Algoritmos pseudo-polinomiales
|
|
|
- Xavier Suárez Ortega
- hace 8 años
- Vistas:
Transcripción
1 Análisis de Algoritmos Algoritmos pseudo-polinomiales Dra. Elisa Schaeffer PISIS / FIME / UANL Algoritmos pseudo-polinomiales p. 1
2 HAMILTON PATH es NP-completo La reducción es de 3SAT a HAMILTON PATH: dada una expresión φ en CNF con las variables x 1,...,x n y cláusulas C 1,...,C r así que cada cláusula contiene tres literales, un grafo G(φ) está construida así que G(φ) contiene un camino de Hamilton si y sólo si φ es satisfactible. En continuación a la clase pasada empezamos con esto. Algoritmos pseudo-polinomiales p. 2
3 Tres tipos de gadgets 1. gadgets de elección que eligen la asignación a las variables x i, 2. gadgets de consistencia que verifican que todas las ocurrencias de x i tengan el mismo valor asignado y que todas las ocurrencias de x i tengan el valor opuesto, 3. gadgets de restricción que garantizan que cada cláusula sea satisfecha. Algoritmos pseudo-polinomiales p. 3
4 Las conexiones De elección: en serie. Cada cláusula tiene un gadget de restricción. Entre los de restricción y elección: un gadget de consistencia conectando los de restricción a la arista de verdad de x i si el literal es positivo y a la arista de falso de x i si el literal es negativo. Algoritmos pseudo-polinomiales p. 4
5 Ilustración = A la izquierda, el gadget de elección, en el centro, el gadget de consistencia y a la derecha, el gadget de restricción. Algoritmos pseudo-polinomiales p. 5
6 Elementos adicionales Aristas para conectar todos los triángulos, el último vértice de la cadena de los gadgets de elección y un vértice adicional v así que formen una camarilla estos 3n+2 vértices. Un vértice auxiliar w conectado con una arista a v. Algoritmos pseudo-polinomiales p. 6
7 Idea de la construcción Un lado de un gadget de restricción está recorrida por el camino de Hamilton si y sólo si el literal a cual corresponde es falso. = por lo menos un literal de cada cláusula es verdad porque en el otro caso todo el triángulo será recorrido. El camino empezará en el primer vértice de la cadena de los gadgets de elección y termina en w. Algoritmos pseudo-polinomiales p. 7
8 Programación entera La cantidad de problemas NP-completos de conjuntos es muy grande y uno de ellos sirve para dar una reducción que muestra que programación entera es NP-completo, mientras programación lineal pertenece a P. Algoritmos pseudo-polinomiales p. 8
9 Problema de la mochila Dada: una lista de N diferentes artículos ϕ i Φ y cada objeto tiene una utilidad ν(ϕ i ) y un peso ω(ϕ i ) Pregunta: Qué conjunto M Φ de artículo debería uno elegir para tener un valor total por lo menos k si tiene una mochila que solamente soporta peso hasta un cierto límite superior Ψ. Algoritmos pseudo-polinomiales p. 9
10 En ecuaciones Con la restricción Ψ ϕ Mω(ϕ) se aspira maximizar la utilidad total ν(ϕ) k. ϕ M Algoritmos pseudo-polinomiales p. 10
11 Complejidad El problema de la mochila es NP-completo, lo que se muestra por un problema de conjuntos (cubierto exacto, inglés: exact cover). Sin embargo, cada instancia del problema de la mochila se puede resolver en tiempo O(N Ψ)....? Algoritmos pseudo-polinomiales p. 11
12 El algoritmo Definimos variables auxiliares V(w,i) que es el valor total máximo posible seleccionando algunos entre los primeros i artículos así que su peso total es exactamente w. Cada uno de los V(w,i) con w = 1,...,Ψ y i = 1,...,N se puede calcular a través de la ecuación recursiva siguiente: V(w,i+1) = máx{v(w,i),v i+1 +V(w w i+1,i)} donde V(w,0) = 0 para todo w y V(w,i) = si w 0. Algoritmos pseudo-polinomiales p. 12
13 La salida del algoritmo Podemos calcular en tiempo constante un valor de V(w,i) conociendo algunos otros y en total son NΨ elementos. = Tiempo de ejecución O(N Ψ) La respuesta de la problema de decisión es sí únicamente en el caso que algún valor V(w,i) sea mayor o igual a k. Algoritmos pseudo-polinomiales p. 13
14 Entonces? Para pertenecer a P, necesitaría tener un algoritmo polinomial en el tamaño de la instancia. Eso es más como N logψ y así menor que el parámetro obtenido N Ψ (tomando en cuenta que Ψ = 2 logψ ). Algoritmos pseudo-polinomiales p. 14
15 Algoritmo pseudo-polinomial Tales algoritmos donde la cota de tiempo de ejecución es polinomial en los enteros de la entrada y no sus logaritmos se llama un algoritmo pseudo-polinomial. Algoritmos pseudo-polinomiales p. 15
16 Fuertemente NP-completo Un problema es fuertemente NP-completo si permanece NP-completo incluso en el caso que toda instancia de tamaño n está restringida a contener enteros de tamaño máximo p(n) para algún polinomial p. Un problema fuertemente NP-completo no puede tener algoritmos pseudo-polinomiales salvo que si aplica que P sea igual a NP. Los problemas SAT, MAXCUT, TSPD y HAMILTON PATH, por ejemplo, son fuertemente NP-completos, pero KNAPSACK no lo es. Algoritmos pseudo-polinomiales p. 16
17 Tareas para entregar el martes En las siguientes diapositivas se detalla dos reducciones. Muestra que sean correctas las dos, en las dos direcciones. 1. TSPD es NP-completo (de HAMILTON PATH) 2. 3COLORING es NP-completo (de NAESAT) Tarea extra: argumentar porqué 2COLORING P. Algoritmos pseudo-polinomiales p. 17
18 Primera reducción Dado un grafo G = (V,E) con n vértices, hay que construir una matriz de distancias d ij y decidir un presupuesto B así que existe un ciclo de largo menor o igual a B si y sólo si G contiene un camino de Hamilton (nota: no un ciclo, sino un camino). Algoritmos pseudo-polinomiales p. 18
19 Inicio para la demostración Etiquetamos los vértices V = {1,2,...,n} y asignamos simplemente d ij = { 1, si {i,j} E, 2, en otro caso. El presupuesto será B = n+1. Nota que así el grafo ponderado que es la instancia de TSPD es completo. Algoritmos pseudo-polinomiales p. 19
20 La segunda reducción De una conjunción de cláusulas φ = C 1... C m con variables x 1,...,x n, construyamos un grafo G(φ) tal que se puede colorear G(φ) con tres colores, denotados {0, 1, 2} si y sólo si existe una asignación de valores que satisface a φ en el sentido NAESAT. Algoritmos pseudo-polinomiales p. 20
21 Los gadgets para usar Para las variables: de elección en forma de triángulo así que los vértices del triángulo son v, x i y x i Para cada cláusula: ponemos un triángulo de [C i1,c i2,c i3 ] donde además cada C ij está conectado al vértice del literal número j de la cláusula C i Algoritmos pseudo-polinomiales p. 21
NP-Completeness: Universidad Autónoma de Nuevo León Facultad de Ingeniería Mecánica y Eléctrica División de Posgrado en Ingeniería de Sistemas
Universidad Autónoma de Nuevo León Facultad de Ingeniería Mecánica y Eléctrica División de Posgrado en Ingeniería de Sistemas Complejidad del problema de la Mochila NP-Completeness: (Knapsack problem)
Estructuras de datos Árboles B
Estructuras de datos Árboles B Dra. Elisa Schaeffer [email protected] PISIS / FIME / UANL Árboles B p. 1 Árboles B Árboles B son árboles balanceados que no son binarios. Todos los vértices contienen
Teoría de grafos y optimización en redes
Teoría de grafos y optimización en redes José María Ferrer Caja Universidad Pontificia Comillas Definiciones básicas Grafo: Conjunto de nodos (o vértices) unidos por aristas G = (V,E) Ejemplo V = {,,,,
Clases de complejidad computacional: P y NP
1er cuatrimestre 2006 La teoría de Se aplica a problemas de decisión, o sea problemas que tienen como respuesta SI o NO (aunque es sencillo ver que sus implicancias pueden extenderse a problemas de optimización).
Programación dinámica p. 1
Técnicas de diseño de algoritmos Programación dinámica Dra. Elisa Schaeffer [email protected] PISIS / FIME / UANL Programación dinámica p. 1 Programación dinámica En programación dinámica, uno
Teoría de la Computación puesta en Práctica
Teoría de la Computación puesta en Práctica Marcelo Arenas M. Arenas Teoría de la Computación puesta en Práctica 1 / 24 Problema a resolver WiMAX (Worldwide Interoperability for Microwave Access): estándar
Tema 7: Problemas clásicos de Programación Lineal
Tema 7: Problemas clásicos de Programación Lineal 1.- Características generales de un problema de transporte y asignación Surgen con frecuencia en diferentes contextos de la vida real. Requieren un número
Complejidad amortizada
Análisis de algoritmos Complejidad amortizada Dra. Elisa Schaeffer [email protected] PISIS / FIME / UANL Complejidad amortizada p. 1 Complejidad amortizada La idea en el análisis de complejidad
Grafos. Suponiendo que e = [u, v]. Entonces los nodos u y v se llaman extremos de e y u y v se dice que son nodos adyacentes o vecinos.
Grafos Los grafos son estructuras que constan de vértices o nodos y de aristas o arcos que conectan los vértices entre sí. Un grafo G consiste en dos cosas: 1. Un conjunto V de elementos llamados nodos
1. Diseñe algoritmos que permitan resolver eficientemente el problema de la mochila 0/1 para los siguientes casos:
PROGRAMACIÓN DINÁMICA RELACIÓN DE EJERCICIOS Y PROBLEMAS 1. Diseñe algoritmos que permitan resolver eficientemente el problema de la mochila /1 para los siguientes casos: a. Mochila de capacidad W=15:
Se puede dibujar la siguiente figura, empezando y terminando en el mismo punto, sin levantar e lápiz del papel?
Se puede dibujar la siguiente figura, empezando y terminando en el mismo punto, sin levantar e lápiz del papel? Y esta otra? Los puentes de Königsberg Königsberg es famosa por ser la ciudad natal de Immanuel
Coloración. Unos cuantos problemas. Asignación de frecuencias de radio. Gregorio Hernández Peñalver. Unos cuantos problemas. Unos cuantos problemas
Unos cuantos problemas Coloración Gregorio Hernández Peñalver Matemática Discreta Asignación de frecuencias de radio G=(V, A) V={emisoras}, dos emisoras son adyacentes si sus emisiones se solapan elementos
CLASIFICACIÓN DE PROBLEMAS
UNIVERSIDAD NACIONAL DE SANTIAGO DEL ESTERO Facultad de Ciencias Exactas y Tecnologías Licenciatura en Sistemas de Información 2009 CLASIFICACIÓN DE PROBLEMAS 1 CLASES DE PROBLEMAS Uno de los resultados
TEMA IV TEORÍA DE GRAFOS
TEMA IV TEORÍA DE GRAFOS Poli Abascal Fuentes TEMA IV Teoría de grafos p. 1/? TEMA IV 4. TEORÍA DE GRAFOS 4.1 GRAFOS 4.1.1 Introducción 4.1.2 Definiciones básicas 4.1.3 Caminos y recorridos 4.1.4 Subgrafos,
259. El número de combinaciones de m objetos entre un conjunto de n, denotado por n, para n 1 y 0 m n, se puede definir recursivamente por: m
258. Aplicar el algoritmo de programación dinámica para el problema del cambio de monedas sobre el siguiente ejemplo: n = 3, P = 9, c = (1, 3, 4). Qué ocurre si multiplicamos P y c por un valor constante,
Fundamentos de Investigación de Operaciones Modelos de Grafos
Fundamentos de Investigación de Operaciones de junio de 00 Muchos problemas de optimización puedes ser analizados y resueltos a través de representaciones gráficas. Tal es el caso de los problemas de planificación
Formulación del problema de la ruta más corta en programación lineal
Formulación del problema de la ruta más corta en programación lineal En esta sección se describen dos formulaciones de programación lineal para el problema de la ruta más corta. Las formulaciones son generales,
Introducción a la Teoría de Grafos
Introducción a la Teoría de Grafos Flavia Bonomo [email protected] do. Cuatrimestre 009 Programa Introducción a la teoría de grafos Problemas de camino mínimo Problemas de flujo máximo Programación lineal
Tema 3: El Método Simplex. Algoritmo de las Dos Fases.
Tema 3: El Método Simplex Algoritmo de las Dos Fases 31 Motivación Gráfica del método Simplex 32 El método Simplex 33 El método Simplex en Formato Tabla 34 Casos especiales en la aplicación del algoritmo
Introducción a la Teoría de Grafos
Introducción a la Teoría de Grafos Flavia Bonomo [email protected] do. Cuatrimestre 009 Programa Introducción a la teoría de grafos Problemas de camino mínimo Problemas de flujo máximo Clases de complejidad
Grafos. AMD Grado en Ingeniería Informática. AMD Grado en Ingeniería Informática (UM) Grafos 1 / 30
Grafos AMD Grado en Ingeniería Informática AMD Grado en Ingeniería Informática (UM) Grafos / 0 Objetivos Al finalizar este tema tendréis que: Conocer la terminología básica de la teoría de grafos. Pasar
Geometría Computacional. Dr. Antonio Marín Hernández
Geometría Computacional Dr. Antonio Marín Hernández Centro de Investigación en Inteligencia Artificial Universidad Veracruzana [email protected] www.uv.mx/anmarin Contenido Introducción Intersección de segmentos
Práctica N o 8 Desigualdades Válidas - Algoritmos de Planos de Corte - Algoritmos Branch & Cut
Práctica N o 8 Desigualdades Válidas - Algoritmos de Planos de Corte - Algoritmos Branch & Cut 8.1 Para cada uno de los siguientes conjuntos, encontrar una desigualdad válida que agregada a la formulación
1. GRAFOS : CONCEPTOS BASICOS
1. GRAFOS : CONCEPTOS BASICOS Sea V un conjunto finito no vacio y sea E V x V. El par (V, E) es un grafo no dirigido, donde V es un conjunto de vértices o nodos y E es un conjunto de aristas. Denotaremos
Ejemplo: El problema de la mochila. Algoritmos golosos. Algoritmos y Estructuras de Datos III. Segundo cuatrimestre 2013
Técnicas de diseño de algoritmos Algoritmos y Estructuras de Datos III Segundo cuatrimestre 2013 Técnicas de diseño de algoritmos Algoritmos golosos Backtracking (búsqueda con retroceso) Divide and conquer
Tema: Algoritmos para la ruta más corta en un Grafo.
Programación IV. Guía 10 1 Facultad: Ingeniería Escuela: Computación Asignatura: Programación IV Tema: Algoritmos para la ruta más corta en un Grafo. Objetivos Específicos Definir el concepto de camino
Ejercicios sobre recursividad
Ejercicios sobre recursividad 11 de febrero de 2003 1. Implementa una función recursiva que devuelva la suma de los dígitos de un número natural, que se le pasa por parámetro. 2. Implementa una función
En la fig. 1 se representa el grafo, G=(V,A) donde: V = {1, 2, 3, 4, 5, 6} A = { {1,2}, {1,3}, {1,5}, {3}, {3,4}, {4,5}, {5,6} }
Unidad 1 Parte 1 - Teoría de Grafos Introducción En este capítulo veremos la noción matemática de grafo y propiedades de los mismos. En capítulos subsiguientes veremos las estructuras de datos utilizadas
Teorema de Hoffman-Singleton.
Teorema de Hoffman-Singleton. Felipe Negreira. 18 de junio de 01. Sea X un grafo regular de grado, conexo y de diámetro. Cuál es la cantidad máxima de vértices que puede tener X bajo estas condiciones?
Programación lineal: Algoritmo del simplex
Programación lineal: Algoritmo del simplex Se considera la formulación estándar de un problema de programación lineal siguiendo la notación utilizada en las clases teóricas: Minimizar c t x sa: Ax = b
TEMA 5 El tipo grafo. Tipo grafo
TEMA 5 El tipo grafo PROGRAMACIÓN Y ESTRUCTURAS DE DATOS Tipo grafo 1. Concepto de grafo y terminología 2. Especificación algebraica. Representación de grafos.1. Recorrido en profundidad o DFS.2. Recorrido
Flujos de redes (Network Flows NF)
Fluos de redes (Network Flows NF). Terminología. Árbol generador mínimo. Camino mínimo 4. Fluo máximo 5. Fluo de coste mínimo TEORÍA DE GRAFOS. OPTIMIZACIÓN EN REDES Terminología Red o grafo (G) Nodos
Ejercicios de Lógica Proposicional *
Ejercicios de Lógica Proposicional * [email protected] Notación. El lenguaje proposicional que hemos definido, aquel que utiliza los cinco conectivos,,, y, se denota como L {,,,, }. Los términos
Tipos algebraicos y abstractos. Algoritmos y Estructuras de Datos I. Tipos algebraicos
Algoritmos y Estructuras de Datos I 1 cuatrimestre de 009 Departamento de Computación - FCEyN - UBA Programación funcional - clase Tipos algebraicos Tipos algebraicos y abstractos ya vimos los tipos básicos
Objetivos formativos de Matemática Discreta. Tema 1: Conjuntos, aplicaciones y relaciones
Objetivos formativos de Matemática Discreta Para cada uno de los temas el alumno debe ser capaz de hacer lo que se indica en cada bloque. Además de los objetivos que se señalan en cada tema, se considera
1. (F, +) es un grupo abeliano, denominado el grupo aditivo del campo.
Capítulo 5 Campos finitos 5.1. Introducción Presentaremos algunos conceptos básicos de la teoría de los campos finitos. Para mayor información, consultar el texto de McEliece [61] o el de Lidl y Niederreiter
Relaciones. Estructuras Discretas. Relaciones. Relaciones en un Conjunto. Propiedades de Relaciones en A Reflexividad
Estructuras Discretas Relaciones Definición: relación Relaciones Claudio Lobos, Jocelyn Simmonds clobos,[email protected] Universidad Técnica Federico Santa María Estructuras Discretas INF 152 Sean
Algebra Matricial y Teoría de Grafos
Algebra Matricial y Teoría de Grafos Unidad 3: Nociones de teoría de grafos Luis M. Torres Escuela Politécnica del Litoral Quito, Enero 2008 Maestría en Control de Operaciones y Gestión Logística p.1 Contenido
Complejidad - Problemas NP-Completos. Algoritmos y Estructuras de Datos III
Complejidad - Problemas NP-Completos Algoritmos y Estructuras de Datos III Teoría de Complejidad Un algoritmo eficiente es un algoritmo de complejidad polinomial. Un problema está bien resuelto si se conocen
Complejidad computacional (Análisis de Algoritmos)
Definición. Complejidad computacional (Análisis de Algoritmos) Es la rama de las ciencias de la computación que estudia, de manera teórica, la optimización de los recursos requeridos durante la ejecución
Este material es de uso exclusivo para clase de algoritmos y estructura de datos, la información de este documento fue tomada textualmente de varios
CLASE GRAFOS Este material es de uso exclusivo para clase de algoritmos y estructura de datos, la información de este documento fue tomada textualmente de varios libros por lo que está prohibida su impresión
1.- Para cada uno de los siguientes problemas escribir el diagrama de flujo y el pseudocódigo de un programa que lo resuelva:
1.- Para cada uno de los siguientes problemas escribir el diagrama de flujo y el a) Problema: pedir la base y la altura de un triángulo y escribir su superficie. b) Problema: pedir cuatro números enteros
2 4. c d. Se verifica: a + 2b = 1
Pruebas de Acceso a la Universidad. SEPTIEMBRE 0. Bachillerato de Ciencias Sociales. El alumno debe responder a una de las dos opciones propuestas, A o B. En cada pregunta se señala la puntuación máxima.
Universidad Autónoma del Estado de México Facultad de Medicina
Universidad Autónoma del Estado de México Facultad de Medicina Licenciatura en Bioingeniería Médica Unidad de Aprendizaje: Algoritmos y programación básica Unidad 3: Estructuras de control de flujo en
Una forma fácil de recordar esta suma (regla de Sarrus): Primero vamos a estudiar algunas propiedades de los determinantes.
Una forma fácil de recordar esta suma (regla de Sarrus): Ejemplos: Tarea: realizar al menos tres ejercicios de cálculo de determinantes de matrices de 2x2 y otros tres de 3x3. PARA DETERMINANTES DE MATRICES
MATHEMATICA. Geometría - Triángulos. Ricardo Villafaña Figueroa. Ricardo Villafaña Figueroa. Material realizado con Mathematica y Geometry Expressions
MATHEMATICA Geometría - Triángulos Material realizado con Mathematica y Geometry Expressions Contenido TRIÁNGULOS... 3 Cálculo de los ángulos interiores de un triángulo... 3 Baricentro... 6 Ortocentro...
Lógica Proposicional IIC1253. IIC1253 Lógica Proposicional 1/64
Lógica Proposicional IIC1253 IIC1253 Lógica Proposicional 1/64 Inicio de la Lógica Originalmente, la Lógica trataba con argumentos en el lenguaje natural. Ejemplo Es el siguiente argumento válido? Todos
2007 Carmen Moreno Valencia
Tema VIII. Grafos Grafos 1 2007 Carmen Moreno Valencia 1. Grafos, digrafos y multigrafos 2. Grafos eulerianos 3. Matrices de adyacencia e incidencia 4. Exploración de grafos pesados 1. Grafos, digrafos
Benemérita Universidad Autónoma de Puebla
Tarea No. 1 Matemáticas Elementales Profesor Fco. Javier Robles Mendoza Benemérita Universidad Autónoma de Puebla Facultad de Ciencias de la Computación Lógica y Conjuntos 1. Considere las proposiciones
Práctica 2: Análisis de sensibilidad e Interpretación Gráfica
Práctica 2: Análisis de sensibilidad e Interpretación Gráfica a) Ejercicios Resueltos Modelización y resolución del Ejercicio 5: (Del Conjunto de Problemas 4.5B del libro Investigación de Operaciones,
PROGRAMACIÓN LINEAL PROGRAMACIÓN LINEAL.
PROGRAMACIÓN LINEAL. La programación lineal es una técnica de modelado (construcción de modelos). La programación lineal (PL) es una técnica matemática de optimización, es decir, un método que trata de
Algoritmos para determinar Caminos Mínimos en Grafos
Problemas de camino mínimo Algoritmos para determinar Caminos Mínimos en Grafos Algoritmos y Estructuras de Datos III DC, FCEN, UBA, C 202 Problemas de camino mínimo Dado un grafo orientado G = (V, E)
Con miras a conocer la metodología que se aplica en el Método SIMPLEX, tenemos a continiacion un ejemplo:
Método Simplex. Este método fue creado en el año 1947 por el estadounidense George Bernard Dantzig y el ruso Leonid Vitalievich Kantorovich, con el objetivo de crear un algoritmo capaz de crear soluciones
Análisis y Diseño de Algoritmos
Análisis y Diseño de Algoritmos Notación Asintótica DR. JESÚS A. GONZÁLEZ BERNAL CIENCIAS COMPUTACIONALES INAOE Introducción Por qué el análisis de algoritmos? Determinar tiempos de respuesta (runtime)
El TAD Grafo. El TAD Grafo
! Esta representación resulta útil cuando el número de vértices se conoce previamente y permanecerá fijo durante la resolución del problema, pero resulta ineficiente si necesitamos añadir o eliminar vértices
CAPÍTULO 4 PROGRAMACIÓN LINEAL ENTERA
CAPÍTULO 4 PROGRAMACIÓN LINEAL ENTERA Programación Lineal Entera Es una técnica que permite modelar y resolver problemas cuya característica principal es que el conjunto de soluciones factibles es discreto.
Ecuaciones de primer grado
Matemáticas Unidad 16 Ecuaciones de primer grado Objetivos Resolver problemas que impliquen el planteamiento y la resolución de ecuaciones de primer grado de la forma x + a = b; ax = b; ax + b = c, utilizando
Introducción a la Programación Dinámica. El Problema de la Mochila
Tema 1 Introducción a la Programación Dinámica. El Problema de la Mochila La programación dinámica no es un algoritmo. Es más bien un principio general aplicable a diversos problemas de optimización que
Un sistema de ecuaciones diferenciales son aquellas que tienen varias posibilidades para su solución. Estas son:
Unidad X: Programación lineal (continuación) Objetivo específico: Entender ampliamente el fenómeno del comportamiento de los modelos matemáticos para la resolución de problemas enfocados a las ecuaciones
Optimización de Problemas de Producción
Optimización de Problemas de Producción Pedro Piñeyro - Luis Stábile Colaboran: Héctor Cancela - Antonio Mauttone - Carlos Testuri Depto. Investigación Operativa. Instituto de Computación. Facultad de
ALGORITMOS HEURÍSTICOS Y APROXIMADOS. Análisis y diseño de algoritmos II- 2009
ALGORITMOS HEURÍSTICOS Y APROXIMADOS Análisis y diseño de algoritmos II- 2009 Problemas difíciles : Definiciones, ejemplos y propiedades Análisis y diseño de algoritmos II- 2009 Un viaje a Ciencias de
Grafos y Redes. 3. Resolución: Dibujar el camino sin levantar el lápiz y pasando sólo una vez por cada arco o arista.
Grafos y Redes. Nodos: vértices, 2, 3 2. Arcos: aristas, conexión entre nodos. 2, 54, etc. 3. Resolución: Dibujar el camino sin levantar el lápiz y pasando sólo una vez por cada arco o arista. 4. Grado
Algoritmos y programas. Algoritmos y Estructuras de Datos I
Algoritmos y programas Algoritmos y Estructuras de Datos I Primer cuatrimestre de 2012 Departamento de Computación - FCEyN - UBA Programación funcional - clase 1 Funciones Simples - Recursión - Tipos de
Visualización y Realismo: Problemas Capítulo 2
Visualización y Realismo: Problemas Capítulo 2 Carlos Ureña Almagro Curso 2011-12 1 Problema 2.1 Calcula los coeficientes de la ecuación implícita de la recta que pasa por los puntos p 0 y p 1 Y p 0 p
4.2. El número de combinaciones de m objetos entre un conjunto de n, denotado por n, para n 1 y 0 m n, se puede definir recursivamente por: m
4.1. Aplicar el algoritmo de programación dinámica para el problema del cambio de monedas sobre el siguiente ejemplo: n = 3, P = 9, c = (1, 3, 4). Qué ocurre si multiplicamos P y c por un valor constante,
LAS CIENCIAS DE LA PLANIFICACIÓN
LAS CIENCIAS DE LA PLANIFICACIÓN 5. EL PROBLEMA DEL VIAJANTE (PV) (The Traveling Salesman Problem TSP) Un problema como el de las vacaciones, pero vital para las empresas, es el problema del viajante (PV):
Geometría combinatoria de cuadrados mágicos, latinos, sudokus y otras tablas curiosas
Geometría combinatoria de cuadrados mágicos, latinos, sudokus y otras tablas curiosas Jesús A. De Loera University of California, Davis trabajo conjunto con Shmuel Onn (Technion Haifa Israel) Cuadrados
El método simplex 1. 1 Forma estándar y cambios en el modelo. 2 Definiciones. 3 Puntos extremos y soluciones factibles básicas. 4 El método simplex.
El método simplex Forma estándar y cambios en el modelo. Definiciones. Puntos extremos y soluciones factibles básicas. 4 El método simplex. Definiciones y notación. Teoremas. Solución factible básica inicial.
Capítulo 4: Grafos Clase 2: Caminos, Circuitos Eulerianos y Hamiltonianos
Capítulo 4: Grafos Clase 2: Caminos, Circuitos Eulerianos y Hamiltonianos Matemática Discreta - CC3101 Profesor: Pablo Barceló P. Barceló Matemática Discreta - Cap. 4: Grafos 1 / 29 Navegación de grafos
Coloración de grafos
Alumno: Grupo: Coloración de grafos Comencemos planteando el problema de dar color a las regiones de un mapa plano de modo que a regiones vecinas se les asigne distinto color. Este problema puede ser resuelto
UCV FACULTAD DE INGENIERIA CALCULO I 16/04/2010. Solución al primer examen parcial. x - x 3 1
UCV FACULTAD DE INGENIERIA CALCULO I 16/04/010 Solución al primer eamen parcial 1. Encuentre el conjunto de todos los números reales que satisfacen el sistema de inecuaciones - 3 4 4 0 1 1 1 Solución:
Árboles generadores mínimos (MST) comp-420
Árboles generadores mínimos (MST) comp-420 Árboles generadores mínimos (MST) Sea G=(V,E) una gráfica conectada y no-dirigida con V vértices y E aristas. Cada arista (u,v) E tiene un peso w(u,v), que es
OLIMPÍADA JUVENIL DE MATEMÁTICA 2015 CANGURO MATEMÁTICO TERCER AÑO
OLIMPÍADA JUVENIL DE MATEMÁTICA 2015 CANGURO MATEMÁTICO TERCER AÑO RESPONDE LA PRUEBA EN LA HOJA DE RESPUESTA ANEXA 1. Mi sombrilla tiene la palabra CANGURO pintada encima, como se ve en la figura. Cuál
Metaheurísticas y heurísticas. Algoritmos y Estructuras de Datos III
Metaheurísticas y heurísticas Algoritmos y Estructuras de Datos III Metaheurísticas Heurísticas clásicas. Metaheurísticas o heurísticas modernas. Cuándo usarlas? Problemas para los cuales no se conocen
GRAFOS GEOMÉTRICOS. Introducción. Número de corte. Aplicaciones. Incidencias de puntos y rectas. Distancias unitarias. k-sets.
GRAFOS GEOMÉTRICOS CROSSING LEMMA Y APLICACIONES GEOMÉTRICAS Introducción. Número de corte. Aplicaciones. Incidencias de puntos y rectas. Distancias unitarias. k-sets. Qué es un grafo geométrico? vi =
Lo que se hace entonces es introducir variables artificiales ADAPTACIÓN A OTRAS FORMAS DEL MODELO.
Clase # 8 Hasta el momento sólo se han estudiado problemas en la forma estándar ADAPTACIÓN A OTRAS FORMAS DEL MODELO. Maximizar Z. Restricciones de la forma. Todas las variables no negativas. b i 0 para
11. MOSAICOS. El ángulo interior de un polígono regular de n lados es
11. MOSAICOS Cuando una o varias piezas recubren un plano sin solaparse tenemos un recubrimiento o mosaico. Los mosaicos más sencillos son los que solo utilizan una pieza de una única forma y tamaño. Aun
INDICE INTRODUCCION1 DESARROLLO2 GRAFOS (CONCEPTO).2 ARISTAS...2 VERTICES2 CAMINOS.3 CLASIFICACION DE GRAFOS...3 GRAFOS EULERIANOS.
INDICE INTRODUCCION1 DESARROLLO2 GRAFOS (CONCEPTO).2 ARISTAS...2 VERTICES2 CAMINOS.3 CLASIFICACION DE GRAFOS...3 GRAFOS EULERIANOS.7 GRAFOS CONEXOS7 ÁRBOLES..7 BOSQUES DE ÁRBOLES...8 RECORRIDO DE UN GRAFO..8
Una actividad muy relacionada con la anterior consiste en la generación de mosaicos por medio de polígonos regulares.
Una actividad muy relacionada con la anterior consiste en la generación de mosaicos por medio de polígonos regulares. Actividad 1 (Polígonos regulares): En esta primera actividad los y las estudiantes
Centro Asociado Palma de Mallorca. Tutor: Antonio Rivero Cuesta
Centro Asociado Palma de Mallorca Lógica y Estructuras Discretas Tutor: Antonio Rivero Cuesta Tema 5 Teoría de Grafos Conceptos Básicos Un grafo consta de: Grafo Un conjunto de nodos, Un conjunto de aristas
Dimensionamiento y Planificación de Redes
Dimensionamiento y Planificación de Redes Tema 2. Algoritmos Sobre Grafos Calvo Departamento de Ingeniería de Comunicaciones Este tema se publica bajo Licencia: Crea:ve Commons BY- NC- SA 4.0 Búsqueda
Ecuaciones de la forma. y se sabe que pasa por el punto ( 4 ;16 ), cuál es la ecuación de la recta? con m > 0. contenga los puntos ( 2;? por qué?
Ecuaciones de la forma y = m. Haga las gráficas de y = y = y = y = y y y y y y a. Como son las rectas b. Cuales son simétricas respecto al origen c. La recta y que tipo de simetría presenta respecto a
Introducción a la indecidibilidad
Introducción a la indecidibilidad José M. empere Departamento de istemas Informáticos y Computación Universidad Politécnica de Valencia Lenguajes y problemas Un problema será considerado cualquier cuestión
4.1. Polinomios y teoría de ecuaciones
CAPÍTULO 4 Polinomios y teoría de ecuaciones 4.1. Polinomios y teoría de ecuaciones Un polinomio real en x, o simplemente polinomio en x es una expresión algebraica de la forma a n x n + a n 1 x n 1 +
PROGRAMACIÓN LINEAL. Su empleo es frecuente en aplicaciones de la industria, la economía, la estrategia militar, etc.
PROGRAMACIÓN LINEAL La programación lineal da respuesta a situaciones en las que se exige maximizar o minimizar funciones que se encuentran sujetas a determinadas limitaciones, que llamaremos restricciones.
Degeneración y ciclaje. Método de las dos fases CO-3411 (S08) 30/03/
CO-3411 (S08 30/03/2008 98 Degeneración y ciclaje En el caso de problemas generales, una solución será degenerada cuando alguna de las variables básicas se encuentra en una de sus cotas (comparar con el
EJERCICIO 1. Max Z = 6 x x 2 s.r. (1) 4 x x 2 12 (2) 2 x x 2 16 (3) 2 x 1 6 x 1, x 2 0
Considere el Programa Lineal siguiente: EJERCICIO Max Z 6 x + 9 x 2 s.r. () 4 x + 6 x 2 2 (2) 2 x + 8 x 2 6 (3) 2 x 6 x, x 2 0 (.a) 3 2 0 2 3 4 5 6 7 8 El Problema tiene una Región Factible delimitada
Caminos y Flujos optimales. Introducción a la Investigación de Operaciones 2007
Caminos y Flujos optimales Introducción a la Investigación de Operaciones 2007 Contenido Definiciones básicas. Conexidad. Clausura transitiva. Esqueletos y caminos optimales. Redes. Flujos. Algoritmo de
EJERCICIO DE MAXIMIZACION
PROGRAMACION LINEAL Programación lineal es una técnica matemática que sirve para investigar, para así, hallar la solución a un problema dado dentro de un conjunto de soluciones factibles y es la operación
INGENIERÍA DE SISTEMAS INVESTIGACIÓN OPERATIVA
INGENIERÍA DE SISTEMAS INVESTIGACIÓN OPERATIVA Sesión 4 Objetivos: Aplicar el método simplex a la solución de problemas reales. Contenido: Introducción al método Simplex Requerimiento del método Simplex
MATEMÁTICAS 1º BACHILLERATO Curso EJERCICIOS RESUELTOS DE INECUACIONES
MATEMÁTICAS 1º BACHILLERATO Curso 9-1 EJERCICIOS RESUELTOS DE INECUACIONES EJERCICIOS RESUELTOS DE INECUACIONES A. Inecuaciones lineales con una incógnita x x1 x3 > 1 3 4 x x1 x3 4( x ) 3( x1) 6( x3) 1
Unidad II. 2.1 Concepto de variable, función, dominio, condominio y recorrido de una función.
Unidad II Funciones 2.1 Concepto de variable, función, dominio, condominio y recorrido de una función. Función En matemática, una función (f) es una relación entre un conjunto dado X (llamado dominio)
PROGRAMACION DE REDES. MODELOS DE TRANSPORTE
PROGRAMACION DE REDES. MODELOS DE TRANSPORTE El modelo de transporte o modelo de distribución es un ejemplo de un problema de optimización de redes. Se aplican para resolver ciertos tipos de problemas
Análisis y síntesis de sistemas digitales combinacionales
Análisis Algoritmo de análisis, para un circuito lógico combinacional Síntesis. Conceptos Circuitos combinacionales bien construidos Circuitos combinacionales mal construidos Criterios de optimización
Cuadrados fractáureos
1 Introducción Cuadrados fractáureos J. Romañach y M. Toboso Julio 2016 El número de fractales conocidos crece constantemente, y en este momento se aproxima a los 150 si consideramos tanto los deterministas
TEMA 1. MATRICES, DETERMINANTES Y APLICACIÓN DE LOS DETERMINANTES. CONCEPTO DE MATRIZ. LA MATRIZ COMO EXPRESIÓN DE TABLAS Y GRAFOS.
TEMA 1. MATRICES, DETERMINANTES Y APLICACIÓN DE LOS DETERMINANTES. 1. MATRICES. CONCEPTO DE MATRIZ. LA MATRIZ COMO EXPRESIÓN DE TABLAS Y GRAFOS. DEFINICIÓN: Las matrices son tablas numéricas rectangulares
INVESTIGACIÓN OPERATIVA
FACULTAD DE INGENIERÍA Y ARQUITECTURA ESCUELA PROFESIONAL DE INGENIERÍA DE SISTEMAS INVESTIGACIÓN OPERATIVA Mg Jessica Pérez Rivera PROBLEMAS DE TRANSPORTE Y ASIGNACIÓN Las aplicaciones de la programación
