LENGUAJES Y GRAMÁTICAS
|
|
|
- Elisa de la Cruz Río
- hace 8 años
- Vistas:
Transcripción
1 LENGUAJES Y GRAMÁTICAS
2 LENGUAJES Y GRAMÁTICAS La sintaxis de un lenguaje natural en lenguajes como el ingles, español, alemán o francés es extremadamente complicada, dado que es imposible especificar la reglas para este lenguaje, a partir de ahí nace el leguaje formal, que esta especificado por un conjunto de reglas bien definidas. Esto resulta útil al momento de resolver problemas tales como como se puede determinar cuando una combinación de palabras es una frase valida en un lenguaje formal? como se pueden generar frases validas de una lenguaje formal.
3 REGLAS Una frase se compone de un sujeto seguido de un predicado ; Un sujeto se compone de un articulo seguido de un nombre seguido de un adjetivo, o Un sujeto se compone de un articulo seguido de una nombre ; Un predicado se compone de una verbo seguido de un adverbio, o Un predicado se compone de un verbo ;
4 EJEMPLO FRASE SUJETO PREDICADO ARTÍCULO NOMBRE ADJETIVO VERBO ADVERBIO EL CONEJO GRANDE SALTA RAPIDAMENTE UN MATEMATICO HAMBRIENTO COME SALVAJEMENTE
5 GRAMATICA CON ESTRUCTURA DE FRASES DEFINICIÓN 1 : un vocabulario V es un conjunto finito y no vacío, cuyos elementos se llaman símbolos. Una palabra sobre V es una cadena finita de elementos de V. La palabra vacia o cadena vacia denotada por λ, es la cadena sin símbolos. El conjunto de todas las palabras V se denota por V*. Un lenguaje sobre V es un subconjunto de V*
6 Gramática Alfabeto V Conjunto de símbolos para obtener elementos de un lenguaje Elementos no terminales (n) Elementos terminales (t) Con reemplazo Sin reemplazo T = {un, el, conejo,matemático} N = {frase, sujeto, predicado, adjetivo, articulo, nombre, verbo, adverbio } Produccion de la gramática : toda regla que especifica cuando de puede reemplazar una cadena de V*, el conjunto de todas las cadenas finitas de elementos del vocabulario por otra cadena se denota por Z 0 Z 1. S : es un elemento del vocabulario por el que siempre se comienza
7 DEFINICION : Una gramática con estructura de frases sea G = (V,T,S,P) consiste en un vocabulario V, un subconjunto de T de V formando por los elementos terminales, un símbolo inicial S de V T y un conjunto de P producciones. El conjunto V T se denota por N. los elementos de N se llaman elementos no terminales. Toda producción de P debe contener al menos un elemento no terminal en su lado izquierdo. EJEMPLO : Sea G = (V, T, S, P) donde V= {a, b, A, B, S}, T = {a, b}, S es el símbolo inicial y P = { S ABa, A BB, B ab, AB b } Con este ejemplo se observa las palabras que pueden generarse mediante las producciones de una gramatica con estructura de frases.
8 DEFINICION : sea G = (V, T, S, P) una gramática con estructura de frases. Sean W 0 = lz 0 r (esta es la concatenación de l, z 0 ) y W 1 = lz 1 r cadenas sobre V. si z 0 z 1 es una producción de G, decimos que W 1 se deriva directamente de W 0 (o que es directamente derivable) y escribimos W 0 W 1. EJEMPLO: la cadena Aaba de deriva directamente de ABa en la gramática del ejemplo anterior, puesto que B ab es una producción de dicha gramática.
9 DEFINICION : sea G = (V, T, S, P) una gramatica con estructura de frases. El leguaje generado por G ( o el lenguaje de G ) denotado por L(G), es el conjunto de todas las cadenas de terminales que se derivan del estado inicial S. En otra palabras L G = w T s w} EJEMPLO: Sea G la gramática con vocabulario V = {S, A, a, b}, conjunto de terminales T={a, b}, símbolo inicial S y producciones P = { S aa, S b, A aa} cual es L(G), el lenguaje generado por esta gramática?
10 SOLUCIÓN : a partir del estado inicial S, se puede derivar aa utilizando pa producción S aa también se puede utilizar la producción S b para derivar b. De aa mediante la producción de A aa se deriva aaa. Puesto que no puede derivarse ninguna otra palabra utilizando las producciones, se tiene que L(G) = { b, aaa }
11 TIPOS DE GRAMÁTICA CON ESTRUCTURA DE FRASES Tipo 0 W 1 W 2 longitud W 2 > longitud W 1 W 1 λ Tipo 2 W 1 W 2 W 2 es un único símbolo no terminal Tipo 3 Solo puede tener producción de forma W 1 W 2 con W 1 = A, y bien W 2 = ab o bien W 2 = a, siendo A y B símbolos no terminales y a un símbolo terminal, o con W 1 = S y W 2 = λ
12 GRACIAS
Lenguajes y Gramáticas
Lenguajes y Gramáticas Teoría de Lenguajes Fernando Naranjo Introduccion Se desarrollan lenguajes de programación basados en el principio de gramática formal. Se crean maquinas cada vez mas sofisticadas
Matemáticas. ticas Discretas. Lenguajes y Gramáticas. Tenemos dos clases de lenguaje: Lenguaje Formal
Matemáticas ticas Discretas y Gramáticas y Gramáticas Tenemos dos clases de lenguaje: Lenguaje Natural Lenguaje Formal Lenguaje Formal De acuerdo al diccionario Webster, un lenguaje es un cuerpo de palabras
Introducción. Las gramáticas definen las reglas que definen a los lenguajes Las reglas pueden tener una diversa variedad de esquemas
Gramáticas Introducción Las gramáticas definen las reglas que definen a los lenguajes Las reglas pueden tener una diversa variedad de esquemas En algunos lenguajes, una sucesión de símbolos depende del
Introducción a la Lógica y la Computación
Introducción a la Lógica y la Computación Parte III: Lenguajes y Autómatas Clase del 4 de Noviembre de 2015 Parte III: Lenguajes y Autómatas Introducción a la Lógica y la Computación 1/21 Lenguajes Formales
CONJUNTOS REGULARES. Orlando Arboleda Molina. 19 de Octubre de Escuela de Ingeniería de Sistemas y Computación de La Universidad del Valle
CONJUNTOS REGULARES Orlando Arboleda Molina Escuela de Ingeniería de Sistemas y Computación de La Universidad del Valle 19 de Octubre de 2008 Contenido Expresiones regulares Teorema de Kleene Autómatas
Compiladores: Análisis Sintáctico. Pontificia Universidad Javeriana Cali Ingenieria de Sistemas y Computación Prof. Gloria Inés Alvarez V.
Compiladores: Análisis Sintáctico Pontificia Universidad Javeriana Cali Ingenieria de Sistemas y Computación Prof. Gloria Inés Alvarez V. Sintaxis Define la estructura del lenguaje Ejemplo: Jerarquía en
SSL Guia de Ejercicios
1 SSL Guia de Ejercicios INTRODUCCIÓN A LENGUAJES FORMALES 1. Dado el alfabeto = {a, b, c}, escriba las palabras del lenguaje L = {x / x }. 2. Cuál es la cardinalidad del lenguaje L = {, a, aa, aaa}? 3.
Inducción en definiciones y demostraciones AUTÓMATAS Y LENGUAJES FORMALES PRELIMINARES MATEMÁTICOS. Números naturales. Inducción matemática
Inducción en definiciones y demostraciones AUTÓMATAS Y LENGUAJES FORMALES PRELIMINARES MATEMÁTICOS Francisco Hernández Quiroz Departamento de Matemáticas Facultad de Ciencias, UNAM E-mail: [email protected]
Fundamentos de Ciencias de la Computación Trabajo Práctico N 2 Lenguajes Libres del Contexto y Sensibles al Contexto Segundo Cuatrimestre de 2002
Departamento de Cs. e Ingeniería de la Computación Universidad Nacional del Sur Ejercicios Fundamentos de Ciencias de la Computación Trabajo Práctico N 2 Lenguajes Libres del Contexto y Sensibles al Contexto
GRAMATICAS LIBRES DEL CONTEXTO
GRMTICS LIBRES DEL CONTEXTO Estas gramáticas, conocidas también como gramáticas de tipo 2 o gramáticas independientes del contexto, son las que generan los lenguajes libres o independientes del contexto.
PROGRAMACIÓN II AÑO 2009 TALLER 3: TEORÍA DE LENGUAJES Y AUTÓMATAS
Licenciatura en Sistemas de Información PROGRAMACIÓN II AÑO 2009 TALLER 3: TEORÍA DE LENGUAJES Y AUTÓMATAS UNSE FCEyT 1. DESCRIPCIÓN Este taller consta de tres partes. En cada una de ellas se especifican
Sumario: Teoría de Autómatas y Lenguajes Formales. Capítulo 2: Lenguajes Formales. Capítulo 2: Lenguajes Formales
Teoría de Autómatas y Lenguajes Formales Capítulo 2: Lenguajes Formales Holger Billhardt [email protected] Sumario: Capítulo 2: Lenguajes Formales 1. Concepto de Lenguaje Formal 2. Operaciones sobre
Expresiones Regulares y Derivadas Formales
y Derivadas Formales Las Derivadas Sucesivas. Universidad de Cantabria Esquema 1 2 3 Derivadas Sucesivas Recordemos que los lenguajes de los prefijos dan información sobre los lenguajes. Derivadas Sucesivas
TEORÍA DE AUTÓMATAS Y LENGUAJES FORMALES Práctica 5 - Simplificación de gramáticas incontextuales
TEORÍA DE AUTÓMATAS Y LENGUAJES FORMALES Práctica 5 - Simplificación de gramáticas incontextuales 1. Objetivos 2. Representación de los datos en Mathematica 3. Eliminación de símbolos inútiles 3.1. Símbolos
16 Análisis sintáctico I
2 Contenido Recordando la estructura de un compilador Recordando el análisis léxico l análisis sintáctico Comparación con el análisis léxico l Rol del Parser Lenguajes de programación Gramáticas structura
1. Cadenas EJERCICIO 1
LENGUAJES FORMALES Y AUTÓMATAS CURSO 2006/2007 - BOLETÍN DE EJERCICIOS Víctor J. Díaz Madrigal y José Miguel Cañete Departamento de Lenguajes y Sistemas Informáticos 1. Cadenas La operación reversa aplicada
Tema 4: Gramáticas independientes del contexto. Teoría de autómatas y lenguajes formales I
Tema 4: Gramáticas independientes del contexto Teoría de autómatas y lenguajes formales I Bibliografía Hopcroft, J. E., Motwani, R., y Ullman, J. D. Introducción a la Teoría de Autómatas, Lenguajes y Computación.
DEFINICIONES BÁSICAS E INTRODUCCIÓN A LENGUAJES FORMALES
1 DEFINICIONES BÁSICAS E INTRODUCCIÓN A LENGUAJES FORMALES Los LENGUAJES FORMALES están formados por PALABRAS, las palabras son CADENAS y las cadenas están constituidas por SÍMBOLOS de un ALFABETO. SÍMBOLOS
Autómatas de Pila y Lenguajes Incontextuales
Autómatas de Pila y Lenguajes Incontextuales Elvira Mayordomo Universidad de Zaragoza 5 de noviembre de 2012 Contenido de este tema 1. Introducción a los autómatas de pila 2. Definiciones 3. Equivalencia
Expresiones regulares, gramáticas regulares
Expresiones regulares, gramáticas regulares Los LR en la jerarquía de Chomsky La clasificación de lenguajes en clases de lenguajes se debe a N. Chomsky, quien propuso una jerarquía de lenguajes, donde
Teoría de Autómatas y Compiladores [ICI-445] Capítulo 1: Lenguajes y Gramáticas Formales
Teoría de Autómatas y Compiladores [ICI-445] Capítulo 1: Lenguajes y Gramáticas Formales Dr. Ricardo Soto [[email protected]] [http://www.inf.ucv.cl/ rsoto] Escuela de Ingeniería Informática Pontificia
Temas. Objetivo. Que el estudiante logre: 1) Identificar conceptos constructivos de la Teoría de la Computabilidad. 2) Definir autómatas de pila.
0 Temas Definición de autómata de pila Autómata de pila determinístico y no determinístico Objetivo Que el estudiante logre: 1) Identificar conceptos constructivos de la Teoría de la Computabilidad. 2)
EJERCICIOS del TEMA 3: Lenguajes independientes del contexto
EJERCICIOS del TEMA 3: Lenguajes independientes del contexto Sobre GICs (gramáticas independientes del contexto) 1. Sea G una gramática con las siguientes producciones: S ASB ε A aab ε B bba ba c ) d )
06 Análisis léxico II
2 Contenido Alfabetos, símbolos y cadenas Operaciones con cadenas Concatenación de dos cadenas Prefijos y sufijos de una cadena Subcadena y subsecuencia Inversión de una cadena Potencia de una cadena Ejercicios
ÁRBOLES DE SINTAXIS. Los nodos no terminales (nodos interiores) están rotulados por los símbolos no terminales.
ÁRBOLES DE SINTAXIS ÁRBOL grafo dirigido acíclico. Los nodos no terminales (nodos interiores) están rotulados por los símbolos no terminales. Los nodos terminales (nodos hojas) están rotulados por los
No todos los LRs finitos se representan mejor con ERs. Observe el siguiente ejemplo:
1 Clase 3 SSL EXPRESIONES REGULARES Para REPRESENTAR a los Lenguajes Regulares. Se construyen utilizando los caracteres del alfabeto sobre el cual se define el lenguaje, el símbolo y operadores especiales.
Computabilidad y lenguajes formales: Sesión 19. Gramáticas Incontextuales (Context Free Grammars)
Computabilidad y lenguajes formales: Sesión 19. Gramáticas Incontextuales (Context Free Grammars) Prof. Gloria Inés Alvarez V. Departamento de Ciencias e Ingeniería de la Computación Pontificia Universidad
Capítulo 1 Lenguajes formales 6
Capítulo 1 Lenguajes formales 6 1.8. Operaciones entre lenguajes Puesto que los lenguajes sobre Σ son subconjuntos de Σ, las operaciones usuales entre conjuntos son también operaciones válidas entre lenguajes.
GRAMÁTICAS LIBRES DE CONTEXTO
GRAMÁTICAS LIBRES DE CONTEXTO Definición Una gramática libre de contexto (GLC) es una descripción estructural precisa de un lenguaje. Formalmente es una tupla G=, donde Vn es el conjunto
Tema 2. Fundamentos de la Teoría de Lenguajes Formales
Departamento de Tecnologías de la Información Tema 2. Fundamentos de la Teoría de Lenguajes Formales Ciencias de la Computación e Inteligencia Artificial Índice 2.1. Alfabeto 2.2. Palabra 2.3. Operaciones
Lenguajes, Gramáticas y Autómatas Conceptos
Lenguajes, Gramáticas y Autómatas Conceptos Departamento de Informática e Ingeniería de Sistemas C.P.S. Universidad de Zaragoza Última revisión: Febrero. 2004 11/02/2004 1 Índice Alfabetos, palabras y
TEORÍA DE CONJUNTOS.
TEORÍA DE CONJUNTOS. NOCIÓN DE CONJUNTO: Concepto no definido del cual se tiene una idea subjetiva y se le asocian ciertos sinónimos tales como colección, agrupación o reunión de objetos abstractos o concretos.
TEMA 6 GRAMÁTICAS INDEPENDIENTES DEL CONTEXTO
TEMA 6 GRAMÁTICAS INDEPENDIENTES DEL CONTEXTO TEMA 6.- GRAMÁTICAS INDEPENDIENTES DEL CONTEXTO 6.1. Gramáticas independientes del contexto. 6.2. Limpieza de Gramáticas Independientes del contexto. 6.3.
Capítulo 9. Introducción a los lenguajes formales. Continuar
Capítulo 9. Introducción a los lenguajes formales Continuar Introducción Un lenguaje es un conjunto de símbolos y métodos para estructurar y combinar dichos símbolos. Un lenguaje también recibe el nombre
Lenguajes (gramáticas y autómatas)
Lenguajes (gramáticas y autómatas) Elvira Mayordomo Universidad de Zaragoza 19 de septiembre de 2013 Elvira Mayordomo (Universidad de Zaragoza) Lenguajes (gramáticas y autómatas) 19 de septiembre de 2013
Conceptos básicos sobre gramáticas
Procesamiento de Lenguajes (PL) Curso 2014/2015 Conceptos básicos sobre gramáticas Gramáticas y lenguajes Gramáticas Dado un alfabeto Σ, un lenguaje es un conjunto (finito o infinito) de cadenas de símbolos
Ingeniería en Computación. Autómatas y Lenguajes Formales. Unidad de competencia IV: Conocer, utilizar y diseñar gramáticas de libre contexto
Universidad Autónoma del Estado de México Centro Universitario UAEM Texcoco Departamento de Ciencias Aplicadas. Ingeniería en Computación. Autómatas y Lenguajes Formales. Unidad de competencia IV: Conocer,
5 Autómatas de pila 5.1 Descripción informal. 5.2 Definiciones
1 Curso Básico de Computación 5 Autómatas de pila 5.1 Descripción informal Un autómata de pila es esencialmente un autómata finito que controla una cinta de entrada provista de una cabeza de lectura y
Interrogación 2. Pontificia Universidad Católica de Chile Escuela de Ingeniería Departamento de Ciencia de la Computación. Segundo Semestre, 2003
Pontificia Universidad Católica de Chile Escuela de Ingeniería Departamento de Ciencia de la Computación Interrogación 2 IIC 2222 Teoría de Autómatas y Lenguajes Formales Segundo Semestre, 2003 Esta interrogación
Gramáticas libres de contexto
Gramáticas libres de contexto Conceptos básicos El siguientes es un ejemplo de una gramática libre de contexto, a la cual llamaremos G1. A 0A1 A B B # Una gramática consiste de una colección de reglas
Computabilidad y Lenguajes Formales: Autómatas de Pila
300CIG007 Computabilidad y Lenguajes Formales: Autómatas de Pila Pontificia Universidad Javeriana Cali Ingeniería de Sistemas y Computación Prof. Gloria Inés Alvarez V. Basado en [SIPSER, Chapter 2] Autómatas
MATEMÁTICAS BÁSICAS. Autora: Jeanneth Galeano Peñaloza Edición: Oscar Guillermo Riaño
MATEMÁTICAS BÁSICAS Autora: Jeanneth Galeano Peñaloza Edición: Oscar Guillermo Riaño Universidad Nacional de Colombia Departamento de Matemáticas Sede Bogotá Enero de 2014 Universidad Nacional de Colombia
Propiedades de lenguajes independientes del contexto
Capítulo 12. Propiedades de lenguajes independientes del contexto 12.1. Identificación de lenguajes independientes del contexto Lema de bombeo. 12.2. Propiedades Cierre, Complemento de lenguajes, Sustitución,
Algoritmos y programas. Algoritmos y Estructuras de Datos I
Algoritmos y programas Algoritmos y Estructuras de Datos I Primer cuatrimestre de 2012 Departamento de Computación - FCEyN - UBA Programación funcional - clase 1 Funciones Simples - Recursión - Tipos de
Autómatas Finitos Deterministicos (DFA)
Autómatas Finitos Deterministicos (DFA) Introducción a la Lógica Fa.M.A.F., Universidad Nacional de Córdoba 22//4 Info útil Bibliografía: Introducción a la teoría de autómatas, lenguajes y computación.
Autómatas Finitos Deterministicos (DFA)
Autómatas Finitos Deterministicos (DFA) Introducción a la Lógica y la Computación Fa.M.A.F., Universidad Nacional de Córdoba 26/0/6 Info útil Bibliografía: Introducción a la teoría de autómatas, lenguajes
En matemáticas el concepto de conjunto es considerado primitivo y no se da una definición de este, por lo tanto la palabra CONJUNTO debe aceptarse
En matemáticas el concepto de conjunto es considerado primitivo y no se da una definición de este, por lo tanto la palabra CONJUNTO debe aceptarse lógicamente como un término no definido. Un conjunto se
autómatas finitos y lenguajes regulares LENGUAJES FORMALES Y
CONTENIDO Reconocedores [HMU2.1]. Traductores [C8]. Diagramas de Estado [HMU2.1]. Equivalencia entre AF deterministas y no deterministas [HMU2.2-2.3]. Expresiones [HMU3]. Propiedades de [HMU4]. Relación
13.3. MT para reconocer lenguajes
13.3. MT para reconocer lenguajes Gramática equivalente a una MT Sea M=(Γ,Σ,,Q,q 0,f,F) una Máquina de Turing. L(M) es el lenguaje aceptado por la máquina M. A partir de M se puede crear una gramática
Conjuntos Los conjuntos se emplean en muchas áreas de las matemáticas, de modo que es importante una comprensión de los conjuntos y de su notación.
NÚMEROS REALES Conjuntos Los conjuntos se emplean en muchas áreas de las matemáticas, de modo que es importante una comprensión de los conjuntos y de su notación. Un conjunto es una colección bien definida
MATEMÁTICAS BÁSICAS. 2 de marzo de Universidad Nacional de Colombia MATEMÁTICAS BÁSICAS
2 de marzo de 2009 Parte I Conjuntos Definición intuitiva de conjunto Definición Un conjunto es una colección de objetos. Ejemplos A = {a, e, i, o, u} B = {blanco, gris, negro} C = {2, 4, 6, 8, 9} D =
Tema 2 Gramáticas y Lenguajes Libres de Contexto
Tema 2 Gramáticas y Lenguajes Libres de Contexto 1. Definiciones Básicas 2. 3. Forma Normal de Chomsky 4. Autómatas de Pila 5. Propiedades de los Lenguajes Libres de Contexto 1. Definiciones básicas 1.
Procesadores de Lenguaje
Procesadores de Lenguaje Repaso TALF Cristina Tîrnăucă Dept. Matesco, Universidad de Cantabria Fac. Ciencias Ing. Informática Primavera de 2013 La Jerarquía de Chomsky Cuatro niveles de lenguajes formales
Introducción. El uso de los símbolos en matemáticas.
Introducción El uso de los símbolos en matemáticas. En el estudio de las matemáticas lo primero que necesitamos es conocer su lenguaje y, en particular, sus símbolos. Algunos símbolos, que reciben el nombre
Procesadores de Lenguaje
Procesadores de Lenguaje Analizadores sintácticos descendentes: LL(1) Cristina Tîrnăucă Dept. Matesco, Universidad de Cantabria Fac. Ciencias Ing. Informática Primavera de 2013 Analizadores sintácticos
2do. Parcial. Todos los ejercicios se entregarán en hojas separadas. El examen tipo test cuenta hasta 2 puntos sobre la nota total.
U.R.J.C. Ingeniera Técnica en Informática de Sistemas Teoría de Autómatas y Lenguajes Formales Junio 2009 2do. Parcial Normas : La duración del examen es de 2 horas. Todos los ejercicios se entregarán
Teoría de Autómatas y Lenguajes Formales.
Teoría de Autómatas y Lenguajes Formales Prueba de Evaluación de Lenguajes y Gramáticas Autores: Araceli Sanchis de Miguel Agapito Ledezma Espino Jose A. Iglesias Martínez Beatriz García Jiménez Juan Manuel
Autora: Jeanneth Galeano Peñaloza. 3 de febrero de Universidad Nacional de Colombia Departamento de Matemáticas Sede Bogotá 1/ 45
Autora: Jeanneth Galeano Peñaloza Universidad Nacional de Colombia Departamento de Matemáticas Sede Bogotá 3 de febrero de 2013 1/ 45 Parte I 2/ 45 Definición intuitiva de conjunto Definición Un conjunto
Paréntesis: Una aplicación en lenguajes formales
Paréntesis: Una aplicación en lenguajes formales Vamos a ver una aplicación del Teorema de Immerman-Szelepcsényi en la área de lenguajes formales. IIC3242 Clases de Complejidad 35 / 69 Paréntesis: Una
Clase 17: Autómatas de pila
Solicitado: Ejercicios 14: Autómatas de pila de GLC M. en C. Edgardo Adrián Franco Martínez http://computacion.cs.cinvestav.mx/~efranco @efranco_escom [email protected] 1 Contenido Autómata de pila Definición
Teoría de Lenguajes. Gramáticas incontextuales
Teoría de Lenguajes Gramáticas incontextuales José M. Sempere Departamento de Sistemas Informáticos y Computación Universidad Politécnica de Valencia Gramáticas incontextuales 1. Definiciones básicas.
Clase 03: Alfabetos, símbolos y cadenas
Solicitado: Ejercicios 01: Cadenas M. en C. Edgardo Adrián Franco Martínez http://computacion.cs.cinvestav.mx/~efranco @efranco_escom [email protected] 1 Contenido Alfabetos, símbolos y cadenas Operaciones
300CIG007 Computabilidad y Lenguajes Formales: Autómatas Finitos
300CIG007 Computabilidad y Lenguajes Formales: Autómatas Finitos Pontificia Universidad Javeriana Cali Ingeniería de Sistemas y Computación Prof. Gloria Inés Alvarez V. Qué es un computador? Todos lo sabemos!!!
UNIDAD II: TEORÍA DE CONJUNTOS 2.1. INTRODUCCIÓN
UNDD : TEORÍ DE CONJUNTOS 2.1. NTRODUCCÓN Según Georg Cantor un conjunto es la reunión, agrupación o colección de elementos bien definidos que tienen una propiedad en común, concepto que ha penetrado y
TEORÍA DE AUTÓMATAS Y LENGUAJES FORMALES Grado en Ingeniería Informática Online, Curso Universidad Rey Juan Carlos
TEORÍA DE AUTÓMATAS Y LENGUAJES FORMALES Grado en Ingeniería Informática Online, Curso 202-203 Universidad Rey Juan Carlos GUÍA PARA LA REALIZACIÓN DE LA HOJA DE PROBLEMAS No 3 (Tema 3: Expresiones Regulares)
Pregunta 1 [40 puntos] Diga si las siguientes afirmaciones son verdaderas o falsas, demostrando su respuesta.
Pregunta 1 [40 puntos] Diga si las siguientes afirmaciones son verdaderas o falsas, demostrando su respuesta. (a) Es posible aceptar por stack vacío el lenguaje {0 i 1 j i = j o j = 2i} con un AA determinístico.
Cualquier lenguaje de contexto libre, L, puede ser generado por medio de una GCL, G, que cumpla las siguientes condiciones:
Teoría de Autómatas y Lenguajes Formales Boletín de Autoevaluación 5: Cómo se simplifica una Gramática de Contexto Libre?. 1. Objetivos. El objetivo de este boletín es ilustrar cómo proceder para simplificar
Aplicaciones del análisis combinatorio
Aplicaciones del análisis combinatorio UNAM 25 de noviembre de 2010 Plan de la plática Plantear problemas Especificación de clases combinatorias Traducción a funciones generadoras Comportamiento asintótico
Teoría de Autómatas y Lenguajes Formales. Introducción a las Gramáticas. Gramáticas incontextuales
Teoría de utómatas y Lenguajes Formales Introducción a las ramáticas. ramáticas incontextuales José M. Sempere Departamento de Sistemas Informáticos y Computación Universidad Politécnica de Valencia Introducción
AUTÓMATAS DE PILA Y LENGUAJES INDEPENDIENTES DEL CONTEXTO
Autómatas de pila y lenguajes independientes del contexto -1- AUTÓMATAS DE PILA Y LENGUAJES INDEPENDIENTES DEL CONTEXTO AUTÓMATAS DE PILA - Son autómatas finitos con una memoria en forma de pila. - Símbolos
2.1. TEORÍA DE CONJUNTOS
2.1. TEORÍA DE CONJUNTOS Saber: Definir los conceptos relacionados con conjuntos, Explicar las operaciones básicas entre conjuntos Describir el método de construcción del diagrama de Venn Euler. Hacer:
Lenguajes Formales y Monoides
Universidad de Cantabria Esquema 1 2 3 La operación esencial sobre Σ es la concatenación o adjunción de palabras: : Σ Σ Σ (x, y) x y es decir, si x = x 1 x n e y = y 1 y m, entonces x y = x 1 x n y 1 y
1 Conjuntos y propiedades de los números naturales
Programa Inmersión, Verano 2016 Notas escritas por Dr. M Notas del cursos. Basadas en los prontuarios de MATE 3001 y MATE 3023 Clase #1: martes, 31 de mayo de 2016. 1 Conjuntos y propiedades de los números
Operaciones básicas con hojas de cálculo
Operaciones básicas con hojas de cálculo Insertar hojas de cálculo. Para insertar rápidamente una hoja de cálculo nueva al final de las hojas de cálculo existentes, haga clic en la ficha Insertar hoja
John Venn Matemático y filósofo británico creador de los diagramas de Venn
Georg Cantor Matemático Alemán creador de la teoría de conjuntos John Venn Matemático y filósofo británico creador de los diagramas de Venn August De Morgan Matemático ingles creador de leyes que llevan
3.3. Multiplicación y división de números cardinales
3.3 Multiplicación y división de números cardinales Vocabulario En un enunciado de multiplicación a x b a y b se llaman multiplicandos. El resultado de la multiplicación se le llama producto. YTHM 2008
Estructuras Algebraicas Una estructura algebraica es un objeto matemático consistente en un conjunto no vacío, con por lo menos una operación binaria.
Estructuras Algebraicas Una estructura algebraica es un objeto matemático consistente en un conjunto no vacío, con por lo menos una operación binaria. Operación Binaria Se conoce una operación binaria
Teoría de Autómatas y Lenguajes Formales.
Teoría de Autómatas y Lenguajes Formales Ejercicios de Lenguajes Regulares Autores: Araceli Sanchis de Miguel Agapito Ledezma Espino Jose A. Iglesias Martínez Beatriz García Jiménez Juan Manuel Alonso
Capítulo 1: Fundamentos: Lógica y Demostraciones Clase 3: Relaciones, Funciones, y Notación Asintótica
Capítulo 1: Fundamentos: Lógica y Demostraciones Clase 3: Relaciones, Funciones, y Notación Asintótica Matemática Discreta - CC3101 Profesor: Pablo Barceló P. Barceló Matemática Discreta - Cap. 1: Fundamentos:
Definición 1 Un semigrupo es un conjunto E provisto de una operación binaria asociativa sobre E, se denota por (E, ).
ALGEBRA La primera parte del presente libro está dedicada a las estructuras algebraicas. En esta parte vamos a iniciar agregándole a los conjuntos operaciones. Cuando las operaciones tienen determinadas
La sintaxis es el estudio de la estructura de las oraciones, de cómo las palabras se combinan para formar oraciones.
SPA 317 Parte 3: Sintaxis. 1. Introducción La sintaxis es el estudio de la estructura de las oraciones, de cómo las palabras se combinan para formar oraciones. El componente sintáctico de una gramática
Unidad I Introducción a la programación de Sistemas. M.C. Juan Carlos Olivares Rojas
Unidad I Introducción a la programación de Sistemas M.C. Juan Carlos Olivares Rojas Agenda 1.1 Qué es y que estudia la programación de sistemas? 1.2 Herramientas desarrolladas con la teoría de programación
LEX. Las definiciones y subrutinas son opcionales. El segundo %% es opcional pero el primer %% indica el comienzo de las reglas.
LEX Estructura de un programa en LEX { definiciones { reglas { subrutinas del usuario Las definiciones y subrutinas son opcionales. El segundo es opcional pero el primer indica el comienzo de las reglas.
MODELOS DE COMPUTACION I Preguntas Tipo Test. 1. El lema de bombeo puede usarse para demostrar que un lenguaje determinado es regular.
MODELOS DE COMPUTACION I Preguntas Tipo Test Indicar si son verdaderas o falsas las siguientes afirmaciones: 1. El lema de bombeo puede usarse para demostrar que un lenguaje determinado es regular. 2.
Tema 2: Los Autómatas y su Comportamiento
Departamento de Computación Universidade da Coruña Bisimulación y procesos concurrentes Tema 2: Los Autómatas y su Comportamiento Carmen Alonso Montes [email protected] Noelia Barreira Rodríguez [email protected]
Una cadena sobre Σ es cualquier secuencia de elementos de longitud finita sobre Σ.
Alfabetos, Cadenas y Lenguajes Definición 1 Un Alfabeto es cualquier conjunto finito, no vacío. Ejemplo 1 Sea Σ = {0, 1, 2, 3,..., 9} donde 0 Σ Definición 2 Una cadena sobre Σ es cualquier secuencia de
Expresiones Regulares y Derivadas Formales
Motivación e Ideas y Derivadas Formales La Derivación como Operación. Universidad de Cantabria Esquema Motivación e Ideas 1 Motivación e Ideas 2 3 Motivación Motivación e Ideas Sabemos como son los conjuntos
Teoría de Conjuntos y Conjuntos Numéricos
Teoría de Conjuntos y Conjuntos Numéricos U N I V E R S I D A D D E P U E R T O R I C O E N A R E C I B O D E P A R T A M E N T O DE M A T E M Á T I C A S P R O F A. Y U I T Z A T. H U M A R Á N M A R
Algebra Lineal. Gustavo Rodríguez Gómez. Verano 2011 INAOE. Gustavo Rodríguez Gómez (INAOE) Algebra Lineal Verano / 21
Algebra Lineal Gustavo Rodríguez Gómez INAOE Verano 2011 Gustavo Rodríguez Gómez (INAOE) Algebra Lineal Verano 2011 1 / 21 Espacios Vectoriales Espacios Vectoriales INAOE Gustavo Rodríguez Gómez (INAOE)
Lógica proposicional. Ivan Olmos Pineda
Lógica proposicional Ivan Olmos Pineda Introducción Originalmente, la lógica trataba con argumentos en el lenguaje natural es el siguiente argumento válido? Todos los hombres son mortales Sócrates es hombre
Equivalencia Entre PDA y CFL
Equivalencia Entre PDA y CFL El Lenguaje aceptado por un Autómata con Pila Universidad de Cantabria Esquema 1 Introducción 2 3 Lenguaje Aceptado por un Autómata Como en los autómatas finitos, se puede
INSTITUTO DE EDUCACIÓN SUPERIOR TECNOLÓGICO IBEROTEC SEMESTRE ACADÉMICO: 2013-II SÍLABO UNIDAD DIDÁCTICA : INGLÉS REDES DE COMUNICACIÓN EMPRESARIAL
INSTITUTO DE EDUCACIÓN SUPERIOR TECNOLÓGICO IBEROTEC SEMESTRE ACADÉMICO: 2013-II 1. DATOS GENERALES SÍLABO UNIDAD DIDÁCTICA : INGLÉS REDES DE COMUNICACIÓN EMPRESARIAL MÓDULO : REDES DE COMUNICACIÓN EMPRESARIAL
Sistemas deductivos. Lógica Computacional. Curso 2005/2006. Departamento de Matemática Aplicada Universidad de Málaga
Sistemas deductivos Lógica Computacional Departamento de Matemática plicada Universidad de Málaga Curso 2005/2006 Contenido 1 Sistema axiomático de Lukasiewicz Sistema proposicional Extensión a predicados
Espacios Vectoriales www.math.com.mx
Espacios Vectoriales Definiciones básicas de Espacios Vectoriales www.math.com.mx José de Jesús Angel Angel [email protected] MathCon c 007-009 Contenido. Espacios Vectoriales.. Idea Básica de Espacio Vectorial.................................
Sea Σ un alfabeto y L el lenguaje de los palíndromos sobre Σ. Sean a, b dos elementos de Σ. Se demuestra por reducción al absurdo que L no es regular:
Universidad Rey Juan Carlos Grado en Ingeniería de Computadores Máquinas Secuenciales, Autómatas y Lenguajes Hoja de Problemas: Propiedades Lenguajes Regulares Nivel del ejercicio : ( ) básico, ( ) medio,
