Métodos de Inteligencia Artificial
|
|
|
- Valentín Caballero López
- hace 8 años
- Vistas:
Transcripción
1 Métodos de Inteligencia Artificial L. Enrique Sucar (INAOE) ccc.inaoep.mx/esucar Tecnologías de Información UPAEP
2 Búsqueda Representación Tipos búsquedas: Sin información Con información Óptimas Análisis de complejidad
3 Solución de Problemas Asociado a la inteligencia Identificación y definición del problema Identificación del criterio de evaluación Generación de alternativas Solución de muchos problemas en IA: básicamente búsqueda y evaluación
4 Representación del espacio de estados define un espacio de estados (explícito / implícito) especifica los estados iniciales especifica los estados finales (metas) especifica las reglas que definen las acciones disponibles para moverse de un estado a otro
5 Representación de espacio de estados En este contexto: El proceso de solución de problemas = encontrar una secuencia de operaciones que transformen al estado inicial en uno final Se requiere una estrategia de búsqueda
6 Ejemplo: problema de las 8 reinas Reinas (Q) Q Tablero de Ajedrez Q A B C Q A=8 B=9 C=10
7 Para el problema de las 8 reinas podemos tener diferentes opciones: solución incremental: acercarse a la meta haciendo decisiones locales sistemática: no repetir y no excluir
8 Medios (espacio de estados): transformar (hasta encontrar la meta) vs. construir (poco a poco) Posible heurística: poner una reina por renglón en un lugar que deje el mayor número de lugares sin atacar
9 Cómo encontramos una buena heurística? Factores a considerar: calidad de la solución (a veces puede no importar) diferencia en complejidad entre una solución solución óptima en general, se busca encontrar la solución más barata
10 Qué necesitamos: 1. Estructura simbólica que represente subconjuntos de soluciones potenciales (agenda) 2. Operaciones/reglas que modifiquen símbolos de la agenda y produzcan conjuntos de soluciones potenciales más refinadas 3. Estrategia de búsqueda que decida qué operación aplicar a la agenda
11 Terminología: nodo, árbol, hoja, nodo-raíz, nodo-terminal, branching factor (factor de arborescencia), ramas, padres, hijos, árbol uniforme,...
12 Nodo raíz Ramas Padre Hijos Profundidad Nodos terminales/hojas
13 nodos expandidos (closed): todos los sucesores nodos explorados pero no expandidos : sólo algunos sucesores nodos generados pero no explorados (open) nodos no generados Paso computacional primordial: expansión de nodos
14 Nodo expandido (closed) Nodos generados No explorados (open) Nodo explorado No expandido Nodo no generado
15 Propiedades La estrategia de control es sistemática si: 1. no deja un sólo camino sin explorar (completo) 2. no explora un mismo camino más de una vez (eficiencia)
16 Propiedades de algoritmos de búsqueda (heurísticas): 1. Completo: si encuentra una solución cuando ésta existe 2. Admisible: si garantiza regresar una solución óptima cuando ésta existe
17 Propiedades de algoritmos de búsqueda (heurísticas): 3. Dominante: un algoritmo A1 se dice que domina a A2 si todo nodo expandido por A1 es también expandido por A2 ( más eficiente que ) 4. Óptimo: un algoritmo es óptimo sobre una clase de algoritmos si domina a todos los miembros de la clase
18 Procedimientos de Búsqueda Algún camino: Sin información: depth-first (en profundo) breadth-first (a lo ancho) Con información: hill climbing beam search best first
19 El mejor camino (óptimo): British museum branch and bound A*
20 GRAFO 3 A 4 B 4 C I D E F M
21 ÁRBOL DE BÚSQUEDA I A D B D A E C E E B B F 11 D F B F C E A C M 14 M C M 17 F M 25
22 Depth first - backtracking (LIFO) Crea una agenda de un elemento (el nodo raíz) hasta que la agenda este vacía o se alcance la meta si el primer elemento es la meta entonces acaba si no elimina el primer elemento y añade sus sucesores al frente de la agenda
23 DEPTH-FIRST SEARCH (I) (A D) A I D (B D D) (C E D D) (E D D) (D F D D) (F D D) B D A E C E E B B F 11 D F B F C E A C M 14 M C M F M (M D D)
24 Problemas: árboles con caminos de profundidad muy grande Variaciones: depth-bound (casi todos): limitar la búsqueda hasta cierto límite de profundidad interative-deepening: explorar a profundidad progresivamente con algo de información: ordena los nodos expandidos
25 Breadth first Crea una agenda de un elemento (el nodo raíz) hasta que la agenda este vacía o se alcance la meta si el primer elemento es la meta entonces acaba si no elimina el primer elemento y añade sus sucesores al final de la agenda Problemas: árboles con arborescencia muy grande
26 ÁRBOL DE BÚSQUEDA I A D B D A E C E E B B F 11 D F B F C E A C M 14 M C M 17 F M 25
27 0 1 (I) (A D) 4 (D F B F C E A C M) (D B D) (F B F C E A C M) 2 (B D A E) (B F C E A C M M) BREADTH-FIRST SEARCH 3 (D A E C E) (A E C E E) (E C E E B) (C E E B B F) (E E B B F) (E B B F D F) (B B F D F B F) (F C E A C M M C) (C E A C M M C M) (E A C M M C M) (A C M M C M F) (C M M C M F) (B F D F B F C E) ( F D F B F C E A C) 5 (M M C M F)
28 Profund. Nodos Tiemp o Memoria 1 1 miliseg. 100 bytes seg. 11, seg min. 31 hr. 128 días 35 años 3500 años 11 kilobytes 1 megabyte 111 megabytes 11 gigabytes 1 terabyte 111 terabytes 11,111 terabytes Requerimientos de tiempo y memoria para breadth-first. Factor de arborecencia = 10; 1,000 nodos/sec; 100 bytes/nodo
29 Complejidad Comparación en nodos buscados: Si n = profundidad del árbol b = braching factor d = profundidad de un nodo meta
30 depth-first: mejor caso: d nodos buscados peor caso: Σ n i= 0 - b i - Σ n d b i i= 0 = bn+1 - b n+1- d b-1 b n
31 mejor caso: - Σ i= 0 d 1 b i breadth-first: = b d - 1 b d - 1 b -1 peor caso: d Σ i= 0 b i = b d+1-1 b -1 b d
32 Criterio Breadth Costo Depth Depth Iterative Bidireccional first uniforme first limited deepening Tiempo b d b d b m b l b d b d/2 Espacio b d b d b X m b X l b X d b d/2 Optimo si si no no si si Completo si si si si(si l d) si si Comparación de estrategias. b = factor de arborecencia; d = profundidad solución; m = máxima profundidad árbol; l = límite de profundidad.
33 Hill-Climbing Algoritmos con Información Crea una agenda de un elemento (el nodo raíz) hasta que la agenda este vacía o se alcance la meta si el primer elemento es la meta entonces acaba si no elimina el primer elemento y añade sus sucesores a la agenda ordena todos los elementos de la agenda selecciona el mejor y elimina el resto
34 Hill climbing BÚSQUEDA HILL-CLIMBING Heurística: ve a la ciudad más cercana (I) A I D (A D) (D B) (E C) B D A E C E E B B F 11 D F B F C E A C M 14 M C M F M
35 Best-first Crea una agenda de un elemento (el nodo raíz) hasta que la agenda este vacía o se alcance la meta si el primer elemento es la meta entonces acaba si no elimina el primer elemento y añade sus sucesores a la agenda ordena todos los elementos de la agenda
36 EJEMPLO BÚSQUEDA BEST-FIRST
37 BEST FIRST Heurística:Distancia acumulada más corta 1 I A 3 D 4 2 I A D 4 B 7 D 8
38 3 I A D B D A E
39 4 I A D B D A E B F 11 10
40 5 I A D C 11 B D A E 8 9 E B F
41 6 I A D C 11 B D A E 9 E B F E
42 7 I A D B D A E C E E B B F B F 15 14
43 8 I A D B D A E C E E B B F B F M 13
44 Beam search Crea una agenda de un elemento (el nodo raíz) hasta que la agenda este vacía o se alcance la meta si el primer elemento es la meta entonces acaba si no elimina el primer elemento y añade sus sucesores a la agenda ordena todos los elementos de la agenda y selecciona los N mejores (los demás eliminalos)
45 EJEMPLO DE BÚSQUEDA BEAM SEARCH
46 Beam search Beam=2 1 I A 3 D 4 I 2 A D 4 B 7 D 8 X
47 3 I A D B A E X
48 4 I A D B 7 B E 11 F 10 X
49 5 I A D B E C 11 E 12 X F 10
50 6 I A D B E C F M
51 Espacio Usado depth-first:(b-1)*n + 1 breadth-first: bd hill-climbing: 1 n best-first: entre b y b beam-seach: beam d
52 Mejor Solución Cuando importa el costo de encontrar una solución Si g(p) es el costo de camino o solución parcial, la solución óptima es aquella con g(p) mínima. Una forma segura: búsqueda exhaustiva y seleccionar el de menor costo (Brittish Museum)
53 Best-first no es óptimo, pero con una pequeña variante ya lo es. Branch and Bound trabaja como best-first pero en cuanto se encuentra una solución, sigue expandiendo los nodos de costos menores al encontrado
54 Branch and Bound Crea una agenda de un elemento (el nodo raíz) hasta que la agenda este vacía o se alcance la meta y los demás nodos sean de costos mayores o iguales a la meta si el primer elemento es la meta y los demás nodos son de menor o igual costo a la meta entonces acaba si no elimina el primer elemento y añade sus sucesores a la agenda ordena todos los elementos de la agenda
55 EJEMPLO DE BÚSQUEDA BRANCH AND BOUND
56 1 Búsqueda Branch and Bound I A D B D A E 11 C E 12 X B E 13 B B F 14 F M 13
57 2 I A D B D A E 11 C E E B B F B F A C M
58 3 I A D B D A E 11 C E E B B F 13 D F B F A 15 C 15 M 13
59 Dynamic Programming Idea: no explorar caminos a los que ya llegamos por caminos más cortos/baratos El algoritmo es igual sólo hay que añadir la condición: elimina todos los caminos que lleguen al mismo nodo excepto el de menor costo
60 EJEMPLO CON DYNAMIC PROGRAMMING
61 Dynamic programming 1 I 3 A D 4 I 2 A D 4 B 7 D 8 X
62 3 I A 3 D 4 B 7 A 9 E 6 X
63 4 I A 3 4 D 7 B E 6 B X 13 F 10
64 5 I 3 A D 4 7 B E 6 11 C E 12 F 10 X
65 6 I 3 A D 4 7 B E 6 11 C F 10 M
66 A*: utiliza dos medidas Idea: usar estimaciones de los costos/distancias que faltan junto con los costos/distancias acumuladas estim(total) = costo(camino recorrido) estim(camino que falta) +
67 Las estimaciones no son perfectas, por lo que se usan sub-estimaciones subestim(total) = costo(camino recorrido) subestim(camino que falta) + De nuevo expande hasta que los demás tengan subestimaciones más grandes (v.g., subestimaciones de distancias entre ciudades pueden ser líneas rectas)
68 Crea una agenda de un elemento (el nodo raíz) hasta que la agenda este vacía o se alcance la meta y los demás nodos sean de costos mayores o iguales a la meta si el primer elemento es la meta y los demás nodos son de menor o igual costo a la meta entonces acaba si no elimina el primer elemento y añade sus sucesores a la agenda ordena todos los elementos de la agenda de acuerdo al costo acumulado más las subestimaciones de los que falta
69 EJEMPLO DE BÚSQUEDA A*
70 A* 1 I 13.4 A D I 13.4 A D 19.4 A E 12.9
71 3 I 13.4 A D 19.4 A E 17.7 B F 13.0
72 4 I 13.4 A D 19.4 A E 17.7 B F 13.0 M
73 Costo de búsqueda d IDS A*(h ) 1 A*(h ) 2 IDS Arborescencia efectiva A*(h 1 ) A*(h 2 ) Comparación Interactive Deepening (IDS) con A* con dos heurísticas (h1 y h2). Resultados promedios de 100 instancias del 8-puzzle.
74 Cuándo usamos cada una? si el tamaño de búsqueda es pequeño (rara vez), podemos hacer búsqueda exhaustiva sin información depth-first con progressivedeepening branch and bound en general está bien dynamic programming cuando existen muchos posibles caminos con cruces A* cuando podemos tener una buena subestimación
75 Tarea Leer Capítulo 3 de Russell Plantear el problema la Torres de Hanoi como un problema de búsqueda: Especificar la representación de los estados, y el estado inicial y meta Especificar los operadores para generar estados Mostrar el árbol para el caso de 3 discos Se te ocurre alguna heurística para hacer más eficiente la búsqueda?
Introducción a la Robótica
Introducción a la Robótica L. Enrique Sucar INAOE Robótica Probabilista, L. E. Sucar 1 10.2 9.2 8.2 6.8 5.8 4.8 3.8 3.4 3 9.8 8.8 7.8 6.8 5.8 4.8 4.4 2.4 2 6.4 5.4 4.4 3.4 1.4 1 8.8 7.8 6.8 4 3 2 1 0 9.2
4ta. Práctica. Búsqueda en árbol con contrincante: MiniMax con poda Alfa-Beta. Inteligencia Artificial Prácticas 2004/2005
4ta. Práctica Búsqueda en árbol con contrincante: MiniMax con poda Alfa-Beta Inteligencia Artificial Prácticas 2004/2005 Decisiones Perfectas en Juegos de DOS Participantes Definición de Juego Estado Inicial:
Métodos de Inteligencia Artificial
Métodos de Inteligencia Artificial L. Enrique Sucar (INAOE) [email protected] ccc.inaoep.mx/esucar Tecnologías de Información UPAEP Sistemas Multiagentes IA Distribuida Introducción Esquemas de control
Búsqueda en e.e. --> reglas para elegir entre las ramas que con más probabilidad lleven a la solución.
BÚSQUEDA HEURÍSTICA estudio de los métodos y reglas del descubrimiento y la invención. Búsqueda en e.e. --> reglas para elegir entre las ramas que con más probabilidad lleven a la solución. Situaciones
Estado 3.2 (coste = 9)
Búsqueda heurística Fernando Berzal, [email protected] Búsqueda heurística Búsqueda primero el mejor p.ej. búsqueda de coste uniforme [UCS] Heurísticas Búsqueda greedy El algoritmo A* Heurísticas admisibles
(b) Cuál es la desventaja principal de una heurística con aprendizaje? es más informada que otra función heurística optimista h 2 *?
UNIVERIDD REY JUN CRLO CURO 0-0 INTELIGENCI RTIFICIL Hoja de Problemas Tema Ejercicio : Conteste a las siguientes preguntas: (a) Cómo funciona una heurística con aprendizaje? olución: Una heurística con
Para definir en formalmente el juego se deberá establecer:
INTRODUCCION A LA INTELIGENCIA ARTIFICIAL MÓDULO 5- JUEGOS COMO PROBLEMA DE BÚSQUEDA Referencias: Inteligencia Artificial Russell and Norvig Cap.5. Artificial Intellingence Nils Nilsson Ch.3 Se trata el
3ra. Practica. Algoritmos de Búsqueda. Inteligencia Artificial Prácticas 2004/2005
3ra. Practica Algoritmos de Búsqueda Inteligencia Artificial Prácticas 2004/2005 Algoritmos de Búsqueda Algoritmos Básicos: (búsqueda no informada) Búsqueda preferente por amplitud Búsqueda preferente
UNIVERSIDAD MAYOR DE SAN SIMÓN FACULTAD DE CIENCIAS Y TECNOLOGÍA INGENIERÍA DE SISTEMAS BÚSQUEDA PRIMERO EL MEJOR
UNIVERSIDAD MAYOR DE SAN SIMÓN FACULTAD DE CIENCIAS Y TECNOLOGÍA INGENIERÍA DE SISTEMAS BÚSQUEDA PRIMERO EL MEJOR INTEGRANTES: Caricari Cala Aquilardo Villarroel Fernandez Fructuoso DOCENTE: Lic. Garcia
Métodos de Inteligencia Artificial
Métodos de Inteligencia Artificial L. Enrique Sucar (INAOE) [email protected] ccc.inaoep.mx/esucar Tecnologías de Información UPAEP Contenido Lógica proposicional Lógica de predicados Inferencia en lógica
Resolución de problemas de búsqueda
Resolución de problemas de búsqueda Memoria de Prácticas de Segunda Entrega 26 de noviembre de 2007 Autores: Mariano Cabrero Canosa [email protected] Elena Hernández Pereira [email protected] Directorio de entrega:
Resolviendo Modelos de Mapas
Resolviendo Modelos de Mapas SMMC Prof. Teddy Alfaro Resolviendo Mapas o Grafos Entre las técnicas completas más utilizadas para resolver la ruta más corta se encuentran BFS Backtracking Dijkstra A* Uso
ALGORITMO MINIMAX. o Nodo: Representa una situación del juego. o Sucesores de un nodo: Situaciones del juego a las que se
ALGORITMO MINIMAX Algoritmo de decisión para minimizar la pérdida máxima aplicada en juegos de adversarios Información completa (cada jugador conoce el estado del otro) Elección del mejor movimiento para
Tema 2: Juegos unipersonales
Tema : Juegos unipersonales Resumen:. Juegos unipersonales.. Representación básica.. Juegos con información completa.. Recursos limitados en juegos con información completa.. Juegos con información incompleta
Métodos de Búsqueda para juegos humano-maquina. PROF: Lic. Ana María Huayna D.
Métodos de Búsqueda para juegos humano-maquina PROF: Lic. Ana María Huayna D. Tópicos 1. Introducción 2. Juegos 3. Estrategias de Juego 4. Algoritmo Minimax 5. Algoritmo Poda Alfa-Beta 1.- Introducción
Búsqueda con adversario
Introducción Búsqueda con adversario Uso: Decidir mejor jugada en cada momento para cierto tipo de juegos Hay diferentes tipos de juegos según sus características: Numero de jugadores, toda la información
Inteligencia Artificial. Integrantes Equipo # 1:
INSTITUTO TECNOLÓGICO De Nuevo Laredo Especialidad: Ingeniería en Sistemas Computacionales Catedrático: Ing. Bruno López Takeyas. Asignatura: Inteligencia Artificial. Integrantes Equipo # 1: Javier Alonso
Tema 2: Búsqueda. Formalización de la resolución de problemas Ejemplos Procedimiento general de búsqueda Estrategias de control Búsqueda heurística
Tema 2: Búsqueda Formalización de la resolución de problemas Ejemplos Procedimiento general de búsqueda Estrategias de control Búsqueda heurística 1 Resolución de problemas: formalización CONCEPTO BÁSICO:
Inteligencia Artificial
Inteligencia Artificial Tema 2 Búsquedas Ivan Olmos Pineda Contenido Estructura General de un PSA Formulación de un PSA Algoritmos de Búsqueda de Soluciones Aplicaciones BUAP Inteligencia Artificial 2
(d) Puede haber estrategias que funcionan mejor que Minimax si el contrincante es
Universidad Rey Juan Carlos Curso 2014 2015 Hoja de Problemas Tema 5 1. Cuáles de las siguientes afirmaciones acerca del algoritmo Minimax son ciertas (a) El algoritmo Minimax realiza una exploración primero
Tema 4: Búsqueda informada mediante técnicas heurísticas
Tema 4: Búsqueda informada mediante técnicas heurísticas José Luis Ruiz Reina José Antonio Alonso Franciso J. Martín Mateos 1 Departamento de Ciencias de la Computación e Inteligencia Artificial Universidad
Búsqueda Heurística. Branch and Bound, Best First Search A, A IDA Búsqueda local (Hill climbing, Simulated annealing, Alg.
Introducción Búsqueda Heurística Supone la existencia de una función de evaluación que debe medir la distancia estimada al (a un) objetivo (h(n)) Esta función de evaluación se utiliza para guiar el proceso
Resolución de Problemas
Introducción Resolución de Problemas La resolución de problemas es una capacidad que consideramos inteligente Somos capaces de resolver problemas muy diferentes Encontrar el camino en un laberinto Resolver
A B MIN C D E F MAX x E.T.S.I. INFORMÁTICA 4º CURSO. INTELIGENCIA ARTIFICIAL E INGENIERÍA DEL CONOCIMIENTO
E.T.S.I. INFORMÁTICA 4º CURSO. INTELIGENCIA ARTIFICIAL E INGENIERÍA DEL CONOCIMIENTO UNIVERSIDAD DE MÁLAGA Dpto. Lenguajes y Ciencias de la Computación RELACIÓN DE PROBLEMAS. TEMA IV. PROBLEMAS DE JUEGOS.
(e) Con la poda alfa-beta se eliminan nodos que nunca serán alcanzados
Universidad Rey Juan Carlos Curso 2014 2015 Hoja de Problemas Tema 5 1. Cuáles de las siguientes afirmaciones acerca del algoritmo Minimax son ciertas (a) El algoritmo Minimax realiza una exploración primero
El Juego como Problema de Búsqueda
El Juego como Problema de Búsqueda En este algoritmo identificamos dos jugadores: max y min. El objetivo es encontrar la mejor movida para max. Supondremos que max mueve inicialmente y que luego se turnan
CI-6675 Algoritmos y Estructuras Optimizadas para Videojuegos
Especialización en Creación y Programación de Videojuegos CI-6675 Algoritmos y Estructuras Optimizadas para Videojuegos Agenda de hoy Juegos Combinatorios Información en un Juego La suma de un Juego s
Caminos y Flujos optimales. Introducción a la Investigación de Operaciones 2007
Caminos y Flujos optimales Introducción a la Investigación de Operaciones 2007 Contenido Definiciones básicas. Conexidad. Clausura transitiva. Esqueletos y caminos optimales. Redes. Flujos. Algoritmo de
Descripción inicial del sistema. Descripción final del sistema. Estado 1 Estado 2 Estado n
Búsqueda en Inteligencia Artificial Fernando Berzal, [email protected] Búsqueda en I.A. Introducción Espacios de búsqueda Agentes de búsqueda Uso de información en el proceso de búsqueda Búsqueda sin información
JUEGOS. Área de aplicación de los algoritmos heurísticos Juegos bi-personales: oponente hostil
JUEGOS Área de aplicación de los algoritmos heurísticos Juegos bi-personales: oponente hostil I Oponente: Jugador: intenta mover a un estado que es el peor para Etiquetar cada nivel del espacio de búsqueda
Búsqueda con información, informada o heurística
Búsqueda con información, informada o heurística Heurística Del griego heuriskein (encontrar, descubrir).» Arquímedes EUREKA!» Uso en IA 957, (G. Polya): Estudio de métodos para descubrir formas de resolución
Introducción a las RdP. Optimización basada en redes de Petri. Redes de Petri. Son objeto de estudio: RdP. Ejemplos:
Seminario sobre toma de decisiones en logística y cadenas de suministro Introducción a las RdP Optimización basada en redes de Petri https://belenus.unirioja.es/~emjimene/optimizacion/transparencias.pdf
Juegos deterministas. Ajedrez, damas, Go, Othello. barquitos
Búsqueda con adversario: Juegos Fernando Berzal, [email protected] Tipos de juegos Juegos deterministas Juegos de azar Con información perfecta Con información imperfecta Ajedrez, damas, Go, Othello barquitos
Centro Asociado Palma de Mallorca. Tutor: Antonio Rivero Cuesta
Centro Asociado Palma de Mallorca Lógica y Estructuras Discretas Tutor: Antonio Rivero Cuesta Tema 5 Teoría de Grafos Conceptos Básicos Un grafo consta de: Grafo Un conjunto de nodos, Un conjunto de aristas
Métodos de Inteligencia Artificial
Métodos de Inteligencia Artificial L. Enrique Sucar (INAOE) [email protected] ccc.inaoep.mx/esucar Tecnologías de Información UPAEP Objetivos Estudiar algunas de las metodologías de Inteligencia Artificial,
Búsqueda Heurística I
Búsqueda Heurística I Pedro Meseguer IIIA-CSIC Bellaterra, Spain [email protected] Introducción Temario curso Búsqueda sistemática Búsqueda ciega Búsqueda informada: primero el mejor, A* Búsqueda en memoria
Algoritmos y Estructuras de Datos Curso 06/07. Ejercicios
9..En un problema de backtracking estamos interesados en almacenar de forma explícita el árbol recorrido por el algoritmo. De cada nodo del árbol sólo necesitamos saber un número, que indica el orden en
El TAD Grafo. El TAD Grafo
! Esta representación resulta útil cuando el número de vértices se conoce previamente y permanecerá fijo durante la resolución del problema, pero resulta ineficiente si necesitamos añadir o eliminar vértices
Grafos. Amalia Duch Brown Octubre de 2007
Grafos Amalia Duch Brown Octubre de 2007 Índice 1. Definiciones Básicas Intuitivamente un grafo es un conjunto de vértices unidos por un conjunto de líneas o flechas dependiendo de si el grafo es dirigido
Ruta más Corta con una sóla Fuente de Inicio (Single-Source Shortest Paths) DR. JESÚS A. GONZÁLEZ BERNAL CIENCIAS COMPUTACIONALES INAOE
Ruta más Corta con una sóla Fuente de Inicio (Single-Source Shortest Paths) 1 DR. JESÚS A. GONZÁLEZ BERNAL CIENCIAS COMPUTACIONALES INAOE Problema de Encontrar la Ruta más Corta 2 Se requiere llegar de
Algoritmos y estructuras de datos
Algoritmos y estructuras de datos Dr. Eduardo A. Rodríguez Tello Laboratorio de Tecnologías de Información Cinvestav Tamaulipas [email protected] Cursos de inducción a la MCC Cinvestav Tamaulipas
Convertir un AFND a un AFD
Convertir un AFND a un AFD Existe una equivalencia entre los AFD y AFN, de forma que un autómata M es equivalente a un autómata M' si L(M) ) L(M'). Ejemplo: Los autómatas de la siguiente figura son equivalentes.
Estudiemos el siguiente problema, propuesto por Wirth y desarrollado por Dijkstra: Una lista de las primeras secuencias que cumplen es:
25. Algoritmos heurísticos 25.1 Concepto de heurística. Se denomina heurística al arte de inventar. En programación se dice que un algoritmo es heurístico cuando la solución no se determina en forma directa,
C a l ses P P y y NP C a l se P C a l se N P N P [No N n o -De D te t rmin i i n s i ti t c i Polynomial-tim i e]
Análisis y Diseño de Algoritmos Introducción Análisis y Diseño de Algoritmos Concepto de algoritmo Resolución de problemas Clasificación de problemas Algorítmica Análisis de la eficiencia de los algoritmos
Métodos Heurísticos en Inteligencia Artificial
Métodos Heurísticos en Inteligencia Artificial Javier Ramírez rez-rodríguez Ana Lilia Laureano-Cruces Universidad Autónoma Metropolitana Métodos Heurísticos en Inteligencia Artificial Los problemas de
Tema 2: Representación de problemas como espacios de estados
Tema 2: Representación de problemas como espacios de estados José Luis Ruiz Reina José Antonio Alonso Franciso J. Martín Mateos Departamento de Ciencias de la Computación e Inteligencia Artificial Universidad
Teoría de grafos y optimización en redes
Teoría de grafos y optimización en redes José María Ferrer Caja Universidad Pontificia Comillas Definiciones básicas Grafo: Conjunto de nodos (o vértices) unidos por aristas G = (V,E) Ejemplo V = {,,,,
Búsqueda Heurística IV
Búsqueda Heurística IV Pedro Meseguer IIIA-CSIC Bellaterra, Spain [email protected] 2 jugadores Búsqueda para juegos Perfecta información: cada jugador conoce toda la información del contrario no hay
Sistemas de producción y búsqueda de soluciones. Area de Computación e Inteligencia Artificial 1
Sistemas de producción y búsqueda de soluciones Area de Computación e Inteligencia Artificial 1 Técnicas de búsqueda Resolución de problemas en Inteligencia Artificial. En general, podemos afirmar que
Tipos algebraicos y abstractos. Algoritmos y Estructuras de Datos I. Tipos algebraicos
Algoritmos y Estructuras de Datos I 1 cuatrimestre de 009 Departamento de Computación - FCEyN - UBA Programación funcional - clase Tipos algebraicos Tipos algebraicos y abstractos ya vimos los tipos básicos
Complejidad computacional (Análisis de Algoritmos)
Definición. Complejidad computacional (Análisis de Algoritmos) Es la rama de las ciencias de la computación que estudia, de manera teórica, la optimización de los recursos requeridos durante la ejecución
Problema de las N Reinas. Resolución paralela
Problema de las N Reinas Resolución paralela Indice Introducción al problema Representación y Soluciones Resolución secuencial Resolución paralela Conclusiones Bibliografía 2 3 Introducción Introducción
Autómatas de Pila. Descripciones instantáneas o IDs. El Lenguaje de PDA. Equivalencia entre PDAs y CFGs INAOE (INAOE) 1 / 50
INAOE (INAOE) 1 / 50 Contenido 1 2 3 4 (INAOE) 2 / 50 Pushdown Automata Las gramáticas libres de contexto tienen un tipo de autómata que las define llamado pushdown automata. Un pushdown automata (PDA)
Búsqueda heurística Prof. Constantino Malagón
Búsqueda heurística Prof. Constantino Malagón Area de Computación e Inteligencia Artificial 1 Búsqueda heurística Los métodos de búsqueda heurística disponen de alguna información sobre la proximidad de
OPTIMIZACIÓN DE CÓDIGO
OPTIMIZACIÓN DE CÓDIGO INTRODUCCION La finalidad de la optimización de código es producir un código objeto lo más eficiente posible. En algunos casos también se realiza una optimización del código intermedio.
Tema: Búsqueda Heurística (Informada).
Sistemas Expertos e Inteligencia Artificial. Guía No. 5 1 Tema: Búsqueda Heurística (Informada). Facultad: Ingeniería Escuela: Computación Asignatura: Sistemas Expertos e Inteligencia Artificial Objetivos
OPTIMIZACIÓN Y SIMULACIÓN PARA LA EMPRESA. Tema 4 Optimización no Lineal
OPTIMIZACIÓN Y SIMULACIÓN PARA LA EMPRESA Tema 4 Optimización no Lineal ORGANIZACIÓN DEL TEMA Sesiones: El caso sin restricciones: formulación, ejemplos Condiciones de optimalidad, métodos Caso con restricciones:
Práctica N o 8 Desigualdades Válidas - Algoritmos de Planos de Corte - Algoritmos Branch & Cut
Práctica N o 8 Desigualdades Válidas - Algoritmos de Planos de Corte - Algoritmos Branch & Cut 8.1 Para cada uno de los siguientes conjuntos, encontrar una desigualdad válida que agregada a la formulación
GRAMATICAS LIBRES DEL CONTEXTO
GRMTICS LIBRES DEL CONTEXTO Estas gramáticas, conocidas también como gramáticas de tipo 2 o gramáticas independientes del contexto, son las que generan los lenguajes libres o independientes del contexto.
Autómatas Deterministas. Ivan Olmos Pineda
Autómatas Deterministas Ivan Olmos Pineda Introducción Los autómatas son una representación formal muy útil, que permite modelar el comportamiento de diferentes dispositivos, máquinas, programas, etc.
Análisis y Diseño de Algoritmos
Análisis y Diseño de Algoritmos Ordenamiento en Tiempo Lineal DR. JESÚS A. GONZÁLEZ BERNAL CIENCIAS COMPUTACIONALES INAOE Ordenamiento por Comparación (Comparison Sorts) Tiempo de ejecución HeapSort y
Algoritmos de búsqueda
Capítulo 3 Algoritmos de búsqueda 3.1. Introducción Para realizar una búsqueda en el juego del ajedrez, éste, puede ser representado mediante un árbol, en el cual los nodos representan posiciones del tablero
Proyecto 6. Árboles de decisión: Un árbol de decisión es un modelo de predicción utilizado en el ámbito de la inteligencia artificial.
Árboles de decisión: Un árbol de decisión es un modelo de predicción utilizado en el ámbito de la inteligencia artificial. Funcionamiento: Se realiza un test en cada nodo interno del árbol, a medida que
3. Técnicas de diseño de algoritmos
3. Técnicas de diseño de algoritmos 1. Métodos Generales de Soluciones de Problemas 2. Técnicas de diseño de algoritmos 1. ecursividad básica 2. Divide y vencerás 3. Backtracking Bibliografía Aho, Hopcroft
Alonso Ramírez Manzanares Computación y Algoritmos 10.03
Recursividad mat-151 1 Ejercicio de recursión: dibujando una regla Queremos dibujar las marcas de diferentes tamaños de una regla. Marcas grandes cada 1/2 cm, marcas más pequeñas cada 1/4 cm... hasta una
Búsqueda con adversario
Búsqueda con adversario José Luis Ruiz Reina José Antonio Alonso Jiménez Franciso J. Martín Mateos María José Hidalgo Doblado Dpto. Ciencias de la Computación e Inteligencia Artificial Universidad de Sevilla
Inteligencia Artificial Resolver problemas mediante búsqueda
Inteligencia Artificial Resolver problemas mediante búsqueda Primavera 2007 profesor: Luigi Ceccaroni Resolución de problemas Se quiere: Resolver automáticamente un problema Se necesita: Una representación
Programación Lineal. Modelo de Redes. Alcance de las aplicaciones. Curso: Investigación de Operaciones Ing. Javier Villatoro
Programación Lineal Modelo de Redes Alcance de las aplicaciones Curso: Investigación de Operaciones Ing. Javier Villatoro ALCANCE DE LAS APLICACONES DE REDES ALCANCE DE LAS APLICACIONES Muchas situaciones
Algoritmos. Diagramas de Flujo. Informática IV. L. S. C. Heriberto Sánchez Costeira
Informática IV Algoritmos Diagramas de Flujo L. S. C. Heriberto Sánchez Costeira Algoritmos 1 Definición Es una serie finita de pasos o instrucciones que deben seguirse para resolver un problema. Es un
4.1 CONGRUENCIA ENTRE LOS OBJETIVOS DEL PLAN DE ESTUDIOS Y EL PERFIL DE EGRESO CON LAS LGAC:
4.1 CONGRUENCIA ENTRE LOS OBJETIVOS DEL PLAN DE ESTUDIOS Y EL PERFIL DE EGRESO CON LAS LGAC: A continuación se muestran los objetivos así como los mapas funcionales según la línea de acentuación y la línea
Juegos deterministas. Ajedrez, damas, Go, Othello. barquitos
Árboles de juegos Análisis y Diseño de Algoritmos Tipos de juegos Juegos deterministas Juegos de azar Con información perfecta Con información imperfecta Ajedrez, damas, Go, Othello barquitos Backgammon,
Notación Asintótica 2
Notación Asintótica 2 mat-151 1 Éxamen Rápido (6 minutos) Cada operación fundamental usa c milisegundos, cuánto tiempo toma contar hasta 1,000,000? Cuál es el valor de N? Cuál es el órden de complejidad
Resolución de problemas
Inteligencia en Redes de Comunicaciones Resolución de problemas Julio Villena Román [email protected] El problema de resolver problemas La resolución de problemas es uno de los procesos básicos de razonamiento
Aprendizaje Automatizado
Aprendizaje Automatizado Aprendizaje Automatizado Programas que mejoran su comportamiento con la experiencia. Dos formas de adquirir experiencia: A partir de ejemplos suministrados por un usuario (un conjunto
APUNTADORES. Un apuntador es un objeto que apunta a otro objeto. Es decir, una variable cuyo valor es la dirección de memoria de otra variable.
APUNTADORES Un apuntador es un objeto que apunta a otro objeto. Es decir, una variable cuyo valor es la dirección de memoria de otra variable. No hay que confundir una dirección de memoria con el contenido
Inteligencia Artificial Problemas de satisfacción de restricciones
Inteligencia Artificial Problemas de satisfacción de restricciones Primavera 2007 profesor: Luigi Ceccaroni Problemas de satisfacción de restricciones (PSRs) Componentes del estado = grafo de restricciones:
Teoría de Juegos Modelos Extensivos. Agosto 2016
Teoría de Juegos Modelos Extensivos Agosto 2016 Índice 2. Modelos Extensivos 2.1. Elementos que considera el modelo: alternancia, azar e información 2.2. Definición de juego extensivo 2.3. Definición de
Tema 7: Búsqueda con adversario (juegos)
Tema 7: Búsqueda con adversario (juegos) José Luis Ruiz Reina José Antonio Alonso Franciso J. Martín Mateos María José Hidalgo Departamento de Ciencias de la Computación e Inteligencia Artificial Universidad
Árboles. Un grafo no dirigido es un árbol si y sólo si existe una ruta unica simple entre cualquiera dos de sus vértices.
ÁRBOLES Árboles Un grafo conectado que no contiene circuitos simples. Utilizados desde 1857, por el matemático Ingles Arthur Cayley para contar ciertos tipos de componentes químicos. Un árbol es un grafo
LA PROGRAMACIÓN POR PROCESOS
LA PROGRAMACIÓN POR PROCESOS LA CAJA NEGRA. Weiss y Rein (1970) critican las evaluaciones que no informan sobre lo que ocurre en la caja negra, refiriéndose con este término al proceso de implementación
ALGORITMOS HEURÍSTICOS Y APROXIMADOS. Análisis y diseño de algoritmos II- 2009
ALGORITMOS HEURÍSTICOS Y APROXIMADOS Análisis y diseño de algoritmos II- 2009 Problemas difíciles : Definiciones, ejemplos y propiedades Análisis y diseño de algoritmos II- 2009 Un viaje a Ciencias de
Estructuras en LabVIEW.
Estructuras en LabVIEW. Sumario: 1. Ejecución según el flujo de datos. 2. Estructuras básicas disponibles en LabVIEW. a) Estructura Sequence. b) Estructura Case. c) Estructura For Loop. d) Estructura While
ALGORITMO HILL CLIMBING
ALGORITMO HILL CLIMBING También es conocido como el método de ascenso de colinas Usa una técnica de mejoramiento iterativo Comienza a partir de un punto (punto actual) en el espacio de búsqueda Si el nuevo
Ejemplo: El problema de la mochila. Algoritmos golosos. Algoritmos y Estructuras de Datos III. Segundo cuatrimestre 2013
Técnicas de diseño de algoritmos Algoritmos y Estructuras de Datos III Segundo cuatrimestre 2013 Técnicas de diseño de algoritmos Algoritmos golosos Backtracking (búsqueda con retroceso) Divide and conquer
Computabilidad y Lenguajes Formales: Autómatas Finitos
300CIG007 Computabilidad y Lenguajes Formales: Autómatas Finitos Pontificia Universidad Javeriana Cali Ingeniería de Sistemas y Computación Prof. Gloria Inés Alvarez V. No Determinismo Hasta ahora cada
Búsqueda Local. cbea (LSI-FIB-UPC) Inteligencia Artificial Curso 2011/2012 1 / 33
Introducción Búsqueda Local A veces el camino para llegar a la solución no nos importa, buscamos en el espacio de soluciones Queremos la mejor de entre las soluciones posibles alcanzable en un tiempo razonable
TÉCNICO SUPERIOR UNIVERSITARIO EN TECNOLOGÍAS DE LA INFORMACIÓN Y COMUNICACIÓN
TÉCNICO SUPERIOR UNIVERSITARIO EN TECNOLOGÍAS DE LA INFORMACIÓN Y COMUNICACIÓN HOJA DE ASIGNATURA CON DESGLOSE DE UNIDADES TEMÁTICAS 1. Nombre de la asignatura Desarrollo de Habilidades De Pensamiento
M465: Tanque de Agua. A) Presentación del problema
M465: Tanque de Agua A) Presentación del problema El diagrama muestra la forma y dimensiones de un tanque de almacenamiento de agua. Al inicio el tanque está vacío. Una llave está llenando el tanque a
Flujos de redes (Network Flows NF)
Fluos de redes (Network Flows NF). Terminología. Árbol generador mínimo. Camino mínimo 4. Fluo máximo 5. Fluo de coste mínimo TEORÍA DE GRAFOS. OPTIMIZACIÓN EN REDES Terminología Red o grafo (G) Nodos
Formulación del problema de la ruta más corta en programación lineal
Formulación del problema de la ruta más corta en programación lineal En esta sección se describen dos formulaciones de programación lineal para el problema de la ruta más corta. Las formulaciones son generales,
Tema: Los Grafos y su importancia para la optimización de redes.
Tema: Los Grafos y su importancia para la optimización de redes. Qué son los Grafos? Un grafo es una dupla G= {X,U}, donde X es un conjunto finito y no vacio de elementos llamados vértices y U es el conjunto
Diseño de compiladores. Organización de memoria. Organización de memoria. Organización de memoria. Zona de código 04/05/2014 ORGANIZACIÓN DE MEMORIA
Diseño de compiladores Gestión de la memoria / Generación de código ORGANIZACIÓN DE MEMORIA Organización de memoria Depende del tipo de lenguaje (declarativos, imperativos), del compilador y del sistema
Aprender a desarrollar con JavaScript
Presentación del lenguaje JavaScript 1. Definición e histórico rápido 11 2. Requisitos previos para un aprendizaje sencillo del lenguaje 13 3. Herramientas necesarias 14 4. Posicionamiento de JavaScript
Unidad Nº V Listas Enlazadas
Instituto Universitario Politécnico Santiago Mariño Unidad Nº V Listas Enlazadas Lista Enlazadas Es una colección o secuencia de elementos dispuestos uno detrás de otro, en la que cada elemento se conecta
ALGORÍTMICA
ALGORÍTMICA 2012 2013 Parte I. Introducción a las Metaheurísticas Tema 1. Metaheurísticas: Introducción y Clasificación Parte II. Métodos Basados en Trayectorias y Entornos Tema 2. Algoritmos de Búsqueda
Complejidad de los Algoritmos
Que es un Algoritmo? Complejidad de los Algoritmos Webster: cualquier método especial para resolver cierta clase de problemas. Horowitz: método preciso utilizable en una computadora para la solución de
Conjuntos. Un conjunto es una colección de objetos. Si a es un objeto y R es un conjunto entonces por. a R. se entiende que a pertenece a R.
Conjuntos Un conjunto es una colección de objetos. Si a es un objeto y R es un conjunto entonces por se entiende que a pertenece a R. a R Normalmente, podremos definir a un conjunto de dos maneras: Por
