Análisis de imágenes digitales

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Análisis de imágenes digitales"

Transcripción

1 Análisis de imágenes digitales REPRESENTACIÓN Y DESCRIPCIÓN Momentos

2 INTRODUCCIÓN En general, la relación entre una imagen ideal f(x,y) y una imagen observada g(x,y) se describe como g =D( f ) donde D es un operador de degradación. El operador D puede ser descompuesto en degradación radiométrica R (i.e., color o escala de grises) y en degradación geométrica G (i.e., espacial). Distorción de perspectiva debido a una vista no perpendicar Imagen borrosa por mal enfoque de la cámara 2 Imagen distorcionada por una deformación no lineal

3 INTRODUCCIÓN El reconocimiento de objetos y patrones que han sido deformados es el objetivo de muchas investigaciones. Básicamente las tres mayores aproximaciones a este problema son: 1. Fuerza bruta: se busca en el espacio paramétrico todas las posibles degradaciones de la imagen, esto significa que el conjunto de entrenamiento no sólo contiene todas las clases representativas sino todas sus versiones escaladas, rotadas y deformadas. 2. Normalizada: los objetos se transforman a un estándar específico de posición antes de realizar la clasificación. 3. Invariantes: describir los objetos a través de un conjunto de rasgos cuantificables que sean insensibles a cualquier tipo de deformación y que provea gran poder de discriminación entre clases. 3

4 INVARIANTES Un invariante I es una funcional definida en el espacio de todas las imágenes admisibles que no cambia su valor bajo la degradación del operador D, es decir, satisface la condición I( f ) = I(D( f )) para imagen f. En la práctica, debido a las imperfecciones en el método de segmentación, el ruido y variaciones intra-clase I( f ) I(D( f )). Espacio de invariantes Otra propiedad importante deseable de I es el poder de discriminación, de manera que para objetos diferentes, sus valores deben ser significativamente diferentes. x 1 x 2 4

5 INVARIANTES Categorización de los invariantes de acuerdo a la herramienta matemática empleada: Descriptores de formas simples: compacidad, convexidad, elongación, etc. Invariantes Características de coeficientes de transformadas: descriptores de Fourier, descriptores Hadamard, coeficientes de la transformada Radon y características basadas en wavelets. Conjunto de puntos invariantes: usa la posición de puntos dominantes. Invariantes diferenciales: emplea derivativas de contorno del objeto. Momentos invariantes: funciones especiales de los momentos de una imagen. 5

6 MOMENTOS Los momentos son proyecciones de una función sobre una base polinomial, de manera similar que la transformada de Fourier es una proyección sobre una base de funciones harmónicas. Se han utilizado por mucho tiempo en estadística para describir la forma de una función de densidad de probabilidad y en mecánica clásica para medir la distribución de masa de un cuerpo. Los momentos invariantes aplicados al procesamiento de imágenes y reconocimiento de patrones comenzaron a utilizarse en 1962*, cuando Hu utilizó la teoría de invariantes algebraicos de donde se derivaron sus 7 famosos invariantes a la traslación, rotación y cambio de escala de objetos 2D. *M. K. Hu, "Visual Pattern Recognition by Moment Invariants", IRE Trans. Info. Theory, vol. IT-8, pp ,

7 MOMENTOS Definición 1. Una función imagen se puede entender como cualquier función real continua f(x,y) de dos variables definida sobre un soporte compacto Ω R R y que posee una integral finita diferente de cero. Definición 2. El momento general Mpq de una imagen f(x,y), donde p,q son enteros no negativos y r = p+q es llamado el orden del momento se define como: M pq = Ω p pq (x, y) f (x, y)dx dy donde la secuencia p00(x,y), p10(x,y),, pkj(x,y) son funciones polinomiales definidas sobre Ω. Dependiendo de la base polinomial utilizada pueden definirse momentos geométricos, momentos complejos y momentos ortogonales. 7

8 MOMENTOS GEOMÉTRICOS La selección más común es un estándar base de potencias donde pkj (x,y) = x k y k de los cuales se derivan los momentos geométricos: m pq = x p y q f (x, y)dx dy En el caso de una imagen digital los momentos geométricos se definen como: x y m pq = x p y q f (x, y) En el caso de una imagen binaria con valores en {0,1} la ecuación anterior toma la forma: m pq = x y x p y q 8

9 MOMENTOS GEOMÉTRICOS En la mayoría de las aplicaciones únicamente los momentos hasta de orden 3 son utilizados. Momento de orden cero m00 representa la masa total de la imagen. Para una imagen binaria, m00 coincide con el área geométrica del objeto, es decir, el número de píxeles (x,y) R. Entonces m00 se define como: x y m 00 = f (x, y) Momentos de orden uno m10 y m01 se conocen como momentos estáticos, siendo utilizados para localizar el centro de gravedad o centroide del objeto como: x = m 10 y y = m 01 m 00 m 00 De esta manera, las coordenadas (x, y) señalan el punto donde la masa total del objeto puede ser concentrada sin cambios en los momentos de orden uno a lo largo de los ejes x y y, respectivamente. 9

10 MOMENTOS GEOMÉTRICOS Momentos de orden dos m20, m02 y m11 se conocen como momentos de inercia y describen la distribución de masa de la imagen con respecto a los ejes coordenados, y se pueden calcular las siguientes características. A partir de los momentos de orden dos se puede calcular el radio de giro de un objeto el cual describe la forma en la cual la masa de un objeto se distribuye alrededor de su eje centroidal y se define como: r x = m 20 m 00 y r y = m 02 m 00 Momentos de orden tres m30 y m03 describen el sesgo proyectivo de un objeto, el cual es una medida estadística del grado de distribución de la desviación de simetría alrededor del eje centroidal: s x = m 30 3 m 20 y s y = m 03 3 m 02 10

11 MOMENTOS GEOMÉTRICOS Momentos de orden cuatro m40 y m04 describen la curtosis del objeto, el cual es una medida de apuntamiento (i.e., qué tan puntiagudo es): k x = m 40 m y k = m 04 2 y 2 20 m px 564 px 450 px 566 px 256 px 564 px 750 px 566 px Forma A Forma B Forma C Forma D Descriptor Forma A Forma B Forma C Forma D m 00 (x, y) (129,129) (286.3, 286.6) (248.5, 326.5) (271.1, 264.0) (r x,r y ) (132.9,132.9) (302.4, 305.9) (269.1, 377.4) (294.8, 280.1) (S x,s y ) (0.0096, ) (0.0037, ) (0.0059, ) (0.0034, ) (k x,k y ) (0.9506, ) (0.1486, ) (0.3611, ) (0.1260, ) 11

12 MOMENTOS CENTRALES Los momentos geométricos no son invariantes a traslaciones, rotaciones ni cambios de escala. Para darle la propiedad de invariante a traslaciones (sin rotaciones y cambios de escala) se debe desplazar el centroide del objeto al origen del referencial como: x y µ pq = (x x) p (y y) q f (x, y) Los momentos centrales hasta de orden tres pueden computarse como: µ 00 = m 00 µ 10 = µ 01 = 0 µ 20 = m 20 xm 10 µ 02 = m 02 ym 01 µ 11 = m 11 xm 01 = m 11 ym µ 21 = m 21 2xm 11 ym m 01 x 2 µ 12 = m 12 2ym 11 xm m 10 y 2 µ 30 = m 30 3xm m 10 x 2 µ 03 = m 03 3ym m 01 y 2

13 MOMENTOS NORMALIZADOS Los momentos centrales normalizados son invariantes a traslaciones y cambios de escala, lo cual se obtiene al dividir cada momento por un factor de normalización que cancela el efecto de escalamiento. Recordando que los cambios de escala son causado por transformaciones de coordenadas de la forma: x y = α 0 0 α Si f'(x',y') es la imagen f(x,y) después de un escalamiento en cada eje por α, de modo que x'= αx y y'= αy, entonces tenemos que: m pq = ( x ) p ( y ) q f ( x, y ) = α p+q+2 (x) p (y) q f (x, y) x y Por tanto, m'pq = α p+q+2 mpq, y de forma similar µ'pq = α p+q+2 µpq. En particular µ'00 =α 2 µ00. Entonces, los momentos centrales normalizados se definen como: donde γ = p + q +1 para p + q 2 γ η pq = µ pq µ x y x y

14 MOMENTOS DE HU A partir de los momentos centrales normalizados, Hu derivó un conjunto de 7 invariantes a rotaciones, traslaciones y cambios de escala, los cuales son: φ 1 = η 20 + η 02 φ 2 = (η 20 η 02 ) η 11 φ 3 = (η 30 3η 12 ) 2 + (3η 21 η 03 ) 2 φ 4 = (η 30 + η 12 ) 2 + (η 21 + η 03 ) 2 φ 5 = (η 30 3η 12 )(η 30 + η 12 )[(η 30 + η 12 ) 2 3(η 21 + η 03 ) 2 ] + (3η 21 η 03 )(η 21 + η 03 )[3(η 30 + η 12 ) 2 (η 21 + η 03 ) 2 ] φ 6 = (η 20 η 02 )[(η 30 + η 12 ) 2 (η 21 + η 03 ) 2 ]+ 4η 11 (η 30 + η 12 )(η 21 + η 03 ) φ 7 = (3η 21 η 03 )(η 30 + η 12 )[(η 30 + η 12 ) 2 3(η 21 + η 03 ) 2 ] + (3η 12 η 30 )(η 21 + η 03 )[3(η 30 + η 12 ) 2 (η 21 + η 03 ) 2 ] 14

15 MOMENTOS DE HU Original Trasladada Escalada 50% Espejo Rotada 45º Rotada 90º Momento Original Trasladada 50% Espejo 45º 90º ϕ ϕ ϕ ϕ ϕ ϕ ϕ

16 MOMENTOS DE HU Original Trasladada Escalada 50% Espejo Rotada 45º Rotada 90º Momento Original Trasladada 50% Espejo 45º 90º ϕ ϕ ϕ ϕ ϕ ϕ ϕ

17 MOMENTOS DE INERCIA Los momentos centrales pueden aplicarse para caracterizar medidas geométricas del objeto. El momento de inercia es una característica que permite determinar el ángulo de orientación de un objeto en la imagen. A partir de los momentos centrales µ20, µ02 y µ11, se puede calcular la orientación del eje principal del objeto como: θ = 1 2µ 11 2 tan 1 µ 20 µ 02 Para ajustar el valor del ángulo θ al intervalo [0, π/2] se hacen las siguientes comparaciones: θ = θ si µ 20 > µ 02 y θ > 0 θ si µ 20 > µ 02 y θ < 0 π 2 θ si µ < µ y θ > π 2 +θ si µ < µ y θ < y Eje mayor θ = π θ = 62º 2 x θ = 28º 17

18 MOMENTOS DE INERCIA La excentricidad (o elongación) proporciona la relación entre la anchura y la longitud del objeto, y se calcula como el cociente entre el máximo y mínimo diámetro del objeto. Se calcula a partir de los momentos centrales de segundo orden, µ20, µ02 y µ11, como: ε = 0.95 Diámetro máximo ε = 0.25 Diámetro mínimo ( ) µ 11 ( ) 2 ε = µ 20 µ 02 µ 20 µ 02 La excentricidad está en el rango [0,1], donde ε = 0 corresponde con un objeto redondo y tiende a 1 conforme se alarga el objeto. 18 ε =

Análisis de imágenes digitales

Análisis de imágenes digitales Análisis de imágenes digitales SEGMENTACIÓN DE LA IMAGEN Segmentación basada en texturas INTRODUCCIÓN La textura provee información sobre la distribución espacio-local del color o niveles de intensidades

Más detalles

Tema 6: Descriptores topológicos, geométricos y estadísticos de las imágenes digitales

Tema 6: Descriptores topológicos, geométricos y estadísticos de las imágenes digitales Tema 6: Descriptores topológicos, geométricos y estadísticos de las imágenes digitales de imágenes (después de realizar una segmentación) Componentes conexas Agujeros (2D) Túneles y cavidades (3D) Característica

Más detalles

PSU Matemática NM-4 Guía 23: Isometrías. Nombre: Curso: Fecha: -

PSU Matemática NM-4 Guía 23: Isometrías. Nombre: Curso: Fecha: - Centro Educacional San Carlos de Aragón. Dpto. Matemática. Prof. Ximena Gallegos H. PSU Matemática NM- Guía : Isometrías Nombre: Curso: Fecha: - Contenido: Isometrías. Aprendizaje Esperado: Analiza traslaciones

Más detalles

Anexo 1 ( Momentos de segundo orden )

Anexo 1 ( Momentos de segundo orden ) .1 neo 1 ( Momentos de segundo orden ) 1. Momento de inercia En muchas de las fórmulas empleadas en ingeniería aparecen epresiones analíticas de la forma ρ d, siendo ρ la distancia de un elemento diferencial

Más detalles

Translaciones, giros, simetrías.

Translaciones, giros, simetrías. Translaciones, giros, simetrías. Transformaciones geométricas Transformación geométrica es una aplicación del plano en el plano tal que a cada punto de un plano le hace corresponder otro punto del mismo

Más detalles

Conceptos básicos de Geometría

Conceptos básicos de Geometría Dr. Eduardo A. RODRÍGUEZ TELLO CINVESTAV-Tamaulipas 15 de enero del 2013 Dr. Eduardo RODRÍGUEZ T. (CINVESTAV) 15 de enero del 2013 1 / 25 1 Geometría Afín Geometría Euclidiana Áreas y ángulos Dr. Eduardo

Más detalles

Geometría Analítica Agosto 2016

Geometría Analítica Agosto 2016 Laboratorio #1 Distancia entre dos puntos I.- Demostrar que los puntos dados no son colineales. 1) A (0, 5), B(3, 1), C( 11, 27) 2) A (1, 4), B( 2, 10), C(5, 5) II.- Demostrar que los puntos dados forman

Más detalles

Probabilidad II Algunas distribuciones notables. Antonio Cuevas Departamento de Matemáticas Universidad Autónoma de Madrid

Probabilidad II Algunas distribuciones notables. Antonio Cuevas Departamento de Matemáticas Universidad Autónoma de Madrid Probabilidad II Algunas distribuciones notables Antonio Cuevas Departamento de Matemáticas Universidad Autónoma de Madrid La distribución normal f (x; µ, σ) = 1 σ 2π e 1 2( x µ σ ) 2, x R, µ R, σ > 0 E(X

Más detalles

Tensores cartesianos.

Tensores cartesianos. Tensores cartesianos. Transformación de coordenadas. Consideremos dos sistemas de coordenadas cartesianas ortogonales en el plano, identificados como σ y σ. Supongamos que ambos tienen un origen común,

Más detalles

Contenidos. Importancia del tema. Conocimientos previos para este tema?

Contenidos. Importancia del tema. Conocimientos previos para este tema? Transformación conforme Contenidos Unidad I: Funciones de variable compleja. Operaciones. Analiticidad, integrales, singularidades, residuos. Funciones de variable real a valores complejos. Funciones de

Más detalles

CENTRO DE GRAVEDAD Y CENTROIDE. Considerando el sistema de n partículas fijo dentro de una región del espacio,

CENTRO DE GRAVEDAD Y CENTROIDE. Considerando el sistema de n partículas fijo dentro de una región del espacio, CENTRO DE GRAVEDAD Y CENTROIDE Centro de gravedad y centro de masa para un sistema de partículas Centro de gravedad Considerando el sistema de n partículas fijo dentro de una región del espacio, Los pesos

Más detalles

Cinemática: parte de la Física que estudia el movimiento de los cuerpos.

Cinemática: parte de la Física que estudia el movimiento de los cuerpos. CINEMÁTICA Cinemática: parte de la Física que estudia el movimiento de los cuerpos. Movimiento: cambio de posición de un cuerpo respecto de un punto de referencia que se supone fijo. Objetivo del estudio

Más detalles

Resistencia de Materiales 1A. Profesor Herbert Yépez Castillo

Resistencia de Materiales 1A. Profesor Herbert Yépez Castillo Resistencia de Materiales 1A Profesor Herbert Yépez Castillo 2015-1 2 Capítulo 5. Torsión 5.4 Ángulo 3 Un par es un momento que tiende a hacer girar respecto a su eje longitudinal. Su efecto es de interés

Más detalles

Resistencia de Materiales 1A. Profesor Herbert Yépez Castillo

Resistencia de Materiales 1A. Profesor Herbert Yépez Castillo Resistencia de Materiales 1A Profesor Herbert Yépez Castillo 2014-2 2 Capítulo 5. Torsión 5.4 Ángulo 3 Un par es un momento que tiende a hacer girar respecto a su eje longitudinal. Su efecto es de interés

Más detalles

Aplicaciones físicas

Aplicaciones físicas Problemas propuestos con solución Aplicaciones físicas ISABEL MARRERO Departamento de Análisis Matemático Universidad de La Laguna imarrero@ulles Índice 1 Integral doble: valor medio 1 2 Integral doble:

Más detalles

PROGRAMA DE ASIGNATURA CLAVE: 1213 SEMESTRE: 2º ESTÁTICA. HORAS SEMESTRE CARACTER GEOMETRÍA ANALÍTICA.

PROGRAMA DE ASIGNATURA CLAVE: 1213 SEMESTRE: 2º ESTÁTICA. HORAS SEMESTRE CARACTER GEOMETRÍA ANALÍTICA. UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO FACULTAD DE ESTUDIOS SUPERIORES ACATLÁN DIVISIÓN DE MATEMÁTICAS E INGENIERÍA LICENCIATURA EN INGENIERÍA CIVIL ACATLÁN PROGRAMA DE ASIGNATURA CLAVE: 1213 SEMESTRE:

Más detalles

Si se incrementa el número de elementos en los cuales se ha dividido la placa y simultáneamente se disminuye el tamaño de cada elemento se obtiene

Si se incrementa el número de elementos en los cuales se ha dividido la placa y simultáneamente se disminuye el tamaño de cada elemento se obtiene Capítulo 5 Fuerzas distribuidas. Centroides y centros de gravedad Introducción La acción de la Tierra sobre un cuerpo rígido debe representarse por un gran número de pequeñas fuerzas distribuidas sobre

Más detalles

Dinamica de rotacion. Torque. Momentum Angular. Aplicaciones.

Dinamica de rotacion. Torque. Momentum Angular. Aplicaciones. Dinamica de rotacion. Torque. Momentum Angular. Aplicaciones. Movimiento de rotación. Cuerpos rígidos un cuerpo con una forma definida, que no cambia en forma que las partículas que lo componen permanecen

Más detalles

IX. Análisis dinámico de fuerzas

IX. Análisis dinámico de fuerzas Objetivos: IX. Análisis dinámico de fuerzas 1. Comprender la diferencia entre masa y peso. 2. Comprender como calcular el momento de masa de inercia de un objeto. 3. Recordar el teorema de ejes paralelos.

Más detalles

Distribuciones de probabilidad bidimensionales o conjuntas

Distribuciones de probabilidad bidimensionales o conjuntas Distribuciones de probabilidad bidimensionales o conjuntas Si disponemos de dos variables aleatorias podemos definir distribuciones bidimensionales de forma semejante al caso unidimensional. Para el caso

Más detalles

Física. Choque de un meteorito sobre la tierra

Física. Choque de un meteorito sobre la tierra Física Choque de un meteorito sobre la tierra Hace 65 millones de años la Tierra cambió de forma repentina, muchas especies desaparecieron, plantas, animales terrestres y marinos y sobre todo, los grandes

Más detalles

Complementos de Análisis. Año 2016

Complementos de Análisis. Año 2016 Complementos de Análisis. Año 2016 Práctica 8. Ecuaciones diferenciales ordinarias. 1 Modelando con ecuaciones diferenciales Modelar con ecuaciones diferenciales las siguientes situaciones. Intentar resolver

Más detalles

La Ecuación de Schrödinger

La Ecuación de Schrödinger La Ecuación de Schrödinger Dr. Héctor René VEGA CARRILLO Notas del curso de Física Moderna Unidad Académica de Ingeniería Eléctrica Universidad Autónoma de Zacatecas Buzón electrónico: fermineutron@yahoo.com

Más detalles

Teoría de la decisión

Teoría de la decisión 1.- Un problema estadístico típico es reflejar la relación entre dos variables, a partir de una serie de Observaciones: Por ejemplo: * peso adulto altura / peso adulto k*altura * relación de la circunferencia

Más detalles

Dr. Bernardo Gómez González

Dr. Bernardo Gómez González EJEMPLO DEL CÁLCULO DE LOS ESFUERZOS PERMISIBLES POR COMPRESIÓN AXIAL Y POR FLEXIÓN ALREDEDOR DEL EJE DE MAYOR MOMENTO DE INERCIA DE LA SECCIÓN TRANSVERSAL DISEÑO ESTRUCTURAL UNIVERSIDAD TECNOLÓGICA DE

Más detalles

Medidas de la pieza. Forma-posición elemento

Medidas de la pieza. Forma-posición elemento TOLERANCIAS DIMENSIONALES Introducción 1 - Podemos conseguir una dimensión exacta?. - Máquinas están sometidos a: desajustes, deformaciones de tipo elástico y térmico que dan lugar a imperfecciones dimensionales.

Más detalles

LA CIRCUNFERENCIA. La circunferencia es la sección producida por un plano perpendicular al eje.

LA CIRCUNFERENCIA. La circunferencia es la sección producida por un plano perpendicular al eje. LA CIRCUNFERENCIA La circunferencia es la sección producida por un plano perpendicular al eje. β = 90º La circunferencia es un caso particular de elipse. Se llama circunferencia al lugar geométrico de

Más detalles

Julio C. Carrillo E. Profesor Escuela de Matemáticas Universidad Industrial de Santander. Monday, November 5, 2007 at 8:44 am (FA07.

Julio C. Carrillo E. Profesor Escuela de Matemáticas Universidad Industrial de Santander. Monday, November 5, 2007 at 8:44 am (FA07. Julio C. Carrillo E. Profesor Escuela de Matemáticas Universidad Industrial de Santander Monday, November 5, 2007 at 8:44 am (FA07.01,02) Para uso exclusivo en el salón de clase. 2007 c Julio C. Carrillo

Más detalles

Mecánica de Fluidos. Análisis Diferencial

Mecánica de Fluidos. Análisis Diferencial Mecánica de Fluidos Análisis Diferencial Análisis Diferencial: Descripción y caracterización del flujo en función de la descripción de una partícula genérica del flujo. 1. Introducción 2. Movimiento de

Más detalles

Qué es la textura de un policristal? Introducción a la textura: Conceptos básicos

Qué es la textura de un policristal? Introducción a la textura: Conceptos básicos Qué es la textura de un policristal? Introducción a la textura: Conceptos básicos (la textura cristaloráfica, como yo lo entiendo) Gaspar Gónzález-Doncel CENIM, C.S.I.C. ggd@cenim.csic.es Esquema a seguir

Más detalles

Tema 6. Variables aleatorias continuas

Tema 6. Variables aleatorias continuas Tema 6. Variables aleatorias continuas Resumen del tema 6.1. Definición de variable aleatoria continua Identificación de una variable aleatoria continua X: es preciso conocer su función de densidad, f(x),

Más detalles

Bases Matemáticas para la Educación Primaria. Guía de Estudio. Tema 5: Transformaciones geométricas planas. Orientación espacial

Bases Matemáticas para la Educación Primaria. Guía de Estudio. Tema 5: Transformaciones geométricas planas. Orientación espacial Bases Matemáticas para la Educación Primaria Guía de Estudio Tema 5: Transformaciones geométricas planas. Orientación espacial 1 Transformaciones geométricas 2 ISOMETRÍAS EN LIBROS DE PRIMARIA Cuáles de

Más detalles

UNIDAD: ÁLGEBRA Y FUNCIONES ECUACIÓN DE LA RECTA

UNIDAD: ÁLGEBRA Y FUNCIONES ECUACIÓN DE LA RECTA C u r s o : Matemática Material N 8 GUÍA TEÓRICO PRÁCTICA Nº 5 UNIDAD: ÁLGEBRA Y FUNCIONES ECUACIÓN DE LA RECTA SISTEMA CARTESIANO ORTOGONAL Para determinar la posición de los puntos de un plano usando

Más detalles

MATEMATICAS ESPECIALES I PRACTICA 7 CLASE 1. Transformaciones conformes

MATEMATICAS ESPECIALES I PRACTICA 7 CLASE 1. Transformaciones conformes MATEMATICAS ESPECIALES I PRACTICA 7 CLASE 1 Transformaciones conformes 1 Determinar donde son conformes las siguientes transformaciones: (a) w() = 2 + 2 (b) w() = 1 + i (c) w() = + 1 (d) w() = En cada

Más detalles

3. Espacios de color. 3.Espacios de color. El uso del color en el procesamiento de imágenes está principalmente motivado por dos factores:

3. Espacios de color. 3.Espacios de color. El uso del color en el procesamiento de imágenes está principalmente motivado por dos factores: 3. Espacios de color El uso del color en el procesamiento de imágenes está principalmente motivado por dos factores: El color es un poderoso descriptor que, en la mayoría de los casos simplifica la identificación

Más detalles

2 o Bachillerato. Conceptos básicos

2 o Bachillerato. Conceptos básicos Física 2 o Bachillerato Conceptos básicos Movimiento. Cambio de posición de un cuerpo respecto de un punto que se toma como referencia. Cinemática. Parte de la Física que estudia el movimiento de los cuerpos

Más detalles

( ) m normal. UNIDAD III. DERIVACIÓN Y APLICACIONES FÍSICAS Y GEOMÉTRICAS 3.8. Aplicaciones geométricas de la derivada

( ) m normal. UNIDAD III. DERIVACIÓN Y APLICACIONES FÍSICAS Y GEOMÉTRICAS 3.8. Aplicaciones geométricas de la derivada UNIDAD III. DERIVACIÓN Y APLICACIONES FÍSICAS Y GEOMÉTRICAS 3.8. Aplicaciones geométricas de la derivada Dirección de una curva Dado que la derivada de f (x) se define como la pendiente de la recta tangente

Más detalles

INDICE 1. Desigualdades 2. Relaciones, Funciones, Graficas 3. La Línea Recta 4. Introducción al Cálculo. Límites

INDICE 1. Desigualdades 2. Relaciones, Funciones, Graficas 3. La Línea Recta 4. Introducción al Cálculo. Límites INDICE 1. Desigualdades 1 1. Desigualdades 1 2. Valor absoluto 8 3. Valor absoluto y desigualdades 11 2. Relaciones, Funciones, Graficas 16 1. Conjunto. Notación de conjuntos 16 2. El plano coordenado.

Más detalles

Práctica Módulo de torsión

Práctica Módulo de torsión Práctica Módulo de torsión Objetivo eterminar el módulo de torsión de varillas de distintos materiales por los métodos estático y dinámico. Material Aparato de torsión representado en la figura, varillas

Más detalles

Ministerio de Educación Pública Dirección de Gestión y Evaluación de la Calidad Departamento de Evaluación Académica y Certificación.

Ministerio de Educación Pública Dirección de Gestión y Evaluación de la Calidad Departamento de Evaluación Académica y Certificación. Matemáticas Distribución de ítems para la prueba nacional Modalidad Académica (Diurnos Nocturnos) Convocatorias 016 ESTIMADO DOCENTE: En la modalidad de colegios académico, la Prueba de Bachillerato 016

Más detalles

INDICE Capitulo Primero. Número. Variable. Función Capitulo II. Límite y Continuidad de las Funciones Capitulo III. Derivada y Diferencial

INDICE Capitulo Primero. Número. Variable. Función Capitulo II. Límite y Continuidad de las Funciones Capitulo III. Derivada y Diferencial INDICE Capitulo Primero. Número. Variable. Función 1. Números reales. Representación de números reales por los puntos 1 del eje numérico 2. Valor absoluto de un número real 3 3. Magnitudes variables y

Más detalles

Campo de velocidades se puede representar mediante una función potencial φ, escalar

Campo de velocidades se puede representar mediante una función potencial φ, escalar Flujo Potencial Campo de velocidades se puede representar mediante una función potencial φ, escalar Condición necesaria flujo irrotacional, V=0. Hipótesis: Flujo irrotacional, incompresible y permanente

Más detalles

LISTA DE SÍMBOLOS. Capítulo 2 EJEMPLOS Y TEORIA DE LAS VIBRACIONES PARAMÉTRICAS 2.1 Introducción T - Periodo Ω - Frecuencia a- parámetro b- parámetro

LISTA DE SÍMBOLOS. Capítulo 2 EJEMPLOS Y TEORIA DE LAS VIBRACIONES PARAMÉTRICAS 2.1 Introducción T - Periodo Ω - Frecuencia a- parámetro b- parámetro LISTA DE SÍMBOLOS Capítulo 2 EJEMPLOS Y TEORIA DE LAS VIBRACIONES PARAMÉTRICAS 2.1 Introducción T - Periodo Ω - Frecuencia a- parámetro b- parámetro 2.1.1 Rigidez Flexiva que Difiere en dos Ejes x- Desplazamiento

Más detalles

ESTÁTICA. Mecánica vectorial para ingenieros: Centroides y Centros de Gravedad. Novena edición CAPÍTULO. Ferdinand P. Beer E. Russell Johnston, Jr.

ESTÁTICA. Mecánica vectorial para ingenieros: Centroides y Centros de Gravedad. Novena edición CAPÍTULO. Ferdinand P. Beer E. Russell Johnston, Jr. Novena edición CAPÍTULO : ESTÁTICA Ferdinand P. Beer E. Russell Johnston, Jr. Lecture Notes: J. Walt Oler Texas Tech University Centroides y Centros de Gravedad 2010 The McGraw-Hill Companies, Inc. All

Más detalles

Clasificación de sistemas

Clasificación de sistemas Capítulo 2 Clasificación de sistemas 2.1 Clasificación de sistemas La comprensión de la definición de sistema y la clasificación de los diversos sistemas, nos dan indicaciones sobre cual es la herramienta

Más detalles

UNIDAD: ÁLGEBRA Y FUNCIONES ECUACIÓN DE LA RECTA

UNIDAD: ÁLGEBRA Y FUNCIONES ECUACIÓN DE LA RECTA C u r s o : Matemática Material N 18 UNIDAD: ÁLGEBRA Y FUNCIONES ECUACIÓN DE LA RECTA GUÍA TEÓRICO PRÁCTICA Nº 15 SISTEMA CARTESIANO ORTOGONAL Para determinar la posición de los puntos de un plano usando

Más detalles

UNIVERSIDAD POLITÉCNICA DE EL SALVADOR ESCUELA DE FORMACIÓN BÁSICA. FÍSICA II PRÁCTICA 26 PENDULO SIMPLE

UNIVERSIDAD POLITÉCNICA DE EL SALVADOR ESCUELA DE FORMACIÓN BÁSICA. FÍSICA II PRÁCTICA 26 PENDULO SIMPLE UNIVERSIDAD POLITÉCNICA DE EL SALVADOR ESCUELA DE FORMACIÓN BÁSICA. FÍSICA II PRÁCTICA 26 PENDULO SIMPLE OBJETIVOS DEL APRENDIZAJE: ESTUDIAR LAS OSCILACIONES DEL PÉNDULO Y DETERMINAR LAS SIMPLIFICACIONES

Más detalles

6 DINAMICA DEL CUERPO RIGIDO

6 DINAMICA DEL CUERPO RIGIDO 6 DINAMICA DEL CUERPO RIGIDO 6. CINEMATICA 6.. Configuracion de un Cuerpo Rígido: Angulos de Euler Un cuerpo rígido se puede entender como una distribución continua de materia que se subdivide en pequeños

Más detalles

INTRODUCCIÓN AL ANÁLISIS DE DATOS ORIENTACIONES (TEMA Nº 7)

INTRODUCCIÓN AL ANÁLISIS DE DATOS ORIENTACIONES (TEMA Nº 7) TEMA Nº 7 DISTRIBUCIONES CONTINUAS DE PROBABILIDAD OBJETIVOS DE APRENDIZAJE: Conocer las características de la distribución normal como distribución de probabilidad de una variable y la aproximación de

Más detalles

CLAVE: MIS 206 PROFESOR: MTRO. ALEJANDRO SALAZAR GUERRERO

CLAVE: MIS 206 PROFESOR: MTRO. ALEJANDRO SALAZAR GUERRERO MATEMÁTICAS AVANZADAS PARA LA INGENIERÍA EN SISTEMAS CLAVE: MIS 206 PROFESOR: MTRO. ALEJANDRO SALAZAR GUERRERO 1 1. SISTEMAS LINEALES DISCRETOS Y CONTINUOS 1.1. Modelos matemáticos 1.2. Sistemas 1.3. Entrada

Más detalles

Geometría de masas: Cálculos del tensor de Inercia

Geometría de masas: Cálculos del tensor de Inercia Departamento: Física Aplicada Mecánica acional (ngeniería ndustrial) Curso 007-08 eometría de masas: Cálculos del tensor de nercia Tensor de inercia de una varilla delgada. Calculo del tensor de inercia

Más detalles

Parte 1. Esfuerzo. Deformación. Reología. Deformación

Parte 1. Esfuerzo. Deformación. Reología. Deformación Geología Estructural 2012 Parte 1. Esfuerzo. Deformación. Reología. Deformación Definición de deformación (deformation). Cuatro aspectos de un sistema deformado (posición final, desplazamiento, camino

Más detalles

Tema 4: Probabilidad y Teoría de Muestras

Tema 4: Probabilidad y Teoría de Muestras Tema 4: Probabilidad y Teoría de Muestras Estadística. 4 o Curso. Licenciatura en Ciencias Ambientales Licenciatura en Ciencias Ambientales (4 o Curso) Tema 4: Probabilidad y Teoría de Muestras Curso 2008-2009

Más detalles

El análisis cartesiano (René Descartes ) descubrió que las ecuaciones pueden tener una representación gráfica.

El análisis cartesiano (René Descartes ) descubrió que las ecuaciones pueden tener una representación gráfica. Capítulo 4. Estudio de la línea recta El análisis cartesiano (René Descartes 1596-1650) descubrió que las ecuaciones pueden tener una representación gráfica. Para lograr esa representación gráfica es necesario

Más detalles

TEMA 6. Ángulos, distancias, simetrías Problemas Resueltos

TEMA 6. Ángulos, distancias, simetrías Problemas Resueltos Matemáticas II (Bachillerato de Ciencias) Soluciones de los problemas propuestos Tema 6 88 Ángulos entre rectas y planos TEMA 6 Ángulos, distancias, simetrías Problemas Resueltos Dadas las rectas r y s

Más detalles

Tema 1: Espacios vectoriales

Tema 1: Espacios vectoriales PROBLEMAS DE MATEMÁTICAS Parte I: Álgebra Primero de Ingeniería Química FACULTAD DE CIENCIAS QUÍMICAS Departamento de Matemáticas Universidad de Castilla-La Mancha Tema 1: Espacios vectoriales 1 Determina

Más detalles

Distribuciones de probabilidad

Distribuciones de probabilidad Distribuciones de probabilidad Prof, Dr. Jose Jacobo Zubcoff Departamento de Ciencias del Mar y Biología Aplicada Inferencia estadística: Parte de la estadística que estudia grandes colectivos a partir

Más detalles

Instituto de Física Universidad de Guanajuato Agosto 2007

Instituto de Física Universidad de Guanajuato Agosto 2007 Instituto de Física Universidad de Guanajuato Agosto 2007 Física III Capítulo I José Luis Lucio Martínez El material que se presenta en estas notas se encuentra, en su mayor parte, en las referencias que

Más detalles

Tema 2 Datos multivariantes

Tema 2 Datos multivariantes Aurea Grané Máster en Estadística Universidade Pedagógica 1 Aurea Grané Máster en Estadística Universidade Pedagógica 2 Tema 2 Datos multivariantes 1 Matrices de datos 2 Datos multivariantes 2 Medias,

Más detalles

Las Funciones Trigonométricas. Sección 5.1 Angulos

Las Funciones Trigonométricas. Sección 5.1 Angulos 5 Las Funciones Trigonométricas Sección 5.1 Angulos Introducción Si comenzamos con un rayo fijo l 1, que tiene un extremo nombrado O, y rotamos el rayo en el plano sobre O in a plane, hasta llegar a la

Más detalles

CONTENIDOS MÍNIMOS 1ºESO. -Realización de las cuatro operaciones (suma, resta, multiplicación y división) mediante los algoritmos tradicionales.

CONTENIDOS MÍNIMOS 1ºESO. -Realización de las cuatro operaciones (suma, resta, multiplicación y división) mediante los algoritmos tradicionales. DEPARTAMENTO DE: MATERIA: CONTENIDOS MÍNIMOS Matemáticas Matemáticas 1ºESO Números naturales y enteros: -Comparar y ordenar números. -Representar en la recta. -Realización de las cuatro operaciones (suma,

Más detalles

Magnitudes y Unidades. Cálculo Vectorial.

Magnitudes y Unidades. Cálculo Vectorial. Magnitudes y Unidades. Cálculo Vectorial. 1. Se tiene las expresiones siguientes, x es posición en el eje X, en m, v la velocidad en m/s y t el tiempo transcurrido, en s. Cuáles son las dimensiones y unidades

Más detalles

TSTC. Dpt. Teoría de la Señal, Telemática y Comunicaciones Tema 2 CINEMÁTICA DE MANIPULADORES

TSTC. Dpt. Teoría de la Señal, Telemática y Comunicaciones Tema 2 CINEMÁTICA DE MANIPULADORES Dpt. Teoría de la Señal, Telemática y Comunicaciones Tema 2 CINEMÁTICA DE MANIPULADORES Secciones 1. Introducción. 2. Coordenadas y Transformaciones Homogéneas. 3. Problema Cinemático Directo. Método de

Más detalles

Transformada de Laplace: Aplicación a vibraciones mecánicas

Transformada de Laplace: Aplicación a vibraciones mecánicas Transformada de Laplace: Aplicación a vibraciones mecánicas Santiago Gómez Jorge Estudiante de Ingeniería Electrónica Universidad Nacional del Sur, Avda. Alem 1253, B8000CPB Bahía Blanca, Argentina thegrimreaper7@gmail.com

Más detalles

1. Hallar la ecuación del plano que pasa por el punto (3, 1, 2) y satisface la condición dada. a) paralelo al plano xy b) perpendicular al eje y

1. Hallar la ecuación del plano que pasa por el punto (3, 1, 2) y satisface la condición dada. a) paralelo al plano xy b) perpendicular al eje y FACULTAD DE CIENCIAS EXACTAS Y NATURALES UNIVERSIDAD DE BUENOS AIRES COMPLEMENTOS DE ANÁLISIS MAESTRíA EN ESTADíSTICA MATEMÁTICA SEGUNDO CUATRIMESTRE 2007 PRÁCTICA 5 1. Hallar la ecuación del plano que

Más detalles

FÍSICA 4 PRIMER CUATRIMESTRE DE 2015 GUÍA 9: POTENCIALES EN 2-D Y 3-D, MOMENTO ANGULAR, ÁTOMO DE HIDRÓGENO, ESPÍN

FÍSICA 4 PRIMER CUATRIMESTRE DE 2015 GUÍA 9: POTENCIALES EN 2-D Y 3-D, MOMENTO ANGULAR, ÁTOMO DE HIDRÓGENO, ESPÍN FÍSICA 4 PRIMER CUATRIMESTRE DE 2015 GUÍA 9: POTENCIALES EN 2-D Y 3-D, MOMENTO ANGULAR, ÁTOMO DE HIDRÓGENO, ESPÍN 1. Considere el siguiente potencial (pozo infinito): { 0 x a; y b y z c V(x)= sino Escribiendo

Más detalles

Fundamentos matemáticos. Tema 3 Geometría del plano y del espacio

Fundamentos matemáticos. Tema 3 Geometría del plano y del espacio Fundamentos matemáticos Grado en Ingeniería agrícola y del medio rural Tema 3 Geometría del plano y del espacio José Barrios García Departamento de Análisis Matemático Universidad de La Laguna jbarrios@ull.es

Más detalles

Algunas Distribuciones Continuas de Probabilidad. UCR ECCI CI-1352 Probabilidad y Estadística Prof. M.Sc. Kryscia Daviana Ramírez Benavides

Algunas Distribuciones Continuas de Probabilidad. UCR ECCI CI-1352 Probabilidad y Estadística Prof. M.Sc. Kryscia Daviana Ramírez Benavides Algunas Distribuciones Continuas de Probabilidad UCR ECCI CI-1352 Probabilidad y Estadística Prof. M.Sc. Kryscia Daviana Ramírez Benavides Introducción El comportamiento de una variable aleatoria queda

Más detalles

Integrales Múltiples.

Integrales Múltiples. CAPÍTULO 8 Integrales Múltiples. En este capítulo generalizamos las integrales definidas de una variable a dos y tres variables. La interpretación geométrica de las integrales definidas de una variable

Más detalles

TEMA 3.- CINEMÁTICA Y DINÁMICA DEL MOTOR

TEMA 3.- CINEMÁTICA Y DINÁMICA DEL MOTOR TEMA.- CINEMÁTICA Y DINÁMICA DEL MOTOR 5 ..- Calcular la oblicuidad de la biela en grados, el deslizamiento, la aceleración, la velocidad instantánea y media del pistón para una posición angular de la

Más detalles

Repaso de conceptos de álgebra lineal

Repaso de conceptos de álgebra lineal MÉTODOS AVANZADOS EN APRENDIZAJE ARTIFICIAL: TEORÍA Y APLICACIONES A PROBLEMAS DE PREDICCIÓN Manuel Sánchez-Montañés Luis Lago Ana González Escuela Politécnica Superior Universidad Autónoma de Madrid Repaso

Más detalles

Universidad Alonso de Ojeda. Facultad de Ingeniería GUIA DE ESTUDIO ALGEBRA LINEAL.

Universidad Alonso de Ojeda. Facultad de Ingeniería GUIA DE ESTUDIO ALGEBRA LINEAL. UNIDAD IV: VECTORES EN R2 Y R3 VECTOR Se puede considerar un vector como un segmento de recta con una flecha en uno de sus extremos. De esta forma lo podemos distinguir por cuatro partes fundamentales:

Más detalles

Números reales. Valor absoluto. Desigualdades. Distancias entre la recta real. Intervalos y entornos.

Números reales. Valor absoluto. Desigualdades. Distancias entre la recta real. Intervalos y entornos. MATEMÁTICAS I Contenidos. Aritmética y álgebra: Números reales. Valor absoluto. Desigualdades. Distancias entre la recta real. Intervalos y entornos. Resolución e interpretación gráfica de ecuaciones e

Más detalles

Práctica de cuerpo rígido

Práctica de cuerpo rígido Cátedra de Física 1 (6.01) Práctica de cuerpo rígido Objetivos... Pre - requisitos para realizar la práctica... Bibliografía recomendada en referencia la modelo teórico... Competencias que el alumno puede

Más detalles

Centro de gravedad de un cuerpo bidimensional

Centro de gravedad de un cuerpo bidimensional Centro de gravedad de un cuerpo bidimensional Al sumar las fuerzas en la dirección z vertical y los momentos alrededor de los ejes horizontales y y x, Aumentando el número de elementos en que está dividida

Más detalles

Guía n 0: Herramientas de Física y Matemáticas

Guía n 0: Herramientas de Física y Matemáticas Guía n 0: Herramientas de Física y Matemáticas Problema Dadas dos partículas en el espacio ubicadas en los puntos de coordenadas p = (0,5, 2) y p 2 = (2,3,). Hallar el vector posición de la partícula respecto

Más detalles

ECUACIONES DIMENSIONALES

ECUACIONES DIMENSIONALES ECUACIONES DIMENSIONALES 1. En la expresión x = k v n / a, x = distancia, v = velocidad, a = aceleración y k es una constante adimensional. Cuánto vale n para que la expresión sea dimensionalmente homogénea?

Más detalles

PLANIFICACIÓN ANUAL. SUBSECTOR: Matemática N HORAS SEMANALES: 4 o 5 NIVEL : NM1 1 Medio

PLANIFICACIÓN ANUAL. SUBSECTOR: Matemática N HORAS SEMANALES: 4 o 5 NIVEL : NM1 1 Medio PLANIFICACIÓN ANUAL SUBSECTOR: Matemática N HORAS SEMANALES: 4 o 5 NIVEL : NM1 1 Medio OBJETIVOS Objetivos Fundamentales Objetivos Transversales Unidades Contenidos Título Subtítulo Aprendizaje Esperado

Más detalles

PLANES CURRICULARES GRADO9º/ 01 PERIODO

PLANES CURRICULARES GRADO9º/ 01 PERIODO PLANES CURRICULARES GRADO9º/ 01 PERIODO Grado: 9º Periodo: 01 PRIMERO Aprobado por: G. Watson - Jefe Sección Asignatura: MATEMATICAS Profesor: Gloria rueda y Jesús Vargas ESTANDARES P.A.I. I.B. A. Conocimiento

Más detalles

Pórticos espaciales. J. T. Celigüeta

Pórticos espaciales. J. T. Celigüeta Pórticos espaciales J. T. Celigüeta Pórtico espacial. Definición Estructura reticular. Barras rectas de sección despreciable. Cualquier orientación en el espacio. Barras unidas rígidamente en ambos extremos.

Más detalles

LA CIRCUNFERENCIA. x y r. (x h) (y k) r. d(p; 0) x y r. d(p; C) (x h) (y k) r. Definición. Ecuación de la circunferencia. Geometría Analítica 3

LA CIRCUNFERENCIA. x y r. (x h) (y k) r. d(p; 0) x y r. d(p; C) (x h) (y k) r. Definición. Ecuación de la circunferencia. Geometría Analítica 3 Definición LA CIRCUNFERENCIA Se llama circunferencia a la sección cónica generada al cortar un cono recto con un plano perpendicular al eje del cono. La circunferencia es el lugar geométrico de todos los

Más detalles

UNIVERSIDAD NACIONAL DE EDUCACIÓN A DISTANCIA

UNIVERSIDAD NACIONAL DE EDUCACIÓN A DISTANCIA UNIVERSIDAD NACIONAL DE EDUCACIÓN A DISTANCIA NOMBRE... APELLIDOS... CALLE... POBLACIÓN... PROVINCIA... C. P.... SISTEMAS MECÁNICOS E.T.S. de Ingenieros Industriales PRUEBA DE EVALUACIÓN A DISTANCIA /

Más detalles

ALGEBRA. Escuela Politécnica Superior de Málaga

ALGEBRA. Escuela Politécnica Superior de Málaga ALGEBRA. Escuela Politécnica Superior de Málaga Tema 1. Espacios Vectoriales. Sistemas de ecuaciones. Espacio vectorial. Espacios vectoriales R n. Dependencia e independencia lineal. Base. Matrices y determinantes.

Más detalles

Introducción. Flujo Eléctrico.

Introducción. Flujo Eléctrico. Introducción La descripción cualitativa del campo eléctrico mediante las líneas de fuerza, está relacionada con una ecuación matemática llamada Ley de Gauss, que relaciona el campo eléctrico sobre una

Más detalles

TEMAS 6 Y 7 RECTAS Y PLANOS EN EL ESPACIO

TEMAS 6 Y 7 RECTAS Y PLANOS EN EL ESPACIO Temas 6 y 7 Rectas y planos en el espacio Matemáticas II - 2º Bachillerato 1 TEMAS 6 Y 7 RECTAS Y PLANOS EN EL ESPACIO RECTAS Y PLANOS EJERCICIO 1 : Halla el volumen del tetraedro determinado por los ejes

Más detalles

MAT2715 VARIABLE COMPLEJA II Ayudantia 5 Rodrigo Vargas. g(z) e u(z) 1. u(z) a log z + b

MAT2715 VARIABLE COMPLEJA II Ayudantia 5 Rodrigo Vargas. g(z) e u(z) 1. u(z) a log z + b PONTIFICIA UNIVERSIDAD CATÓLICA DE CHILE FACULTAD DE MATEMÁTICAS MAT2715 VARIABLE COMPLEJA II Ayudantia 5 Rodrigo Vargas 1. Sea u : C R una función armónica positiva. Pruebe que u es constante. Solución:

Más detalles

Examen de Física-1, 1 Ingeniería Química Examen final. Septiembre de 2014 Problemas (Dos puntos por problema).

Examen de Física-1, 1 Ingeniería Química Examen final. Septiembre de 2014 Problemas (Dos puntos por problema). Examen de Física-1, 1 Ingeniería Química Examen final. Septiembre de 014 Problemas (Dos puntos por problema). Problema 1 (Primer parcial): Un cuerpo de masa 10 g se desliza bajando por un plano inclinado

Más detalles

2 Traslaciones. Unidad 13. Movimientos en el plano. Frisos y mosaicos ESO. Página 172. que transforma H 3 en H 1? a) Son traslaciones H 1, H 2 y H 3.

2 Traslaciones. Unidad 13. Movimientos en el plano. Frisos y mosaicos ESO. Página 172. que transforma H 3 en H 1? a) Son traslaciones H 1, H 2 y H 3. Unidad 13. Movimientos en el plano. Frisos y mosaicos a las Enseñanzas plicadas 3 Traslaciones Página 17 1. El mosaico de la derecha se llama multihueso. H 1, H, H 3 y H 4 son huesos. Se pueden estudiar

Más detalles

CONCEPTO DE CINEMÁTICA: es el estudio del movimiento sin atender a las causas que lo producen

CONCEPTO DE CINEMÁTICA: es el estudio del movimiento sin atender a las causas que lo producen CINEMÁTICA CONCEPTO DE CINEMÁTICA: es el estudio del movimiento sin atender a las causas que lo producen CONCEPTO DE MOVIMIENTO: el movimiento es el cambio de posición, de un cuerpo, con el tiempo (este

Más detalles

MATEMÁTICAS. PRIMERO DE E.S.O.

MATEMÁTICAS. PRIMERO DE E.S.O. MATEMÁTICAS. PRIMERO DE E.S.O. Unidad 1: Números naturales. Potencias y raíces. Números naturales. Representación geométrica. Operaciones. Sistema de numeración decimal. Operaciones combinadas. Jerarquía.

Más detalles

UNIDAD II Ecuaciones diferenciales con variables separables

UNIDAD II Ecuaciones diferenciales con variables separables UNIDAD II Ecuaciones diferenciales con variables separables UNIDAD ECUACIONES DIFERENCIALES CON VARIABLES SEPARABLES Ecuaciones diferenciales de primer orden y de primer grado. Una ecuación diferencial

Más detalles

En la notación C(3) se indica el valor de la cuenta para 3 kilowatts-hora: C(3) = 60 (3) = 1.253

En la notación C(3) se indica el valor de la cuenta para 3 kilowatts-hora: C(3) = 60 (3) = 1.253 Eje temático: Álgebra y funciones Contenidos: Operatoria con expresiones algebraicas Nivel: 2 Medio Funciones 1. Funciones En la vida diaria encontramos situaciones en las que aparecen valores que varían

Más detalles

CENTRO DE GRAVEDAD, CENTRO DE MASA Y CENTROIDE

CENTRO DE GRAVEDAD, CENTRO DE MASA Y CENTROIDE UNIERSIDD NION DE O FUTD DE INGENIERÍ EÉTRI Y EETRÓNI ESUE PROFESION DE INGENIERÍ EÉTRI ENTRO DE GREDD, ENTRO DE MS Y ENTROIDE ING. JORGE MONTÑO PISFI O, 2010 ENTRO DE GREDD, ENTRO DE MSYY ENTROIDE ENTRO

Más detalles

VECTORES. también con letras sobre las cuales se coloca una flechita ( a ). A = módulo de A. modulo o magnitud, dirección y sentido. vector.

VECTORES. también con letras sobre las cuales se coloca una flechita ( a ). A = módulo de A. modulo o magnitud, dirección y sentido. vector. VECTORES Según su naturaleza las cantidades físicas se clasifican en magnitudes escalares y magnitudes vectoriales Las magnitudes como el tiempo, la temperatura, la masa y otras, son magnitudes escalares

Más detalles

Muchas variables aleatorias continuas presentan una función de densidad cuya gráfica tiene forma de campana.

Muchas variables aleatorias continuas presentan una función de densidad cuya gráfica tiene forma de campana. Página 1 de 7 DISTRIBUCIÓN NORMAL o campana de Gauss-Laplace Esta distribución es frecuentemente utilizada en las aplicaciones estadísticas. Su propio nombre indica su extendida utilización, justificada

Más detalles

Mapa Curricular: Funciones y Modelos

Mapa Curricular: Funciones y Modelos A.PR.11.2.1 Determina el dominio y el alcance de las funciones a partir de sus diferentes representaciones. A.PR.11.2.2 Identifica y aplica las relaciones entre los puntos importantes de una función (ceros,

Más detalles

Descripciones de los niveles de logro modificados (ALD, siglas en inglés) de la prueba de evaluación MCA en matemáticas Grados 5 a 8

Descripciones de los niveles de logro modificados (ALD, siglas en inglés) de la prueba de evaluación MCA en matemáticas Grados 5 a 8 Descripciones de los niveles de logro modificados (ALD, siglas en inglés) de la prueba de evaluación MCA en matemáticas Grados 5 a 8 Grado 5 No cumple los estándares de logro modificados (Grado 5) Los

Más detalles

3. Ecuaciones diferenciales. Mayo, 2009

3. Ecuaciones diferenciales. Mayo, 2009 Cálculo 3. Ecuaciones diferenciales Mayo, 2009 Clasificación de las ecuaciones diferenciales 1. Ecuaciones diferenciales ordinarias 1.a Ecuaciones diferenciales ordinarias de primer orden Nociones generales

Más detalles