Coloración de grafos
|
|
|
- Felisa Martín Padilla
- hace 9 años
- Vistas:
Transcripción
1 Alumno: Grupo: Coloración de grafos Comencemos planteando el problema de dar color a las regiones de un mapa plano de modo que a regiones vecinas se les asigne distinto color. Este problema puede ser resuelto asignando a cada región un color diferente; pero, en mapas con muchas regiones esta solución no resulta eficiente, pues serían necesarios demasiados colores. Además, si se quiere reproducir un mapa por procedimientos gráficos, es interesante utilizar pocos colores para rentabilizar la producción. Por lo tanto, nos planteamos el problema de colorear un mapa asignando colores distintos a regiones vecinas, pero utilizando el mínimo número de colores posible. Ejercicio 1: a) Colorear el mapa A en la figura con 3 colores distintos y el mapa B con 4 colores distintos, excluyendo la región exterior no acotada. Mapa A Mapa B b) Dar alguna razón para que el mapa A no pueda ser coloreado con 2 colores: Por tanto, el mínimo número de colores para colorear A es: c) Dar alguna razón para que el mapa B no pueda ser coloreado con 3 colores: Por tanto, el mínimo número de colores para colorear B es: Todo mapa plano puede ser representado por un grafo plano, que llamaremos grafo dual. Para construir el grafo dual de un mapa representamos cada región del mapa por un vértice incluyendo un vértices que represente la región exterior no acotada, cada par de regiones vecinas se representarán uniendo mediante una arista los dos vértices correspondientes (dos regiones cuyas fronteras coinciden sólo en un punto no se consideran vecinas). Así, el problema de coloreado de un mapa se convierte en el problema de coloreado de los vértices de un grafo de modo que no haya dos vértices adyacentes con el mismo color. Obsérvese que el grafo dual de un mapa es un grafo simple. Ejercicio 2: Dar la representación gráfica de los grafos duales de los mapas A y B anteriores. DII 1 er curso 2º cuatrimestre 1/5
2 Definición: Una coloración de un grafo simple es una asignación de color a cada vértice del grafo de modo que a vértices adyacentes les corresponda distinto color. Del mismo modo que el caso de mapas, cabe preguntarse: cuál es el mínimo número de colores necesario para colorear un grafo? Definición: El número cromático de un grafo es el mínimo número de colores necesarios para colorear éste. Denotaremos por ℵ(G) el número cromático del grafo G. Uno de los más famosos teoremas en Matemáticas resuelve el problema del número cromático para grafos planos. Teorema de los cuatro colores: El número cromático de un grafo plano es menor o igual que cuatro. Ejercicio 3: Establecer el número cromático de los siguientes grafos planos G y G, justificando la respuesta. El teorema de los cuatros colores es válido sólo para grafos planos, de hecho existen grafos no planos con número cromático n para todo n natural. Veamos a continuación un algoritmo de coloreado de grafos que nos puede ayudar a aproximar el número cromático. Este algoritmo nos proporciona una coloración para cualquier grafo plano, pero ésta puede usar más colores que el número cromático; por lo tanto, este algoritmo no es óptimo. DII 1 er curso 2º cuatrimestre 2/5
3 Algoritmo de coloreado: Comencemos ordenando los vértices de G, v 1, v 2,, v n en orden decreciente según su grado δ(v 1 ) δ(v 2 ) δ(v n ). Asignar el color 1 a v 1. Recorriendo ordenadamente la lista de vértices asignar el color 1 al siguiente vértice en la lista que no sea adyacente a v 1 (si existe), continuando por la lista asignar también el color 1 a cada vértice que no sea adyacente a un vértice al que ya se le ha asignado el color 1. Entonces, asignar el color 2 al primer vértice de la lista que no haya sido ya coloreado, y siguiendo ordenadamente con los vértices todavía no coloreados asignar también el color 2 a los vértices que no sean adyacentes a un vértice con color 2. Si quedan vértices sin colorear elegir un color 3 para el primer vértice no coloreado y continuar como con los colores 1 y 2. Ejercicio 4: Construir, usando el algoritmo anterior una coloración del siguiente grafo, indicando sobre el grafo con v 1, v 2, la ordenación dada los vértices y con diferentes números los colores para cada vértice. Ejercicio 5: a) Encontrar un coloreado para el grafo completo de cinco vértices K 5. Puedes encontrar una coloración con menos colores que la obtenida arriba? Por qué? Cuál es el número cromático de K 5? Extrapola los razonamientos hechos sobre K 5 y concluye cuál es el número cromático de K n : b) Dibuja el grafo bipartito K 3,5 y obtén una coloración suya por el algoritmo anterior. DII 1 er curso 2º cuatrimestre 3/5
4 Concluye cuál es el número cromático de K 3,5, justificando la respuesta.. Cuál es entonces el número cromático de cualquier grafo bipartito? c) Se denomina grafo cíclico de n vértices, y se denota por C n, al grafo cuyos vértices y aristas se corresponden con los vértices y aristas del polígono regular de n lados. Estudiar el número cromático de C n. (Indicación: el número cromático de C n es diferente para n par o impar. Como en los casos anteriores estudiar algún caso concreto, por ejemplo C 5 y C 6, y luego generalizar). La coloración de vértices en un grafo tiene aplicación a múltiples problemas relacionados con asignaciones y programaciones. Por ejemplo, cuál es el número mínimo de días que hay que disponer para programar los exámenes de un centro de modo que un estudiante no tenga que hacer dos exámenes el mismo día. Resolvamos ahora un problema de asignación de canales de televisión a varias emisoras. NOTA: Los dos problemas siguientes deben estar debidamente explicados y justificados. Ejercicio 6: El departamento informático de una empresa se compone de los seis comités que se enumeran acontinuación: C 1 = {Alonso, Beléndez, Solán} C 2 = { Beléndez, Serrano, Rey} C 3 = {Alonso, Rey, Solán} C 4 = { Serrano, Rey, Solán} C 5 = {Alonso, Beléndez } C 6 = { Beléndez, Rey, Solán} Estos comités se reúnen una día al mes. Cuántas horas de reunión diferentes habrá que programar como mínimo para que nadie tenga dos reuniones a la vez? DII 1 er curso 2º cuatrimestre 4/5
5 Ejercicio 6: a) En unos laboratorios químicos hay que almacenar un pedido compuesto por un total de siete sustancias químicas diferentes que distinguiremos con los números del 1 al 7. Así mismo, la naturaleza de estas sustancia es tal que para todo 2 i 5 la sustancia i no puede almacenarse en el mismo compartimento que la sustancia i-1 o la i+2. Determinar el mínimo número de compartimentos que se necesitan para almacenar de forma segura estas siete sustancias. b) Supongamos que además de las condiciones de la parte a), los cuatro pares siguientes de las siete mismas sustancias requieren también compartimentos separados: 1 y 4, 2 y 5, 2 y 6, 3 y 6. Cuál es el menor número de compartimentos de almacenamiento que se necesitan ahora? DII 1 er curso 2º cuatrimestre 5/5
Unidad 6. Gráficas Planares
Unidad 6. Gráficas Planares Una gráfica Planar es aquella que puede llegar a representarse en un plano de tal modo que no existe intersección de líneas excepto en los vértices. Una gráfica Plana es aquella
Minicurso de Teoría de Gráficas Escuela de Verano 2014 por María Luisa Pérez Seguí Facultad de Ciencias Físico-Matemáticas, Universidad Michoacana
Minicurso de Teoría de Gráficas Escuela de Verano 014 por María Luisa Pérez Seguí Facultad de Ciencias Físico-Matemáticas, Universidad Michoacana Índice 1. Conceptos básicos 1 1.1. Nomenclatura...................................
Un grafo G = (V, E) se dice finito si V es un conjunto finito.
1 Grafos: Primeras definiciones Definición 1.1 Un grafo G se define como un par (V, E), donde V es un conjunto cuyos elementos son denominados vértices o nodos y E es un subconjunto de pares no ordenados
Con miras a conocer la metodología que se aplica en el Método SIMPLEX, tenemos a continiacion un ejemplo:
Método Simplex. Este método fue creado en el año 1947 por el estadounidense George Bernard Dantzig y el ruso Leonid Vitalievich Kantorovich, con el objetivo de crear un algoritmo capaz de crear soluciones
Algebra lineal y conjuntos convexos
Apéndice A Algebra lineal y conjuntos convexos El método simplex que se describirá en el Tema 2 es de naturaleza algebraica y consiste en calcular soluciones de sistemas de ecuaciones lineales y determinar
LAS CIENCIAS DE LA PLANIFICACIÓN
LAS CIENCIAS DE LA PLANIFICACIÓN 5. EL PROBLEMA DEL VIAJANTE (PV) (The Traveling Salesman Problem TSP) Un problema como el de las vacaciones, pero vital para las empresas, es el problema del viajante (PV):
11. MOSAICOS. El ángulo interior de un polígono regular de n lados es
11. MOSAICOS Cuando una o varias piezas recubren un plano sin solaparse tenemos un recubrimiento o mosaico. Los mosaicos más sencillos son los que solo utilizan una pieza de una única forma y tamaño. Aun
Guía de Matemática Tercero Medio
Guía de Matemática Tercero Medio Aprendizaje Esperado: 1. Plantean y resuelven problemas que involucran ecuaciones de segundo grado; explicitan sus procedimientos de solución y analizan la existencia y
Es un conjunto de objetos llamados vértices o nodos unidos por enlaces llamados aristas o arcos, que permiten representar relaciones binarias entre
Es un conjunto de objetos llamados vértices o nodos unidos por enlaces llamados aristas o arcos, que permiten representar relaciones binarias entre elementos de un conjunto. Típicamente, un grafo se representa
MATEMÁTICAS APLICADAS A LAS C.C. SOCIALES
MATEMÁTICAS APLICADAS A LAS C.C. SOCIALES CAPÍTULO 5 Curso preparatorio de la prueba de acceso a la universidad para mayores de 25 años curso 2010/11 Nuria Torrado Robles Departamento de Estadística Universidad
TEMA 1. MATRICES, DETERMINANTES Y APLICACIÓN DE LOS DETERMINANTES. CONCEPTO DE MATRIZ. LA MATRIZ COMO EXPRESIÓN DE TABLAS Y GRAFOS.
TEMA 1. MATRICES, DETERMINANTES Y APLICACIÓN DE LOS DETERMINANTES. 1. MATRICES. CONCEPTO DE MATRIZ. LA MATRIZ COMO EXPRESIÓN DE TABLAS Y GRAFOS. DEFINICIÓN: Las matrices son tablas numéricas rectangulares
III: Geometría para maestros. Capitulo 1: Figuras geométricas
III: Geometría para maestros. Capitulo : Figuras geométricas SELECCIÓN DE EJERCICIOS RESUELTOS SITUACIONES INTRODUCTORIAS En un libro de primaria encontramos este enunciado: Dibuja un polígono convexo
4. ANÁLISIS DE FUNCIONES DE UNA VARIABLE
Análisis de funciones de una variable 49 4. ANÁLISIS DE FUNCIONES DE UNA VARIABLE En esta sección realizaremos algunos ejercicios sobre el estudio de funciones de una variable: En la parte final hay ejercicios
Programa de Asignatura Programación Visual I
Programa de Asignatura Programación Visual I Managua, Abril, 2013 1. DATOS GENERALES Nombre de la asignatura: Programación Visual I Código: Requisito / Correquisito: Carrera (s): Modalidad: Turno: Semestre:
UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS OFICIALES DE GRADO MATERIA: DIBUJO TÉCNICO II
UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS OFICIALES DE GRADO Curso 2014-2015 MATERIA: DIBUJO TÉCNICO II INSTRUCCIONES GENERALES Y CALIFICACIÓN Después
Grafos y Colores. Esteban Lanzarotti - Matías López. Facultad de Ciencias Exactas y Naturales - UBA
Facultad de Ciencias Exactas y Naturales - UBA Menú del día La charla se divide en las siguientes partes: 1 Qué es un modelo matemático? 2 3 4 Modelos matemáticos Un modelo es una representación simplificada
MATERIA: MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II INSTRUCCIONES Y CRITERIOS GENERALES DE CALIFICACIÓN
UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS OFICIALES DE GRADO MODELO DE EXAMEN CURSO 2014-2015 MATERIA: MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES
El TAD Grafo. El TAD Grafo
! Esta representación resulta útil cuando el número de vértices se conoce previamente y permanecerá fijo durante la resolución del problema, pero resulta ineficiente si necesitamos añadir o eliminar vértices
Tema: Los Grafos y su importancia para la optimización de redes.
Tema: Los Grafos y su importancia para la optimización de redes. Qué son los Grafos? Un grafo es una dupla G= {X,U}, donde X es un conjunto finito y no vacio de elementos llamados vértices y U es el conjunto
Un grafo G es un par (V,E) donde V es un conjunto (llamado conjunto de vértices) y E un subconjunto de VxV (conjunto de aristas).
TEMA 5.- GRAFOS 5.1.- DEFINICIONES BÁSICAS Un grafo G es un par (V,E) donde V es un conjunto (llamado conjunto de vértices) y E un subconjunto de VxV (conjunto de aristas). Gráficamente representaremos
Tema 1 El objeto de análisis de la economía
Ejercicios resueltos de Introducción a la Teoría Económica Carmen Dolores Álvarez Albelo Miguel Becerra Domínguez Rosa María Cáceres Alvarado María del Pilar Osorno del Rosal Olga María Rodríguez Rodríguez
Capítulo 2: Inducción y recursión Clase 2: El principio de Inducción Fuerte
Capítulo 2: Inducción y recursión Clase 2: El principio de Inducción Fuerte Matemática Discreta - CC3101 Profesor: Pablo Barceló P. Barceló Matemática Discreta - Cap. 2: Inducción y Recursión 1 / 20 Motivación
Materia: Matemática de Octavo Tema: Raíces de un polinomio. Marco teórico
Materia: Matemática de Octavo Tema: Raíces de un polinomio Y si tuvieras una ecuación polinómica como? Cómo podrías factorizar el polinomio para resolver la ecuación? Después de completar esta lección
Acuerdo 286 Matemáticas
Acuerdo 286 Matemáticas Habilidad Matemática Fausto Zarate Melchor Habilidad Matemática. La habilidad matemática se compone de dos tipos de habilidad: la espacial y la numérica. a) Representación del espacio.
Universidad Autónoma de Sinaloa
Universidad Autónoma de Sinaloa Facultad de Ciencias Sociales Licenciatura en Economía Programa de estudios Asignatura: Investigación de operaciones. Clave: Eje de formación: Básica EFBCII Área de Conocimiento:
Capítulo 4. Lógica matemática. Continuar
Capítulo 4. Lógica matemática Continuar Introducción La lógica estudia la forma del razonamiento, es una disciplina que por medio de reglas y técnicas determina si un teorema es falso o verdadero, además
Descripción de las formas de objetos tridimensionales en su entorno
Unidad 03: Comparando y caracterizando figuras. Grado 02 Matemáticas Clase: Descripción de las formas de objetos tridimensionales en su entorno Nombre: Introducción a. Observa las siguientes figuras, escribe
UNIDAD 6.- PROGRAMACIÓN LINEAL
UNIDAD 6.- PROGRAMACIÓN LINEAL 1. INECUACIONES LINEALES CON DOS INCÓGNITAS Una inecuación de primer grado con dos incógnitas es una inecuación que en forma reducida se puede expresar de la siguiente forma:
ÁLGEBRA DE BOOLE. 1.- Postulados de HUNTINGTON
ÁLGEBRA DE BOOLE El Algebra de Boole es importante pues permite representar matemáticamente el funcionamiento de los circuitos digitales. Los circuitos digitales son capaces de permanecer en 2 estados,
Consideramos dos líneas. Hay tres formas de que las dos pueden interactuar:
Materia: Matemática de 5to Tema: Rectas paralelas y perpendiculares Marco Teórico Consideramos dos líneas. Hay tres formas de que las dos pueden interactuar: 1. Son paralelas y por lo que nunca se cruzan.
4. GEOMETRÍA // 4.4. POLIEDROS.
4. GEOMETRÍA // 4.4. POLIEDROS. COMPLEMENTOS PARA LA FORMACIÓN DISCIPLINAR EN MATEMÁTICAS Curso 2011-2012 Bibliografía. Bibliografía. 1. Alsina, C., Pérez, R., Ruiz, C., Simetría dinámica, Serie Matemáticas:
Semana03[1/17] Funciones. 16 de marzo de Funciones
Semana03[1/17] 16 de marzo de 2007 Introducción Semana03[2/17] Ya que conocemos el producto cartesiano A B entre dos conjuntos A y B, podemos definir entre ellos algún tipo de correspondencia. Es decir,
Profesorado de Nivel Medio y Superior en Biología Matemática - 1º Cuatrimestre Año 2013 FUNCIÓN CUADRÁTICA
Matemática - º Cuatrimestre Año 0 FUNCIÓN CUADRÁTICA Hemos definido anteriormente la función lineal como una función f: R R de la forma f()a+b con a R y b R, que se representa en el plano mediante una
Ángulos complementarios Un par de ángulos son complementarios si la suma resultante de sus medidas es.
Materia: Matemática de Séptimo Tema: Ángulos y pares de ángulos Objetivos de aprendizaje Entender e identificar ángulos complementarios. Entender e identificar ángulos suplementarios. Entender y utilizar
UNIDAD 12.- Estadística. Tablas y gráficos (tema12 del libro)
UNIDAD 12.- Estadística. Tablas y gráficos (tema12 del libro) 1. ESTADÍSTICA: CLASES Y CONCEPTOS BÁSICOS En sus orígenes históricos, la Estadística estuvo ligada a cuestiones de Estado (recuentos, censos,
Cálculos matemáticos POR EL MÉTODO DE RADIACIONES
Cálculos matemáticos POR EL MÉTODO DE RADIACIONES Para realizar este cálculo es necesario contar con la hoja de registro que contiene las distancias y los azimuts de la poligonal datos recabados durante
Poliedros Regulares Convexos
Poliedros Regulares Convexos Características y relaciones entre ellos AUTOR: Begoña Soler de Dios 1 Máster en Profesor de Educación Secundaria Esp. Matemáticas 1 [email protected] Poliedros Regulares
RADIO =? R AREA = : πr 2 < CIRC = : 2 πr
PROGRAMACION BASICA Programar la calculadora corresponde a decirle que presione teclas por sí misma automáticamente. Los programas se pueden ingresar vía RUN SHIFT PRGM (tecla VARS), o bien ingresando
Formule un modelo de programación lineal binaria que minimice la distancia máxima entre un distrito y su respectiva estación.
Profesores: Daniel Espinosa, Roberto Cominetti. Auxiliares: Victor Bucarey, Pablo Lemus, Paz Obrecht. Coordinador: Matías Siebert. IN3701 - Modelamiento y Optimización Auxiliar 2 22 de Marzo de 2012 P1.
Integrales múltiples
ntegrales múltiples Cálculo (2003) El objetivo de este capítulo es definir y aprender a calcular integrales de funciones reales de varias variables, que llamamos integrales múltiples. Las motivación más
PROGRAMACIÓN LINEAL. Su empleo es frecuente en aplicaciones de la industria, la economía, la estrategia militar, etc.
PROGRAMACIÓN LINEAL La programación lineal da respuesta a situaciones en las que se exige maximizar o minimizar funciones que se encuentran sujetas a determinadas limitaciones, que llamaremos restricciones.
Unidad V. 5.1 Recta tangente y recta normal a una curva en un punto. Curvas ortogonales.
Unidad V Aplicaciones de la derivada 5.1 Recta tangente y recta normal a una curva en un punto. Curvas ortogonales. Una tangente a una curva es una recta que toca la curva en un solo punto y tiene la misma
Relaciones. Estructuras Discretas. Relaciones. Relaciones en un Conjunto. Propiedades de Relaciones en A Reflexividad
Estructuras Discretas Relaciones Definición: relación Relaciones Claudio Lobos, Jocelyn Simmonds clobos,[email protected] Universidad Técnica Federico Santa María Estructuras Discretas INF 152 Sean
Conviene recalcar que cuando decimos que un ángulo es igual a otro nos estamos refiriendo a que ambos tienen igual medida (igual abertura)
MTERIL DE TRJO PR EL UL GUÍ 1: ÁNGULOS través de esta actividad se espera que los estudiantes reconozcan aspectos ees de un ángulos: vértice, lados y medida. Pida que lean lo expresado en cada caso, que
NOMENCLATURA DE CUADRILÁTEROS Y ÁNGULOS
NOMENCLATURA DE CUADRILÁTEROS Y ÁNGULOS 8.3.1 8.3.4 Un cuadrilátero es cualquier polígono de cuatro lados. Hay seis casos especiales de cuadriláteros con la que los estudiantes deben estar familiarizados.
Consideremos dos situaciones que se muestran en los cuadros a continuación:
Materia: Matemática de Octavo Tema: Relaciones entre conjuntos Supongamos que deseas predecir el costo de ir a ver una película en el cine, le mandas un mensaje de texto a algunos de tus amigos que han
ECUACIONES DE VALORES EQUIVALENTES» A INTERÉS COMPUESTO «www.uovirtual.com.mx
» A INTERÉS COMPUESTO « I Una ecuación de valor es la equivalencia financiera, planteada en términos algebraicos y en una fecha determinada, entre dos conjuntos de obligaciones o flujos de capitales cuyos
Sucesiones Introducción
Temas Límites de sucesiones. convergentes. Sucesiones divergentes. Sucesiones Capacidades Conocer y manejar conceptos de sucesiones convergentes y divergentes. Conocer las principales propiedades de las
Fabio Prieto Ingreso 2003
Fabio Prieto Ingreso 00. INECUACIONES CON UNA VARIABLE.. Inecuación lineal Llamaremos desigualdad lineal de una variable a cualquier epresión de la forma: a + b > 0 o bien a + b < 0 o bien a + b 0 o bien
sobre un intervalo si para todo de se tiene que. Teorema 1 Sean y dos primitivas de la función en. Entonces,
Integral indefinida Primitiva e integral indefinida. Cálculo de primitivas: métodos de integración. Integración por cambio de variable e integración por partes. Integración de funciones racionales e irracionales.
POLÍGONOS REGULARES DADA LA CIRCUNFERENCIA CIRCUNSCRITA
POLÍGONOS REGULARES DADA LA CIRCUNFERENCIA CIRCUNSCRITA Introducción La construcción de polígonos regulares inscritos en una circunferencia dada, se basan en la división de dicha circunferencia en un número
Parcelación de Algebra y Trigonometría
Parcelación de Algebra y Trigonometría 1. Identificación del curso División: Ciencias Básicas Departamento: Matemáticas y Estadística Nombre del curso: Algebra y Trigonometría Código del curso: MAT 1011
Unidad 8 Áreas y Volúmenes
Unidad 8 Áreas y Volúmenes PÁGINA 132 SOLUCIONES Unidades de medida. Pasa a centímetros cuadrados las siguientes cantidades. a) b) c) Pasa a metros cúbicos las siguientes unidades. a) b) c) Cuántos litros
CENTRO REGIONAL UNIVERSITARIO BARILOCHE TALLER DE MATEMATICA INGRESO 2016 LIC. ENFERMERÍA PRACTICO UNIDAD 3
PRACTICO UNIDAD 3 Nota: Los ejercicios propuestos en los prácticos deben servirle para afianzar y practicar temas. Si nota que algunos ejercicios ya los sabe hacer bien, continúe con otros que le impliquen
TEORÍA DE GRAFOS Ingeniería de Sistemas
TEORÍA DE GRAFOS Ingeniería de Sistemas Código: MAT-31114 AUTORES Ing. Daniel Zambrano Ing. Viviana Semprún UNIDADES DE LA ASIGNATURA» UNIDAD I. Relaciones» UNIDAD II. Estructuras Algebraicas» UNIDAD III.
Álgebra de Boole. Valparaíso, 1 er Semestre Prof. Rodrigo Araya E.
Prof. Rodrigo Araya E. [email protected] Universidad Técnica Federico Santa María Departamento de Informática Valparaíso, 1 er Semestre 2006 1 2 3 4 Contenido En 1815 George Boole propuso una herramienta
Inecuaciones. Objetivos
5 Inecuaciones Objetivos En esta quincena aprenderás a: Resolver inecuaciones de primer y segundo grado con una incógnita. Resolver sistemas de ecuaciones con una incógnita. Resolver de forma gráfica inecuaciones
Inecuaciones: Actividades de recuperación.
Inecuaciones: Actividades de recuperación. 1.- Escribe la inecuación que corresponde a los siguientes enunciados: a) El perímetro de un triángulo equilátero es menor que 4. (x = lado del triángulo) b)
UNIDAD 4: FUNCIONES POLINOMIALES Y RACIONALES
UNIDAD 4: FUNCIONES POLINOMIALES Y RACIONALES En la Sección anterior se abordó contenidos relacionados con las funciones y gráficas, continuamos aprendiendo más sobre funciones; en la presente unidad abordaremos
Actividad introductoria: Repartición de dos pasteles en una familia
Grado 6 Matemáticas De los símbolos a la búsqueda del concepto: El conjunto de los números naturales TEMA: USO DE LA FRACCIÓN EN DIFERENTES CONTEXTOS Nombre: Grado: Actividad introductoria: Repartición
Autómatas Mínimos. Encontrar el autómata mínimo. Universidad de Cantabria. Introducción Minimización de Autómatas Deterministas Resultados Algoritmo
Autómatas Mínimos Encontrar el autómata mínimo. Universidad de Cantabria Introducción Dado un lenguaje regular sabemos encontrar un autómata finito. Pero, hay autómatas más sencillos que aceptan el mismo
Adquirir los conocimientos básicos para la determinación de distancias euclidianas y realización de análisis de proximidad.
TEMA 41: OPERACIONES DE VECINDAD EXTENDIDA OBJETO DEL TEMA: Conocer y comprender el modo de utilización de las diferentes operaciones de vecindad extendida para la realización de análisis geográficos en
Lógica proposicional. Ivan Olmos Pineda
Lógica proposicional Ivan Olmos Pineda Introducción Originalmente, la lógica trataba con argumentos en el lenguaje natural es el siguiente argumento válido? Todos los hombres son mortales Sócrates es hombre
Tema 3: El Método Simplex. Algoritmo de las Dos Fases.
Tema 3: El Método Simplex Algoritmo de las Dos Fases 31 Motivación Gráfica del método Simplex 32 El método Simplex 33 El método Simplex en Formato Tabla 34 Casos especiales en la aplicación del algoritmo
Descripción resumida El estudiante debe hacer una descripción breve sobre la temática que involucra los problemas propuestos.
Trabajo colaborativo 4 Temáticas revisadas: UNIDAD 4 Introducción a los Grafos 1. Grafos. Árboles Estrategia de aprendizaje: Resolución de Problemas Descripción resumida El estudiante debe hacer una descripción
Polígonos regulares, el triángulo de Sierpinski y teselados
Sesión 3 Polígonos regulares, el triángulo de Sierpinski y teselados PROPÓSITOS Plantear y resolver problemas que involucren el análisis de características y propiedades de diversas figuras planas. MATERIALES
Planaridad. Algoritmos y Estructuras de Datos III
Planaridad Algoritmos y Estructuras de Datos III Por qué planares? Por qué planares? Por qué planares? Grafos planares Definiciones: Una representación planar de un grafo G es un conjunto de puntos en
LAS TORRES DE HANOI Y EL MANDATO DE BRAHMA
LAS TORRES DE HANOI Y EL MANDATO DE BRAHMA SIGMA 28 Luis Balbuena Castellano (*) 1. INTRODUCCIÓN Las Torres de Hanoi es un juego inventado por el creativo matemático francés E. Lucas vendiéndose como juguete
JUNIO Bloque A
Selectividad Junio 009 JUNIO 009 Bloque A 1.- Estudia el siguiente sistema en función del parámetro a. Resuélvelo siempre que sea posible, dejando las soluciones en función de parámetros si fuera necesario.
Introducción. podríamos concretar, por ser de dimensiones tan reducidas.
Introducción. Habrá situaciones, a la hora de realizar un dibujo de un objeto, en las que, por tratarse de objetos excesivamente grandes, o bien, demasiado pequeños, es conveniente reducir o ampliar el
Tema 2: Figuras geométricas
Tema 2: Figuras geométricas En este tema empezaremos a estudiar: 1. la circunferencia. 2. los triángulos. 3. los cuadriláteros. 4. los poĺıgonos. 1 2 La circunferencia (p. 31) El cerebro humano es muy
MATEMÁTICA DE CUARTO 207
CAPÍTULO 1 CONJUNTOS NUMÉRICOS 1 Introducción... pág. 9 2 Números naturales... pág. 10 3 Números enteros... pág. 10 4 Números racionales... pág. 11 5 Números reales... pág. 11 6 Números complejos... pág.
Plan de clase (1/3) a) Los siguientes triángulos son semejantes. Calcula la medida del lado que falta en cada uno, sin medir:
Plan de clase (1/3) Escuela: Fecha: Prof. (a): Curso: Matemáticas 9 Eje temático: F. E. y M. Contenido: 9.3.3 Resolución de problemas geométricos mediante el teorema de Tales. Intención didáctica. Que
Soluciones oficiales Clasificación Olimpiada Nacional Nivel Mayor
Soluciones oficiales Clasificación Olimpiada Nacional 009 Comisión Académica Nivel Maor Problema 1. Calcule todas las soluciones m, n de números enteros que satisfacen la ecuación m n = 009 (n + 1) Solución.
Se denomina mosaico a un recubrimiento del plano mediante piezas llamadas teselas sin dejar huecos y sin solapamiento.
Qué entendemos por Mosaico? Se denomina mosaico a un recubrimiento del plano mediante piezas llamadas teselas sin dejar huecos y sin solapamiento. En otro lenguaje, formar un mosaico es embaldosar una
CONTENIDOS Y CRITERIOS DE EVALUACIÓN MATEMÁTICAS 6º ED.
. G r e d o s S a n D i e g o V a l l e c a s CONTENIDOS Y CRITERIOS DE EVALUACIÓN MATEMÁTICAS 6º ED. PRIMERA EVALUACIÓN El Sistema de numeración decimal El sistema de numeración decimal. Lectura y escritura
PREGUNTAS DE EJEMPLO CÁLCULO Y REPRESENTACIÓN DEL ESPACIO PRIMER NIVEL BÁSICO
PREGUNTAS DE EJEMPLO CÁLCULO Y REPRESENTACIÓN DEL ESPACIO PRIMER NIVEL BÁSICO MODALIDAD FLEXIBLE DECRETO Nº211 LEA LA INFORMACIÓN Y LUEGO RESPONDA LAS PREGUNTAS 1 Y 2. 1. Si una persona compra 1 paquete
Taller especial de capacitación de los profesores del 4º Ciclo
Taller especial de capacitación de los profesores del 4º Ciclo Este taller fue preparado para satisfacer la inquietud de los docentes que solicitaron más capacitación Olimpiada Akâ Porâ Olimpiada Nacional
Matemáticas UNIDAD 6 CONSIDERACIONES METODOLÓGICAS. Material de apoyo para el docente. Preparado por: Héctor Muñoz
CONSIDERACIONES METODOLÓGICAS Material de apoyo para el docente UNIDAD 6 Preparado por: Héctor Muñoz Diseño Gráfico por: www.genesisgrafica.cl SISTEMATIZACIÓN DE CONOCIMIENTOS ACERCA DE FIGURAS Y CUERPOS
Investigación de Operaciones I. Problemas de Asignación
Investigación de Operaciones I Problemas de Asignación MSc. Ing. Julio Rito Vargas II cuatrimestre Introducción Los problemas de asignación incluyen aplicaciones tales como asignar personas a tareas. Aunque
Curso de Inducción de Matemáticas
Curso de Inducción de Matemáticas CAPÍTULO 1 Funciones y sus gráficas M.I. ISIDRO I. LÁZARO CASTILLO Programa del Curso 1. Funciones y sus gráficas. 2. Límites. 3. Cálculo Analítico de Límites. 4. Derivación.
Capítulo 4. Inecuaciones. M.Sc. Alcides Astorga M., Lic. Julio Rodríguez S. Instituto Tecnológico de Costa Rica Escuela de Matemática
1 Capítulo 4 Inecuaciones M.Sc. Alcides Astorga M., Lic. Julio Rodríguez S. Instituto Tecnológico de Costa Rica Escuela de Matemática Revista digital Matemática, educación e internet (www.cidse.itcr.ac.cr)
Pruebas de Acceso a las Universidades de Castilla y León
Pruebas de Acceso a las Universidades de Castilla y León MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES EJERCICIO Nº páginas 2 Tablas OPTATIVIDAD: EL ALUMNO DEBERÁ ESCOGER UNA DE LAS DOS OPCIONES Y DESARROLLAR
PROBLEMAS RESUELTOS DE PREPARACIÓN PARA OPOSICIONES. Problemas 02
PROBLEMAS RESUELTOS DE PREPARACIÓN PARA OPOSICIONES Problemas 0 Salvador Pérez Gómez [email protected] 4 de abril de 007 PROBLEMA 1 Sea n un número natural. Sea A n = n + n + 3n. a) Demostrar que
Sistema de Ejercicios Matemáticos con Piezas Tangrams
Actividad # 1 1. Haga un cuadrado pequeño utilizando solamente 2 piezas tangrams. (Indique trazando con las piezas tangrams para demostrar su razonamiento). Los estudiantes necesitarán utilizar dos triángulos
Terminaremos el capítulo con una breve referencia a la teoría de cardinales.
TEMA 5. CARDINALES 241 Tema 5. Cardinales Terminaremos el capítulo con una breve referencia a la teoría de cardinales. Definición A.5.1. Diremos que el conjunto X tiene el mismo cardinal que el conjunto
T7. PROGRAMACIÓN LINEAL
T7. PROGRAMACIÓN LINEAL MATEMÁTICAS PARA 4º ESO MATH GRADE 10 (=1º BACHILLERATO EN ATLANTIC CANADA) CURRÍCULUM MATEMÁTICAS NOVA SCOTIA ATLANTIC CANADA TRADUCCIÓN: MAURICIO CONTRERAS PROGRAMACIÓN LINEAL
Ruta más Corta con una sóla Fuente de Inicio (Single-Source Shortest Paths) DR. JESÚS A. GONZÁLEZ BERNAL CIENCIAS COMPUTACIONALES INAOE
Ruta más Corta con una sóla Fuente de Inicio (Single-Source Shortest Paths) 1 DR. JESÚS A. GONZÁLEZ BERNAL CIENCIAS COMPUTACIONALES INAOE Problema de Encontrar la Ruta más Corta 2 Se requiere llegar de
INSTITUTO POLITÉCNICO NACIONAL SECRETARÍA ACADÉMICA DIRECCIÓN DE ESTUDIOS PROFESIONALES EN INGENIERÍA Y CIENCIAS FÍSICO MATEMÁTICAS
ESCUELA: UNIDAD PROFESIONAL INTERDISCIPLINARIA DE INGENIERÍA Y CIENCIAS SOCIALES Y ADMINISTRATIVAS. CARRERA: INGENIERÍA EN INFORMÁTICA. ACADEMIAS: INVESTIGACIÓN DE OPERACIONES. COORDINACIÓN: DEPARTAMENTO
Educación Plástica y Visual de 2º de ESO Cuaderno de apuntes. Tema 4 ANÁLISIS Y REPRESENTACIÓN DE FORMAS ESQUEMA DEL TEMA
Educación Plástica y Visual de 2º de ESO Cuaderno de apuntes Tema 4 ANÁLISIS Y REPRESENTACIÓN DE FORMAS ESQUEMA DEL TEMA Educación Plástica y Visual 2º de ESO página 38 4.1 Formas orgánicas A Tratamiento
Soluciones a algunos ejercicios de Matemática Discreta 1.
Soluciones a algunos ejercicios de Matemática Discreta 1. Eleonora Catsigeras * 23 de agosto de 2005 Práctico 1.- Ejercicio 5 Cuántos números naturales pares de tres dígitos (en base 10) tienen todos sus
Eje 2. Razonamiento lógico matemático
Razonamiento deductivo e inductivo La historia de las matemáticas se remonta al antiguo Egipto y Babilonia. Ante la necesidad de resolver problemas a través de errores y victorias, estas culturas lograron
Conjuntos, relaciones y funciones Susana Puddu
Susana Puddu 1. Repaso sobre la teoría de conjuntos. Denotaremos por IN al conjunto de los números naturales y por ZZ al de los enteros. Dados dos conjuntos A y B decimos que A está contenido en B o también
POLÍGONOS POLÍGONOS. APM Página 1
POLÍGONOS 1. Polígonos. 1.1. Elementos de un polígono. 1.2. Suma de los ángulos interiores de un polígono. 1.3. Diagonales de un polígono. 1.4. Clasificación de los polígonos. 2. Polígonos regulares. Elementos.
REPRESENTACIÓN GRÁFICA DE UNA FUNCIÓN.. Se pide: x
1 REPRESENTACIÓN GRÁFICA DE UNA FUNCIÓN IBJ05 1. Se considera la función f ( ). Se pide: a) Encontrar los intervalos donde esta función es creciente y donde es decreciente. ( puntos) b) Calcular las asíntotas.
PROGRAMACIÓN. UNIDAD II. ALGORITMO PROFA : HAU MOY
PROGRAMACIÓN. UNIDAD II. ALGORITMO PROFA : HAU MOY ALGORITMO DEFINICIÓN: CONSISTE EN LA DESCRIPCIÓN CLARA Y DETALLADA DEL PROCEDIMIENTO A SEGUIR PARA ALCANZAR LA SOLUCIÓN A UN PROBLEMA EN DONDE SE ESTABLECE
Semana 09 [1/28] Sucesiones. 29 de abril de Sucesiones
Semana 09 [1/28] 29 de abril de 2007 Semana 09 [2/28] Definición Sucesión Una sucesión real es una función: f : N R n f (n) Observaciones Para distinguir a una sucesión de las demás funciones, se ocupará
CONTENIDOS Y CRITERIOS DE EVALUACIÓN MATEMÁTICAS 5º ED. PRIMARIA
CONTENIDOS Y CRITERIOS DE EVALUACIÓN MATEMÁTICAS 5º ED. PRIMARIA El cálculo y los problemas se irán trabajando y evaluando a lo largo de todo el año. 1ª EVALUACIÓN CONTENIDOS. o Los números de siete y
UNIDAD 4 Programación Lineal
MATEMÁTICAS APLICADAS A LAS C. SOCIALES 2 Unidad 4 UNIDAD 4 Programación Lineal TEORÍA (Editorial Editex) Repaso de 1º Inecuaciones lineales con dos incógnitas (Repaso de 1º)(Pág. 80) Actividad resuelta:
Matrices y aplicaciones
Matrices y aplicaciones La antigua ciudad de Königsberg (hoy Kaliningrado) ubicada en lo que era Prusia Oriental, se encuentra atravesada por el río Pregel (cuyo nombre actual es Pregolya). La ciudad es
