UNIVERSIDAD MAYOR FACULTAD DE CIENCIAS SILVOAGROPECUARIAS CARRERAS DE AGRONOMÍA E INGENIERÍA FORESTAL

Tamaño: px
Comenzar la demostración a partir de la página:

Download "UNIVERSIDAD MAYOR FACULTAD DE CIENCIAS SILVOAGROPECUARIAS CARRERAS DE AGRONOMÍA E INGENIERÍA FORESTAL"

Transcripción

1 FACULTAD DE CIENCIAS SILVOAGROPECUARIAS CARRERAS DE AGRONOMÍA E INGENIERÍA FORESTAL LABORATORIO DE QUÍMICA GENERAL 1 er Semestre / 2013 Profesoras de Laboratorio: Alejandra Moreno O. Jacqueline Henríquez G.

2 1 INSTRUCCIONES GENERALES El trabajo en el laboratorio requiere que los alumnos dominen el tema que se va a desarrollar en la práctica. Los alumnos deben leer cuidadosamente todas las instrucciones antes de ingresar al laboratorio y prepararse para el desarrollo de cualquier práctica. Esta actividad implica conocer teóricamente la experiencia que se va a realizar y los posibles resultados. Exigencia: El porcentaje de exigencia del laboratorio será de un 60%. Asistencia: Se exigirá asistencia del 100 %. Se justificará la inasistencia sólo de un laboratorio en aquellos casos que presenten certificados médicos directamente al profesor encargado del laboratorio, cumpliendo un plazo máximo de 48 horas. La inasistencia a más de un laboratorio, es causal de reprobación de la asignatura pues el alumno con cumple con los requisitos del 100% de asistencia. Quienes tengan justificaciones aceptadas por el Docente, podrán recuperar las evaluaciones perdidas en una fecha asignada por el profesor sin realizar la recuperación del paso práctico. Los alumnos que lleguen atrasados a algún paso práctico solo podrán hacer ingreso al laboratorio una vez terminado el control de entrada, y tendrán una nota 1.0 en tal evaluación. Quienes lleguen después de esta evaluación no podrán ingresar al laboratorio y serán consignados como ausentes, no pudiendo entrar a otro grupo de laboratorio posterior. Presentación: Cada alumno debe presentarse puntualmente al laboratorio llevando: Guía de laboratorio individual Delantal blanco Zapatos cerrados Pantalón o vestido largo Normas: Es obligatorio, que cada alumno: Trabaje sólo en presencia de profesores. Aplique las normas mínimas de seguridad. Mantenga las balanzas limpias y descargadas. Mantenga los frascos de reactivos tapados y en lugares asignados por el profesor. Consigne el material sucio en el lugar asignado por el profesor, al término de cada sesión. Evaluaciones: Controles de entrada: contempla un control de desarrollo individual de aspectos teóricos de la guía a desarrollar, el promedio de estos controles tendrá una ponderación de un 60% de la nota del laboratorio. Informes de salida: contempla un informe teórico práctico grupal para medir la aplicación de los conocimientos adquiridos por los alumnos, el promedio de estos informes tendrá una ponderación de un 40% de la nota del laboratorio. La Nota Final de Laboratorio representa el 30% de la nota de la asignatura de Química General. Prueba de Competencia experimental Teórica: Prueba global del laboratorio teórica. Prueba de Competencia experimental Práctica: Prueba global del laboratorio aplicada. El promedio de ambas pruebas de competencia experimental representa el 20% de la nota de la asignatura de Química General.

3 2 FECHAS LABORATORIOS 1 ER SEMESTRE / 2013 PRÁCTICO Viernes Sec. 01 IV módulo Sec. 02 V módulo Jueves Sec. 03 I módulo Sec. 04 II módulo Viernes Sec. 05 I módulo Sec. 06 II módulo Lunes Sec. 07 II módulo Sec. 08 III módulo 1 (parte I) 15 / Marzo 14 / Marzo 15 / Marzo 18 / Marzo 1 (parte II) 22 / Marzo 21 / Marzo 22 / Marzo 25 / Marzo 2 (parte I) 05 / Abril 04 / Abril 05 / Abril 01 / Abril 2 (parte II) 12 / Abril 11 / Abril 12 / Abril 18 / Abril 3 (parte I) 19 / Abril 18 / Abril 19 / Abril 15 / Abril 3 (parte II) 26 / Abril 25 / Abril 26 / Abril 22 / Abril 4 (parte I) 03 / Mayo 02 / Mayo 03 / Mayo 29 / Abril 4 (parte II) 10 / Mayo 09 / Mayo 10 / Mayo 06 / Mayo 5 (parte I) 17 / Mayo 16 / Mayo 17 / Mayo 13 / Mayo 5 (parte II) 24 / Mayo 23 / Mayo 24 / Mayo 27 / Mayo P.C.Exp.(*) Teórica 31 / Mayo 30 / Mayo 31 / Mayo 03 / Junio P.C.Exp.(*) Práctica 07 / Junio 06 / Junio 07 / Junio 10 / Junio (*) = Prueba de Competencia Experimental

4 3 LABORATORIO Nº1 EQUIPOS Y MATERIALES 1.- Introducción: A) Instrucciones Generales El trabajo en el laboratorio requiere que los alumnos dominen el tema que se va a desarrollar en la práctica. Los alumnos deben leer cuidadosamente todas las instrucciones antes de ingresar al laboratorio y prepararse para el desarrollo de cualquier práctica. Esta actividad implica conocer teóricamente la experiencia que se va ha realizar y los posibles resultados. Cada alumno debe presentarse puntualmente al laboratorio llevando: Guía de laboratorio Delantal blanco Zapatos cerrados Pantalón o vestido largo Es obligatorio, que cada alumno: Trabaje sólo en presencia de profesores. Conocer y aplicar las normas mínimas de seguridad. Mantener las balanzas limpias y descargadas. Mantener los frascos de reactivos tapados y en lugares asignados por el profesor. Entregar el material limpio al término de cada sesión. B) Exactitud y precisión Al analizar mediciones y cifras significativas, es útil distinguir entre dos términos: exactitud y precisión. La exactitud nos indica cuan cerca esta una medida del valor real de la cantidad medida, por lo tanto, esta relacionado con la sensibilidad del instrumento en la medición (cuantas cifras significativas entrega). La precisión se refiere a cuanto concuerdan dos o más medidas de una misma cantidad utilizando un instrumento, por lo tanto, esta relacionado con la reproducibilidad de la medida, es decir, el error del instrumento. Supóngase que se pide a tres alumnos que determinen la masa de una pieza de alambre de cobre cuya masa real es 2,000 g. Los resultados de dos pesadas sucesivas hechas por cada estudiante son: Estudiante A Estudiante B Estudiante C 1,991 2,000 2,000 1,995 1,968 2,001 Valor promedio 1,993 1,984 2,001 Los resultados del estudiante A son más precisos (error = 0,007) que los del estudiante B (error = 0,016), pero menos precisos que los del estudiante C (error = 0,001). Sin embargo el estudiante C tiene valores más cercanos al valor real, por lo tanto el estudiante C utilizó una balanza de mayor exactitud y precisión que los otros estudiantes. Las medidas muy exactas deben necesariamente ser más precisas, por otro lado, una medida precisa no necesariamente garantiza resultados exactos (estudiante A).

5 4 C) Normas Generales de Seguridad 1. Conozca y practique las normas mínimas de seguridad. 2. Frente a cualquier accidente, por mínimo que este sea, informe de inmediato al profesor. 3. Lea con calma las instrucciones para el desarrollo del trabajo práctico y no se distraiga durante el desarrollo de éste. 4. Use el delantal siempre abotonado. 5. Mantenga limpio su lugar de trabajo. 6. Tenga cuidado con la barba, pelo largo suelto, ya que puedes enredarte fácilmente, inflamarte o absorber sustancias químicas peligrosas. 7. Se prohíbe beber, comer y fumar durante el desarrollo del práctico. 8. No lleve sus manos a la boca durante el desarrollo de un práctico. 9. No pruebe el sabor de ninguna sustancia o solución química. 10. Jamás caliente material de vidrio graduado directamente a la llama del mechero, utilice la estufa para secar. 11. Cuando caliente alguna sustancia en un tubo de ensayo, tome éste con una pinza adecuada y dirija su extremo abierto (la boca del tubo de ensayo) hacia un lugar, lejos de usted y de otras personas, donde eventuales salpicaduras no puedan producir daño a ninguna persona. 12. No encienda mecheros de gas cerca de frascos o recipientes que contengan sustancias inflamables. 13. Etiquete siempre los reactivos y el material que este utilizando en el práctico. 14. No succione un reactivo con la boca usando la pipeta, siempre utilice una propipeta. 15. Lea siempre la etiqueta del reactivo. 16. No huela los reactivos directamente. 17. Mantenga siempre las sustancias químicas tapadas. 18. Los líquidos inflamables y tóxicos deben ser utilizados siempre bajo campana. 19. Diluya o neutralice las sustancias antes de botarlas al resumidero. 20. No bote reactivos sólidos al resumidero. 21. Si se derrama algún reactivo sobre la piel, lave inmediatamente con abundante agua e informe a su profesor lo ocurrido. D) Materiales Volumétricos El material volumétrico se diferencia en: I. No clasificado: No se conoce su precisión, la medición con él implica errores muy grandes. II.Clasificados: Material calibrado individualmente; en general, traen una banda de color blanca con líneas azules que facilita su empleo. Son de alta precisión y exactitud y de acuerdo al margen de error se clasifican en: Clase A: muy exactos e indican tiempo de escurrimiento. Clase B: 2 a 3 % de error. 1) Instrucciones generales para el uso del material volumétrico Cuando un líquido está contenido en algún material volumétrico exhibe una curvatura denominada menisco, en general, se utiliza la parte inferior del menisco para la medición y lectura. En la lectura del material volumétrico, el ojo del observador debe estar a nivel del líquido de otro modo existirá un error de paralaje (ver figura). Ajuste el menisco con la línea de graduación y registre la medida.

6 5 2) Material volumétrico de uso más frecuente Vasos precipitados: Son de amplio uso, entre ellos, para contener volúmenes de líquidos, para evaporar líquidos por calentamiento, para realizar reacciones químicas, etc. Existen de 10, 50, 100, 250, 600, 1000 y 2000 ml. Matraz erlenmeyer: Se utiliza para realizar reacciones químicas, como por ejemplo, reacciones de neutralización (titulación). Existen de 10, 100, 125, 250, 500 y 1000 ml Matraces aforados: Son recipientes de fondo plano y cuello estrecho, en los cuales pequeñas variaciones de volumen del líquido se traducen en cambios visibles en la marca en el cuello (aforo). Los matraces aforados se utilizan solamente para preparar soluciones, no para almacenar por largos períodos de tiempo; para esto se usa el frasco de reactivo. Deben permanecer tapados, ya que la evaporación del líquido que contienen se traduce posteriormente en una alteración de la concentración de la solución. Existen de 5, 10, 25, 50, 100, 250, 500, 1000 y 2000 ml. Matraz kitazato: se parece al matraz erlenmeyer, pero este tiene una salida lateral. Se utiliza en la filtración al vacío, en done la salida lateral es conectada a la bomba de vacío para producir la succión y arrastrar los líquidos que son recogidos en este recipiente. Existen de 100, 250 y 500 ml Probetas: Son recipientes cilíndricos provistos de una base, presentan una escala graduada y las hay de diferentes capacidades. Las probetas no son muy precisas y sólo se emplean para medir volúmenes de líquidos en forma aproximada. Existen de 5, 10, 25, 50, 100, 250, 500 y 1000 ml. Para vaciar la probeta debe inclinarse ligeramente hasta que haya salido todo el líquido, manteniendo esta posición algunos segundos. Propipeta Pipetas graduadas: Presentan una escala graduada y son instrumentos diseñados para entregar un volumen conocido de líquido, transfiriéndolo de un recipiente a otro. Tienen la ventaja de que se pueden medir volúmenes intermedios de la escala de graduación. Por ejemplo, en una pipeta graduada de 10 ml se pueden medir 7,2 ml. Existen pipetas graduadas de 1, 2, 5, 10 y 25 ml. Para medir un volumen se debe llenar la pipeta sobre la graduación, recuerde que los líquidos se introducen en la pipeta por capilaridad, si es necesario hacer que el líquido ascienda debe utilizarse una propipeta evitando succionar con la boca para evitar una ingestión accidental, y la contaminación de la muestra con saliva. Pipetas volumétricas: Estas pipetas al igual que las graduadas, sirven para medir volúmenes, pero en este caso los volúmenes son únicos o fijos. Es

7 6 decir, si la pipeta es de 5 ml sólo sirve para medir 5 ml y no otro volumen. La medición de volúmenes con este tipo de pipeta es más exacta que con las pipetas graduadas. Para medir una cantidad de líquido se procede de la misma forma señalada para la pipeta graduada. Buretas: Consiste de un tubo calibrado provisto de una llave por la cual se controla el flujo del líquido. Poseen una precisión y exactitud superior a las pipetas y siempre se utiliza en forma vertical, sostenida por un soporte universal mediante una pinza para bureta ubicada en su tercio inferior. Para medir un volumen llene la bureta por sobre la graduación con ayuda de un embudo analítico de vástago corto y un vaso de precipitado. Abra la llave y deje escurrir el líquido de tal manera que se llene esta zona con líquido. Verifique que no haya burbujas de aire en el extremo inferior retire el embudo y ajuste el nivel del líquido al punto cero. Ubique su mano izquierda en la llave y manipule utilizando los dedos índice y pulgar. Deje escurrir el líquido paulatinamente hasta la medida deseada. No olvide mantener sus ojos a nivel del líquido para registrar la medida.

8 7 E) Material de filtración La filtración es la separación de un sólido del líquido, el cual se encuentra en suspensión, para ello se usan medios porosos que permiten sólo el paso de líquido o solución y retienen el sólido. Como material filtrante con frecuencia se utiliza el papel filtro. Papel filtro: Se fabrica de celulosa que es un material económico, químicamente inerte, flexible, incinerable, desintegrable, liviano, fácil de almacenar y retener las partículas más finas del precipitado. El tipo de papel filtro y la velocidad de filtración dependen del tamaño de las partículas que se desean separar. Los factores que afectan una filtración son: el tamaño de los poros del medio filtrante, la temperatura, el área de filtración y la presión del sistema. El tamaño del medio filtrante se escoge de acuerdo con la cantidad de sólido a ser retenido y no con respecto a la cantidad de líquido a filtrar. Existen dos tipos de filtración: la filtración simple y la filtración a presión reducida. Filtración simple: Los materiales requeridos consisten en: un embudo corriente (A), un porta embudo o argolla (B), papel filtro (C) y un recipiente colector (D). A B C D El papel filtro debe doblarse de modo que se adapte al embudo, para lo cual se procede como se señala a continuación: Se ubica el papel filtro en el embudo, se humedece con el solvente y se presiona cuidadosamente contra las paredes del embudo para eliminar burbujas de aire. El extremo inferior del embudo (vástago) debe tocar la pared interior del recipiente colector, con el fin de que el líquido escurra por la pared, evitando pérdidas por salpicaduras.

9 8 La filtración es más rápida si primero se deja decantar el sólido en el vaso contenedor, luego se filtra el sobrenadante y al final se vacía el sólido sobre el filtro. Se recomienda utilizar una varilla de vidrio (bagueta), ojalá con un trozo de goma o caucho en uno de sus extremos. La bagueta se adosa al pico del vaso, orientando hacia el centro del embudo, sin apoyarla. El líquido debe escurrir lentamente sin que tenga pérdida por derramamiento. Para arrastrar del vaso contenedor la totalidad del líquido y partículas de la suspención a filtrar, se usa la pizeta con agua destilada. La goma o caucho de la bagueta permite desprender el precipitado adherido a las paredes del vaso, sin rayarlo. El precipitado debe ser lavado inmediatamente después que la solución sobrenadante ha sido removida. Se recomienda usar varias porciones pequeñas de solución lavadora, en vez de uno o dos volúmenes mayores. En general, la solución elegida para lavar el precipitado depende de varios factores: solubilidad del precipitado, naturaleza de los contaminantes ha ser removidos y facilidad de remoción del solvente en la etapa final del secado de cristales. Filtración a presión reducida: El equipo usado consiste en: un embudo Büchner (A), unido a un matraz Kitazato (B) a través de un tapón de goma taladrado; el Kitazato se conecta con una manguera a un frasco o trampa de seguridad (C), el cual esta comunicado con la trampa de agua o bomba de vacío (D). El papel filtro debe ser del diámetro del embudo Büchner de modo que se adapte a éste. Se ubica el papel filtro en el embudo y se humedece con el solvente. Se activa la bomba de vacío, la bagueta se adosa al vaso de precipitado y se orienta hacia el centro del embudo, sin apoyarla. El líquido debe escurrir lentamente sin que tenga pérdida por derramamiento a través de la bagueta. Para arrastrar del vaso contenedor la totalidad del líquido y partículas de la suspención a filtrar, se usa la pizeta con agua destilada. La goma o caucho de la bagueta permite desprender el precipitado adherido a las paredes del vaso, sin rayarlo. El precipitado debe ser lavado inmediatamente después que la solución sobrenadante ha sido removida. Se recomienda usar varias porciones pequeñas de solución lavadora, en vez de uno o dos volúmenes mayores. Una vez termina la filtración, el matraz Kitazato se desconecta de la bomba de vacío y luego se apaga la bomba.

10 9 F) Material de Calentamiento Mecheros: Existe gran variedad de mecheros, siendo el de uso común el Bunsen. Éstos aprovechan el poder calorífico del gas para combustionarse con el aire. Mechero Bunsen: Posee una base metálica en el cual se encuentra el inyector de gas y una salida lateral para la conexión del gas. Atornillada a su base tiene una chimenea con orificios regulares para la entrada del aire. Como se puede observar, cada mechero tiene pequeñas diferencias entre ellos, pero existen elementos básicos que son comunes: chimenea, entrada de aire, conexión de gas, inyector de gas y base. Si la entrada de aire se encuentra tapada, se produce una llama amarilla de bajo poder calorífico; debido a la presencia de gases reductores, tales como hidrógeno y monóxido de carbono esta se conoce como llama Reductora. Al colocar un objeto frío en contacto con esta llama, se deposita una capa de hollín debido a la combustión incompleta. Si la entrada de aire se encuentra abierta, se produce una llama de color azul de alto poder calorífico, ésta es la llama Oxidante. Al colocar un objeto frío en contacto con esta llama, no se deposita una capa de hollín debido a que la combustión es completa. Esta llama presenta diferentes zonas de temperatura. Si el paso de gas es insuficiente o bien hay exceso de aire, puede ocurrir que la llama descienda por el interior de la chimenea y se pose finalmente en el inyector de gas, provocando calentamiento excesivo del tubo. Cuando ocurre esto, se dice que el mechero está calado y se debe cortar inmediatamente el paso de gas, cerrar el paso del aire a la mitad y luego volver a encender. Si el mechero continúa calado, se le debe dar un golpe seco a la goma para que la llama ascienda a la boca del tubo donde debe quedar. SIEMPRE DEBE ENCENDERSE EL MECHERO TENIENDO LA ENTRADA DE AIRE CERRADA

11 10 Baño de agua termorregulado: Es un recipiente lleno de agua, el cual se calienta mediante una resistencia eléctrica. Es más fácil el control de la temperatura en ellos debido a que poseen un regulador del paso de corriente. Calefactores eléctricos: Se usan en síntesis de compuestos y ciertas titulaciones donde es necesario un calentamiento y/o agitación controlada. G) Material de medición de temperatura Existen dos conceptos que se confunden con frecuencia: Cantidad de calor y temperatura. 1) Cantidad de calor Se mide en calorías (cal), kilocalorías (Kcal) y British Thermal Unity (BTU). Una caloría es la cantidad de calor que es capaz de incrementar en un grado Celsius la temperatura de un gramo de agua pura, desde 14,5 a 15,5 C. 2) Temperatura Es el resultado del aporte o sustracción de calor a un cuerpo dado; se puede expresar en grados Celsius (grados centígrados), grados Fahrenheit o Kelvin. La escala Centígrado: Toma como 0 C la temperatura del hielo fundente (agua-hielo) y como 100 C la temperatura de ebullición del agua pura, cuando la presión es de una atmósfera. La temperatura expresada en esta escala se designa como ºC, por ejemplo, la temperatura normal del cuerpo humano es 37 ºC. La escala Fahrenheit: La temperatura del hielo fúndente corresponde a 32 F y la de ebullición del agua a 212 F. Por lo tanto, la relación existente entre la escala centígrado y Fahrenheit es: F = (1,8 x ºC) + 32 Por lo tanto, los 37ºC corresponden a 98,6 ºF. La escala Kelvin: Se diferencia de la escala centígrado en que el cero Kelvin corresponde a 273,15 grados Celsius bajo cero (-273,15 ºC). La temperatura expresada en esta escala se designa con la letra K. La relación existente entre ambas escalas es: T = ºC + 273,15 Por lo tanto, los 37ºC corresponden a 310,15 K.

12 11 3) Termómetro de mercurio Sirven para medir temperaturas entre -30 C y +300 C, límites impuestos por la temperatura de solidificación del mercurio (-38,8 C) y la temperatura de ebullición de éste elemento (+357 C). Este termómetro es un cilindro que posee un depósito o bulbo de mercurio, unido a un capilar, para poder advertir claramente las pequeñas variaciones de volumen generadas por la dilatación o contracción del líquido. Para medir temperaturas bajas se utilizan termómetros con otros líquidos que generalmente se colorean. Por ejemplo para medir temperaturas entre -110 C y +40 C se usa alcohol etílico. Las causas de error en la medición de temperatura con termómetros de contenido líquido son: Falta de tiempo para que la columna llegue a adquirir la temperatura del ambiente en que se hace la medida Error de paralaje del observador. Debido a que el vidrio se contrae por envejecimiento y puede provocar la variación del cero hasta un par de grados, los termómetros deben calibrarse periódicamente. H) Material de medición de masa Existen varios tipos de balanzas, que son los instrumentos que permiten medir masa. Los más utilizados en los laboratorios son: balanza granataria, balanza de precisión y la balanza analítica. Balanza analítica: Es un instrumento de alta exactitud y precisión, utilizada para medir cantidades pequeñas de masa con exactitud de 0,1 miligramo (mg). Presenta un sistema oscilante, que a través de un mecanismo interno determina el peso. Una balanza analítica debe cumplir los siguientes requisitos: ser exacta, estable, sensible y tener un período de oscilación corto. Se detallará el procedimiento de pesada de la balanza Mettler AC100, aunque los pasos son muy similares con cualquier otra balanza. Para ejecutar una pesada sin error, es necesario seguir secuencialmente el procedimiento que se describe a continuación: a) Posar la balanza en una cubierta horizontal sin movimiento cerca de una fuente de energía. b) Nivelar la balanza y conectar a la corriente eléctrica. c) Encender y presionar la tecla de lectura (TARE) para llevar la cifra a 0,0000 gramos. d) Si desea pesar un objeto, abra la puerta lateral, coloque el objeto a pesar, cierre la puerta y registre la medida. e) Si desea pesar una cantidad determinada de sustancia, primero hay que tarar el recipiente en el que se depositará la sustancia a pesar. Coloque el recipiente en el interior de la balanza cierre la puerta lateral y presione la tecla de lectura (TARE) de manera de tarar el recipiente. Agregue la cantidad sustancia deseada cierre las puertas y lea la medida. f) Retirar el recipiente con la sustancia pesada y vuelva a tarar. g) Limpie la balanza una vez que haya terminado de usarla. I) Material de medición de densidad La densidad es una propiedad física que depende de la temperatura debido a la dilatación que sufren los cuerpos; su valor numérico es característico de la sustancia y ayuda a identificarla. La densidad de líquidos y sólidos se expresa normalmente en gramos por mililitro (g/ml), mientras que la densidad de los gases se expresa en gramos por litro (g/l). Su valor corresponde a la razón entre su masa y el volumen que ocupa dicha masa:

13 12 masa de la sustancia densidad = Volumen de la sustancia w d = V d = densidad w = masa V = volumen Como la densidad del agua no varía apreciablemente con la temperatura entre 0 C y 30 C, se puede utilizar el valor aproximado de 1,00 g/ml para los cálculos. Densímetro: Sirve para determinar la densidad de líquidos. Es un cilindro de vidrio hueco, herméticamente cerrado que presenta, en su parte superior, una escala graduada en su interior y en su parte inferior contiene municiones que sirven de lastre, de modo que al sumergirlo en el líquido se hunda hasta cierto nivel y permita determinar la densidad del líquido. La sensibilidad de un densímetro depende del diámetro de su vástago; como éste no puede ser muy largo, estos instrumentos se fabrican para medir intervalos de densidad, razón por la cual, existen juegos de densímetros, los cuales poseen graduación creciente. Para medir la densidad de un líquido, se debe seguir el siguiente procedimiento: a) Tomar una probeta de 500 ml y llene las ¾ partes con el líquido cuya densidad se desea conocer (aproximadamente 400 ml). b) Siempre se debe partir con el densímetro de menor escala para seleccionar el densímetro que corresponda al rango de densidad que espera medir. c) Introduzca el densímetro en el líquido de modo que flote sin tocar las paredes del recipiente donde se realiza la determinación. En caso de que persista el contacto con las paredes gire el densímetro muy suavemente, repita la operación hasta lograr el efecto deseado. d) En la posición de equilibrio la densidad se lee directamente en la escala graduada que se encuentra en la parte superior de éste. La escala graduada da directamente la densidad del líquido en la unidad g/ml. e) Registre la temperatura a la cual se realizó la medida. 2.- Objetivos del trabajo: Conocer y manejar las normas básicas de seguridad en el Laboratorio. Conocer y manipular adecuadamente el material de Laboratorio de uso más frecuente.

14 Parte Experimental: PRIMERA PARTE: Material volumétrico y medición de masa: a) Marque, enumere y mase cuatro vasos de precipitados de 50 ml en una balanza analítica. b) Al vaso 1 agregue 10 ml de agua destilada utilizando una bureta. c) Al vaso 2 agregue 10 ml de una solución de NaCl utilizando una pipeta volumétrica. d) Al vaso 3 agregue 10 ml de una solución de CuSO 4 utilizando una pipeta graduada. e) Al vaso 4 agregue 10 ml de una solución de K 2 Cr 2 O 7 utilizando una probeta. f) Pese nuevamente los vasos precipitados y registre los valores obtenidos en la siguiente tabla. Vaso Masa del Vaso Seco (g) Tipo de solución Masa del Vaso con los 10 ml de solución (g) Masa de solución vertida (g) 1 Agua destilada (H 2 O) 2 Cloruro de sodio (NaCl) 3 Sulfato cúprico (CuSO 4 ) 4 Dicromato de potasio (K 2 Cr 2 O 7 ) g) Asumiendo que el volumen medido es exacto, determine la densidad de cada solución: Vaso Tipo de solución Densidad (g/ml) Agua destilada (H 2 O) Cloruro de sodio (NaCl) Sulfato cúprico (CuSO 4 ) Dicromato de potasio (K 2 Cr 2 O 7 ) h) Compare los resultados obtenidos en el experimento N 1 letra g con los datos que se dan a continuación, y explique brevemente cual es el material volumétrico, de los que usted utilizó, más exacto para medir el volumen. Tipo de solución Densidad (g/ml) Agua destilada (H 2 O) 1,00 Cloruro de sodio (NaCl) 1,21 Sulfato cúprico (CuSO 4 ) 1,20 Dicromato de potasio (K 2 Cr 2 O 7 ) 1,10

15 14 Respuesta: i) Transforme los valores calculados de masa de solución vertida de agua destilada en gramos (g) a: milígramos (mg), kilógramos (Kg) y microgramos (µg). Utilice notación científica cuando sea necesario. Tipo de solución milígramos Kilógramos microgramos Agua destilada SEGUNDA PARTE: 2) Material de medición de densidad. Densidad de un sólido: a) Mase, en una balanza analítica, un tapón de goma proporcionado por el profesor. b) Tome una probeta de 250 ml y añada agua potable hasta aproximadamente 100 ml y registre este volumen inicial lo más exacto posible. c) Introduzca cuidadosamente el tapón dentro de la probeta de manera que se sumerja. Lea y anote el volumen final lo más exacto posible. d) Determine el volumen desplazado (volumen del tapón), restando al volumen final el volumen inicial. Masa del tapón Volumen inicial Volumen final Volumen desplazado e) Calcule la densidad aproximada del tapón de goma, dividiendo la masa del tapón por el volumen desplazado, a través de la siguiente ecuación. Exprese su resultado utilizando dos decimales. masa del tapón densidad = Volumen desplazado Densidad del tapón de goma =

16 15 f) Transforme la unidad de densidad de g/ml a: mg/ml, g/l, Kg/L y g/ml mg / ml g / L Kg / L g / ml 3) Termómetro de mercurio y medición de temperatura. a) Coloque en un vaso de precipitado de 100 ml un hielo y suficiente agua destilada para que el bulbo del termómetro de mercurio quede sumergido. Agite la mezcla con ayuda de una bagueta y deje reposar por 2 minutos antes de medir la temperatura del agua fundida (agua-hielo). b) En otro vaso de precipitado de 50 ml coloque suficiente agua destilada para que el bulbo del termómetro de mercurio quede sumergido y mida su temperatura (agua a temperatura ambiente). c) Encienda el mechero y coloque un vaso de precipitado de 50 ml sobre la rejilla de asbesto que contenga suficiente agua destilada para poder medir su temperatura. Cuando el agua este hirviendo, y sin apagar el mechero, mida su temperatura (agua a ebullición). d) Registre las temperaturas obtenidas para cada caso en la siguiente tabla. Agua-hielo Agua a temperatura ambiente Agua a ebullición Temperatura en grados Celsius e) Transforme la temperatura de ºC a: K y ºF agua - hielo Temperatura en Kelvin (K) Temperatura en grados Fahrenheit ( F) agua a temperatura ambiente agua a ebullición

17 16 LABORATORIO N 2 SOLUCIONES Y PROPIEDADES COLIGATIVAS 1.- Introducción A) Soluciones La materia puede presentarse en forma de mezclas o sustancias puras. Cuando una mezcla tiene una composición uniforme, en cualquier punto del volumen que ella ocupa, decimos que ésta es una mezcla homogénea, se observa una sola fase. En el lenguaje químico una mezcla homogénea es una solución. Las soluciones pueden ser sólidas, líquidas o gaseosas. Tipos de solución Ejemplos Componentes sólida líquida gaseosa bronce, oro de 18 quilates infusión de té gasolina aire gas licuado cobre y estaño oro y cobre o plata cafeína, taninos, pigmentos y agua (entre otros) mezcla de más de 200 hidrocarburos nitrógeno, oxígeno, dióxido de carbono, argón, agua, etc. propano y butano principalmente Cuando una mezcla no tiene una composición uniforme, en cualquier punto del volumen que ella ocupa, decimos que ésta es una mezcla heterogénea, se observa más de una fase. Por ejemplo, el agua con aceite. Los componentes de una solución o mezcla, normalmente, se pueden separar por destilación, como es el caso del aire, la gasolina, el pisco o el gas licuado; o por fusión zonal, en el caso de algunas soluciones sólidas. No siempre es posible separar en un sólo proceso a cada componente en forma pura, pero dependiendo de los objetivos es posible desarrollar procesos elaborados que conduzcan a la separación de uno o más componentes puros. Unidades de concentración El concepto de solución implica la participación de a lo menos dos componentes. Por convención, en una solución se denomina solvente al componente que está presente en mayor proporción. El resto de los componentes, que están en menor proporción, son los solutos. Como esta proporción es variable, para expresar en forma cuantitativa la relación entre los componentes, es necesario recurrir a las unidades de concentración. Según sean las unidades de medidas seleccionadas, se podrá obtener todo un sistema de notaciones para expresar concentraciones. Si las unidades son físicas, las unidades de concentración más comunes son: el porcentaje peso-peso; el porcentaje peso-volumen, el porcentaje volumen-volumen y las partes por millón. Si las unidades son químicas, las unidades más utilizadas son: la molaridad, molalidad, normalidad y la fracción molar.

18 17 1. Porcentaje peso-peso (% p/p): También se le conoce como porcentaje de masa y determina la masa de soluto, en gramos, contenida en 100 gramos (g) de masa de solución. Se trata de una unidad de amplio uso en la venta de reactivos químicos. Se puede calcular mediante la siguiente expresión: masa de soluto (g) %p/p = x 100 masa de solución (g) Ejemplo: Si se disuelven 10 g de cloruro de sodio (NaCl) en 90 g de agua. La solución es al 10% en peso. 2. Porcentaje peso-volumen (% p/v): Se refiere a la masa de soluto, en gramos, disuelta por cada 100 ml de solución. Es la unidad preferida en la información de análisis de laboratorios clínicos. Se puede calcular mediante la siguiente expresión: masa de soluto (g) %p/v = x 100 Volumen de solución (ml) Ejemplo: Si se disuelven 10 g de cloruro de sodio (NaCl) en 100 ml de solución. La solución es al 10% p/v 3. Partes por millón (ppm): Esta expresión corresponde a una parte de soluto disuelta en un millón de partes de solución, es decir, la masa de soluto, en miligramos, disuelta en un litro de solución (mg/l) o la masa de soluto, en miligramos, disuelta en un kilogramo de solución (mg/kg). Esta unidad es utilizada para soluciones muy diluidas. Se puede calcular mediante la siguiente expresión: ppm = masa de soluto (mg) masa de solución (Kg) o Volumen de solución (L) Ejemplo: Si se disuelven 10 mg de cloruro de sodio (NaCl) en 1000 ml de solución. La solución es al 10 ppm. 4. Molaridad (M): Indica el número de moles de soluto contenido en cada litro de solución (mol/l), y se calcula por medio de la expresión: Molaridad = moles de soluto Volumen de solución (L) moles de soluto Molaridad = x 1000 Volumen de solución (ml) Ejemplo: Si se disuelven 10 g de cloruro de sodio (NaCl), cuya masa molar es 58,5 g/mol, en 100 ml de solución. La solución es 1,71 M.

19 18 5. Normalidad (N): Indica el número de equivalentes de soluto contenido en cada litro de solución (eq/l) y se calcula por medio de la expresión: Normalidad = equivalentes de soluto Volumen de solución (L) El número de equivalente de soluto (Eq) se determina multiplicando el número de moles de soluto (mol) por número de partículas (#). Eq = mol # Dependiendo del tipo de soluto el número de partículas se determina de diferente manera, así por ejemplo, en un ácido corresponde al número de hidrógenos que presente; en los hidróxidos corresponde al número de iones hidróxido que presente y en el caso de un ion corresponde a la carga. Ejemplos: a) Si se disuelven 15 g de ácido sulfúrico (H 2 SO 4 ), cuya masa molar es 98,0 g/mol, en en 100 ml de solución, la concentración de la solución es 3,06 N (1,53 M). b) Si se disuelven 15 g de hidróxido de calcio (Ca(OH) 2 ), cuya masa molar es 74 g/mol, en 100 ml de solución. La solución resultante es 4,06 N (2,03 M). c) Si están disueltos 15 g del ion sodio (Na +1 ), cuya masa molar es 23 g/mol, en 100 ml de solución, la concentración de la solución es 6,52 N (6,52 M). d) Si están disueltos 15 g del ion sulfato ((SO 4 ) -2 ), cuya masa molar es 96 g/mol, en 100 ml de solución, la concentración de la solución es 3,12 N (1,56 M). Preparación de soluciones Las soluciones se pueden preparar por pesada o por dilución. Cuando se dispone de un sólido puro como soluto, la solución se prepara pesando una masa dada de soluto (por pesada), para luego añadir suficiente solvente para enrasar hasta el aforo del matraz volumétrico. Sin embargo, cuando se dispone de una solución concentrada, es decir, el soluto esta formando parte de una solución, es posible preparar una solución midiendo el volumen necesario (por dilución), para luego agregar suficiente solvente para obtener una solución de menor concentración. Por pesada Ejemplo: Se desea preparar 250 ml de una solución de carbonato de sodio (Na 2 CO 3 ) 0,1 M. Indique como hacerlo, si dispone de carbonato de sodio sólido como materia prima. (Masa molar del carbonato de sodio es 106 g/mol). Solución: Paso 1: Determinar la masa necesaria 0,1 molar significa que tengo 0,1 mol de carbonato de sodio en 1,0 L (1000 ml) de solución. 0,1 mol 1000 ml x 250 ml x = 0,025 mol. Por lo tanto, para preparar 250 ml se requieren 0,025 moles de carbonato de sodio. Si la masa molar es 106 g/mol. Entonces, 106 g 1 mol x 0,025 mol x = 2,65 g. Por lo tanto, se requiere 2,65 g de carbonato de sodio.

20 19 Paso 2: Preparación Pesar 2,65 g de carbonato de sodio en un vaso precipitado en una balanza analítica. Disolver en un poco de agua destilada y vaciar a un matraz aforado de 250 ml. Enjuagar el vaso precipitado con dos porciones de agua destilada y vaciar al matraz aforado. Enrasar, con agua destilada, hasta el aforo, agitar para homogeneizar y trasvasijar a una botella de almacenamiento. Etiquetar señalando el nombre de la solución, la concentración, la fecha de preparación y el nombre de la persona responsable de la preparación. Por dilución Ejemplo: Se desea preparar 250 ml de una solución de ácido nítrico (HNO 3 ) 0,5 M. Indique como hacerlo, si dispone de una solución de ácido nítrico al 43% en peso y densidad 1,27 g/ml como materia prima. (Masa molar del ácido nítrico es 63 g/mol). Solución: Paso 1: Determinar el volumen necesario 0,5 molar significa que tengo 0,5 mol de ácido nítrico en 1,0 L (1000 ml) de solución. 0,5 mol 1000 ml x 250 ml x = 0,125 mol. Por lo tanto, para preparar 250 ml se requieren 0,125 moles de ácido nítrico. Si la masa molar es 106 g/mol, entonces 63 g 1 mol x 0,125 mol x = 7,88 g. Por lo tanto, se requiere 7,88 g de ácido nítrico Como la solución de la cual se dispone (solución madre) es al 43% en peso, entonces 43 g 100 g de solución 7,88 x x = 18,3 g de solución. Por lo tanto, se requiere 18,3 g de la solución madre Como se dispone de la densidad (1,27 g/ml), se calcula el volumen correspondiente a ésta masa 1,27 g 1 ml de solución 18,3 g x x = 14,4 ml de solución. Por lo tanto, se requiere 14,4 ml de la solución madre Paso 2: Preparación Se mide con un material volumétrico apropiado 14,4 ml de la solución madre (ácido nítrico al 43% en peso y densidad 1,27 g/ml). Vaciar directamente a un matraz aforado de 250 ml que contenga una pequeña cantidad de agua destilada. Enrasar, con agua destilada, hasta el aforo, agitar para homogeneizar y trasvasijar a una botella de almacenamiento. Etiquetar señalando el nombre de la solución, la concentración, la fecha de preparación y el nombre de la persona responsable de la preparación.

21 20 Otra forma de trabajar, en la preparación de soluciones diluidas a partir de soluciones concentradas es a través del factor de dilución. Dependiendo de los datos que se dispongan se define de la siguiente manera: Factor de dilución = Concentración de la solución madre Concentración de la solución diluida o bien, Factor de dilución = Volumen de la solución diluida Volumen de la solución madre Considerando el mismo ejemplo anterior, es decir, se desea preparar 250 ml de una solución de ácido nítrico (HNO 3 ) 0,5 M y se dispone de una solución de ácido nítrico al 43% p/p y densidad 1,27 g/ml como materia prima. (Masa molar del ácido nítrico es 63 g/mol). Entonces se procede de la siguiente manera: Primero se debe determinar la molaridad de la solución madre, para lo cual se utiliza la siguiente ecuación Molaridad de la solución madre = %p/p densidad de la solución 10 Masa molar del soluto M madre = 43 1, = 8,67 molar Ahora se puede determinar el factor de dilución, como M madre = 8,67 y M diluida = 0,5 entonces 8,67 Factor de dilución = = 17,3 0,5 Luego, si el volumen a preparar (V diluida) es 250 ml, entonces el volumen requerido de la solución madre para preparar la nueva solución se determina de la siguiente manera, el volumen de la solución diluida se divide por el factor de dilución, es decir: V madre = V diluida Factor de dilución V madre = 250 ml 17,3 = 14,4 ml Por lo tanto, se requiere 14,4 ml de la solución madre para preparar 250 ml de una solución cuya concentración sea 0,5 molar.

22 21 A) Propiedades Coligativas Si analizamos distintos líquidos, en las mismas condiciones de temperatura y presión atmosférica, se puede apreciar que sus propiedades físicas varían de unos a otros. Algunas de estas propiedades son densidad, punto de ebullición, punto de congelación, presión de vapor, etc. Así por ejemplo Líquido Presión de vapor a 25 C Punto de ebullición a 1 atm Agua 23,8 mmhg 100,0 C Benceno 94,4 mmhg 80,1 C Por lo tanto, los líquidos puros tienen propiedades físicas características. Cuando un soluto y un solvente dan origen a una solución, ésta presenta propiedades físicas que difieren de las correspondientes a los componentes puros. Así por ejemplo, a una presión de una atmósfera el agua hierve a 100 C, si al agua se le agrega un soluto podemos observar que el punto de ebullición se eleva. Muchas propiedades importantes de las soluciones dependen del número de partículas de soluto en la solución y no de la naturaleza de las partículas del soluto. Estas propiedades se denominan propiedades coligativas, porque tienen un mismo origen; esto es, todas ellas dependen del número de partículas de soluto presentes, independiente de que las partículas sean átomos, iones o moléculas. Las propiedades coligativas son: el aumento del punto de ebullición (ascenso ebulloscópico), el descenso del punto de congelación (descenso crioscópico), disminución de la presión de vapor y la presión osmótica. En este trabajo se verificará la presión osmótica Si dos soluciones líquidas de un soluto cualquiera, no volátil, de diferente concentración, se ponen en contacto a través de una membrana semipermeable, estas soluciones tienden a igualar sus concentraciones mediante el paso de solvente a través de la membrana; este proceso se denomina Osmosis. En consecuencia, la osmosis es el proceso por el cual una membrana semipermeable permite el paso de solvente a través de ella con el objetivo de igualar la concentración a ambos lados de la membrana. En general, se trata de membranas que permiten el paso de moléculas de pesos moleculares pequeños, pero que no pueden ser atravesadas por moléculas de pesos moleculares elevados (por ejemplo, sobre 5000) como típicamente es el caso de proteínas, polisacáridos y polímeros naturales o sintéticos. La presión que se debe ejercer sobre la solución para evitar la osmosis, corresponde a la presión osmótica. La presión osmótica ( ), se puede determinar por medio de la siguiente relación: = M R T En esta ecuación, M es la concentración molar de un soluto, R es la constante universal de los gases y T la temperatura absoluta. La presión osmótica es directamente proporcional a la concentración de la disolución. Si se tienen dos soluciones de igual concentración y, por ende, con la misma presión osmótica, se dice que son isotónicas o isoosmóticas. Si dos soluciones tienen presiones osmóticas diferentes, se dice que la más concentrada es hipertónica o hiperosmótica y la más diluida se describe como hipotónica o hipoosmótica. 2.- Objetivos Preparar una solución acuosa de concentración dada, si dispone de un soluto sólido o de una solución más concentrada del mismo u otro soluto. Verificar y predecir la dirección en la que fluye un solvente a través de una membrana semipermeable.

23 Parte Experimental PRIMERA PARTE: Soluciones 1. Preparación de una solución por pesada: Prepare 250 ml de solución acuosa 0,1 M de hidróxido de sodio (NaOH). a) Para este fin, calcule la masa requerida de NaOH (masa molar 40 g/mol y # = 1). b) Utilizando un vaso precipitado de 100 ml, mase la cantidad de sólido calculado en la balanza analítica y registre el valor con todos los dígitos c) Disuelva el sólido añadiendo agua destilada (aproximadamente 30 ml) y agite de manera constante y cuidadosa, con ayuda de una bagueta, evitando salpicaduras. d) Una vez disuelto todo el sólido transfiera la solución, con ayuda de un embudo, a un matraz aforado de 250 ml, enjuague el vaso 2-3 veces con pequeñas porciones de agua añadiendo cada enjuague al matraz. e) Enrase hasta el aforo, teniendo cuidado de no pasarse, de preferencia complete el volumen final con un gotario o pipeta Pasteur. f) Agite suavemente el matraz por inversión, para homogenizar la solución. g) Transfiera la solución a un frasco de reactivo plástico de 250 ml. h) Etiquete el frasco de reactivo como se muestra en el recuadro. NaOH 0,1 M Fecha:... Mesón:... Sección:... Integrantes: i) Asumiendo que su solución de hidróxido de sodio, está correctamente preparada es decir tiene una concentración igual a 0,1 M, transforme esta concentración a Normalidad y % p/v

24 23 2) Preparación de una solución por dilución: Prepare 500 ml de una solución de Azul de Metileno 40 ppm a partir de una solución 250 ppm. a) Para este fin determine el volumen de una solución a 250 ppm que necesita para preparar los 500 ml de una solución a 40 ppm. Utilice la fórmula C 1 x V 1 = C 2 x V 2 Recuerde que para usar dicha fórmula las unidades de concentración y volumen deben ser las mismas. b) Mida el volumen determinado con una probeta de 100 ml. c) Agregue el contenido de la probeta directamente al matraz aforado de 500 ml. d) Enjuague la probeta 2 ó 3 veces con pequeñas porciones de agua añadiendo cada enjuague al matraz. e) Enrase hasta el aforo, teniendo cuidado de no pasarse, de preferencia complete el volumen final con un gotario o pipeta Pasteur. f) Agite suavemente el matraz por inversión, para homogenizar la solución. g) Transfiera la solución a un frasco de reactivo de plástico de 500 ml. h) Etiquete el frasco de reactivo como se muestra en el recuadro. Azul de Metileno 40 ppm Fecha:... Mesón:... Sección:... Integrantes: i) Asumiendo que su solución de Azul de Metileno, está correctamente preparada, es decir, tiene una concentración igual a 40 ppm, transforme esta concentración a % p/v y Molaridad. (Masa Molar: 319,85 g/mol)

25 24 SEGUNDA PARTE: Presión Osmótica a) Cuidadosamente saque los huevos del recipiente con vinagre para no romper la membrana, y, séquelos tocándolos suavemente con una toalla de papel absorbente. b) Al inicio del trabajo de laboratorio, un miembro del grupo masará los huevos en la balanza de precisión sobre un vidrio de reloj y los ubicará de modo que sepa a cuál de ellos corresponde cada masa. c) El otro miembro del grupo, preparará 2 vasos de precipitado de 600 ml (A y B). El vaso A con 400 ml de una solución de azul de metileno preparada en la primera parte y el vaso B con una solución acuosa de azúcar agregando 85 g de azúcar de mesa sobre 350 ml de agua destilada. d) Ponga un huevo en cada vaso, siguiendo la pista de cada huevo con su correspondiente masa inicial. Anote la hora de inicio de su experimento. e) Después de 45 minutos, saque los huevos (de uno a la vez); séquelos suavemente con una toalla de papel absorbente y péselos nuevamente. Anote la masa de los 2 huevos y de acuerdo a sus resultados, clasifique las soluciones como hipoosmótica, isoosmótica o hiperosmótica. huevo (1) en vaso A huevo (2) en vaso B Masa del huevo al inicio Masa del huevo después de 45 minutos Clasificación de la solución f) Esquematice cada uno de los procesos de osmosis que se llevaron a cabo durante el laboratorio. g) Cuál es la presión osmótica de una disolución acuosa de urea 1,36 M a 22 C? h) La presión osmótica promedio del agua de mar es 30 atm a 25 C. Determine la concentración molar de una solución acuosa de urea que es isotónica con el agua de mar.

26 25 LABORATORIO N 3 CINÉTICA Y EQUILIBRIO QUÍMICO 1.- Introducción A) Cinética La cinética química se ocupa de la velocidad con que ocurren las reacciones químicas, de los factores que la determinan y de los mecanismos intermedios a través de los cuales los reaccionantes se convierten en productos. Consideremos la reacción general aa + bb cc + dd La velocidad de una reacción se expresa como la razón entre el cambio de concentración de un reaccionante o un producto y el cambio de tiempo. Las unidades de la velocidad de reacción suelen ser molaridad por segundo (M/s). Una ecuación que relaciona la velocidad de una reacción con la concentración se llama Ley de velocidad o Ecuación de velocidad. La ecuación de velocidad para cualquier reacción química debe determinarse de modo experimental y no se puede predecir tan sólo con la ecuación química. La ley de velocidad para la mayor parte de las reacciones se expresa en función de la concentración de los reaccionantes, es así que para la reacción general: aa + bb cc + dd la ecuación de velocidad o ley de velocidad será: Velocidad = k [A] m [B] n Donde, k = constante de velocidad m = orden de A n = orden de B n + m = orden de la reacción La velocidad de una reacción química puede medirse en diferentes formas. Por ejemplo, a intervalos adecuados pueden obtenerse alícuotas de la mezcla de reacción y medir el aumento de concentración de un producto o la disminución en la concentración de un reaccionante. La concentración de reaccionantes o productos se mide dé acuerdo con las propiedades físico-químicos de ellos. Así por ejemplo, si se produce un ácido en la reacción, su concentración se puede determinar titulando con una base; si se produce un gas, él se puede determinar manométricamente. Para reacciones en disolución, la concentración de ciertas especies puede ser seguida fácilmente por métodos espectrofotométricos. Si existen iones involucrados, el cambio en la concentración puede ser monitoriado por medidas de conductancia eléctrica. Factores que determinan la velocidad de una reacción química 1) La concentración de reaccionantes. En general, la velocidad de una reacción química, aumenta con el aumento en la concentración de reaccionantes. Esta dependencia está expresa en la ley de acción de masas y se determina experimentalmente. De estas mediciones se pueden deducir el orden de reacción que se define

27 26 formalmente en la ecuación de velocidad pertinente como: la suma de los exponentes a que están elevadas las concentraciones respectivas. Reacciones de orden 1: las reacciones más simples son las de orden 1. En estos casos, la velocidad de la reacción es proporcional a la concentración de una sola sustancia reaccionante. v = k [R] Ecuación Nº1 Reacción de orden 2: en estos casos, la velocidad de la reacción varia en un factor de dos, es decir, si la concentración se duplica la velocidad se cuadruplica. La ecuación de velocidad esta dada por: v = k [R] 2 Ecuación Nº2 Reacción de orden cero: En este tipo de reaccciones, la velocidad es constante e independiente de la concentración de reaccionantes. La ecuación de velocidad esta dada por: v = k Ecuación Nº3 En este tipo de reacciones la concentración del producto se duplica por cada unidad de tiempo. 2) Efecto de la temperatura. A una temperatura determinada, las moléculas de un compuesto dado tienen una velocidad promedio y, por lo tanto, una energía cinética promedio que es característica del compuesto y de las condiciones del sistema. No todas las moléculas van a tener la misma energía cinética y el número de moléculas con una energía determinada, sigue una típica curva de Gauss. Parece lógico suponer, y generalmente cierto, que las reacciones químicas ocurren como resultado de las colisiones entre las moléculas reaccionante. En términos de la teoría de las colisiones, es de esperarse que la velocidad de una reacción sea directamente proporcional al número de colisiones moleculares por segundo. La implicación de la teoría de las colisiones es que la reacción siempre ocurre cuando las moléculas chocan. Sin embargo, no todas las colisiones producen una reacción. Cualquier molécula en movimiento posee energía cinética, cuando las moléculas chocan, una parte de su energía cinética se convierte en energía vibracional. Si la energía cinética inicial es grande, entonces las moléculas en choque vibrarán tanto que se romperán algunos enlaces químicos. Esta fractura del enlace es el primer paso hacia la formación del producto. Si la energía cinética inicial es pequeña las moléculas prácticamente rebotarán intactas. Se postula que, para que haya una reacción, las moléculas en choque deben tener una energía cinética total igual o superior a la energía de activación (Ea), que es la mínima energía que se requiere para iniciar una reacción química. La especie formada temporalmente por las moléculas de reactivo, como resultado de la colisión, antes de formar el producto se llama complejo activado. En 1889, Svante Arrhenius, mostró que la dependencia de la constante de velocidad de una reacción respecto de la temperatura puede expresarse mediante la siguiente ecuación, que se conoce como Ecuación de Arrhenius. k = A e -Ea/RT Ecuación Nº4

UNIVERSIDAD MAYOR FACULTAD DE CIENCIAS SILVOAGROPECUARIAS CARRERAS DE AGRONOMÍA E INGENIERÍA FORESTAL

UNIVERSIDAD MAYOR FACULTAD DE CIENCIAS SILVOAGROPECUARIAS CARRERAS DE AGRONOMÍA E INGENIERÍA FORESTAL FACULTAD DE CIENCIAS SILVOAGROPECUARIAS CARRERAS DE AGRONOMÍA E INGENIERÍA FORESTAL LABORATORIO DE QUÍMICA GENERAL 1 er Semestre / 2012 Profesoras de Laboratorio: Alejandra Moreno O. Gabriela Cornejo B.

Más detalles

LABORATORIO N 2 PREPARACIÓN DE SOLUCIONES

LABORATORIO N 2 PREPARACIÓN DE SOLUCIONES LABORATORIO N 2 PREPARACIÓN DE SOLUCIONES I.- INTRODUCCIÓN A) Soluciones La materia puede presentarse en forma de mezclas o sustancias puras. Cuando una mezcla tiene una composición uniforme, en cualquier

Más detalles

PRÁCTICA Nº 2 OPERACIONES COMUNES EN UN LABORATORIO

PRÁCTICA Nº 2 OPERACIONES COMUNES EN UN LABORATORIO PRÁCTICA Nº 2 OPERACIONES COMUNES EN UN LABORATORIO OBJETIVO Utilizar el material de laboratorio en las operaciones más comunes realizadas en un laboratorio de química. I. ASPECTOS TEÓRICOS Una vez conocido

Más detalles

Material de uso frecuente en el laboratorio de química. Figura Nombre Uso / Características. Crisol. Espátula de porcelana. Capsula de porcelana

Material de uso frecuente en el laboratorio de química. Figura Nombre Uso / Características. Crisol. Espátula de porcelana. Capsula de porcelana Material de uso frecuente en el laboratorio de química. En un Laboratorio de Química se utiliza una amplia variedad de instrumentos o herramientas que, en su conjunto, se denominan material de laboratorio.

Más detalles

PREPARACIÓN DE SOLUCIONES

PREPARACIÓN DE SOLUCIONES PRÁCTICA 4 PREPARACIÓN DE SOLUCIONES OBJETIVOS: Determinar las concentraciones físicas y químicas de las soluciones Preparar soluciones a partir de reactivos sólidos y líquidos I. FUNDAMENTO TEÓRICO. Las

Más detalles

SEPARACIÓN DE LOS COMPONENTES DE UNA MEZCLA

SEPARACIÓN DE LOS COMPONENTES DE UNA MEZCLA PRÁCTICA Nº 3 SEPARACIÓN DE LOS COMPONENTES DE UNA MEZCLA OBJETIVOS: Establecer los fundamentos teóricos de los proceso de separación. Separar los componentes de diversas muestras problema. I. FUNDAMENTOS

Más detalles

PREPARACIÓN DE SOLUCIONES

PREPARACIÓN DE SOLUCIONES 1. INTRODUCCION Las soluciones se definen como mezclas homogéneas de dos o más especies moleculares o iónicas. Las soluciones gaseosas son por lo general mezclas moleculares. Sin embargo las soluciones

Más detalles

OBJETIVO Aprender a preparar disoluciones de concentración dada, ya que la mayor parte de las reacciones químicas tienen lugar en forma de disolución.

OBJETIVO Aprender a preparar disoluciones de concentración dada, ya que la mayor parte de las reacciones químicas tienen lugar en forma de disolución. OBJETIVO Aprender a preparar disoluciones de concentración dada, ya que la mayor parte de las reacciones químicas tienen lugar en forma de disolución. FUNDAMENTO TEÓRICO Una disolución es una mezcla homogénea

Más detalles

DETERMINACION DEL PM. DE LA FRUCTOSA

DETERMINACION DEL PM. DE LA FRUCTOSA 1. INTRODUCCIÓN Las propiedades coligativas de las soluciones son aquellas que dependen del número (cantidad) pero no del tipo de partículas de soluto en una cantidad dada de disolvente, las principales

Más detalles

LABORATORIO DE QUÍMICA Y BIOQUÍMICA

LABORATORIO DE QUÍMICA Y BIOQUÍMICA UNIVERSIDAD MAYOR FACULTAD DE MEDICINA ESCUELA DE KINESIOLOGÍA QUÍMICA Y BIOQUÍMICA LABORATORIO DE QUÍMICA Y BIOQUÍMICA 2013 Profesores de Laboratorio: Alejandra Moreno O. Mayama Francia A. INSTRUCCIONES

Más detalles

SUSTANCIA QUÍMICA mercurio oxígeno

SUSTANCIA QUÍMICA mercurio oxígeno ELEMENTO O SUSTANCIA ELEMENTAL: Sustancia formada por un mismo tipo de átomos, por ejemplo: Hg, H 2, Cu, O 2 SUSTANCIA QUÍMICA mercurio oxígeno COMPUESTO O SUSTANCIA COMPUESTA: Sustancia formada por dos

Más detalles

Práctica # 2: Reconocimiento de Material de Laboratorio Y Técnicas Experimentales

Práctica # 2: Reconocimiento de Material de Laboratorio Y Técnicas Experimentales República Bolivariana de Venezuela Ministerio del poder popular para la Educación Unidad Educativa Colegio Aplicación Palo Gordo-Edo. Táchira Lcda. Katherine Gómez Práctica # 2: Reconocimiento de Material

Más detalles

UNIVERSIDAD MAYOR FACULTAD DE MEDICINA Carrera de Tecnología Médica. LABORATORIO DE Química General

UNIVERSIDAD MAYOR FACULTAD DE MEDICINA Carrera de Tecnología Médica. LABORATORIO DE Química General FACULTAD DE MEDICINA Carrera de Tecnología Médica LABORATORIO DE Química General 2011 Profesoras: Gabriela Cornejo B. Mayama Francia A. Laboratorio Nº1 EQUIPOS Y MATERIALES DE LABORATIRIO I. INTRODUCCIÓN

Más detalles

Acuerdo 286. Química. Disoluciones. Recopiló: M.C. Macaria Hernández Chávez

Acuerdo 286. Química. Disoluciones. Recopiló: M.C. Macaria Hernández Chávez Acuerdo 286 Química Disoluciones Recopiló: M.C. Macaria Hernández Chávez Disolución: Es una mezcla homogénea de dos o más sustancias. La sustancia que se encuentra en mayor proporción se llama disolvente

Más detalles

QUÍMICA 2º BACHILLERATO

QUÍMICA 2º BACHILLERATO DISOLUCIONES: CONCENTRACIÓN DE LAS MISMAS 1.-/ Se disuelven 7 g de cloruro de sodio en 43 g de agua. Determine la concentración centesimal de la disolución, así como la fracción molar de cada componente

Más detalles

2A Reacciones de Sustitución Nucleofílica Alifática. Obtención de Cloruro de ter-butilo.

2A Reacciones de Sustitución Nucleofílica Alifática. Obtención de Cloruro de ter-butilo. PRÁCTICA 2A Reacciones de Sustitución Nucleofílica Alifática. Obtención de Cloruro de ter-butilo. I. OBJETIVOS. a) Conocer la preparación de un haluro de alquilo terciario a partir del alcohol correspondiente,

Más detalles

A continuación se detallan cada una de las propiedades coligativas:

A continuación se detallan cada una de las propiedades coligativas: PREGUNTA (Técnico Profesional) Se prepara una solución con 2 mol de agua y 0,5 mol de un electrolito no volátil. Al respecto, cuál es la presión de vapor a 25 ºC de esta solución, si la presión del agua

Más detalles

Valor 3 puntos. 42. a. Diferenciación. b. Mutaciones. c. Recombinación. d. Herencia.

Valor 3 puntos. 42. a. Diferenciación. b. Mutaciones. c. Recombinación. d. Herencia. Valor 3 puntos Las alteraciones que se producen en el material cromosómico ó genético de las células y que son capaces de transmitirse a la descendencia se denominan: 42. a. Diferenciación. b. Mutaciones.

Más detalles

EJERCICIOS RESUELTOS DISOLUCIONES

EJERCICIOS RESUELTOS DISOLUCIONES EJERIIOS RESUELTOS DISOLUIONES 1.- Se disuelven 20 g de NaOH en 560 g de agua. alcula a) la concentración de la en % en masa y b) su molalidad. Ar(Na) 2. Ar(O)16. Ar(H)1. NaOH 20 a) % NaOH.100 % NaOH.100

Más detalles

TRONCO COMUN DIVISIONAL DE CIENCIAS BIOLOGICAS Y DE LA SALUD. MODULO: ENERGIA Y CONSUMO DE SUSTANCIAS FUNDAMENTALES. PRACTICA No.

TRONCO COMUN DIVISIONAL DE CIENCIAS BIOLOGICAS Y DE LA SALUD. MODULO: ENERGIA Y CONSUMO DE SUSTANCIAS FUNDAMENTALES. PRACTICA No. TRONCO COMUN DIVISIONAL DE CIENCIAS BIOLOGICAS Y DE LA SALUD. MODULO: ENERGIA Y CONSUMO DE SUSTANCIAS FUNDAMENTALES. PRACTICA No. 1 TITULACIÓN DE SOLUCIONES OBJETIVO: Conocer la técnica de Titulación de

Más detalles

ACTIVIDAD EXPERIMENTAL 1. CÓMO LO USO? OPERACIONES BÁSICAS EN EL LABORATORIO Versión ajustada

ACTIVIDAD EXPERIMENTAL 1. CÓMO LO USO? OPERACIONES BÁSICAS EN EL LABORATORIO Versión ajustada ACTIVIDAD EXPERIMENTAL 1 Antes de comenzar CÓMO LO USO? OPERACIONES BÁSICAS EN EL LABORATORIO Versión ajustada En forma individual investiga lo siguiente, y posteriormente compártelo con tus compañeros

Más detalles

INSTRUMENTOS BÁSICOS DE UN LABORATORIO

INSTRUMENTOS BÁSICOS DE UN LABORATORIO INSTRUMENTOS BÁSICOS DE UN LABORATORIO Trasfondo y Contenido En un laboratorio se utiliza una amplia variedad de instrumentos o herramientas que, en su conjunto, se denominan material de laboratorio. Pueden

Más detalles

Tema 7. Las mezclas. Introducción

Tema 7. Las mezclas. Introducción Tema 7. Las mezclas Introducción Ya sabes que los sistemas materiales se pueden clasificar según su composición en sustancias puras y mezclas. Las sustancias puras son los elementos y los compuestos que

Más detalles

CINÉTICA. FACTORES QUE AFECTAN LA VELOCIDAD DE UNA REACCIÓN QUÍMICA

CINÉTICA. FACTORES QUE AFECTAN LA VELOCIDAD DE UNA REACCIÓN QUÍMICA 1. INTRODUCCION El área de la química que estudia la velocidad de las reacciones es llamada Cinética Química. La velocidad de reacción se refiere al cambio de concentración de un reactivo o producto en

Más detalles

Bioquímica Tema 2: Soluciones. Unidades Año: 2013

Bioquímica Tema 2: Soluciones. Unidades Año: 2013 TEMA 2: SOLUCIONES Al estudio de las soluciones se le asigna gran importancia, teniendo en cuenta que la mayoría de las reacciones químicas ocurren entre soluciones, particularmente en medios acuosos.

Más detalles

Problemas disoluciones

Problemas disoluciones Problemas disoluciones Determinar la concentración de una disolución expresada de diferentes formas: g/l, % en masa y en volumen, Molaridad y fracción molar Preparar disoluciones a partir de solutos sólidos

Más detalles

PRÁCTICO 3: SOLUCIONES

PRÁCTICO 3: SOLUCIONES Curso de Laboratorio Página: 1/6 DEPARTAMENTO ESTRELLA CAMPOS PRÁCTICO 3: SOLUCIONES Bibliografía: Química, La Ciencia Central, T.L. Brown, H.E.LeMay, Jr., B.Bursten; Ed. Prentice-Hall Hispanoamericana,

Más detalles

PRÁCTICA 1 HERRAMIENTAS Y OPERACIONES BÁSICAS EN EL LABORATORIO BIOANALÍTICO

PRÁCTICA 1 HERRAMIENTAS Y OPERACIONES BÁSICAS EN EL LABORATORIO BIOANALÍTICO PRÁCTICA 1 HERRAMIENTAS Y OPERACIONES BÁSICAS EN EL LABORATORIO BIOANALÍTICO INTRODUCCIÓN Todos los instrumentos de medida que se utilizan en el laboratorio tienen algún tipo de escala para medir una magnitud,

Más detalles

Determinación de la Masa Molar del Magnesio

Determinación de la Masa Molar del Magnesio Determinación de la Masa Molar del Magnesio Introducción teórica Como en muchas reacciones químicas, los reactivos o sus productos o ambos son gases, es más común medir éstos en función del volumen usando

Más detalles

FORMAS MÁS COMUNES DE EXPRESAR LA CONCENTRACIÓN:

FORMAS MÁS COMUNES DE EXPRESAR LA CONCENTRACIÓN: CÁTEDRA: QUÍMICA GUÍA DE PROBLEMAS Nº 4 TEMA: ESTEQUIOMETRÍA DE SOLUCIONES OBJETIVOS: Resolver problemas basados en la estequiometría de las soluciones, ampliando los conocimientos para ser aplicados criteriosamente

Más detalles

PRACTICA No. 9 PREPARACION DE DISOLUCIONES

PRACTICA No. 9 PREPARACION DE DISOLUCIONES ESCUELA DE QUÍMICA DEPARTAMENTO DE QUÍMICA GENERAL QUÍMICA GENERAL II 1. INTRODUCCION: PRACTICA No. 9 PREPARACION DE DISOLUCIONES Las mezclas homogéneas se originan cuando un disolvente rompe la unión

Más detalles

PRÁCTICA 6 CINÉTICA QUÍMICA DETERMINACIÓN DE LA CONSTANTE DE VELOCIDAD DE REACCIÓN EN LA HIDRÓLISIS DEL CLORURO DE TERBUTILO

PRÁCTICA 6 CINÉTICA QUÍMICA DETERMINACIÓN DE LA CONSTANTE DE VELOCIDAD DE REACCIÓN EN LA HIDRÓLISIS DEL CLORURO DE TERBUTILO PRÁCTICA 6 CINÉTICA QUÍMICA DETERMINACIÓN DE LA CONSTANTE DE VELOCIDAD DE REACCIÓN EN LA HIDRÓLISIS DEL CLORURO DE TERBUTILO OBJETIVO. El alumno aprenderá a comprobar experimentalmente el mecanismo de

Más detalles

MATERIAL VOLUMETRICO. Establecer los criterios y la metodología que se utilizarán para el verificado del material volumétrico.

MATERIAL VOLUMETRICO. Establecer los criterios y la metodología que se utilizarán para el verificado del material volumétrico. Página de 9. OBJETIVO Establecer los criterios y la metodología que se utilizarán para el verificado del material volumétrico. 2. CAMPO DE APLICACIÓN Aplica para el verificado de aparatos volumétricos,

Más detalles

SEGUNDA PRACTICA DE QUÍMICA

SEGUNDA PRACTICA DE QUÍMICA UNIVERSIDAD MAYOR DE SAN SIMÓN FACULTAD DE CIENCIAS Y TECNOLOGÍA DEPARTAMENTO DE QUÍMICA CURSO PROPEDÉUTICO ESTADO GASEOSO SEGUNDA PRACTICA DE QUÍMICA 1. El acetileno (C 2 H 2 ) es un combustible utilizado

Más detalles

CINÉTICA QUÍMICA DETERMINACIÓN DEL ORDEN DE REACCIÓN Y ENERGÍA DE ACTIVACIÓN

CINÉTICA QUÍMICA DETERMINACIÓN DEL ORDEN DE REACCIÓN Y ENERGÍA DE ACTIVACIÓN II PRÁCTICA 2 CINÉTICA QUÍMICA DETERMINACIÓN DEL ORDEN DE REACCIÓN Y ENERGÍA DE ACTIVACIÓN En esta experiencia comprobaremos la influencia de la concentración de los reactivos, de la temperatura, y de

Más detalles

PROPIEDADES COLIGATIVAS DE LAS SOLUCIONES

PROPIEDADES COLIGATIVAS DE LAS SOLUCIONES PROPIEDADES COLIGATIVAS DE LAS SOLUCIONES Los estudios teóricos y experimentales han permitido establecer, que los líquidos poseen propiedades físicas características. Entre ellas cabe mencionar: la densidad,

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2002 QUÍMICA TEMA 1: LA TRANSFORMACIÓN QUÍMICA

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2002 QUÍMICA TEMA 1: LA TRANSFORMACIÓN QUÍMICA PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 00 QUÍMICA TEMA 1: LA TRANSFORMACIÓN QUÍMICA Junio, Ejercicio, Opción B Junio, Ejercicio 6, Opción A Reserva 1, Ejercicio, Opción B Reserva 1, Ejercicio 4, Opción

Más detalles

CLASIFICACIÓN DE LA MATERIA

CLASIFICACIÓN DE LA MATERIA 1. Clasificación de la materia por su aspecto CLASIFICACIÓN DE LA MATERIA La materia homogénea es la que presenta un aspecto uniforme, en la cual no se pueden distinguir a simple vista sus componentes.

Más detalles

TRABAJO PRÁCTICO N 2 CAMBIOS DE ESTADO SÓLIDO LÍQUIDO GASEOSO Manteniendo constante la presión, a baja temperatura los cuerpos se presentan en forma sólida tal que los átomos se encuentran entrelazados

Más detalles

EJERCIOS DE CONCENTRACIÓN DE SOLUCIONES

EJERCIOS DE CONCENTRACIÓN DE SOLUCIONES Preuniversitario Liceo de Aplicación Química 4º 2010 Profesora Paola Lizama V. GUÍA 4: DISOLUCIONES EJERCIOS DE CONCENTRACIÓN DE SOLUCIONES 01.- Calcular la cantidad de sosa cáustica (NaOH) y de agua que

Más detalles

PRÁCTICA NÚMERO 12 DILATACIÓN VOLUMÉTRICA DE UN LÍQUIDO

PRÁCTICA NÚMERO 12 DILATACIÓN VOLUMÉTRICA DE UN LÍQUIDO PRÁCTICA NÚMERO 12 DILATACIÓN VOLUMÉTRICA DE UN LÍQUIDO I. Objetivo. Observar el fenómeno de la dilatación térmica de un líquido y medir su coeficiente de dilatación volumétrica. II. Material. 1. 50 ml

Más detalles

DISOLUCIONES. Las disoluciones son mezclas homogéneas de dos o más sustancias (componentes) en proporciones variables.

DISOLUCIONES. Las disoluciones son mezclas homogéneas de dos o más sustancias (componentes) en proporciones variables. DISOLUCIONES Las disoluciones son mezclas homogéneas de dos o más sustancias (componentes) en proporciones variables. Soluto es la sustancia que se encuentra en menor proporción. Disolvente es la sustancia

Más detalles

TEMA 3: MEZCLAS, DISOLUCIONES Y SUSTANCIAS PURAS

TEMA 3: MEZCLAS, DISOLUCIONES Y SUSTANCIAS PURAS TEMA 3: MEZCLAS, DISOLUCIONES Y SUSTANCIAS PURAS 1. LA MATERIA Y SU ASPECTO Los sistemas materiales, formados por una o varias sustancias, pueden clasificarse en: - Sistemas materiales heterogéneos: presentan

Más detalles

EQUILIBRIO QUÍMICO: DETERMINACIÓN DE LA CONSTANTE DE PRODUCTO DE SOLUBILIDAD DEL Ba(NO 3 ) 2

EQUILIBRIO QUÍMICO: DETERMINACIÓN DE LA CONSTANTE DE PRODUCTO DE SOLUBILIDAD DEL Ba(NO 3 ) 2 Página: 1/5 DEPARTAMENTO ESTRELLA CAMPOS PRÁCTICO 9: EQUILIBRIO QUÍMICO: DETERMINACIÓN DE LA CONSTANTE DE PRODUCTO DE SOLUBILIDAD DEL Ba(NO 3 ) 2 Bibliografía: Química, La Ciencia Central, T.L. Brown,

Más detalles

COLEGIO DE CIENCIAS DEPARTAMENTO DE QUÍMICA QUÍMICA (LABORATORIO) Ramón L. Hernández Castillo. Uso de materiales y cristalería del laboratorio

COLEGIO DE CIENCIAS DEPARTAMENTO DE QUÍMICA QUÍMICA (LABORATORIO) Ramón L. Hernández Castillo. Uso de materiales y cristalería del laboratorio COLEGIO DE CIENCIAS DEPARTAMENTO DE QUÍMICA QUÍMICA 105-106 (LABORATORIO) Ramón L. Hernández Castillo Uso de materiales y cristalería del laboratorio I. Uso de la balanza Uno de los instrumentos más utilizados

Más detalles

CÁTEDRA: QUÍMICA GUÍA DE LABORATORIO Nº 3

CÁTEDRA: QUÍMICA GUÍA DE LABORATORIO Nº 3 CÁTEDRA: QUÍMICA GUÍA DE LABORATORIO Nº 3 TEMA: PREPARACIÓN DE SOLUCIONES OBJETIVOS 1. Preparar soluciones de diversas sustancias y acondicionarlas para su posterior uso, poniendo en práctica las técnicas

Más detalles

TRABAJO PRÁCTICO N 0 3 TERMOQUÍMICA

TRABAJO PRÁCTICO N 0 3 TERMOQUÍMICA TRABAJO PRÁCTICO N 0 3 TERMOQUÍMICA OBJETIVOS Determinación de la variación de entalpía asociada a procesos químicos. Aplicación de conceptos termodinámicos: temperatura, calor, entalpía. Verificación

Más detalles

Problemas resueltos de disoluciones y sus diferentes medidas de concentración.

Problemas resueltos de disoluciones y sus diferentes medidas de concentración. UNIVERSIDAD CENTRAL DE VENEZUELA FACULTAD DE CIENCIAS ESCUELA DE QUÍMICA Problemas resueltos de disoluciones y sus diferentes medidas de concentración. 1. Qué es una disolución? Una disolución consiste

Más detalles

Práctica 1. Separación de Mezclas Protocolo 2

Práctica 1. Separación de Mezclas Protocolo 2 Equipo: Preguntas a responder al final de la sesión Práctica 1. Separación de Mezclas Protocolo 2 Qué tipo de mezcla se te proporcionó y cómo lo determinaste? Cuántos y cuáles son los métodos de separación

Más detalles

LABORATORIO DE QUÍMICA ANALÍTICA I LQ-218. Práctica de Laboratorio No. 3 CALIBRACIÓN DE MATERIAL VOLUMÉTRICO ANALÍTICO

LABORATORIO DE QUÍMICA ANALÍTICA I LQ-218. Práctica de Laboratorio No. 3 CALIBRACIÓN DE MATERIAL VOLUMÉTRICO ANALÍTICO UNIVERSIDAD NACIONAL AUTÓNOMA DE HONDURAS FACULTAD DE CIENCIAS QUÍMICAS Y FARMACIA DEPARTAMENTO DE QUÍMICA LABORATORIO DE QUÍMICA ANALÍTICA I LQ-218 Práctica de Laboratorio No. 3 COMPETENCIAS A LOGRAR:

Más detalles

CAPITULO 6 : Soluciones

CAPITULO 6 : Soluciones CAPITULO 6 : Soluciones Gran parte de los líquidos que conocemos o que manejamos habitualmente son soluciones o disoluciones. El agua de mar, la saliva, la orina, la lavandina, el vinagre y al agua que

Más detalles

DEPARTAMENTO DE INGENIERIA QUÍMICA CÁTEDRA DE FISICOQUÍMICA TRABAJO PRÁCTICO DE LABORATORIO Nº 4

DEPARTAMENTO DE INGENIERIA QUÍMICA CÁTEDRA DE FISICOQUÍMICA TRABAJO PRÁCTICO DE LABORATORIO Nº 4 Universidad Tecnológica Nacional Facultad Regional La Plata DEPARTAMENTO DE INGENIERIA QUÍMICA CÁTEDRA DE FISICOQUÍMICA TRABAJO PRÁCTICO DE LABORATORIO Nº 4 Descenso crioscópico Objeto de la experiencia:

Más detalles

1. Se dispone de una disolución acuosa de ácido sulfúrico del 98% de riqueza en masa y densidad 1,84 g/ml.

1. Se dispone de una disolución acuosa de ácido sulfúrico del 98% de riqueza en masa y densidad 1,84 g/ml. ESTEQUIOMETRÍA,DISOLUCIONES: ACTIVIDADES DE SELECTIVIDAD. 1. Se dispone de una disolución acuosa de ácido sulfúrico del 98% de riqueza en masa y densidad 1,84 g/ml. a) Qué volumen de esta disolución se

Más detalles

1.- La materia y clasificación. La materia es cualquier cosa que ocupa un espacio y tiene masas Estados: sólido, líquido, gaseoso

1.- La materia y clasificación. La materia es cualquier cosa que ocupa un espacio y tiene masas Estados: sólido, líquido, gaseoso La Química La Química se encarga del estudio de las propiedades de la materia y de los cambios que en ella se producen. La Química es una ciencia cuantitativa y requiere el uso de mediciones. Las cantidades

Más detalles

ALCALINIDAD TOTAL- REACCIONES ACIDO-BASE Página 1

ALCALINIDAD TOTAL- REACCIONES ACIDO-BASE Página 1 Práctica No. 3 REACCIONES ACIDO BASE ALCALINIDAD TOTAL AL CARBONATO, BICARBONATO E HIDROXIDO FENOFTALEINA 1. OBJETIVO Determinar mediante una relación estequiometrica los carbonatos, hidróxidos y bicarbonatos

Más detalles

Apuntes Disoluciones

Apuntes Disoluciones Una disolución es una mezcla homogénea (los componentes no se pueden distinguir a simple vista) de dos a más sustancias. En las disoluciones hay que distinguir el soluto, el disolvente y la propia disolución

Más detalles

1. Disoluciones una disolución es cualquier mezcla homogénea disolvente soluto Medidas de composición

1. Disoluciones una disolución es cualquier mezcla homogénea disolvente soluto Medidas de composición 1. Disoluciones En general, una disolución es cualquier mezcla homogénea. Por ejemplo, el aire, mezcla de nitrógeno, oxígeno y otros gases en proporciones menores; o el bronce, que es una aleación metálica

Más detalles

Tarea Nº 5 de Química Analítica Problemas que involucran densidades

Tarea Nº 5 de Química Analítica Problemas que involucran densidades Tarea Nº 5 de Química Analítica Problemas que involucran densidades 1.- Cuál es la densidad de una pieza moldeada y elaborada con un polímero experimental la cual pesa 4.7863 g y que al sumergirla en agua

Más detalles

DISOLUCIONES. Líquido (H 2 O)

DISOLUCIONES. Líquido (H 2 O) DISOLUCIONES Una disolución es una mezcla homogénea (los componentes no se pueden distinguir a simple vista) de dos a más sustancias. En las disoluciones hay que distinguir el soluto, el disolvente y la

Más detalles

La materia se puede definir como todo aquello que tiene masa y ocupa un volumen.

La materia se puede definir como todo aquello que tiene masa y ocupa un volumen. Tema 2: LA MATERIA Que es la materia? La materia se puede definir como todo aquello que tiene masa y ocupa un volumen. Clasificación de la materia (criterio: separación) Mezclas Sustancias puras Composición

Más detalles

C: GASES Y PRESIÓN DE VAPOR DEL AGUA

C: GASES Y PRESIÓN DE VAPOR DEL AGUA hecho el vacío. Calcula a) Cantidad de gas que se tiene ; b) la presión en los dos recipientes después de abrir la llave de paso y fluir el gas de A a B, si no varía la temperatura. C) Qué cantidad de

Más detalles

2. Métodos de separación de los componentes de una mezcla.

2. Métodos de separación de los componentes de una mezcla. TEMA 3: Mezclas, disoluciones y sustancias puras. 1. Clasificación de la materia. 2. Métodos de separación de los componentes de una mezcla. 3. Disoluciones. a) Definición. b) Cómo se preparan. c) Concentración.

Más detalles

LABORATORIO N 1 MATERIALES Y EQUIPOS DE LABORATORIO

LABORATORIO N 1 MATERIALES Y EQUIPOS DE LABORATORIO LABORATORIO N 1 MATERIALES Y EQUIPOS DE LABORATORIO I.- INTRODUCCIÓN A) Instrucciones Generales Cada alumno debe presentarse puntualmente al laboratorio llevando: Delantal blanco Guía de laboratorio Pantalón

Más detalles

1. MATERIA Y SU ASPECTO

1. MATERIA Y SU ASPECTO 1. MATERIA Y SU ASPECTO El aspecto de un sistema material puede variar según el método de observación. Algunos sistemas materiales como la leche, la sangre o la mantequilla a simple vista parecen uniformes,

Más detalles

La concentración másica (C)

La concentración másica (C) La concentración másica (C) Apellidos, nombre Atarés Huerta, Lorena (loathue@tal.upv.es) Departamento Centro Departamento de Tecnología de Alimentos ETSIAMN (Universidad Politécnica de Valencia) 1 Resumen

Más detalles

4.4. MOLES Y MOLÉCULAS.

4.4. MOLES Y MOLÉCULAS. 4.4. MOLES Y MOLÉCULAS. 4.4.1. MASA ATÓMICA Y MASA MOLECULAR Las moléculas están formadas por la unión de átomos que se unen mediante enlace químico. Esto significa que los átomos son difíciles de separar

Más detalles

CÁTEDRA: QUÍMICA GUÍA DE PROBLEMAS Nº6

CÁTEDRA: QUÍMICA GUÍA DE PROBLEMAS Nº6 CÁTEDRA: QUÍMICA GUÍA DE PROBLEMAS Nº6 TEMA: PROPIEDADES COLIGATIVAS OBJETIVOS: Aplicar las propiedades coligativas para el cálculo de masas molares de solutos y de las propiedades físicas de las soluciones.

Más detalles

PREGUNTAS DE SELECCIÓN MÚLTIPLE CON ÚNICA RESPUESTA (TIPO 1)

PREGUNTAS DE SELECCIÓN MÚLTIPLE CON ÚNICA RESPUESTA (TIPO 1) PREGUNTAS DE SELECCIÓN MÚLTIPLE CON ÚNICA RESPUESTA (TIPO 1) Un gas es sometido a tres procesos identificados con las letras X, Y y Z. Estos procesos son esquematizados en los gráficos que se presentan

Más detalles

ESPECIFICACIÓN DE LOS ÍTEMES DE PRUEBA

ESPECIFICACIÓN DE LOS ÍTEMES DE PRUEBA Técnicas de Panadería Alimentación Química ESPECIFICACIÓN DE LOS ÍTEMES DE PRUEBA Aprendizaje Esperado Establecer relaciones cuantitativas en diversas reacciones químicas 1. Juan, debe diseñar un programa

Más detalles

DETERMINACION DE CAFEÍNA EN TE, CAFÉ Y YERBA MATE Basado en Método AOAC Modificado

DETERMINACION DE CAFEÍNA EN TE, CAFÉ Y YERBA MATE Basado en Método AOAC Modificado ME-711.02-008 Página 1 de 5 1. OBJETIVO Determinar el contenido de cafeína en fruitivos como té, café o yerba mate por método Bailey y Andrews. 2. CAMPO DE APLICACIÓN Y ALCANCE El método es aplicable a

Más detalles

Práctica No 9. Ley Cero de la Termodinámica y su aplicación en El establecimiento de una escala empírica de temperatura.

Práctica No 9. Ley Cero de la Termodinámica y su aplicación en El establecimiento de una escala empírica de temperatura. Práctica No 9 Ley Cero de la Termodinámica y su aplicación en El establecimiento de una escala empírica de temperatura. 1. Objetivo general: Establecer empíricamente una escala de temperatura, aplicándose

Más detalles

DISOLUCIONES. Finalmente se incluye un cuestionario on line para que alumno pruebe sus conocimientos.

DISOLUCIONES. Finalmente se incluye un cuestionario on line para que alumno pruebe sus conocimientos. Introducción general Objetivos y destinatarios DISOLUCIONES El material está destinado como complemento de estudio en lo concerniente al tema Soluciones para alumnos que cursen Química en la Carrera de

Más detalles

Materia: FÍSICA Y QUÍMICA Curso

Materia: FÍSICA Y QUÍMICA Curso ACTIVIDADES DE REFUERZO FÍSICA Y QUÍMICA 3º ESO. JUNIO 2015. 1.- Realizar las configuraciones electrónicas de todos los elementos de los tres primeros periodos de la tabla periódica. 2.- Razonar cuales

Más detalles

Métodos para la cuantificación de nitrógeno y proteína

Métodos para la cuantificación de nitrógeno y proteína Practica 5 Métodos para la cuantificación de nitrógeno y proteína Antecedentes Para la determinación de proteínas en muestras de alimentos se cuenta con una gran variedad de métodos, basados en diferentes

Más detalles

So S l o u l c u i c o i n o e n s e

So S l o u l c u i c o i n o e n s e Soluciones SOLUCIONES mezclas homogéneas de dos sustancias: SOLUTO SOLVENTE SEGÚN EL ESTADO FISICO DEL SOLVENTE SOLIDA LIQUIDA GASEOSA Cuando un sólido se disuelve en un líquido las partículas que lo

Más detalles

DETERMINACIÓN DE LA DEMANDA QUÍMICA DE OXÍGENO, DQO, TOTAL EN UNA MUESTRA DE AGUA RESIDUAL DOMÉSTICA

DETERMINACIÓN DE LA DEMANDA QUÍMICA DE OXÍGENO, DQO, TOTAL EN UNA MUESTRA DE AGUA RESIDUAL DOMÉSTICA EXPERIMENTO 4 DETERMINACIÓN DE LA DEMANDA QUÍMICA DE OXÍGENO, DQO, TOTAL EN UNA MUESTRA DE AGUA RESIDUAL DOMÉSTICA Objetivo general Determinación de Demanda Química de Oxígeno total (DQO) en una muestra

Más detalles

DETERMINACIÓN PORCENTUAL DE NaHCO 3 EN TABLETAS EFERVESCENTES

DETERMINACIÓN PORCENTUAL DE NaHCO 3 EN TABLETAS EFERVESCENTES DETERMINACIÓN PORCENTUAL DE NaHCO EN TABLETAS EFERVESCENTES Objetivos. Evaluar la importancia de las reacciones de formación de gases en análisis cuantitativo.. Determinar el contenido de bicarbonato de

Más detalles

PRÁCTICA Nº 3 PROPIEDADES COLIGATIVAS: DETERMINACIÓN DE LA MASA MOLECULAR DE UN SOLUTO PROBLEMA POR CRIOSCOPIA

PRÁCTICA Nº 3 PROPIEDADES COLIGATIVAS: DETERMINACIÓN DE LA MASA MOLECULAR DE UN SOLUTO PROBLEMA POR CRIOSCOPIA PRÁCTICA Nº 3 PROPIEDADES COLIGATIVAS: DETERINACIÓN DE LA ASA OLECULAR DE UN SOLUTO PROBLEA POR CRIOSCOPIA OBJETIVOS: El objetivo de la práctica es el estudio del efecto que produce la adición de un soluto

Más detalles

Manual de laboratorio

Manual de laboratorio UNIVERSIDAD NACIONAL DE INGENIERIA UNI-Norte Sede regional en Estelí Manual de laboratorio 2008 Química de Alimentos Objetivos Generales 1. Proporcionar a los estudiantes de Ingeniería Agroindustrial las

Más detalles

CRISTALIZACIÓN: PURIFICACIÓN DEL ÁCIDO BENZOICO. Purificar un compuesto orgánico mediante cristalización y determinar su punto de fusión

CRISTALIZACIÓN: PURIFICACIÓN DEL ÁCIDO BENZOICO. Purificar un compuesto orgánico mediante cristalización y determinar su punto de fusión EXPERIMENTO 1 CRISTALIZACIÓN: PURIFICACIÓN DEL ÁCIDO BENZOICO Objetivo general Purificar un compuesto orgánico mediante cristalización y determinar su punto de fusión Objetivos específicos 1.- Determinar

Más detalles

Titulaciones en Química Analítica. Capítulo 13 CHEM 3320 Rosamil Rey Santos, Ph.D.

Titulaciones en Química Analítica. Capítulo 13 CHEM 3320 Rosamil Rey Santos, Ph.D. Titulaciones en Química Analítica Capítulo 13 CHEM 3320 Rosamil Rey Santos, Ph.D. Introducción En el análisis volumétrico, la concentración se determina midiendo su capacidad de reaccionar con un reactivo

Más detalles

REACCIONES QUIMICAS. Ciclo del cobre. FUNDAMENTO TEORICO (Reacciones químicas) Objetivos. Universidad Católica del Norte

REACCIONES QUIMICAS. Ciclo del cobre. FUNDAMENTO TEORICO (Reacciones químicas) Objetivos. Universidad Católica del Norte Departamento de Química Practica Nº 3 REACCIONES QUIMICAS Ciclo del cobre Objetivos 1. Desarrolla una buena técnica para obtener un resultado óptimo en el porcentaje de recuperación de un elemento involucrado

Más detalles

LA MATERIA: ESTADOS DE AGREGACIÓN

LA MATERIA: ESTADOS DE AGREGACIÓN LA MATERIA: ESTADOS DE AGREGACIÓN 1. PROPIEDADES DE LA MATERIA Materia: es todo aquello que existe, tiene masa y ocupa un volumen, los distintos tipos de materia se llaman sustancias. El sistema material

Más detalles

DISOLUCIONES 1.- QUÉ ES UNA DISOLUCIÓN?

DISOLUCIONES 1.- QUÉ ES UNA DISOLUCIÓN? DISOLUCIONES 1.- QUÉ ES UNA DISOLUCIÓN? Disoluciones, en química, mezclas homogéneas de dos o más sustancias. El soluto es el componente que se encuentra en distinto estado físico que la disolución; y

Más detalles

MANEJO DE INSTRUMENTAL DE LABORATORIO. ESCUELA DE TECNOLOGIA MEDICA CURSO Bioquímica aplicada T.M Alejandra Espinosa

MANEJO DE INSTRUMENTAL DE LABORATORIO. ESCUELA DE TECNOLOGIA MEDICA CURSO Bioquímica aplicada T.M Alejandra Espinosa MANEJO DE INSTRUMENTAL DE LABORATORIO ESCUELA DE TECNOLOGIA MEDICA CURSO Bioquímica aplicada T.M Alejandra Espinosa BALANZAS ANALITICAS Instrumento para pesar cuya capacidad va desde 1 gr hasta algunos

Más detalles

Trabajo Práctico Nº 1

Trabajo Práctico Nº 1 Trabajo Práctico Nº 1 CONTENIDO A) Introducción al laboratorio de química D) Material anexo Utilización de diferentes materiales de laboratorio ANEXO I: Seguridad en el laboratorio Medición de volúmenes

Más detalles

2. MECANISMO DE DISOLUCIÓN Y DE HIDRATACIÓN DE IONES.

2. MECANISMO DE DISOLUCIÓN Y DE HIDRATACIÓN DE IONES. 1. QUÉ ES UNA DISOLUCIÓN? Disoluciones, en química, mezclas homogéneas de dos o más sustancias. El soluto es el componente que se encuentra en distinto estado físico que la disolución; y el disolvente

Más detalles

menisco. volumen de un líquido

menisco. volumen de un líquido La determinación del volumen de un material se puede hacer con el uso de un instrumento volumétrico como el cilindro graduado la pipeta, la bureta u otro similar. La lectura correcta del volumen en el

Más detalles

EJERCICIOS RESUELTOS DISOLUCIONES

EJERCICIOS RESUELTOS DISOLUCIONES EJERCICIOS RESUELTOS DISOLUCIONES 1- Se disuelven 20 g de NaOH en 560 g de agua Calcula a) la concentración de la en % en masa b) su molalidad Ar(Na) 2 Ar(O)16 Ar(H)1 NaOH 20 a) % NaOH % NaOH % NaOH,45

Más detalles

UNIVERSIDAD LIBRE FACULTAD DE INGENIERÌA DEPARTAMENTO DE CIENCIAS BÁSICAS GUIA DE CLASE No 9

UNIVERSIDAD LIBRE FACULTAD DE INGENIERÌA DEPARTAMENTO DE CIENCIAS BÁSICAS GUIA DE CLASE No 9 UNIVERSIDAD LIBRE FACULTAD DE INGENIERÌA DEPARTAMENTO DE CIENCIAS BÁSICAS GUIA DE CLASE No 9 NOMBRE DE LA ASIGNATURA: TÍTULO: DURACIÓN: BIBLIOGRAFÍA SUGERIDA: DOCENTES Química General SOLUCIONES 6 horas

Más detalles

Teoría Disoluciones Fórmula empírica y molecular Física y Química. 1º bachiller DISOLUCIONES

Teoría Disoluciones Fórmula empírica y molecular Física y Química. 1º bachiller DISOLUCIONES Teoría Disoluciones Fórmula empírica y molecular Física y Química. 1º bachiller 18-1-2015 CONCEPTO DE DISOLUCIÓN DISOLUCIONES Una disolución es una mezcla homogénea de sustancias en igual o distintos estados

Más detalles

DETERMINACIÓN DIOXIDO DE AZUFRE TOTAL EN ALIMENTOS DESHIDRATADOS Método Monier-Williams modificado ME

DETERMINACIÓN DIOXIDO DE AZUFRE TOTAL EN ALIMENTOS DESHIDRATADOS Método Monier-Williams modificado ME DETERMINACIÓN DIOXIDO DE AZUFRE TOTAL EN ALIMENTOS DESHIDRATADOS Página 1 de 6 1. OBJETIVO Determinar dióxido de azufre total en alimentos deshidratados por método Monier-Williams modificado. 2. CAMPO

Más detalles

EJERCICIOS DE LA PAU CYL TEMA

EJERCICIOS DE LA PAU CYL TEMA EJERCICIOS DE LA PAU CYL TEMA 0 2007-13 CONCEPTO DE MOL: 1. (16-S07) Calcule la masa de cada uno de los elementos presentes en: a) 2,5 moles de Ca. (0,6 puntos) b) 2,0 10 23 átomos de Al. (0,7 puntos)

Más detalles

Manual de Laboratorio de Química Analítica

Manual de Laboratorio de Química Analítica PRÁCTICA 4: DETERMINACIÓN DE LA CONCENTRACIÓN DE ÁCIDO ACÉTICO EN UNA MUESTRA DE VINAGRE BLANCO INTRODUCCIÓN El vinagre blanco es una solución de ácido acético obtenida por fermentación. El análisis se

Más detalles

FACULTAD DE INGENIERIA LABORATORIO DE QUIMICA TEMA: VOLUMENES. Belkis saumeth lopez cod: 2010217066. Faviel Miranda Lobo cod: 2011111006

FACULTAD DE INGENIERIA LABORATORIO DE QUIMICA TEMA: VOLUMENES. Belkis saumeth lopez cod: 2010217066. Faviel Miranda Lobo cod: 2011111006 FACULTAD DE INGENIERIA LABORATORIO DE QUIMICA TEMA: VOLUMENES Belkis saumeth lopez cod: 2010217066 Faviel Miranda Lobo cod: 2011111006 Roberto Carlos Correa 2010213015 Victor andres castrillon martinez

Más detalles

Física y Química 1ºBachillerato Ejemplo Examen. Formulación. (1 puntos) Formula correctamente los siguientes compuestos: Ioduro de Calcio:

Física y Química 1ºBachillerato Ejemplo Examen. Formulación. (1 puntos) Formula correctamente los siguientes compuestos: Ioduro de Calcio: Física y Química 1ºBachillerato Ejemplo Examen Formulación. (1 puntos) Formula correctamente los siguientes compuestos: Óxido Fosfórico: Silano: Carburo Potásico: Ácido perclórico: Fosfato de Sodio: Hidruro

Más detalles

EJEMPLOS DE PREGUNTA. Prueba de QUÍMICA. febrero 2010

EJEMPLOS DE PREGUNTA. Prueba de QUÍMICA. febrero 2010 EJEMPLS DE PREGUNTA 2010 Prueba de QUÍMICA febrero 2010 PREGUNTAS DE SELECCIÓN MÚLTIPLE CN ÚNICA RESPUESTA. (TIP I) Las preguntas de este tipo constan de un enunciado y de cuatro opciones de respuesta,

Más detalles

SOLUCIONES. Lic. Sandra Williams Pinto Profesora de Química Colegio Instituto de Humanidades Alfredo Silva Santiago (Concepción)

SOLUCIONES. Lic. Sandra Williams Pinto Profesora de Química Colegio Instituto de Humanidades Alfredo Silva Santiago (Concepción) SOLUCIONES Dr. José Francisco Acuña Elgueta Docente de Química Facultad de Agronomía Universidad de Concepción Lic. Sandra Williams Pinto Profesora de Química Colegio Instituto de Humanidades Alfredo Silva

Más detalles

PRACTICA No.10 ESTEQUIOMETRIA EN LAS REACCIONES QUIMICAS REACTIVO LIMITANTE Y RENDIMIENTO PORCENTUAL

PRACTICA No.10 ESTEQUIOMETRIA EN LAS REACCIONES QUIMICAS REACTIVO LIMITANTE Y RENDIMIENTO PORCENTUAL PRACTICA No.10 ESTEQUIOMETRIA EN LAS REACCIONES QUIMICAS REACTIVO LIMITANTE Y RENDIMIENTO PORCENTUAL INTRODUCCION: Los cambios químicos implican interacciones partícula con partícula(s) y no gramo a gramo,

Más detalles