIENTO DE CAIMALITO, PEREIRA Pobre del estudiante que no aventaje a su maestro. LA LÍNEA RECTA Leonardo da Vinci DESEMPEÑOS Identificar, interpretar, graficar
Teoría de Lenguajes. Clase Teórica 7 Autómatas de Pila y Lenguajes Independientes del Contexto Primer cuartimestre 2014
Teoría de Lenguajes Clase Teórica 7 Autómatas de Pila y Lenguajes Independientes del Contexto Primer cuartimestre 2014 aterial compilado por el Profesor Julio Jacobo, a lo largo de distintas ediciones
ALGEBRA DE BOOLE George Boole C. E. Shannon E. V. Hungtington [6]
ALGEBRA DE BOOLE El álgebra booleana, como cualquier otro sistema matemático deductivo, puede definirse con un conjunto de elementos, un conjunto de operadores y un número de axiomas no probados o postulados.
L OGICA Proposiciones
CAPíTULO 4 LÓGICA Uno de los procesos por los cuales adquirimos conocimiento es el proceso de razonamiento. A su vez, hay una variedad de modos o formas mediante las cuales razonamos o argumentamos a favor
Matemáticas Discretas TC1003
Matemáticas Discretas TC1003 Lógica : Proposiciones, Conectivos, Tablas de Verdad y Departamento de Matemáticas / Centro de Sistema Inteligentes ITESM Lógica Matemáticas Discretas - p. 1/43 En esta lectura
Inducción en definiciones y demostraciones AUTÓMATAS Y LENGUAJES FORMALES PRELIMINARES MATEMÁTICOS. Números naturales. Inducción matemática
Inducción en definiciones y demostraciones AUTÓMATAS Y LENGUAJES FORMALES PRELIMINARES MATEMÁTICOS Francisco Hernández Quiroz Departamento de Matemáticas Facultad de Ciencias, UNAM E-mail: [email protected]
10.4 Sistemas de ecuaciones lineales
Programa Inmersión, Verano 2016 Notas escritas por Dr. M Notas del cursos. Basadas en los prontuarios de MATE 001 y MATE 02 Clase #11: martes, 14 de junio de 2016. 10.4 Sistemas de ecuaciones lineales
Teorema Central del Límite (1)
Teorema Central del Límite (1) Definición. Cualquier cantidad calculada a partir de las observaciones de una muestra se llama estadístico. La distribución de los valores que puede tomar un estadístico
Espacios topológicos. 3.1 Espacio topológico
Capítulo 3 Espacios topológicos 3.1 Espacio topológico Definición 3.1.1. Un espacio topológico es un par (X, τ), donde X es un conjunto, y τ es una familia de subconjuntos de X que verifica las siguientes
LÓGICA PROPOSICIONAL
LÓGICA PROPOSICIONAL QUE ES LA LÓGICA? El sentido ordinario de la palabra lógica se refiere a lo que es congruente, ordenado, bien estructurado. Lo ilógico es lo mismo que incongruente, desordenado, incoherente.
SOBRE LOGICA MATEMATICA. Sandra M. Perilla-Monroy. Departamento de Ciencias Básicas, Universidad Santo Tomás, Bogotá, Colombia.
SOBRE LOGICA MATEMATICA Sandra M. Perilla-Monroy Departamento de Ciencias Básicas, Universidad Santo Tomás, Bogotá, Colombia. Resumen. [email protected] Carrera 9 No 51-11 Bogotá Colombia
ANOTACIONES BÁSICAS SOBRE LÓGICA PROPOSICIONAL FILOSOFÍA 1º BACHILLERATO
Pág. 1 Lógica Proposicional La lógica proposicional es la más antigua y simple de las formas de lógica. Utilizando una representación primitiva del lenguaje, permite representar y manipular aserciones
Tópicos de Matemáticas Discretas
Tópicos de Matemáticas Discretas Proposiciones Lógicas y Tablas de Verdad Raquel Torres Peralta Universidad de Sonora Matemáticas Discretas Proposiciones Lógicas Matemáticas Discretas Lógica - La lógica
ALGEBRA 1- GRUPO CIENCIAS- TURNO TARDE- Espacios vectoriales
Resumen teoría Prof. Alcón ALGEBRA 1- GRUPO CIENCIAS- TURNO TARDE- Espacios vectoriales Sea (K, +,.) un cuerpo con característica 0. Podemos pensar K = Q, R o C. Si V es un conjunto cualquiera en el que
Funciones integrables en R n
Capítulo 1 Funciones integrables en R n Sean un subconjunto acotado de R n, y f : R una función acotada. Sea R = [a 1, b 1 ]... [a n, b n ] un rectángulo que contenga a. Siempre puede suponerse que f está
ALGEBRA 1- GRUPO CIENCIAS- TURNO TARDE- Enteros
Resumen teoría Prof. Alcón ALGEBRA 1- GRUPO CIENCIAS- TURNO TARDE- Z = N {0} N Enteros Las operaciones + y. son cerradas en Z, es decir la suma de dos números enteros es un número entero y el producto
Integrales múltiples
ntegrales múltiples Cálculo (2003) El objetivo de este capítulo es definir y aprender a calcular integrales de funciones reales de varias variables, que llamamos integrales múltiples. Las motivación más
UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO FACULTAD DE CIENCIAS CARRERA DE MATEMÁTICO CONJUNTOS Y LÓGICA
UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO FACULTAD DE CIENCIAS CARRERA DE MATEMÁTICO CONJUNTOS Y LÓGICA SEMESTRE: Segundo a cuarto CLAVE: 0271 HORAS A LA SEMANA/SEMESTRE TEÓRICAS PRÁCTICAS CRÉDITOS 5/80
UNIDAD II. INTEGRAL DEFINIDA Y LOS MÉTODOS DE INTEGRACIÓN. Tema: LA INTEGRAL DEFINIDA
UNIDAD II. INTEGRAL DEFINIDA Y LOS MÉTODOS DE INTEGRACIÓN Tema: LA INTEGRAL DEFINIDA La integral definida Anteriormente se mencionó que la Integral Indefinida da como resultado una familia de funciones
Tema 2. Fundamentos de la Teoría de Lenguajes Formales
Departamento de Tecnologías de la Información Tema 2. Fundamentos de la Teoría de Lenguajes Formales Ciencias de la Computación e Inteligencia Artificial Índice 2.1. Alfabeto 2.2. Palabra 2.3. Operaciones
Espacios Topológicos 1. Punto de Acumulación. Al conjunto de puntos de acumulación de A se le denomina el conjunto derivado de A (A a Notación).
Espacios Topológicos 1 Punto de Acumulación Definición: Sea A un subconjunto arbitrario de R n, se dice que x R n es un punto de acumulación de A si toda bola abierta con centro x contiene un punto A distinto
Números naturales, principio de inducción
, principio de inducción. Conjuntos inductivos. Denotaremos por IN al conjunto de números naturales, IN {,,, 4, 5, 6,...}, cuyos elementos son suma de un número finito de unos. Recordemos que IN es cerrado
Sucesiones Introducción
Temas Límites de sucesiones. convergentes. Sucesiones divergentes. Sucesiones Capacidades Conocer y manejar conceptos de sucesiones convergentes y divergentes. Conocer las principales propiedades de las
Espacios vectoriales
Espacios vectoriales [Versión preliminar] Prof. Isabel Arratia Z. Algebra Lineal 1 En el estudio de las matrices y, en particular, de los sistemas de ecuaciones lineales realizamos sumas y multiplicación
Lógica proposicional. Ivan Olmos Pineda
Lógica proposicional Ivan Olmos Pineda Introducción Originalmente, la lógica trataba con argumentos en el lenguaje natural es el siguiente argumento válido? Todos los hombres son mortales Sócrates es hombre
1 Números reales. Funciones y continuidad.
1 Números reales. Funciones y continuidad. En este tema nos centraremos en el estudio de la continuidad de funciones reales, es decir, funciones de variable real y valor real. Por ello es esencial en primer
Sobre la Construcción Axiomática de los Números Naturales
Sobre la Construcción Axiomática de los Números Naturales Dr. Rafael Labarca Briones Profesor de Matemáticas. Universidad de Santiago de Chile. Charla dictadas en las EMALCAS de Arequipa, La Paz y Quito.
MMAF: Espacios normados y espacios de Banach
MMAF: Espacios normados y espacios de Banach Licenciatura en Estadística R. Álvarez-Nodarse Universidad de Sevilla Curso 2011/2012 Espacios vectoriales Definición Sea V un conjunto de elementos sobre el
Algoritmos para determinar Caminos Mínimos en Grafos
Problemas de camino mínimo Algoritmos para determinar Caminos Mínimos en Grafos Algoritmos y Estructuras de Datos III DC, FCEN, UBA, C 202 Problemas de camino mínimo Dado un grafo orientado G = (V, E)
Operaciones con conjuntos (ejercicios)
Operaciones con conjuntos (ejercicios) Ejemplo: Definición de la diferencia de conjuntos. Sean y conjuntos. Entonces \ := { x: x x / }. Esto significa que para todo x tenemos la siguiente equivalencia:
520142: ALGEBRA y ALGEBRA LINEAL
520142: ALGEBRA y ALGEBRA LINEAL Segundo Semestre 2008, Universidad de Concepción CAPITULO 10: Espacios Vectoriales DEPARTAMENTO DE INGENIERIA MATEMATICA Facultad de Ciencias Físicas y Matemáticas 1 Definición
IIC2213. IIC2213 Teorías 1 / 42
Teorías IIC2213 IIC2213 Teorías 1 / 42 Qué es una teoría? Una teoría es un cúmulo de información. Debe estar libre de contradicciones. Debe ser cerrada con respecto a lo que se puede deducir de ella. Inicialmente
CURSO NIVELACIÓN LÓGICA MATEMÁTICA PROYECTO UNICOMFACAUCA TU PROYECTO DE VIDA LAS PROPOSICIONES
LAS PROPOSICIONES Objetivo Brindar al estudiante un concepto claro en la formulación, interpretación y aplicabilidad de las proposiciones. La interpretación de las proposiciones compuestas permite al estudiante
Espacios Vectoriales Asturias: Red de Universidades Virtuales Iberoamericanas 1
Espacios Vectoriales 201 6Asturias: Red de Universidades Virtuales Iberoamericanas 1 Índice 1 Espacios Vectoriales... 4 1.1 Definición de espacio vectorial... 4 1.2 Definición de subespacio vectorial...
INTRODUCCIÓN DEL TEMA 2 ESPACIOS VECTORIALES
INTRODUCCIÓN DEL TEMA 2 ESPACIOS VECTORIALES Vamos a construir una serie de objetos sobre el plano z = 0. Al principio solamente tenemos dicho plano (en verde) Antes de empezar a construir algo, empezamos
Matemáticas Discretas TC1003
Matemáticas Discretas TC1003 Módulo I: s Válidos Departamento de Matemáticas ITESM Módulo I: s Válidos Matemáticas Discretas - p. 1/50 En matemáticas y en lógica un argumento no es una disputa. Más bien,
Capítulo 1 Lógica Proposicional
Capítulo 1 Lógica Proposicional 1.1 Introducción El ser humano, a través de su vida diaria, se comunica con sus semejantes a través de un lenguaje determinado (oral, escrito, etc.) por medio de frases
Cardinalidad. Teorema 0.3 Todo conjunto infinito contiene un subconjunto infinito numerable.
Cardinalidad Dados dos conjuntos A y B, decimos que A es equivalente a B, o que A y B tienen la misma potencia, y lo notamos A B, si existe una biyección de A en B Es fácil probar que es una relación de
Apuntes de Lógica Proposicional
Apuntes de Lógica Proposicional La lógica proposicional trabaja con expresiones u oraciones a las cuales se les puede asociar un valor de verdad (verdadero o falso); estas sentencias se conocen como sentencias
1. NÚMEROS PRIMOS Y COMPUESTOS.
. NÚMEROS PRIMOS Y COMPUESTOS. De acuerdo a las propiedades ya vistas de los divisores, sabemos que: todo natural no nulo es divisor de sí mismo es divisor de todo número natural. Ahora: el natural tiene
Pablo Cobreros Tema 6. El tamaño del infinito
Lógica II Pablo Cobreros [email protected] Tema 6. El tamaño del infinito Introducción Introducción La noción de cardinal Afirmaciones acerca del tamaño La noción de cardinal El tamaño del infinito Introducción
Cálculo Proposicional
Universidad Técnica ederico Santa María Departamento de Informática undamentos de Informática 1 Cálculo Proposicional Dr. Gonzalo Hernández Oliva Dr. Gonzalo Hernández USM I-1 Cálculo Proposicional 1 1)
Tema 3: Espacios vectoriales
Tema 3: Espacios vectoriales K denotará un cuerpo. Definición. Se dice que un conjunto no vacio V es un espacio vectorial sobre K o que es un K-espacio vectorial si: 1. En V está definida una operación
Probabilidad y Estadística
Probabilidad y Estadística Probabilidad Conceptos como probabilidad, azar, aleatorio son tan viejos como la misma civilización. Y es que a diario utilizamos el concepto de probabilidad: Quizá llueva mañana
Números naturales y recursividad
Números naturales y recursividad Rafael F. Isaacs G. Sonia M. Sabogal P. * Fecha: 8 de marzo de 2005 Números naturales Se sabe que los números naturales constituyen la estructura básica de la Matemática;
Conjuntos Los conjuntos se emplean en muchas áreas de las matemáticas, de modo que es importante una comprensión de los conjuntos y de su notación.
NÚMEROS REALES Conjuntos Los conjuntos se emplean en muchas áreas de las matemáticas, de modo que es importante una comprensión de los conjuntos y de su notación. Un conjunto es una colección bien definida
Lógica. Matemática discreta. Matemática discreta. Lógica
Lógica Matemática discreta Lógica: rama de las matemáticas instrumento para representar el lenguaje natural proporciona un mecanismo de deducción 2 y de predicados Razonamientos Cálculo proposicional Cálculo
Teoremas de convergencia y derivación bajo el signo integral
Capítulo 8 Teoremas de convergencia y derivación bajo el signo integral En este capítulo estudiaremos sucintamente bajo qué circunstancias puede intercambiarse el orden de la integral con las operaciones
MATEMÁTICA 1 JRC El futuro pertenece a aquellos que creen en la belleza de sus sueños
MATEMÁTICA 1 JRC LÓGICA Es la ciencia formal que estudia los principios y procedimientos que permiten demostrar la validez o invalidez de una inferencia, es decir, reconocer entre un razonamiento correcto
Grupos libres. Presentaciones.
S _ Tema 12.- Grupos libres. Presentaciones. 12.1 Grupos libres. En el grupo Z de los enteros vimos una propiedad (cf. ejemplos.5), que lo caracteriza como grupo libre. Lo enunciamos al modo de una Propiedad
Lenguajes, Gramáticas y Autómatas Conceptos
Lenguajes, Gramáticas y Autómatas Conceptos Departamento de Informática e Ingeniería de Sistemas C.P.S. Universidad de Zaragoza Última revisión: Febrero. 2004 11/02/2004 1 Índice Alfabetos, palabras y
Lección 10: División de Polinomios. Dra. Noemí L. Ruiz Limardo 2009
Lección 10: División de Polinomios Dra. Noemí L. Ruiz Limardo 009 Objetivos de la lección Al finalizar esta lección los estudiantes: Dividirán polinomios de dos o más términos por polinomios de uno y dos
PROBLEMAS RESUELTOS DE PREPARACIÓN PARA OPOSICIONES. Problemas 02
PROBLEMAS RESUELTOS DE PREPARACIÓN PARA OPOSICIONES Problemas 0 Salvador Pérez Gómez [email protected] 4 de abril de 007 PROBLEMA 1 Sea n un número natural. Sea A n = n + n + 3n. a) Demostrar que
Tema 6: Teoría Semántica
Tema 6: Teoría Semántica Sintáxis Lenguaje de de las las proposiciones Lenguaje de de los los predicados Semántica Valores Valores de de verdad verdad Tablas Tablas de de verdad verdad Tautologías Satisfacibilidad
Máquinas de Turing IIC3242. IIC3242 Máquinas de Turing 1 / 42
Máquinas de Turing IIC3242 IIC3242 Máquinas de Turing 1 / 42 Complejidad Computacional Objetivo: Medir la complejidad computacional de un problema. Vale decir: Medir la cantidad de recursos computacionales
13. Utilizar la fórmula del término general y de la suma de n términos consecutivos
Contenidos mínimos 3º ESO. 1. Contenidos. Bloque I: Aritmética y álgebra. 1. Utilizar las reglas de jerarquía de paréntesis y operaciones, para efectuar cálculos con números racionales, expresados en forma
Recordemos que utilizaremos, como es habitual, la siguiente notación para algunos conjuntos de números que son básicos.
Capítulo 1 Preliminares Vamos a ver en este primer capítulo de preliminares algunos conceptos, ideas y propiedades que serán muy útiles para el desarrollo de la asignatura. Se trata de resultados sobre
Curso Propedéutico de Cálculo Sesión 2: Límites y Continuidad
y Laterales Curso Propedéutico de Cálculo Sesión 2: y Joaquín Ortega Sánchez Centro de Investigación en Matemáticas, CIMAT Guanajuato, Gto., Mexico y Esquema Laterales 1 Laterales 2 y Esquema Laterales
Inteligencia Artificial II La Lógica Proposicional como un lenguaje formal
Inteligencia Artificial II La Lógica Proposicional como un lenguaje formal Dr. Alejandro Guerra-Hernández Universidad Veracruzana Centro de Investigación en Inteligencia Artificial mailto:[email protected]
Más sobre Leyes de implicación
Más sobre Leyes de implicación Dilema constructivo. Se abrevia d.c. Se considera que si hay una disyunción que contiene los antecedentes de dos condicionales, la conclusión será la disyunción de los consecuentes.
Funciones de Clase C 1
Capítulo 7 Funciones de Clase C 1 Vamos a considerar ahora la extensión a varias variables del concepto de función de clase C 1. Cada vez que establezcamos una propiedad de las funciones diferenciables,
INTRODUCCION A LA LOGICA
INTRODUCCION A LA LOGICA Renato Lewin Pontificia Universidad Católica de Chile I Parte LOGICA PROPOSICIONAL Introducción 1 Lógica Cuando deseamos establecer una verdad, cuando queremos convencer a alguien
