Instrumentación de un sistema para el monitoreo de pozos de explotación de agua potable

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Instrumentación de un sistema para el monitoreo de pozos de explotación de agua potable"

Transcripción

1 División de Ciencias Básicas e Ingeniería Departamento de Ingeniería Eléctrica Licenciatura de Instrumentación de un sistema para el monitoreo de pozos de explotación de agua potable Desarrollado por: López García Fernando Hernández Mora Raúl Asesor: Martínez González Alejandro México D.F. a Julio del 2004

2

3 CONTENIDO OBJETIVO...1 INTRODUCCIÓN...1 ESTADO DEL ARTE...4 DESARROLLO...5 PRUEBAS Y RESULTADOS EXPERIMENTALES...6 CONCLUSIONES...16 ANEXO ANEXO ANEXO ANEXO BIBLIOGRAFÍA...49

4

5 Objetivo: Desarrollar un sistema de instrumentación para la telemetría de parámetros para un pozo de explotación de agua potable, como son : nivel de agua del pozo, conductividad del agua, medición de PH, así como mediciones indirectas tales como velocidad y dirección del viento, presión atmosférica y precipitación pluvial. Introducción: La disponibilidad de los recursos hídricos para los diferentes usos, no sólo depende de los volúmenes de agua superficial y subterránea, sino también de la calidad de estos recursos. Sin embargo, aún no conocemos la potencialidad de este recurso: bajo el suelo las minas no son solo de oro y, en nuestra geología las formaciones son una gran despensa de agua dulce. El tema del recurso hídrico presenta gran diversidad de aspectos: variado tipo de fuentes de suministro, diversidad de usos y cuantía de la demanda, distintas condiciones de aprovechamiento, incidencia del uso del recurso sobre el medio ambiente, calidades del líquido, factores climáticos, variables culturales, participación del sector público y privado en los procesos de estudio, inversión y explotación del agua entre otros. La provisión de sistemas confiables de abastecimiento de agua potable es actualmente un objetivo para todos los países del mundo como parte de muchos programas internacionales. En la actualidad hay un incremento de la demanda de agua, la cual está asociada a problemas de cantidad y calidad. El agua subterránea, en ciertas condiciones, constituye un importante recurso de abastecimiento de agua para distintos usos. En algunas ocasiones, las características propias del sistema natural determinan que la cantidad, accesibilidad y en especial la calidad del agua subterránea se torne inadecuada para algunos o todos los usos requeridos. Por lo tanto, es importante dejar claro que el agua subterránea no siempre es sinónimo de recurso disponible. En muchas ocasiones, los recursos hídricos subterráneos suelen perder tal categoría al estar afectados por distintas actividades contaminantes que 1

6 incorporan al agua subterránea una variedad de substancias tóxicas (metales pesados, compuestos orgánicos, organismos patógenos, etc.). Por ello la necesidad de monitorear las características de las aguas subterráneas determinando así su calidad. Aunque algunas veces estas mediciones se tienen que observar acudiendo hasta los pozos acuíferos. Para esto se plantea que dichas mediciones sean transmitidas a los laboratorios donde se analizan estas propiedades, teniendo así un acceso más rápido a esta información. La transmisión de esta información puede ser llevada a cabo por medio de dispositivos inalámbricos que operen en rangos de frecuencia que no requieran de proceso legal de regularización que en el caso de México, la entidad reguladora del radio espectro es la Comisión Federal de Telecomunicaciones (COFETEL, ) y la Secretaría de Comunicaciones y Transportes (SCT, ). para poder ocupar un canal en el espacio electromagnético. La asignación de bandas del espectro varia de país a país y en el caso de México pueden consultar el cuadro de atribución de frecuencias en el Área de Ingeniería y Tecnología de la COFETEL en la siguiente dirección: Cada subconjunto o banda de frecuencias dentro del espectro electromagnético tiene propiedades únicas que son el resultado de cambios en la longitud de onda. Por ejemplo, las frecuencias medias (MF, Medium Frequencies) que van de los 300 khz a los 3 MHz pueden ser radiadas a lo largo de la superficie de la tierra sobre cientos de kilómetros, perfecto para las estaciones de radio AM (Amplitud Modulada) de la región. Las estaciones de radio internacionales usan las bandas conocidas como ondas cortas (SW, Short Wave) en la banda de HF (High Frequency) que va desde los 3 MHz a los 30 MHz. Este tipo de ondas pueden ser radiadas a miles de kilómetros y son rebotadas de nuevo a la tierra por la ionosfera como si fuera un espejo, por tal motivo las estaciones de onda corta son escuchadas casi en todo el mundo. Los estaciones de FM (Frecuencia Modulada) y TV (televisión) utilizan las bandas conocidas como VHF (Very High Frequency) y UHF (Ultra High Frequency) localizadas de los 30 MHz a los 2

7 300 MHz y de los 300 MHz a los 900 MHz, este tipo de señales debido a que no son reflejadas por la ionosfera cubren distancias cortas, una ciudad por ejemplo. La ventaja de usar este tipo de bandas de frecuencias para comunicaciones locales permite que docenas de estaciones de radio FM y televisoras en ciudades diferentes puedan usar frecuencias idénticas sin causar interferencia entre ellas. Para nuestro uso tenemos la frecuencia de 900 MHz la cual esta ubicado en la banda UHF, que dentro de esta banda cae en el rango de los MHz en la cual el servicio atribuido por las entidades regulatorias mencionadas arriba es el de servicio móvil terrestre 1. En el rango de los MHz el servicio atribuido por las entidades regulatorias es el de servicio de aficionado, móvil y fijo 1. Para el uso de estos radios no era necesario regularizarse ante las entidades federativas arriba mencionadas para poder transmitir utilizando el espectro electromagnético. La información proporcionada por MAXSTREAM, acerca de las bandas de operación normalizadas en México son: a) MHz para uso de interiores con antenas omnidireccionales y una potencia máxima de30 mw b) MHz para uso de exteriores con antenas direccionales con una potencia máxima de 1 W c) MHz para uso de interiores y campus con antenas omnidireccionales y una potencia máxima de 30 mw a 250 mw d) MHz para uso de exteriores con antenas direccionales con una potencia máxima de 1 W Y sus 9XStream radio modems tienen una potencia de 140mW. Los 24XStream (2.4GHz) tienen una potencia de 55mW Las características de propagación de las ondas electromagnéticas utilizadas en canales de comunicación como aire, espacio y mar son altamente dependientes de la frecuencia. El espectro electromagnético puede dividirse en tres grandes bandas de frecuencia, cada una con características de propagación dominantes, estas son: propagación de onda terrestre (f < 2MHz), propagación de onda celeste ( 2MHz < f < 30MHz ), propagación línea de vista( f > 30MHz ). Como estos radios operaban a esta frecuencia de 1: VER ANEXO 1 3

8 900MHz el cual esta dentro del rango de propagación línea de vista, tenemos que una característica importante de la propagación línea de vista es que la antena receptora debe ver a la antena transmisora. Esta característica implica en muchas ocasiones, la instalación de torres muy altas para garantizar que el camino de la señal se encuentre por encima del horizonte terrestre. Era necesario además una interfaz que permitiera comunicar al radio con cada uno de los instrumentos de medición, esta interfaz tendría la función primeramente de recibir la información analógica que proporcionan los instrumentos de medición, luego realizar la conversión analógico digital, para posteriormente transmitirla en forma serial, ya que la forma de comunicación del radio con cualquier equipo es a través de su puerto serial, y la información que reciben debe ser digital, además que esta controlara la transmisión de dicho radio, por lo que se utilizo un microcontrolador que cubriera las características para este fin. Estado del arte Como se menciona arriba, para este proyecto fue necesario utilizar dos radios con los cuales ya se contaba, estos radios son XSTREAM OEM 900 MHZ 2, los cuales reciben la información por un puerto serial RS-232 y este a su vez se conectan a unas antenas Yagi marca Cushcraft las cuales se adecuaban a las características de transmisión de los radios, estas antenas operan en el rango de los 902 a 928 MHz tiene un alcance de 20 Km. Radio XSTREAM OEM 900 MHZ. 4

9 Antena Yagi Cushcraft El microcontrolador utilizado es el PIC18F6720 de la Microchip, el cual cuenta con las características que se deseaban ya que cuenta con puertos seriales con los que se comunica con los radios, entradas analógicas y un conversor analógico/digital. Para este proyecto se adaptó una tarjeta (que tiene un propósito diferente) que utiliza este microcontrolador, con la cual no se tuvo conflicto ya que básicamente tanto el puerto serial como algunas entradas analógicas estaban habilitadas en la tarjeta. Tarjeta de desarrollo del PIC18F6720 Desarrollo Para la primera parte del proyecto, se probó el funcionamiento de los radios XSTREAM OEM 900 MHZ 2, configurándolos de la forma correcta y estableciendo un 2: VER ANEXO 2 5

10 enlace a distintas distancias, determinado así su alcance, se sabe que tiene un alcance aproximado de 20 Km., pero no se probó a esa distancia, la distancia máxima a la que se probaron fue de 5 Km. aproximadamente, obteniendo buenos resultados ya que los enlaces se realizaron con éxito, solo queda la duda de si a los 20 Km. se realizaría un enlace con éxito, no se realizó por que básicamente lo que se buscaba era controlar los radios con el microcontrolador y en eso se enfocó nuestra atención y realmente la pruebas que se realizaban era colocando las antenas a una distancia máxima de 5 m, esto por falta de espacio en área de trabajo. La distancia no interesaba tanto ya que como se mencionó lo que se quería lograr era controlar dichos radios con este microcontrolador. Esta fue la segunda parte del proyecto, en la cual primeramente se reviso el manual de este microcontrolador, para ver su funcionamiento, y posteriormente la configuración de este el cual debía realizar las siguientes funciones: entrada de una señal analógica por alguno de sus canales analógicos, convertir dicha señal analógica a digital, transmitir esta señal digital en forma serial a uno de los radios. La programación del algoritmo que realizara estas funciones se hizo con el MPLAB ID que es un entorno de desarrollo para microcontroladores de Microchip. Lográndose con éxito esta configuración. La forma de cómo se realizo lo antes descrito aquí se muestra en el siguiente punto que son pruebas y resultados experimentales. Pruebas y resultados experimentales. En la primera parte de este proyecto lo que se hizo básicamente fue probar el alcance de los módulos XSTREAM OEM 900 MHZ. Estos radios contaban con un software de prueba, con el cual se configuraban los radios con comandos AT 2. Para esta parte lo que se hizo fue usar el software MAXSTREAM-CTU proporcionado por MAXSTREAM para dar los parámetros que por default se les asigna a los radios, checando que ambos tuvieran la misma dirección, por que de otro modo no se realizaría una transmisión correcta y ninguno recibiría la información que se le enviara. A continuación se muestra como se habilitaron estos radios: 1.- Se utilizó el puerto COM de una PC para comunicarse con el radio, a su vez el radio se conectó a la antena Yagi, como se muestra en la Figura A. 2: VER ANEXO 2 6

11 Figura A 2.- Con el software proporcionado se configuraron los radios. Figura B a.- En la ventana Setup se habilitó el puerto en el que se conectó el radio en caso de que la PC tenga dos puertos COM y el baud rate al que se desea transmitir que para estos radios es de 9600, los otros parámetros se dejaron tal y como los proporciona el software y solo se modifica la parte A(lo que esta dentro del recuadro) como se ve en la Figura C. 7

12 Figura C b.- En la ventana de Configuration se obtienen los parámetros que por default da el software. La imagen muestra la forma como se configuró: Figura D En la figura D se puede ver que en la ventana de Module Address (DT) el valor asignado es un cero, por lo cual el 8

13 otro radio tendrá el mismo valor, para que pueda haber una comunicación entre ambos radios, además estaba también habilitado el control de flujo, esto se ve en la ventana RTS/CMD (RT), ya que ambos radios utilizaban estos bits al estar conectados ambos a una PC, lo que no sucederá con el microcontrolador, por lo que la configuración de los radios cambiara como se vera mas adelante, por lo tanto para esta parte de la prueba basta con esta configuración. c.- Ya con la configuración se inicio la transmisión, presionando Start en la ventana de Com Test Figura E En la figura E se nos muestra como el software da informacion sobre la transmisión, esta nos dice cuantos mensajes llegan bien y cuantos mal, el porcentaje de la transmisión que se esta llevando correctamente. 9

14 Figura F La primera prueba de transmisión se realizó con las antenas Yagi a una distancia máxima de cuatro metros, a esta distancia no importó tanto la polarización ya que estaban a una distancia muy corta lo que no fue así para las distancias mayores, para esta distancia no debería haber ningún problema de transmisión, y así fue, la transmisión se llevó sin problemas, la siguiente prueba se realizó a aproximadamente 100 m y aquí si las antenas se polarizaron verticalmente como lo indica el fabricante, aunque estas se llegaban a mover por no tener un soporte en el cual se fijaran pero tampoco se tuvo problema para transmitir. El mayor problema se presentó cuando se realizó la transmisión a una distancia de aproximadamente 5 Km., esto fue porque la forma de propagación de las ondas electromagnéticas que emitía la antena por ser una frecuencia mayor a 30MHz, y en este rango mayor a esta frecuencia esta dentro de la banda de propagación línea de vista, y en este tipo de propagación la antena receptora debe ver a la antena transmisora. Fue por ello el contratiempo, ubicar la posición de la antena y apuntarla correctamente. Ya ubicando la posición la transmisión se inicio, pero en el momento en que la antena se desviaba un poco se perdía comunicación 10

15 hasta que se orientara nuevamente, esto por no tener soportes donde fijar la antena. Con esto probamos el funcionamiento de las antenas, además de la forma de configurarse. Para la segunda parte, ya teniendo los radios funcionado, se tenia que realizar una interfaz entre los radios y los instrumentos de medición (ver figura G) ya que estos solo generaban mediciones analógicas, y había que convertirlas a digitales y además ya convertidas, poder transmitirlas en forma serial, ya que es la forma en la que los radios reciben la información. Como se contaba con una tarjeta la cual contenía un microcontrolador, el PIC18F6720 3, la cual tenía habilitado los puertos necesarios para nuestro uso, como lo son el puerto serial, y algunas entradas analógicas. Esto nos favoreció ya que no se tuvo que construir otra tarjeta sino que solo hubo que adaptar un poco la tarjeta sin que esto afectara el propósito original con la cual fue hecha. Figura G Lo que se hizo fue programar el microcontrolador, habilitando una entrada analógica, el convertidor analógico digital, habilitar el puerto serial. La configuración se llevo de la siguiente manera: -Se utilizó el compilador MPLAB ID v 6.4 para realizar el código. 3: VER ANEXO 3 11

16 -Se consultó el manual del microcontrolador para ver sus características y realizar así la configuración de los módulos a ocuparse como lo son el USART, el convertidor A/D, y las entradas analógicas. A continuación se muestra la configuración de los módulos. Modulo USART 3 El USART puede ser configurado de la siguiente forma: -Asíncrona (full-duplex) -Sincronía-maestra (half-duplex) -Sincronía-esclava (half-duplex) La configuración que nos interesa es la transmision/recepcion asíncrona por ello se muestran los pasos para habilitar cada una de ellas. Pasos para habilitar una transmisión asíncrona (USART2): 1.-Inicializar el registro SPBRG2 con el baud rate apropiado. Si se desea un alto baud rate poder a uno el BRGH 2.- Habilitar el puerto serial asíncrono poniendo en cero el bit SYNC y en uno el bit SPEN. 3.- Si se desean interrupciones, poner en uno el bit TX2IE en el registro PIE. 4.- Si se desean 9 bits de transmisión, poner en uno el bit TX9. puede ser usado como bit de datos/direcciones. 5.- Habilitar la transmisión poniendo en uno el bit TXEN, el cual pondrá en uno el bit TX2IF. 6.- Si se seleccionan 9 bits de transmisión, el noveno bit es cargado en el bit tx9d. 7.- Cargar el dato en el registro TXREG2 (empezar transmisión) Pasos para habilitar una recepción asíncrona: 1.- Inicializar el registro SPBRG2 con el baud rate apropiado. Si se desea un alto baud rate poder a uno el BRGH 2.- Habilitar el puerto serial asíncrono poniendo en cero el bit SYNC y en uno el bit SPEN. 3.- Si se desean interrupciones, poner en uno el bit RC2IE. 4.- Si se desean 9 bits de recepción, poner en uno el bit CX9 3: VER ANEXO 3 12

17 5.- Habilitar la recepción poniendo en uno el bit SCREN. 6.- El bit de bandera RC2IF será puesto en uno cuando la recepción es completa y una interrupción puede ser generada si se pone en uno el bit RC2IE. 7.- Leer el registro RCSTA2 para obtener el noveno bit ( si esta habilitado). Y determinar si algún error ocurre durante la recepción. 8.- Leer los 8 bits de datos recibidos, leyendo el registro RCREG2 9.- Si hay algún error, limpiar el error limpiando el bit SCREN 10.- Si se usa interrupciones, es necesario que los bits GIE y el PIEI del registro INTCON sean uno. Modulo convertidor A/D de 10 Bits 3 Paso para realizar una conversión: 1.- Configurar el modulo A/D Configurar pines analógicos, voltaje de referencia (ADCON1) Seleccionar canales de entrada A/D (ADCON0) Seleccionar reloj de conversión A/D (ADCON2) Encender modulo A/D (ADCON0) 2. Configurar interrupciones A/D (si se desea): Limpiar bit ADIF Poner en uno bit ADIE Poner en uno bit GIE 3. Esperar el tiempo de adquisición requerido. 4. Iniciar conversión: Poner en uno el bit GO/DONE (registro ADCON0) 5. Esperar a que la conversión A/D sea completa, por: Polling, checando cuando el bit GO/DONE es limpiado ó Esperando a que se active la interrupción A/D 6. Leer el resultado A/Den el registro (ADRESH:ADRESL); limpiar bit ADIF, si se requiere. 7. Para la siguiente conversión, ir al paso 1 o paso 2, como se requiera. El tiempo de conversión A/D por bit es definido como TAD. Una máxima espera de 2 TAD es requerida antes de la siguiente adquisición. 3: VER ANEXO 3 13

18 Modulo puertos de entrada/salida 3 Se configuraron únicamente dos puertos de los 8 que tiene ya que en estos estaban los canales analógicos y la transmisión y recepción serial. Puerto F. Este puerto es de 8 bits y fue configurado como entrada analógica ya que como estos bits están los canales analógicos por donde entra la señal, para este caso ocupamos el canal 6(AN6) que es el bit 1 del puerto F. Puerto G Este puerto se configuro como salida el bit 2 ya que en este bit esta al el bit RX(recepción) y el bit 1 como entrada porque en este esta el bit TX(transmisión) Para realizar este código se consultó un tutoría que nos ayudara a utilizar MPLAB ID, el cual proporciona un código fuente en el cual nos basamos para empezar un código propio. Este tutoríal se encuentra consultado la siguiente liga ds&d_op=viewdownload&cid=94, esto fue suficiente para realizar el código el cual realiza el siguiente proceso obtiene una señal analógica, la convierte y la transmite por su puerto serial. El código lo puede ver en el anexo 4. Como mencionamos anteriormente el puerto serial de este microcontrolador solo usa los bits Rx, y Tx, y tierra, por lo que los bits RTS y CMD no, por lo tanto no era necesario tener un control de flujo. así que la configuración de los radios se hizo como se muestra en la Figura H. Únicamente modificando algunos parámetros en la ventana Configuration. Esta configuración fue para ambos radios. 3: VER ANEXO 3 14

19 Figura H A continuación se muestra un esquema de la conexión de los radios. Figura I Como se ve en el esquema un instrumento de medición es comunicado con el microcontrolador a través de uno de sus canales analógicos habilitado, en este caso es el canal 6, el microcontrolador realiza el proceso de conversión analógico/digital, y comunica la información ya en forma digital a uno de los radios a través de su puerto serial, esta información es radiada por la antena hasta llegar a la antena receptora de aquí al radio este a su vez lo comunica a una PC, en la cual se observa esta información. 15

20 Conclusiones Nos deja satisfechos el estar concientes que el desarrollo de este proyecto puede ser una herramienta útil para la telemetría de parámetros para pozos de explotación de agua potable. Ya que este sistema desarrollado llega a satisfacer este tipo de necesidades, pues cuenta con varios canales analógicos(del PIC18F6720) por los cuales la información analógica(nivel de agua del pozo, conductividad del agua, medición de PH ) generada por los instrumentos de medición ubicados en dichos pozos y otras mediciones(velocidad y dirección del viento, presión atmosférica y precipitación pluvial) entran al sistema y este a su vez la digitaliza enviándola posteriormente a través de un radio XSTREAM 900 MHz. y esta llega a donde se encuentre ubicado el modulo receptor( radio XSTREAM 900 MHz.), el cual manda la información a una PC donde se registra la información que llega. Este destino puede ser un laboratorio donde se este monitoreando toda la información que los equipos de medición estén registrando. Podemos ver como lo muestra la figura la solución dada en este proyecto para la telemetría de pozos de agua potable, es una solución practica que cubre las necesidades para obtener información de estos pozos a distancia. Claro que este 16

21 sistema tiene que ser mejorado a un mas, pero podemos ver con el avance de esta solución que corresponde a este proyecto que el desarrollo de este sistema va por buen camino. Además realizar este proyecto nos ayudó a entender la gran aplicación que tienen los microcontroladores para controlar dispositivos, su aplicación en la industria del diseño, la facilidad y flexibilidad que tiene para ser manejados. En este caso el utilizado fue de la familia Microchip y su aplicación en este caso particular fue controlar unos radios. El aprender a programarlos es una herramienta mas en nuestra formación como estudiantes profesionistas. Nos dimos una idea del manejo del espectro electromagnético, al tener que investigar si los radio utilizados necesitaban o no autorización para usar el espectro electromagnético y como se dijo con anterioridad estos radios no necesitaban ser regulados por las entidades federativas que lo hacen en México como lo son COFETEL y SCT para hacer uso del espectro electromagnético. Nos queda un buen sabor de boca el saber que el aprender el manejo de estos microcontroladores y su gran aplicación en la industria del diseño, nos ayudara a desempeñarnos si decidimos seguir en el area de diseño.. 17

22 Anexo 1 Notas referentes al uso del rango de frecuencia MHz y MHz. Para mayor informacion consultar: Rango de Frecuencia MHz Servicios Atribuidos MÓVIL TERRESTRE Ancho de Banda 6 MHz Notas MEX MEX109 MEX120 MEX121 MEX125 MEX126 MEX127 MEX109 Referirse al proyecto de Norma NOM-084-SCT1-1993, que contiene las especificaciones técnicas para la instalación y operación de estaciones destinadas a prestar el servicio móvil de radiocomunicación especializada de flotillas. Bandas / MHz, / MHz, / MHz y / MHz. MEX120 El 16 de junio de 1994, se firmó el Protocolo relativo al uso de las bandas de / MHz y / MHz para el Servicio Móvil Terrestre a lo largo de la frontera común México Estados Unidos. En este documento se establece un plan común para el uso de frecuencias dentro de los 110 km a cada lado de la frontera; asimismo, se establecen los criterios técnicos para el uso de frecuencias y los procedimientos de coordinación. Por último, se identifican canales de ayuda mutua para seguridad pública. MEX121 El uso y planes de frecuencias de las bandas / MHz / MHz y / MHz, son acordes con las Recomendaciones CCP.III/REC.20 (V-96) y CCP.III/REC.28 (VI-96), aprobadas 18

23 respectivamente, por la Quinta y Sexta Reunión del Comité Consultivo Permanente III: Radiocomunicaciones de CITEL. MEX125 La banda de MHz está siendo despejada de los sistemas de microondas que transmiten radiotelefonía multicanal de punto a punto. MEX126 México ha adoptado la designación de las bandas MHz, MHz y MHz para la implementación de Sistemas Personales de Comunicaciones de banda angosta, tal como se describe en la Recomendación CCP.III/REC.18 aprobada por la Quinta Reunión del Comité Consultivo Permanente III: Radiocomunicaciones de CITEL. MEX127 El 16 de mayo de 1995, se firmó el Protocolo relativo al uso de las bandas de MHz, MHz y MHz para los Servicios de Comunicaciones Personales, a lo largo de la frontera común México Estados Unidos. En este documento se establece un plan común para el uso equitativo de las bandas dentro de los 120 km a cada lado de la frontera; asimismo, se establecen los criterios técnicos para el uso de los canales. Rango de Frecuencia MHz Servicios Atribuidos FIJO MÓVIL Aficionados Ancho de Banda 26 MHz Notas MEX MEX19 MEX125 MEX128 MEX130 S5.150 S5.150 Las bandas: MEX19 El 28 de noviembre de 1988, se 19

24 khz (frecuencia central khz), khz (frecuencia central khz), MHz (frecuencia central MHz), MHz en la Región 2 (frecuencia central 915 MHz), MHz (frecuencia central MHz), MHz (frecuencia central MHz) y GHz (frecuencia central GHz) están designadas para aplicaciones industriales, científicas y médicas (ICM). Los servicios de radiocomunicación que funcionan en estas bandas deben aceptar la interferencia perjudicial resultante de estas aplicaciones. Los equipos ICM que funcionen en estas bandas estarán sujetos a las disposiciones del número S publicó en el Diario Oficial de la Federación, el Reglamento para instalar y operar estaciones radioeléctricas del Servicio de Aficionados. MEX125 La banda de MHz está siendo despejada de los sistemas de microondas que transmiten radiotelefonía multicanal de punto a punto. MEX128 La banda de frecuencias de MHz está destinada para aplicaciones del servicio fijo y móvil utilizando tecnologías convencionales, cuyas aplicaciones principales son la transmisión de datos de baja velocidad; así como para la operación de sistemas meteorológicos, dando la protección necesaria a los equipos Industriales Científicos y Médicos (ICM). MEX130 Las especificaciones para la instalación y operación de sistemas de radiocomunicación que emplean la técnica de espectro disperso en las bandas de MHz, MHz y MHz, se establecen en la Norma Oficial Mexicana Emergente, NOM-EM-121-SCT1-1994, publicada el 22 de diciembre de 1994 en el Diario Oficial de la Federación. Para evaluar la factibilidad técnica de emplear también la banda MHz para espectro disperso, se realizan estudios de convivencia con los sistemas en operación en México. 20

25 Anexo 2 RADIO XSTREAM OEM 900MHZ. EL radio XSTREAM OEM 900 MHZ. es una rápida solución que transfiere cadenas de datos asíncronos sobre el aire entre dos módulos. Esta parte contiene información básica de las formas de operación, configuración y programación de el radio XSTREAM. 2.1 CARACTERÍSTICAS DIAGRAMA A BLOQUES FIGURA 2.1. DIAGRAMA A BLOQUES INTERNO DEL RADIO XSTREAM DESCRIPCIÓN DE LOS PINES DE SEÑAL TABLA 2.1. DESCRIPCIÓN DE LOS PINES DE SEÑAL. 21

26 Todos los pines operan a través de niveles de VCC CMOS. Cinco de los pines mas usados en las aplicaciones de los radios XSTREAM son: DI (PIN 4 DATA IN) DO (PIN 3 DATA OUT) VCC (PIN 10 POWER) GND (PIN 11 GROUND) (PIN 1 CLEAR-TO-SEND) APLICACIÓN : FIGURA 2.2. APLICACIÓN-CONEXIÓN A UN PROCESADOR COMUNICACIÓN SERIAL El radio XSTREAM se comunica a cualquier equipo a través de su puerto serial. El radio XSTREAM puede comunicarse con cualquier interfase UART o a través de un cable RS232/485/422 como se muestra en la figura 2.3 y 2.4 : FIGURA 2.3.EQUIPOS QUE CONTENGAN UNA INTERFASE UART PUEDEN CONECTARSE DIRECTAMENTE CON EL RADIO A TRAVÉS DE SUS PINES. FIGURA 2.4. A TRAVES DE SU PUERTO SERIAL LOS EQUIPOS PUEDEN CONECTARSE DIRECTAMENTE A LOS RADIOS. 22

27 Los datos entran a el radio a través del el pin di como una señal asíncrona. cada paquete de datos consiste en un start bit(low), 8 bits de datos y un stop bit(high) como es mostrado en la siguiente figura : FIGURA 2.5. EL RADIO TRANSMITE 8 BITS DE DATOS SOBRE EL AIRE, EL START BIT Y EL STOP BIT NO SON TRANSMITIDOS. Una vez que los datos han entrado a el radio a través del pin DI son almacenados en el DI buffer hasta que puedan ser transmitidos. Una vez que el primer byte de datos entra al DI buffer, el radio inicializa el canal de radio frecuencia(a menos que esté recibiendo datos ). En el DI buffer los datos son encapsulados de la siguiente forma : FIGURA 2.6. PAQUETE RF MODOS DE OPERACIÓN El radio XSTREAM opera en cinco modos y solo puede operar en un modo a la vez. FIGURA 2.7. MODOS DE OPERACIÓN 23

28 MODO DE OPERACIÓN IDLE El radio xstream opera en el modo IDLE cuando no hay datos transmitiendo ni datos recibiendo. El radio pasa de este modo a otro bajo cualquier de las siguientes condiciones : 1. Se están recibiendo datos en di buffer (radio pasa a el modo transmit). 2. Datos son recibidos por la antena (radio pasa a el modo receive). 3. El modo command esta siendo utilizado (radio pasa a el modo command). 4. Condiciones del modo sleep son validadas (radio pasa a el modo sleep). MODO DE OPERACIÓN TRANSMISIÓN. Cuando el primer byte de datos atraviesa por el pin DI y llega al di buffer, el radio pasa del modo IDLE a el modo transmisión. Una vez en el modo transmisión, el radio inicializa el canal de transmisión. Durante la inicialización de el canal de transmisión los datos son acumulados en el di buffer. Una vez que el canal es inicializado, los datos son agrupados en paquetes de 64 bytes y son transmitidos. el radio continua transmitiendo hasta que el DI buffer se vacía. una vez terminada la transmisión el radio regresa a el modo IDLE, este proceso se muestra en la sig. figura : FIGURA 2.8. TRANSMISIÓN DE DATOS 24

29 MODO DE OPERACIÓN RECEPCIÓN. Si el radio detecta que se están transmitiendo datos sobre el aire y esta operando en el modo IDLE, este pasa del modo IDLE a el modo RECEPCIÓN para poder recibir datos. Cuando se reciben todos los datos, el radio los examina a través de un código de redundancia cíclica (CRC) para asegurarse que los datos son recibidos sin error. si el CRC es invalido los datos son descartados. si el CRC es valido los datos son almacenados en el do buffer, este proceso es mostrado en la siguiente figura: FIGURA RECEPCIÓN DE DATOS MODO DE OPERACIÓN SLEEP. El modo SLEEP es habilitado en el radio para estar en un estado de bajo consumo de energía para cuando no se esta en uso. Para entrar en el modo SLEEP el siguiente caso debe de ocurrir : - El radio debe de estar en el modo IDLE (no recibiendo ni transmitiendo datos ) por un tiempo definido por el usuario (vea comando ST). Una vez estando en el modo SLEEP, el radio no transmitirá o recibirá datos hasta que este primero regrese a el modo IDLE. El modo SLEEP es habilitado o deshabilitado a través de los comandos SM. MODO DE OPERACIÓN COMANDOS AT. El modo COMANDOS AT provee un estado en el cual se pueden ajustar los parámetros del radio xstream dependiendo de las características de la aplicación que se desee. 25

30 COMANDOS AT. Los comandos AT son una serie de recursos que permiten a los usuarios poder configurar el radio basándose en sus necesidades especificas. Para poder utilizar los comandos, el radio debe de estar en el modo COMANDOS AT. Los comandos AT pueden entonces ser enviados a el radio usando comandos ASCII, estos pueden ser enviados usando el software x-ctu o por medio de una hyperterminal. En la siguiente tabla se enlistan los comandos AT que se pueden utilizar : TABLA 2.2. COMANDOS AT. 26

31 Anexo 3 PIC18F CARACTERÍSTICAS ALTO DESEMPEÑO RISC CPU: 128 kbytes de direccionamiento a memoria de programa lineal kbytes de direccionamiento a memoria de datos lineal. EEprom de 1 kbytes. Opera arriba de 10 mips: - Entrada osc./clock dc - 40 mhz. - Entrada osc/clock con PLL activo de 4 MHZ - 10 MHZ. Instrucciones de16 bits, línea de datos de 8 bits. Interrupciones con niveles de prioridad CARACTERÍSTICAS DE LOS PERIFERICOS: Cuatro pines para interrupciones externas. Modulo timer0: temporizador / contador de 8 bits/16 bits. 2 módulos timer1, timer3: temporizador / contador de 16 bits. 2 módulos timer2, timer4: temporizador / contador de 8 bits. Reloj oscilador secundario - timer1/ timer3. Puerto serial maestro asíncrono (mssp). Dos módulos USART direccionables: - Soporta rs-485 y rs-232. Puerto esclavo paralelo (psp) CARACTERISTICAS ANALÓGICAS Convertidor (a/d), 12 canales analógico-digital, conversión a 10 bits. Comparador analógico dual: TECNOLOGIA CMOS: Baja potencia, tecnología flash de alta velocidad. Diseño totalmente estático. Voltaje de operación de 2.0v a 5.5v. Rangos de temperatura industrial y extendida. FIG 3.1. DIAGRAMA DE LOS PINES DEL PIC18F

32 DIAGRAMA A BLOQUES DEL PIC 18F MODULOS PROGRAMABLES DEL PIC El PIC esta compuesto de varios módulos. Aquí sólo se mencionaran los de interés como lo son: -Recepción-transmisión sincronía asíncrona universal direccionable (USART). -Modulo convertidor a/d de 10 bits. -Puertos de entrada salida. PUERTO F. PUERTO G. 28

33 Dichos módulos cuentan a su vez con registros los cuales son configurables de acuerdo a la aplicación que se les desee dar RECEPCION-TRANSMISION SINCRONA ASINCRONA UNIVERSAL DIRECCIONABLE (USART). DESCRIPCION Es uno de los dos módulos de entrada / salida serial con que cuenta el PIC18F6720. cada dispositivo cuenta con dos USARTs que son configurables de forma independiente. Cada uno puede ser configurado como un sistema asíncrono full-duplex que se comunica con otros sistemas, en este caso con el modulo XSTREAM OEM 900 MHz, el cual cuenta con una interfaz serial asíncrona, o como un sistema síncrono half-duplex. El USART puede ser configurado de la siguiente forma: -asíncrona ( full-duplex ) -sincronía-maestra ( half-duplex ) -sincronía-esclava ( half-duplex ) Nos enfocaremos a la forma sincronía que es la que nos interesa. Este dispositivo cuenta con USART1 y USART2, el que utilizaremos será el USART2. los pines del USART2 están multiplexados con las funciones del puerto G (RG1/TX2/CK2 y RG2/RX2/DT2). Abajo se muestra como deben estar configurados estos pines para funcionar como USART: - bit SPEN (RCSTA2<7>) debe ser puesto como 1 - bit TRISG<2> debe ser puesto como 1 - bit TRISG<1> debe ser puesto como 0 para ser asíncrono El registro 3.1 nos muestra el esquema del estado de transmisión y registro de control ( TXSTAX ), y el registro 3.2 nos muestra el esquema del estado de recepción y registro de control ( RCSTAX ), tanto el USART1 y USART2 tienen su propio TXSTAX y RCSTAX. Para el USART2 tenemos los registros TXSTA2 Y RCSTA2. REGISTRO 3.1 BIT 7 BRG) bit 6 CSRC: bit que selecciona la fuente del reloj modo asíncrono: no importa modo sincrono: 1 = modo maestro (reloj generado internamente de 0 = modo esclavo (reloj de fuente externa) TX9: bit que habilita transmisión de 9 bits 1 = seleccionar 9 bits de transmisión 0 = seleccionar 8 bits de transmisión 29

34 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0 TXEN: bit para habilitar transmisión 1 = habilitar transmisión 0 = deshabilitar transmisión nota: SREN/CREN anula TXEN en modo SYNC. SYNC: bit que selecciona modo usart 1 = modo sincrono 0 = modo asíncrono no implementado BRGH: bit que selecciona alto baud rate modo asíncrono: 1 = alta velocidad 0 = baja velocidad modo sincrono: no se usa en este modo TRMT: bit que checa el estado del registro 1 = TSR vació 0 = TSR lleno TX9D: noveno bit de la transmisión de datos puede ser un bit de dirección dato o de paridad REGISTRO 3.2 bit 7 bit 6 bit 5 bit 4 SPEN: bit que habilita puerto serial 1 = habilita puerto serial (pines RX/DT y TX/CK configurados. como seriales ) 0 = puerto serial deshabilitado RX9: bit que habilita recepción de 9 bits 1 = seleccionar 9 bits de recepción 0 = seleccionar 8 bits de recepción SREN: bit que hablita una sola recepción modo asíncrono: no importa modo sincrono-maestro: 1 = habilita una sola recepción 0 = deshabilita una sola recepción este bit es limpiado después de que la recepción se completo. modo sincrono-esclavo: no importa CREN: bit que habilita recepción continua modo asíncrono: 1 = habilita recepción 0 = deshabilita recepción modo sincrono: 1 = habilita recepción continua hasta que CREN es 30

35 bit 3 bit 2 bit 1 bit 0 limpiado(cren anula sren). 0 = deshabilitar recepción continua ADDEN: bit que habilita detección de dirección bit 9 modo asíncrono (rx9 = 1): 1 = habilita detección de dirección, habilita interrupciones y carga del buffer cuando RSR<8> es uno. 0 = deshabilita detección de dirección, todos los bytes son recibidos, y el noveno bit puede ser usado como bit de paridad. FERR: bit de error de trama 1 = error de 0 = no hay error de trama OERR: bit de error de desborde 1 = error de desborde (puede ser limpiado limpiando el bit CREN) 0 = no hay error de desborde RX9D: noveno bit de los datos recibidos puede ser un bit de dirección/dato o de paridad GENERADOR DE BAUD RATE DEL PUERTO USART (BRG) El BRG soporta tanto modo asíncrono como síncrono del puerto usarts. Este es un generador de baud rate especializado de 8 bits. El registro SPBRG controla este periodo de transmisión de 8 bits. En el modo asíncrono el bit BRGH (ver registro 3.1) solo controla el baud rate, en modo sincrono este bit es ignorado La tabla 3.1 muestra la forma de calcular el baud rate para cada modo USART, el cual solo opera en modo maestro (reloj interno). Con el baud rate deseado y la fosc del procesador se pueden obtener los valores enteros para el registro SPBRGx con la formula que se encuentra en la tabla 3.1, con este valor se puede calcular el error en el baud rate. El ejemplo 1 muestra el cálculo del baud rate para el siguiente caso: fosc = 16 MHz baud rate deseado = 9600 BRGH = 0 SYNC = 0 Es conveniente usar baud rate alto (bit BRGH = 1), incluso para los relojes de baud bajo. Esto es por que la ecuación del ejemplo 1 puede reducir el error de baud rate en algunos casos. Ejemplo 1: calculando el error de baud rate baud rate deseado = FOSC / (64 (x + 1)) resolviendo para x: x = ((FOSC / baud rate deseado) / 64 ) 1 x = (( / 9600) / 64) 1 x = [25.042] = 25 baud rate calculado = / (64 (25 + 1)) = 9615 error = (baud rate calculado- baud rate deseado) baud rate deseado 31

36 = ( ) / 9600 = 0.16% TABLA 3.1 formulas para calcular baud rate SYNC BRGH = 0 (baja velocidad) BRGH = 1 (alta velocidad) 0 (asincrono) baud rate = baud rate = fosc/(16(x + 1)) fosc/(64(x+1)) 1 (sincrono) baud rate = n/a fosc/(4(x+1)) x = valor en el registro SPBRGx entre 0 y 255. MUESTREO El dato en el pin RXx (RC7/RX1/DT1 O RG2/RX2/DT2) es probado tres veces por un circuito detector para determinar si es un nivel alto o bajo el que esta presente en el pin. TABLA 3.2 registros asociados con el generador de baud rate Nota: los registros tiene el mismo nombre tanto para USART1 y USART2, lo que los diferencia es el valor de x que es 1 o 2 respectivamente. USART MODO ASINCRONO En este modo el usart usa el formato de codificación NRZ (un bit de inicio, ocho o nueve bits de datos y un bit de parada). El formato más común es el de 8 bits. el usart transmite y recibe el primer LSbit. Los USARTs receptor y transmisor funcionan independientemente, pero usan el mismo baud rate y el mismo formato de datos. La paridad no es soportada por hardware pero puede ser implementada en software (guardado como el noveno bit de datos). el modo asíncrono es seleccionado poniendo en uno el bit SYNC del registro TXSTA2. El USART modo asíncrono consta de los siguientes elementos importantes: BRG circuito de muestreo transmisor asíncrono receptor asíncrono. TRANSMISOR USART ASINCRONO El diagrama a bloques del transmisor usart es mostrado en la figura 3.2 el corazón del transmisor es el Transmit (Serial) Shift 32

37 Register (TSR). El shift register obtiene los datos del búfer transmisor de escritura/lectura TXREGx. El TXREGx es cargado con datos en software. El TSR no esta cargado hasta que el bit de paro a sido transmitido. Tan pronto como el bit de paro es transmitido, el TSR es cargado con un nuevo dato del registro TXREGx (si es que lo hay). Solo el TXREGx transfiere los datos al registro TSR (en un tiempo TCY), el TXREGx es vaciado y el bit de bandera, TXX1IF (PIR1<4> para USART1, PIR3<4> para USART2) es uno. Las interrupciones para este modulo pueden habilitarse o deshabilitarse dando un 1 ó un 0 al bit correspondiente en TXxIE (PIE1<4> para USART1, PIE<4> para USART2). El bit de bandera TXxIF será un uno, independiente del estado de habilitación del bit TXxIE y no puede ser limpiado en software. Este se borrara solo cuando un nuevo dato es cargado en el registro TXREGx. Mientras el bit de bandera TXIF indica el estado del registro TXREGx, otro bit, TRMT (TXSTAx<1>), muestra el estado del registro TSR. El bit de estado TRMT es un bit solo de lectura, el cual se pone a uno cuando el registro TSR esta vació. No hay interrupciones para este bit, el usuario tiene que verificar cuando el TSR esta vació. Pasos para habilitar una transmisión asíncrona (usart2): 1.-Inicializar el registro SPBRG2 con el baud rate apropiado. Si se desea un alto baud rate poder a uno el BRGH 2.- Habilitar el puerto serial asíncrono poniendo en cero el bit SYNC y en uno el bit SPEN. 3.- Si se desean interrupciones, poner en uno el bit TX2IE en el registro PIE. 4.- Si se desean 9 bits de transmisión, poner en uno el bit TX9. Puede ser usado como bit de datos/direcciones 5.- Habilitar la transmisión poniendo en uno el bit TXEN, el cual pondrá en uno el bit TX2IF. 6.- Si se seleccionan 9 bits de transmisión, el noveno bit es cargado en el bit tx9d. 7.- Cargar el dato en el registro TXREG2 (empezar transmisión) FIGURA 3.2 diagrama a bloques del transmisor usart 33

38 TABLA 3.3 REGISTROS ASOCIADOS CON EL TRANSMISOR ASINCRONO RECEPTOR USART ASINCRONO El diagrama a bloques del receptor usart es mostrado en la figura 3.3, el dato es recibido en el pin (RC7/RX1/DT1 o RG2/RX2/DT2) y conducido al bloque de recuperación de datos. El bloque de recuperación de datos es actualizado a alta velocidad de movimiento que opera a 16 veces el baud rate. Pasos para habilitar una recepción asíncrona: 1.- Inicializar el registro SPBRG2 con el baud rate apropiado. Si se desea un alto baud rate poder a uno el BRGH 2.- Habilitar el puerto serial asíncrono poniendo en cero el bit SYNC y en uno el bit SPEN. 3.- Si se desean interrupciones, poner en uno el bit RC2IE. 4.- Si se desean 9 bits de recepción, poner en uno el bit CX9 5.- Habilitar la recepción poniendo en uno el bit SCREN. 6.- El bit de bandera RC2IF será puesto en uno cuando la recepción es completa y una interrupción puede ser generada si se pone en uno el bit RC2IE. 7.- Leer el registro RCSTA2 para obtener el noveno bit ( si esta habilitado). Y determinar si algún error ocurre durante la recepción. 8.- Leer los 8 bits de datos recibidos, leyendo el registro RCREG2 9.- Si hay algun error, limpiar el error limpiando el bit SCREN 10.- Si se usa interrupciones, es necesario que los bits GIE y el PIEI del registro INTCON sean uno. 34

39 FIGURA 3.3 Diagrama a bloque del receptor TABLA 3.4 registros asociados con el receptor asíncrono MODULO CONVERTIDOR A/D DE 10 BITS El modulo convertidor analógico digital tiene 12 entradas, este modulo convierte una entrada de señal analógica a su correspondiente numero digital de 10 bits. El modulo tiene cinco registros registro que guarda los bits mas altos de la conversión (ADRESH) registro que guarda los bits mas bajos de la conversión (ADRESL) registro de control A/D 0 (ADCON0) registro de control A/D 1 ((ADCON1) registro de control A/D 2 ((ADCON2 35

40 el registro adcon0 (registro 3.3) controla la operación del modulo A/D, el registro ADCON1 (registro 3.4) configura las funciones de los pines de los puertos, el registro ADCON2, (registro 3.5) configura el reloj A/D y la justificación. REGISTRO 3. 3 Registró ADCON0 bit 7-6 no implementado: leer como '0' bit 5-2 chs3:chs0: bits de selección de canales analógicos 0000 = canal 0 (an0) 0001 = canal 1 (an1) 0010 = canal 2 (an2) 0011 = canal 3 (an3) 0100 = canal 4 (an4) 0101 = canal 5 (an5) 0110 = canal 6 (an6) 0111 = canal 7 (an7) 1000 = canal 8 (an8) 1001 = canal 9 (an9) 1010 = canal 10 (an10) 1011 = canal 11 (an11) bit 1 GO/DONE: bit de estado de conversión a/d cuando ADON = 1: 1 = conversión a/d en progreso (cuando este bit = 1 empieza conversión a/d, el cual es automáticamente limpiado por hardware cuando la conversión a/d es completa) 0 = la conversión a/d no esta en progreso bit 0 ADON: bit de encendido a/d 1 = modulo convertidor a/d habilitado 0 = modulo convertidor A/D deshabilitado REGISTRO 3.4 Registro ADCON1 bit 7-6 bit 5-4 no implementado: leer como '0' VCFG1:VCFG0: bits de configuración de voltajes de referencia 36

41 bit 3-0 PCFG3:PCFG0: bits de control de configuración de puertos A/D: A = entrada analógica D = entrada digital Nota: la celdas sombreadas son canales solo disponibles en el PIC18F8X20. REGISTRO 3.5 Registro ADCON2 bit 7 ADFM: bit de selección de formato de resultado a/d 1 = justificación derecha 0 = justificación izquierda bit 6-3 no implementado: leer como '0' bit 2-0 ADCS1:ADCS0: bits de selección del reloj 000 = FOSC/2 001 = FOSC/8 010 = FOSC/ = FRC (reloj derivado de un oscilador RC = 1 mhz max) 100 = FOSC/4 101 = FOSC/ = FOSC/ = FRC (reloj derivado de un oscilador RC = 1 MHZ max) El voltaje de referencia analógico es seleccionado por software de las fuentes de voltaje positiva y negativa (VDD y VSS) o el nivel de voltaje en el pin RA3/AN3/VREF+ y el pin RA2/AN2/VREF-. 37

42 Cada pin de un puerto asociado con el convertidor A/D, puede ser configurado como una entrada analogica (RA3 puede ser voltaje de referencia) o como una entrada/salida digital. El ADRESH y ADRESL contienen el resultado de la conversión. Cuando la conversión es completa el resultado es guardado en los registros ADRESH/ADRESL, el GO/DONE es puesto en cero y la bandera de interrupción AD ADIF es puesta en uno. El diagrama a bloques del modulo A/D se muestra en la figura 1.4. FIGURA 3.4 DIAGRAMA A BLOQUES DEL A/D Después de que el modulo A/D a sido configurado como se desea, la selección de canales se hará antes de que la conversión inicie. Los canales de entrada analógica tendrán su correspondiente bit del TRIS como entrada. Paso para realizar una conversión: 1.- Configurar el modulo A/D Configurar pines analógicos, voltaje de referencia (ADCON1) 38

43 Seleccionar canales de entrada A/D (ADCON0) Seleccionar reloj de conversión A/D (ADCON2) Encender modulo A/D (ADCON0) 2. Configurar interrupciones A/D (si se desea): Limpiar bit ADIF Poner en uno bit ADIE Poner en uno bit GIE 3. Esperar el tiempo de adquisición requerido. 4. Iniciar conversión: Poner en uno el bit GO/DONE (registro ADCON0) 5. Esperar a que la conversión A/D sea completa, por: Polling, checando cuando el bit GO/DONE es limpiado ó Esperando a que se active la interrupción A/D 6. Leer el resultado A/Den el registro (ADRESH:ADRESL); limpiar bit ADIF, si se requiere. 7. Para la siguiente conversión, ir al paso 1 o paso 2, como se requiera. El tiempo de conversión A/D por bit es definido como TAD. Una máxima espera de 2 TAD es requerida antes de la siguiente adquisición. FIGURA 3.5 MODELO DE ENTRADA ANALOGICA SELECIONANDO EL RELOJ DE CONVERSION El tiempo por bit de la conversión A/D es definida como TAD. La conversión A/D requiere 12 TAD por 10 bits de conversión. La fuente del reloj de conversión A/D es seleccionado por software. Hay siete posibles opciones para TAD: 2 TOSC 4 TOSC 8 TOSC 16 TOSC 32 TOSC 64 TOSC Internal RC oscillator 39

44 Para la correcta conversión A/D, el reloj de conversión A/D (TAD) se debe seleccionar un TAD mínimo de 1.6 µs. La tabla 3.5 muestra el resultado de TAD derivados de las frecuencias de operación de los dispositivos y la selección de la fuente del reloj A/D. TABLA 3.5 TAD VS FRECUENCIAS DE OPERACIÓN DE LOS DISPOSITIVOS CONFIGURACION DE LOS PINES COMO ENTRADS ANALOGICAS Los registros ADCON1, TRISA, TRISF y TRISH controlan la operación de los pines del puerto A/D. Los pines del puerto necesitan ser entradas analógicas, por lo que el TRIS es todo puesto a uno. La operación A/D es independiente del estado de los bits CHS3:CHS0 y los bits TRIS. TABLA 3.6 REGISTRO ASOCIADOS CON EL MODULO A/D 40

45 3.2.3 PUERTOS DE ENTRADA/SALIDA. Dependiendo del dispositivo seleccionado, hay siete puertos disponibles en PIC18FXX20. Algunos de sus pines son multiplexados con uno o mas funciones alternas de otras características periféricas. Cada puerto tiene tres registros para configurar su modo de operación. estos registros son: registro TRIS (data dirección register) registro PORT (leer el nivel en los pines del dispositivo) registro LAT (latch de salida) El data latch (registro LAT) es usado para leer-modificarescribir operaciones en el valor que los pines I/O estén manejando. PUERTO F Registros PORTF, LATF, y TRISF el PORTF es de 8 bits, es un puerto bidireccional. Su correspondiente registro de dirección de datos es el TRISF. Si todos los bits del TRISF son uno el puerto se configura como salida y si todos son ceros se configura como entrada. Las operaciones de lectura-modificación-escritura se hacen con el registro LATF, leer y escribir el valor del latched de salida por el PORTF. El PORTF esta multiplexado con varias funciones de otros periféricos analógicos, incluyendo las entradas del convertidor A/D y entradas del comparador, salidas y voltaje de referencia. EJEMPLO. COMO INICIALIZAR EL PUERTO F CLRF PORTF ; Inicializar PORTF ; limpiando la salida ; data latches CLRF LATF ; Método alterno ; para limpiar la salida ; data latches MOVLW 0x07 ; MOVWF CMCON ; apagar comparadores MOVLW 0x0F ; MOVWF ADCON1 ; Hacer PORTF como I/O digital MOVLW 0xCF ; Valor usado para ; inicializar la dirección ; de datos MOVWF TRISF ; Poner RF3:RF0 como entradas ; RF5:RF4 como salidas ; RF7:RF6 como entradas 41

46 FIGURA 1.6 DIAGRMA A BLOQUES DEL PORTF RF1/AN6/C2OUT, RF2/AN5/C1OUT FIGURA 1.7 DIAGRAMA A BLOQUES PINES RF6:RF3 AND RF0 FIGURA 1.8 DIAGRAMA A BLOQUES PIN RF7 TABLA 3.7 FUNCIONES DEL PORTF 42

47 TABLA 3.8 REGISTROS RELACIONADOS CON EL PORTF LEER: x = Desconocido, u = no cambiable. PUERTO G Celdas sombreadas no son usadas por PORTF. Registros PORTG, TRISG y LATG El PORTG es de 5 bits, puerto bidireccional. El TRISG es el correspondiente registro de dirección de datos. Si todos los bits del TRISG son uno el puerto se configura como salida y si todos son ceros se configura como entrada. las operaciones de lectura-modificación-escritura se hacen con el registro LATG, leer y escribir el valor del latched de salida por el PORTG. El PORTG esta multiplexado con las funciones CCP y USART (Tabla 3.9). Los pines del PORTG tienen buffer de entrada Schmitt Trigger. Cuando habilitas las funciones periféricas, debe tenerse atención en definir los bits del TRIS para cada bit del PORTG. Algunos periféricos anulan que los bits TRIS hagan los pines salida y otros periféricos anulan que el TRIS los haga entradas. El usuario debe ver la sección de periféricos para la correcta utilización del TRIS. EJEMPLO: INICIALIZACION PORTG CLRF PORTG ; Iniciar PORTG ; limpiando data ; latches de salida CLRF LATG ; Metodo alterno ; para limpiar data laches ; de salida MOVLW 0x04 ; Valor usado para ; inicializar direccion ; de datos MOVWF TRISG ; RG1:RG0 como salida ; RG2 como entrada ; RG4:RG3 como entradas 43

48 FIGURA 3.9 DIAGRAMA A BLOQUES DEL PORTG (SALIDAS PERIFERICAS) TABLA 3.9 FUNCIONES DEL PORTG TABLA 3.10 REGISTROS ASOCIADOS CON EL PORTG 44

PIC16F882/883/884/886/887

PIC16F882/883/884/886/887 12.0 Transmisor Receptor Síncrono Asíncrono Universal Mejorado. EUSART. El módulo Transmisor Receptor Síncrono Asíncrono Mejorado, en adelante, EUSART, es un periférico de comunicación serie de entrada/salida.

Más detalles

TEMA 20 EL CONVERSOR A/D

TEMA 20 EL CONVERSOR A/D TEMA 20 EL CONVERSOR A/D Introducción Al Conversor Analógico/Digital Los microcontroladores PIC de la familia 16F78x, poseen un conversor A/D de 10 bits de resolución, y con 5 entradas para los dispositivos

Más detalles

TUTORIAL Comunicación Serial

TUTORIAL Comunicación Serial 1 TUTORIAL Comunicación Serial OBJETIVOS Manejar el módulo USART para comunicaciones seriales asíncronas. Realizar transmisiones y recepciones seriales útiles para el control y monitoreo de eventos. INTRODUCCIÓN:

Más detalles

Práctica 5. Comunicación serie y entradas analógicas

Práctica 5. Comunicación serie y entradas analógicas Práctica 5 Comunicación serie y entradas analógicas Práctica 5 Comunicación serie y entradas analógicas. Objetivos El objetivo de esta sesión es que el alumno aprenda a programar la EUART interna del PIC,

Más detalles

PIC16F88. Características

PIC16F88. Características Osciladores PIC16F88. Características Osciladores a cristal: LP, XT y HS hasta 20Mhz Oscilador externo hasta 20Mhz Oscilador interno: 31Khz 8Mhz Periféricos Módulo PWM/CCP CCP (captura/comparación) ->

Más detalles

USB232. Hoja de datos

USB232. Hoja de datos - 1 - USB232 Hoja de datos 9600, 19200, 38400, 57600, 115200 bps Interfaz USB serie RS232 Integración de tecnología USB Para sistemas con comunicación serie RS232 - 2 - USB232 Interfaz USB serie RS232

Más detalles

Figura 2. Formato de un dato serie síncrono.

Figura 2. Formato de un dato serie síncrono. ELECTRÓNICA DIGITAL II 1 COMUNICACIÓN SERIE EN EL 8051 En la comunicación serie los datos se transfieren bit por bit. Una interfaz en el microcontrolador los transfiere el dato en paralelo del CPU a serie

Más detalles

Circuito de Offset

Circuito de Offset Figura 3.3 Conexión del Amplificador Los cálculos para la ganancia son simples y se muestran en la ecuación (3.), en estas se puede observar que para el cálculo de la ganancia es necesario establecer el

Más detalles

MICROCONTROLADORES PIC

MICROCONTROLADORES PIC MICROCONTROLADORES PIC LOS TIMER DE LOS 16F87x TEMA EL TIMER 1 CCFF D.P.E. MÓDULO DE PROYECTOS 1 Diagrama de Bloques del TIMER1 CCFF D.P.E. MÓDULO DE PROYECTOS 2 INTRODUCCIÓN El módulo TIMER1 es un temporizador/contador

Más detalles

PIC16F882/883/884/886/ Funcionamiento de Timer1 6 EL MODULO TMR1 CON PUERTA DE CONTROL Selección de Fuente de reloj

PIC16F882/883/884/886/ Funcionamiento de Timer1 6 EL MODULO TMR1 CON PUERTA DE CONTROL Selección de Fuente de reloj 6.1. Funcionamiento de Timer1 6 EL MODULO TMR1 CON PUERTA DE CONTROL El módulo TMR1 es un temporizador/contador de 16 bits con las siguientes características: Temporizador/Contador de 16 bits (TMR1L:TMR1H)

Más detalles

NT 3 PROGRAMACION ON-LINE DE TODA LA FAMILIA APPCON

NT 3 PROGRAMACION ON-LINE DE TODA LA FAMILIA APPCON NT 3 PROGRAMACION ON-LINE DE TODA LA FAMILIA APPCON Introducción El objetivo de esta nota técnica es que el usuario tenga la capacidad de configurar los parámetros de los módulos de toda la familia APPCON

Más detalles

PCF8574 EXPANSOR REMOTO 8-BIT I/O PARA I²C-BUS

PCF8574 EXPANSOR REMOTO 8-BIT I/O PARA I²C-BUS PCF8574 EXPANSOR REMOTO 8-BIT I/O PARA I²C-BUS 1. CARACTERISTCAS Suministro de voltaje de funcionamiento 2.5 a 6 V Bajo consumo de corriente de espera (standby) de 10 ma máximo. Expansor I²C a puerto paralelo.

Más detalles

INTRODUCCIÓN A LAS COMUNICACIONES POR RADIOFRECUENCIA

INTRODUCCIÓN A LAS COMUNICACIONES POR RADIOFRECUENCIA INTRODUCCIÓN A LAS COMUNICACIONES POR RADIOFRECUENCIA Centro CFP/ES CAMPOS EN ELECTRÓNICA COMUNICACIONES SISTEMAS ELECTRÓNICOS DE AYUDA A LA NAVEGACIÓN INSTRUMENTACIÓN ELECTRÓNICA: DISPOSITIVOS ELECTRÓNICOS

Más detalles

PRODUCTO P05 SOFTWARE EMBEBIDO PARA EL CONTROL DEL CIRCUITO GENERADOR DE CORRIENTE DE LAS FORMAS DE ONDAS PARA ELECTROTERAPIA

PRODUCTO P05 SOFTWARE EMBEBIDO PARA EL CONTROL DEL CIRCUITO GENERADOR DE CORRIENTE DE LAS FORMAS DE ONDAS PARA ELECTROTERAPIA PRODUCTO P05 SOFTWARE EMBEBIDO PARA EL CONTROL DEL CIRCUITO GENERADOR DE CORRIENTE DE LAS FORMAS DE ONDAS PARA ELECTROTERAPIA Actividades: A05-1: Elaboración del diagrama de flujo de las funciones de control

Más detalles

Tema 10: Transmisión de datos

Tema 10: Transmisión de datos Tema 10: Transmisión de datos Solicitado: Tarea 08: Mapa conceptual: Transmisión de datos M. en C. Edgardo Adrián Franco Martínez http://www.eafranco.com edfrancom@ipn.mx @edfrancom edgardoadrianfrancom

Más detalles

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO FACULTAD DE INGENIERÍA DIVISIÓN DE INGENIERÍA ELÉCTRICA DEPARTAMENTO DE INGENIERÍA EN COMPUTACIÓN

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO FACULTAD DE INGENIERÍA DIVISIÓN DE INGENIERÍA ELÉCTRICA DEPARTAMENTO DE INGENIERÍA EN COMPUTACIÓN UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO FACULTAD DE INGENIERÍA DIVISIÓN DE INGENIERÍA ELÉCTRICA DEPARTAMENTO DE INGENIERÍA EN COMPUTACIÓN PRACTICAS LABORATORIO DE MICROCOMPUTADORAS Basadas en el Microcontrolador

Más detalles

COMUNICACIÓN SERIE (RS232)

COMUNICACIÓN SERIE (RS232) COMUNICACIÓN SERIE (RS232) Introducción Una manera de conectara dos dipositivos es mediante comunicaciones serie asíncronas. En ellas los bits de datos se transmiten "en serie" (uno de trás de otro) y

Más detalles

FUNDAMENTOS DE TELECOMUNICACIONES MULTIPLEXACIÓN. Marco Tulio Cerón López

FUNDAMENTOS DE TELECOMUNICACIONES MULTIPLEXACIÓN. Marco Tulio Cerón López FUNDAMENTOS DE TELECOMUNICACIONES MULTIPLEXACIÓN Marco Tulio Cerón López QUE ES LA MULTIPLEXACIÓN? La multiplexación es la combinación de dos o más canales de información en un solo medio de transmisión

Más detalles

SelectRAM+memory Bloques de memoria RAM En las FPGAs Spartan IIE

SelectRAM+memory Bloques de memoria RAM En las FPGAs Spartan IIE 1 SelectRAM+memory Bloques de memoria RAM En las FPGAs Spartan IIE tiempo de acceso RAM, algunas veces se usa cerrojo en el Juan Manuel Narváez Sánchez, Carlos Andrés Moreno Tenjica, Estudent Member IEEE

Más detalles

Taller de Firmware. Introducción al PIC16F877. Facultad de Ingeniería Instituto de Com putación

Taller de Firmware. Introducción al PIC16F877. Facultad de Ingeniería Instituto de Com putación Taller de Firmware Introducción al PIC16F877 Facultad de Ingeniería Instituto de Com putación Contenido Introducción a los microcontroladores PIC. Presentación del PIC 16F877. Introducción a los microcontroladores

Más detalles

Conversor RS232-RS485/RS422 Aislado MCV1-C485-IA-IS. Manual del Usuario. Power. TX Data. RX Data MCV1. Internet Enabling Solutions.

Conversor RS232-RS485/RS422 Aislado MCV1-C485-IA-IS. Manual del Usuario. Power. TX Data. RX Data MCV1. Internet Enabling Solutions. Conversor RS232-RS485/RS422 Aislado -C485-IA-IS Manual del Usuario Power TX Data RX Data Internet Enabling Solutions www.exemys.com Los Productos están en permanente evolución para satisfacer las necesidades

Más detalles

PIC 18F45XX CARACTERÍSTICAS GENERALES

PIC 18F45XX CARACTERÍSTICAS GENERALES PIC 18F45XX CARACTERÍSTICAS GENERALES 1. Características generales CPU con arquitectura Harvard (77 instrucciones) Todas las instrucciones constan de 1 sola palabra de 16 bits (2 bytes) excepto las de

Más detalles

SISTEMAS DE RADIOCOMUNICACIONES. Práctica # 3: SISTEMA DE RADIO MÓVIL EN LA BANDA DE VHF

SISTEMAS DE RADIOCOMUNICACIONES. Práctica # 3: SISTEMA DE RADIO MÓVIL EN LA BANDA DE VHF UNIVERSIDAD NACIONAL EXPERIMENTAL POLITÉCNICA ANTONIO JOSÉ DE SUCRE VICE-RECTORADO PUERTO ORDAZ LAB. DE TELECOMUNICACIONES Sección de Comunicaciones SISTEMAS DE RADIOCOMUNICACIONES Práctica # 3: SISTEMA

Más detalles

6. Entrada y Salida Explicación de la interfaz entre el computador y el mundo exterior.

6. Entrada y Salida Explicación de la interfaz entre el computador y el mundo exterior. 6. Entrada y Salida Explicación de la interfaz entre el computador y el mundo exterior. 6.1. El subsistema de E/S Qué es E/S en un sistema computador? Aspectos en el diseño del subsistema de E/S: localización

Más detalles

El Espectro Electromagnético Radiación Ionizante y NO Ionizante

El Espectro Electromagnético Radiación Ionizante y NO Ionizante El Espectro Electromagnético Radiación Ionizante y NO Ionizante El Espectro Electromagnético Radiación Ionizante y NO Ionizante Las radiaciones, atendiendo a su energía, se clasifican en radiaciones ionizantes

Más detalles

RECURSOS FUNDAMENTALES

RECURSOS FUNDAMENTALES RECURSOS FUNDAMENTALES Los recursos que se considerarán son : Temporizadores Puertos de E/S La Palabra de Configuración EEPROM de datos 1 TEMPORIZADORES Una labor habitual en los programas de control suele

Más detalles

APUNTE DEL 8155 ELECTRÓNICA DIGITAL III

APUNTE DEL 8155 ELECTRÓNICA DIGITAL III APUNTE DEL 8155 ELECTRÓNICA DIGITAL III Revisión 1.1 Marzo, 2011 Interfaz a periférico 8155 Descripción general El chip 8155 es un dispositivo introducido por Intel en 1977. Contiene memoria RAM (SRAM)

Más detalles

Principios básicos de PLC y familia DirectLogic

Principios básicos de PLC y familia DirectLogic Principios básicos de PLC y familia DirectLogic Introducción El Controlador Lógico Programable (PLC) es una tecnología muy difundida para hacer automatización de procesos secuenciales, surgió como solución

Más detalles

II Unidad Diagramas en bloque de transmisores /receptores

II Unidad Diagramas en bloque de transmisores /receptores 1 Diagramas en bloque de transmisores /receptores 10-04-2015 2 Amplitud modulada AM Frecuencia modulada FM Diagramas en bloque de transmisores /receptores Amplitud modulada AM En la modulación de amplitud

Más detalles

FEDERACIÓN MEXICANA DE RADIOEXPERIMENTADORES, A.C.

FEDERACIÓN MEXICANA DE RADIOEXPERIMENTADORES, A.C. Programa de formación de radioaficionados Curso: Conceptos básicos de la Objetivo: Proporcionar a los aspirantes los conocimientos mínimo indispensables para incursionar en la práctica de los Servicios

Más detalles

UART. Diseño de Sistemas con FPGA 1er cuatrimestre 2013 Patricia Borensztejn

UART. Diseño de Sistemas con FPGA 1er cuatrimestre 2013 Patricia Borensztejn UART Diseño de Sistemas con FPGA 1er cuatrimestre 2013 Patricia Borensztejn UART Universal Asynchronous receiver and transmitter: dispositivo (controlador ) que envía datos paralelos sobre una línea serie.

Más detalles

El Espectro Electromagnético Radiación Ionizante y NO Ionizante

El Espectro Electromagnético Radiación Ionizante y NO Ionizante 27-03-2015 El Espectro Electromagnético Radiación Ionizante y NO Ionizante 01-04-2015 El Espectro Electromagnético Radiación Ionizante y NO Ionizante Las radiaciones, atendiendo a su energía, se clasifican

Más detalles

Comunicación Bluetooth y generación de señales analógicas mediante modulación por ancho de pulso López, Juan Manuel Matrícula: 11.

Comunicación Bluetooth y generación de señales analógicas mediante modulación por ancho de pulso López, Juan Manuel Matrícula: 11. Comunicación Bluetooth y generación de señales analógicas mediante modulación por ancho de pulso López, Juan Manuel Matrícula: 11.036 1 Introducción Se realizó una comunicación Bluetooth entre un teléfono

Más detalles

SISTEMAS ELECTRÓNICOS DIGITALES

SISTEMAS ELECTRÓNICOS DIGITALES SISTEMAS ELECTRÓNICOS DIGITALES PRÁCTICA 6 SISTEMA DE ENCRIPTACIÓN 1. Objetivos - Estudio del funcionamiento de memorias RAM y CAM. - Estudio de métodos de encriptación y compresión de datos. 2. Enunciado

Más detalles

G O B L I N 2 / M A N U A L

G O B L I N 2 / M A N U A L GOBLIN 2 Con esta guía conocerás cada uno de los circuitos que incorpora la GOBLIN 2. Aprenderás a utilizarla, programarla de una forma sencilla y rápida para desarrollar tu proyecto IoT. 2 1.- Empieza

Más detalles

Tipos de Filtros Introducción

Tipos de Filtros Introducción Tipos de Filtros Introducción Tanto en los circuitos eléctricos como los sistemas de comunicaciones, se desea manejar información la cual debe estar dentro de ciertas frecuencias. Pero, ciertos grupos

Más detalles

Tutoría 2. Banco de memoria de 8 y 16 bits (8086)

Tutoría 2. Banco de memoria de 8 y 16 bits (8086) Tutoría 2. Banco de memoria de 8 y 16 bits (8086) RESUMEN Cuando el procesador opera en modo mínimo, éste genera las señales de control para la memoria y los dispositivos de E/S. [1, pág. 292]. Para utilizar

Más detalles

Pines de entrada/salida (I/O) de propósito general. Mediante ellos, el micro PIC puede monitorizar y controlar otros dispositivos.

Pines de entrada/salida (I/O) de propósito general. Mediante ellos, el micro PIC puede monitorizar y controlar otros dispositivos. 1 Pines de entrada/salida (I/O) de propósito general Mediante ellos, el micro PIC puede monitorizar y controlar otros dispositivos. Para añadir flexibilidad al micro, muchos de sus pines de entrada/salida

Más detalles

DESCRIPCIÓN DE LOS MONTAJES Y TARJETAS DE CIRCUITO IMPRESO

DESCRIPCIÓN DE LOS MONTAJES Y TARJETAS DE CIRCUITO IMPRESO Estudio y realización de un enlace Bluetooth para el sistema de 127 Capítulo 6 DESCRIPCIÓN DE LOS MONTAJES Y TARJETAS DE CIRCUITO IMPRESO Como ya hemos visto, las características mecánicas y funcionales

Más detalles

2.1 Diseño de un sistema básico de biotelemetría

2.1 Diseño de un sistema básico de biotelemetría 2.1 Diseño de un sistema básico de biotelemetría 2.1.1 Objetivos 4.9.1.1 Diseñar un sistema de modulación y demodulación de frecuencia. 4.9.1.2 Construir un sistema de acondicionamiento de una señal modulada

Más detalles

Laboratorio de Microondas, Satélites y Antenas. Práctica #1. Introducción al Equipo de Laboratorio

Laboratorio de Microondas, Satélites y Antenas. Práctica #1. Introducción al Equipo de Laboratorio Laboratorio de Microondas, Satélites y Antenas Práctica #1 Introducción al Equipo de Laboratorio Objetivo Familiarizar al alumno con los instrumentos básicos con que se cuenta, para suministrar potencia

Más detalles

CAPITULO 1 INTRODUCCION AL PROYECTO

CAPITULO 1 INTRODUCCION AL PROYECTO CAPITULO 1 INTRODUCCION AL PROYECTO 1 INTRODUCCION AL PROYECTO 1.1 Marco Teórico Los procesadores digitales de señales ganaron popularidad en los años sesentas con la introducción de la tecnología de estado

Más detalles

Hoja de Datos NoMADA Advance [DAT001A NoMADA Advance 02/16]

Hoja de Datos NoMADA Advance [DAT001A NoMADA Advance 02/16] Hoja de datos Advance Hoja de Datos Advance [DAT001A Advance 02/16] Especificaciones Técnicas de la Tarjeta NoMADA Advance Diseñado por: Diseño Embebido un Paso Adelante. DAT 001A Advance - 02/2016 Hoja

Más detalles

Guía de Inicio Rápido

Guía de Inicio Rápido Wireless Outdoor Access Point / Client Bridge Guía de Inicio Rápido Punto de acceso inalámbrico y Cliente Bridge El EOC2611P es Punto de Acceso inalámbrico/cliente Bridge exterior de largo alcance que

Más detalles

MODBus RTU en los registradores CAMRegis

MODBus RTU en los registradores CAMRegis 157FHF1 E MODBus RTU en los registradores CAMRegis 1. INTRODUCCIÓN Este documento está orientado a describir al usuario el funcionamiento del protocolo serie de comunicaciones MODBus RTU implementado por

Más detalles

28/09/2012. Interfaz con Dispositivos de Salida. Interfaz con Dispositivos de Entrada. Port Mapped. Memory mapped. Interfaz con Dispositivos I/O

28/09/2012. Interfaz con Dispositivos de Salida. Interfaz con Dispositivos de Entrada. Port Mapped. Memory mapped. Interfaz con Dispositivos I/O Interfaz con Dispositivos I/O Interfaz con Dispositivos de Salida y Salida Unidad 4, Segunda Parte Port Mapped Memory mapped 1 2 Ejecución de la Instrucción OUT Ejecución de la instrucción OUT Dirección

Más detalles

CAPÍTULO 1 INTRODUCCIÓN

CAPÍTULO 1 INTRODUCCIÓN CAPÍTULO 1 INTRODUCCIÓN INTRODUCCIÓN La UDLA en colaboración con el IMTA, se han planteado el objetivo de desarrollar un prototipo de globo meteorológico. Será un equipo que pueda ser enviado hacia cualquier

Más detalles

Medios de Transmisión Guiados y No Guiados.

Medios de Transmisión Guiados y No Guiados. Medios de Transmisión Guiados y No Guiados. Profesora Maria Elena Villapol Medio de Transmisión y Capa Física Medios de Transmisión Guiados - cable Factores de diseño: No guiados - inalámbrico Las características

Más detalles

Tecnológico Nacional de México INSTITUTO TECNOLÓGICO DE SALINA CRUZ

Tecnológico Nacional de México INSTITUTO TECNOLÓGICO DE SALINA CRUZ Tecnológico Nacional de México INSTITUTO TECNOLÓGICO DE SALINA CRUZ UNIDAD 2: ENRUTAMIENTO ESTÁTICO Y DINÁMICO ACTIVIDAD: TRABAJO DE INVESTIGACIÓN 1 MATERIA: REDES DE COMPUTADORAS DOCENTE: SUSANA MÓNICA

Más detalles

Arquitectura de computadoras

Arquitectura de computadoras Arquitectura de computadoras Técnicas Digitales III Ing. Gustavo Nudelman 2013 Que entendemos por arquitectura Un sistema con una CPU, memoria y dispositivos de entrada y salida puede considerarse un sistema

Más detalles

Prueba del Driver ModBus

Prueba del Driver ModBus Prueba del Driver ModBus Prueba de la placa Elementos y Conexiones Elementos: - Placa 232-485 - Driver ModBus - Master SPI (µc en protoboard, ver más abajo) - PC + software de prueba dedicado, o genérico

Más detalles

TECNOLOGÍA DE REDES. Temario 01/04/2008. Unidad 2. LAS WAN Y LOS ROUTERS (Segunda Parte)

TECNOLOGÍA DE REDES. Temario 01/04/2008. Unidad 2. LAS WAN Y LOS ROUTERS (Segunda Parte) TECNOLOGÍA DE REDES Profesor: Héctor Abarca A. Unidad 2. LAS WAN Y LOS ROUTERS (Segunda Parte) Profesor: Héctor Abarca A. Temario Redes WAN Introducción a las redes WAN Introducción a los routers de una

Más detalles

Guía rápida para gestionar el puerto paralelo del PC

Guía rápida para gestionar el puerto paralelo del PC Guía rápida para gestionar el puerto paralelo del PC Descarga desde: http://eii.unex.es/profesores/jisuarez/descargas/ip/guia_rapida_pp.pdf José Ignacio Suárez Marcelo Universidad de Extremadura Escuela

Más detalles

Registros SFR vistos hasta ahora: Microcontroladores PIC

Registros SFR vistos hasta ahora: Microcontroladores PIC Registros SFR vistos hasta ahora: Microcontroladores PIC Microcontroladores PIC: Timer Características del Timer TMR0: Cumple básicamente la función de contador de eventos (o divisor de frecuencia). El

Más detalles

Ventajas del BUS I2C

Ventajas del BUS I2C BUS I2C: IMPLEMENTACIÓN PRÁCTICA CON MICROCONTROLADORES PIC TC74: Termómetro digital 1 Ventajas del BUS I2C Definido inicialmente a mediados de los 80 para trabajar a 100kbit/s y en 1995 se definió un

Más detalles

Desde 1987, Ingeniería, Desarrollo y Fabricación en España MDV6/MD6V. TRANSMISOR/RECEPTOR 4xVIDEO,DATOS,AUDIO Y CONTACTO

Desde 1987, Ingeniería, Desarrollo y Fabricación en España MDV6/MD6V. TRANSMISOR/RECEPTOR 4xVIDEO,DATOS,AUDIO Y CONTACTO Desde 1987, Ingeniería, Desarrollo y Fabricación en España MDV6/MD6V TRANSMISOR/RECEPTOR 4xVIDEO,DATOS,AUDIO Y CONTACTO CONTENIDO Funcionalidad y características generales del equipo. Especificaciones

Más detalles

PIC MICRO ESTUDIO Reloj en tiempo real RTCU2 Clave: 719 www.electronicaestudio.com

PIC MICRO ESTUDIO Reloj en tiempo real RTCU2 Clave: 719 www.electronicaestudio.com PIC MICRO ESTUDIO Reloj en tiempo real RTCU2 Clave: 719 www.electronicaestudio.com Guía de Operación Reloj en tiempo real Modulo: RTCU2iempo real Clave: 719 El modulo 719 Reloj en tiempo real- utiliza

Más detalles

Desarrollo de una interfaz RS-232 para el manejo de un coche de radiocontrol desde el PC

Desarrollo de una interfaz RS-232 para el manejo de un coche de radiocontrol desde el PC Desarrollo de una interfaz RS-232 para el manejo de un coche de radiocontrol desde el PC A. Muñoz, A. Millan, P. Ruiz-de-Clavijo, J. Viejo, E. Ostua, D. Guerrero Grupo ID2 (Investigación y Desarrollo Digital).

Más detalles

INFORME DE MONTAJE Y PRUEBAS DEL CIRCUITO ELECTRÓNICO PARA ADQUIRIR LOS POTENCIALES EVOCADOS AUDITIVOS

INFORME DE MONTAJE Y PRUEBAS DEL CIRCUITO ELECTRÓNICO PARA ADQUIRIR LOS POTENCIALES EVOCADOS AUDITIVOS INFORME DE MONTAJE Y PRUEBAS DEL CIRCUITO ELECTRÓNICO PARA ADQUIRIR LOS POTENCIALES EVOCADOS AUDITIVOS ACTIVIDADES: A02-2: Diseño de los circuitos electrónicos A02-3: Montaje y pruebas en protoboard de

Más detalles

Teoría de Comunicaciones

Teoría de Comunicaciones Teoría de Comunicaciones Ing. Jose Pastor Castillo. Jose.pastor@fiei.unfv.edu.pe Transmisión de Datos Un Modelo para las comunicaciones. Modelo de Comunicaciones Fuente: Dispositivo que genera los datos

Más detalles

Buceando en el HC908...

Buceando en el HC908... COMENTARIO TÉCNICO Buceando en el HC908... Por Ing. Daniel Di Lella Dedicated Field Application Engineer www.edudevices.com.ar dilella@arnet.com.ar Como implementar un control remoto por infrarrojo en

Más detalles

Práctica 5MODBUS: Bus Modbus

Práctica 5MODBUS: Bus Modbus Práctica 5MODBUS: Bus Modbus 1 Objetivos El objetivo de esta práctica es la utilización y la programación de una red Modbus. El alumno debe ser capaz de: Diferenciar los tres niveles fundamentales de la

Más detalles

4.2 Servicio de exploración de E/S

4.2 Servicio de exploración de E/S 4.2 Servicio de exploración de E/S Acerca de esta sección En esta sección se presentan algunas funciones, características y opciones de configuración del servicio de exploración de E/S. Contenido de esta

Más detalles

Bus I 2 C. Introducción

Bus I 2 C. Introducción Bus I 2 C Introducción 1980: Philips desarrolla el Bus de 2 alambres I 2 C para la comunicación de circuitos integrados. Se han otorgado licencias a mas de 50 compañías, encontrándonos con más de 1000

Más detalles

TÉCNICO SUPERIOR UNIVERSITARIO EN MECATRÓNICA ÁREA AUTOMATIZACIÓN EN COMPETENCIAS PROFESIONALES ASIGNATURA DE LENGUAJE DE PROGRAMACIÓN

TÉCNICO SUPERIOR UNIVERSITARIO EN MECATRÓNICA ÁREA AUTOMATIZACIÓN EN COMPETENCIAS PROFESIONALES ASIGNATURA DE LENGUAJE DE PROGRAMACIÓN TÉCNICO SUPERIOR UNIVERSITARIO EN MECATRÓNICA ÁREA AUTOMATIZACIÓN EN COMPETENCIAS PROFESIONALES ASIGNATURA DE LENGUAJE DE PROGRAMACIÓN 1. Competencias Implementar sistemas de medición y control bajo los

Más detalles

MPI. Índice. Tecnologías de Control. TEMA MPI 1. Subred MPI. 2. Comunicación de Datos Globales. 3. Funciones Básicas S7. 4.

MPI. Índice. Tecnologías de Control. TEMA MPI 1. Subred MPI. 2. Comunicación de Datos Globales. 3. Funciones Básicas S7. 4. MPI Tecnologías de Control Índice TEMA MPI 1. Subred MPI 1.1 La Red MPI 1.2 Datos Técnicos 1.3 Condiciones Referentes al Hardware 1.4 Comparación PROFIBUS-MPI 1.5 Tipos de Comunicaciones 2. Comunicación

Más detalles

PIC 18F45XX EL TIMER 0

PIC 18F45XX EL TIMER 0 PIC 18F45XX EL TIMER 0 1. Hardware asociado 2. Características Se puede configurar como temporizador o contador de 8/16 bits. Se puede leer o escribir en él a través del registro TMR0. Dispone de un preescaler

Más detalles

Tema: Manejo del Puerto Serie con LabView

Tema: Manejo del Puerto Serie con LabView Facultad: Ingeniería Escuela: Electrónica Asignatura: Interfaces y Periféricos Tema: Manejo del Puerto Serie con LabView Objetivos Específicos. Configurar la entrada y salida del puerto serie por medio

Más detalles

Práctica 2. Control de velocidad mediante el autómata CP1L y el variador MX2 de Omron

Práctica 2. Control de velocidad mediante el autómata CP1L y el variador MX2 de Omron Sistemas de Control Automático Práctica 2. Control de velocidad mediante el autómata CP1L y el variador MX2 de Omron Jorge Pomares Baeza Grupo de Innovación Educativa en Automática 2011 GITE IEA - 1 -

Más detalles

Estructura de Microprocesadores. Profesor Ing. Johan Carvajal Godínez

Estructura de Microprocesadores. Profesor Ing. Johan Carvajal Godínez Estructura de Microprocesadores PIC 18F4550 Administración de los temporizadores Profesor Ing. Johan Carvajal Godínez Módulos temporizadores El MCU 18F4550 posee cuatro módulos de temporización independientes

Más detalles

CONVERSOR ANALÓGICO DIGITAL DEL PIC16F877 GRUPO A02-A03

CONVERSOR ANALÓGICO DIGITAL DEL PIC16F877 GRUPO A02-A03 CONVERSOR ANALÓGICO DIGITAL DEL PIC16F877 GRUPO A02-A03 Proyecto PAEEES 04/993. U.P.V. Escuela Politécnica Superior de Alcoy Marzo 2005 Cantero Siñuela, Iván Saúl Gil Hernández, Diego Ponsoda Hernández,

Más detalles

Maestría en Ciencias área Telemática

Maestría en Ciencias área Telemática Maestría en Ciencias área Telemática SISTEMA DE MONITOREO Y ALARMAS PROTOTIPO, PARA PLANTAS DE FUERZA AUXILIAR Y BANCOS DE BATERÍAS, UTILIZANDO UN ENLACE VÍA RADIO MÓDEM TESIS Que para obtener el grado

Más detalles

Redes de Comunicaciones. Ejercicios de clase Tema 3

Redes de Comunicaciones. Ejercicios de clase Tema 3 Redes de Comunicaciones Ejercicios de clase Tema 3 Tema 3. Ejercicio Sobre un nivel de enlace que implanta el protocolo de bit alternante se añade un tercer nivel de aplicación que incluye una aplicación

Más detalles

Transmisi n de Datos a Trav s de un PIC

Transmisi n de Datos a Trav s de un PIC Transmisi n de Datos a Trav s de un PIC 4 Introducción Tal como lo dice MICROCHIP en sus páginas Web, y según lo que hemos podido experimentar, los microcontroladores PIC16CXXX son de alto rendimiento

Más detalles

EC02 CONTROLADOR ELECTRONICO PROGRAMABLE

EC02 CONTROLADOR ELECTRONICO PROGRAMABLE EC02 CONTROLADOR ELECTRONICO PROGRAMABLE Los controladores EC02 fueron diseñados para ser programados en aplicaciones de pocas entradas salidas, como una opción extremadamente versátil, robusta, eficiente

Más detalles

CICLOS DEL PROCESADOR

CICLOS DEL PROCESADOR UNIDAD DE CONTROL CICLOS DEL PROCESADOR Qué es un ciclo de búsqueda? Para qué sirve estudiar los ciclos de instrucción de una CPU? Para comprender el funcionamiento de la ejecución de instrucciones del

Más detalles

Compatibilidad Electromagnética

Compatibilidad Electromagnética Compatibilidad Electromagnética Explicación y declaración del fabricante El procesador de sonido Nucleus Freedom está diseñado para su uso en los entornos electromagnéticos especificados en este documento.

Más detalles

Electrónica Digital II

Electrónica Digital II Electrónica Digital II TIPOS DE MEMORIAS MEMORIA DDR MEMORIA DDR2 MEMORIA DDR3 COMPARACIÓN TIEMPOS DE ACCESO TIPOS DE LATENCIAS RAS CAS ACTIVIDAD PRECARGA TIPOS DE CONFIGURACIONES SINGLE CHANNEL DUAL CHANNEL

Más detalles

MODULO ANALOGICO REMOTO

MODULO ANALOGICO REMOTO MODULO ANALOGICO REMOTO ENTRADAS Y SALIDAS REMOTAS EN PLC MODICOM En diversas aplicaciones de automatización con PLCs, ya sea por razones de lograr la supervisión totalmente integrada de una planta o simplemente

Más detalles

configuración de tu equipo. Rellena la siguiente tabla y contesta a las siguientes preguntas:

configuración de tu equipo. Rellena la siguiente tabla y contesta a las siguientes preguntas: 1) Abre la consola de MS-DOS y teclea el comando ipconfig/all para consultar la configuración de tu equipo. Rellena la siguiente tabla y contesta a las siguientes preguntas: ADAPTADOR ETHERNET CONEXIÓN

Más detalles

Redes y Servicios. Módulo I. Fundamentos y modelos de red. Tema 2. Fundamentos. Parte B. Nivel de enlace

Redes y Servicios. Módulo I. Fundamentos y modelos de red. Tema 2. Fundamentos. Parte B. Nivel de enlace 1 Redes y Servicios Módulo I. Fundamentos y modelos de red Tema 2. Fundamentos Parte B. Nivel de enlace 2 Introducción Dos funciones básicas del nivel de enlace: Motivación? Control de flujo Motivación?

Más detalles

Trabajo 3. PROTOCOLOS DE COMUNICACIÓN SERIAL INDUSTRIALES Edwin Gilberto Carreño Lozano, Código: 2090454.

Trabajo 3. PROTOCOLOS DE COMUNICACIÓN SERIAL INDUSTRIALES Edwin Gilberto Carreño Lozano, Código: 2090454. Trabajo 3. PROTOCOLOS DE COMUNICACIÓN SERIAL INDUSTRIALES Edwin Gilberto Carreño Lozano, Código: 2090454. I. OBJETIVO Hacer un resumen acerca de los protocolos RS232, RS485, RS422 y HART; protocolos de

Más detalles

SISTEMA AUTONOMO CON PATROL IP Manual de Usuario VERSION 1.0 PRELIMINAR

SISTEMA AUTONOMO CON PATROL IP Manual de Usuario VERSION 1.0 PRELIMINAR Ordene este documento como UM-90925 Rev. A UM-90925 Dto. de Ingeniería SISTEMA AUTONOMO CON PATROL IP Manual de Usuario VERSION 1.0 PRELIMINAR 1. Descripción General. El sistema autónomo es una alternativa

Más detalles

Redes y Comunicaciones

Redes y Comunicaciones Departamento de Sistemas de Comunicación y Control Redes y Comunicaciones Solucionario Tema 3: Datos y señales Tema 3: Datos y señales Resumen La información se debe transformar en señales electromagnéticas

Más detalles

Universidad Central de Venezuela Facultad de Ciencias Escuela de Computación Organización y Estructura del Computador II Semestre I-2014.

Universidad Central de Venezuela Facultad de Ciencias Escuela de Computación Organización y Estructura del Computador II Semestre I-2014. Universidad Central de Venezuela Facultad de Ciencias Escuela de Computación Organización y Estructura del Computador II Semestre I-2014 Práctica #3 1) Qué es un latch? Qué es un flip-flop? 2) Si se aplican

Más detalles

Módulo de relé PowPak

Módulo de relé PowPak Módulo de relé PowPak Serie Energi TriPak Control de iluminación inalámbrico Módulo de relé PowPak El módulo de relé PowPak es un dispositivo de radiofrecuencia (RF) capaz de controlar hasta 5 A de carga

Más detalles

Manejo de Entrada-Salida. Arquitectura de Computadoras

Manejo de Entrada-Salida. Arquitectura de Computadoras Manejo de Entrada-Salida Arquitectura de Computadoras Agenda 1.2.3.1Módulos de entrada/salida. 1.2.3.2Entrada/salida programada. 1.2.3.3Entrada/salida mediante interrupciones. 1.2.3.4Acceso directo a memoria.

Más detalles

Se inicia con las especificaciones del módulo fotovoltaico.

Se inicia con las especificaciones del módulo fotovoltaico. Con base en las especificaciones técnicas del inversor SB 3000U y de un módulo fotovoltaico de 175 watts, indicar los valores los parámetros característicos requeridos para el dimensionamiento del sistema.

Más detalles

Una dirección IP es una secuencia de unos y ceros de 32 bits. La Figura muestra un número de 32 bits de muestra.

Una dirección IP es una secuencia de unos y ceros de 32 bits. La Figura muestra un número de 32 bits de muestra. DIRECCIONAMIENTO IP Un computador puede estar conectado a más de una red. En este caso, se le debe asignar al sistema más de una dirección. Cada dirección identificará la conexión del computador a una

Más detalles

5. Microcontroladores de 32 bits. (C) 2007 Ibercomp S. A.

5. Microcontroladores de 32 bits. (C) 2007 Ibercomp S. A. 0LFURFRQWURODGRUHVGHELWV Cada vez existen más equipos que incorporan un microcontrolador en su sistema con el fin de aumentar de manera importante sus prestaciones, reducir su tamaño y coste, mejorar su

Más detalles

Tema: Microprocesadores

Tema: Microprocesadores Universidad Nacional de Ingeniería Arquitectura de Maquinas I Unidad I: Introducción a los Microprocesadores y Microcontroladores. Tema: Microprocesadores Arq. de Computadora I Ing. Carlos Ortega H. 1

Más detalles

Arquitectura (Procesador familia 80 x 86 )

Arquitectura (Procesador familia 80 x 86 ) Arquitectura (Procesador familia 80 x 86 ) Diseño de operación Basada en la arquitectura Von Newman Memoria CPU asignadas direcciones I / O BUS: Es un canal de comunicaciones Bus de direcciones: Contiene

Más detalles

CIRCUITO 1: CIRCUITO RC

CIRCUITO 1: CIRCUITO RC CIRCUITOS DIDACTICOS DE LA MATERIA DE DISPOSITIVOS Y CIRCUTOS ELECTRONICOS Y DE DISEÑO DE SISTEMAS DIGITALES. JUSTIFICACION. Los siguientes circuitos son considerados ejemplos didácticos y representativos

Más detalles

Nota Técnica /0009-2012 Microchip Tips & Tricks

Nota Técnica /0009-2012 Microchip Tips & Tricks Nota Técnica /0009-2012 Microchip Tips & Tricks Por el Departamento de Ingeniería de Electrónica Elemon S.A. Soluciones y Diseños de Fuentes Inteligentes. Tip 99 Control remoto Infrarrojo para activación

Más detalles

Technology GOBLIN 2 / MANUAL

Technology GOBLIN 2 / MANUAL GOBLIN 2 Goblin 2 es una tarjeta de desarrollo diseñada para ser autónoma en el internet de las cosas, cuenta con un módulo para controlar la carga de una batería de Li-ion de 3.7V a 4.2V, la cual puede

Más detalles

En la actualidad diversos productos de consumo propio e industriales utilizan la

En la actualidad diversos productos de consumo propio e industriales utilizan la CAPÍTULO 4 COMUNICACIÓN INALÁMBRICA 4.1 Radiofrecuencia. En la actualidad diversos productos de consumo propio e industriales utilizan la energía electromagnética. Hoy en día la energía de radiofrecuencia,

Más detalles

TÉCNICO SUPERIOR UNIVERSITARIO EN MECATRÓNICA ÁREA AUTOMATIZACIÓN

TÉCNICO SUPERIOR UNIVERSITARIO EN MECATRÓNICA ÁREA AUTOMATIZACIÓN TÉCNICO SUPERIOR UNIVERSITARIO EN MECATRÓNICA ÁREA AUTOMATIZACIÓN HOJA DE ASIGNATURA CON DESGLOSE DE UNIDADES TEMÁTICAS 1. Nombre de la asignatura Instrumentación industrial. 2. Competencias Implementar

Más detalles

SUPER CONTROLADOR DE SERVOS S310175

SUPER CONTROLADOR DE SERVOS S310175 SUPER CONTROLADOR DE SERVOS S310175 Controlador para servos con retroalimentación del par motor No es necesario realizar modificaciones a los servos Características: Sus ocho salidas independientes de

Más detalles

2.1 Características Técnicas

2.1 Características Técnicas 2.1 Características Técnicas 2.1.1 Tensión de la alimentación auxiliar... 2.1-2 2.1.2 Cargas... 2.1-2 2.1.3 Entradas de intensidad... 2.1-2 2.1.4 Entradas de tensión... 2.1-3 2.1.5 Exactitud en la medida

Más detalles

Tema: Uso del analizador espectral.

Tema: Uso del analizador espectral. Sistemas de Comunicación I. Guía 1 1 I Facultad: Ingeniería Escuela: Electrónica Asignatura: Sistemas de comunicación Tema: Uso del analizador espectral. Objetivos Conocer el funcionamiento de un Analizador

Más detalles