Fundamentos de la microscopía de fluorescencia
|
|
|
- Ana Fuentes Correa
- hace 8 años
- Vistas:
Transcripción
1 Fundamentos de la microscopía de fluorescencia Andrés Esteban Cantos y Covadonga Alonso Martí Laboratorio de Interacción virus-célula Departamento de Biotecnología del INIA
2 1) La fluorescencia y sus propiedades
3 La fluorescencia y sus propiedades Qué es la fluorescencia? Es un fenómeno físico por el cual ciertas moléculas (fluorocromos) emiten luminiscencia tras ser excitadas previamente por un haz de luz de una determinada longitud de onda (λ) En base a esto, la microscopía de fluorescencia es una herramienta de gran utilidad científica que utiliza la fluorescencia para la visualización y el estudio de la localización celular de estructuras biológicas que han sido previamente etiquetadas con fluorocromos
4 La fluorescencia y sus propiedades Fundamento de la fluorescencia: diagrama de Jablonski
5 La fluorescencia y sus propiedades Fundamento de la fluorescencia: diagrama de Jablonski 1) La absorción de energía durante la excitación genera una inestabilidad química dentro de las moléculas fluorescentes, de modo que alcanzan un estado energético excitado denominado S 1 '
6 La fluorescencia y sus propiedades Fundamento de la fluorescencia: diagrama de Jablonski 2) En el estado S 1 (alrededor de 10-9 segundos) tienen lugar cambios conformacionales e interacciones con el entorno que provocan que una parte de la energía del estado S 1 se disipe, generándose un estado de menor energía denominado S 1
7 La fluorescencia y sus propiedades Fundamento de la fluorescencia: diagrama de Jablonski 3) Una vez finalizada la excitación, la molécula vuelve a su estado energético basal (S 0 ), emitiéndose en el proceso fotones de luz de una menor energía y mayor longitud de onda que los presentes en la fuente de excitación debido a la disipación interna de energía entre los estados S 1 y S 1
8 La fluorescencia y sus propiedades La fluorescencia está definida por una serie de propiedades que dependen de la naturaleza y el tipo de fluorocromo y de factores externos: 1. Coeficiente de extinción molar (ε): es la eficiencia de absorción de energía en una longitud de onda determinada (suele referirse a la λ de excitación máxima). 2. Rendimiento cuántico (ϕ): expresa la proporción de fotones emitidos en función de los fotones absorbidos.
9 La fluorescencia y sus propiedades 3. Vida media de fluorescencia: tiempo medio que una molécula fluorescente puede estar en estado excitado antes de volver a su estado energético basal. 4. Fotoblanqueo (fotobleaching): fotodestrucción de los fluorocromos que estamos excitando de forma irreversible. Se debe a un daño químico inducido por fotones y a modificaciones covalentes fruto de la interacción con otras moléculas. 5. Desactivación de la fluorescencia (quenching): disminución de la intensidad de la fluorescencia emitida debida a agentes oxidantes e interacciones entre moléculas del fluorocromo. Es reversible
10 2) Fluorocromos y su elección
11 Fluorocromos y su elección Existe gran variedad de fluorocromos diferentes, y todos ellos vienen definidos por un espectro de excitación y otro de emisión característicos 1. El espectro de excitación muestra la intensidad de la emisión fluorescente a diferentes λ de excitación 2. El espectro de emisión muestra la intensidad de la fluorescencia de emisión a diferentes λ cuando se excita con la λ de excitación máxima Ejemplo de los espectros de emisión y excitación de FITC
12 Fluorocromos y su elección Criterios a tener en cuenta a la hora de elegir los fluorocromos: 1. Su especificidad frente a la molécula que queramos estudiar La mayoría de fluorocromos utilizados en microscopía de fluorescencia están acoplados a anticuerpos secundarios (inmunofluorescencia indirecta), lo que asegura una alta especificidad
13 Fluorocromos y su elección 2. Que los espectros de excitación y emisión sean los adecuados (tamaño, solapamiento, adecuación a los sistemas de excitación, etc.) En ensayos en los que se utilizan simultáneamente dos o más fluorocromos, es importante: Que los espectros de los fluorocromos sean lo más estrechos posible Comprobar que no se produce solapamiento entre los espectros de excitación ni que la emisión de un fluorocromo sea capaz de excitar a un fluorocromo adyacente
14 Fluorocromos y su elección 3. El brillo, que viene determinado por el coeficiente de extinción molar (ε) y el rendimiento cuántico (ϕ) del fluorocromo. A mayor valor de la ecuación ε x ϕ, mayor brillo tendrá el fluorocromo 4. Su resistencia al footblanqueo y a la desactivación de la fluoresdencia 5. Su viabilidad celular (permeabilidad, que no produzcan toxicidad en la célula, compatibilidad para ensayos in vivo)
15 3) Elementos y funcionamiento básico de un microscopio de fluorescencia
16 Elementos y funcionamiento básico de un microscopio de fluorescencia Microscopio de fluorescencia convencional Principales tipos Microscopio confocal espectral Aunque existen notables diferencias entre ellos, ambos tipos de microscopio presentan unos elementos básicos que permiten la detección de las señales de fluorescencia: una fuente de excitación, un filtro de excitación, un espejo dicroico, un filtro de emisión, los objetivos, el prisma y los sistemas detectores
17 Elementos y funcionamiento básico de un microscopio de fluorescencia Muestra Fuente de luz Objetivos Espejo dicroico Filtro de excitación Cámara/oculares Filtro de emisión Prisma
18 Elementos y funcionamiento básico de un microscopio de fluorescencia
19 Elementos y funcionamiento básico de un microscopio de fluorescencia 1. La fuente de excitación: emite un haz de fotones a una determinada longitud de onda. Las fuentes de excitación más comunes son: Lámparas de mercurio Lámparas de Xenon Láseres
20 Elementos y funcionamiento básico de un microscopio de fluorescencia 2. El haz de excitación llega al filtro de excitación, que deja pasar únicamente los rayos con una longitud de onda determinada. Existen 3 tipos de filtros de excitación: Filtros Short Pass: dejan pasar el espectro por debajo de un valor determinado de longitud de onda y bloquea lo que está por encima. Filtros Long Pass: dejan pasar el espectro por encima de un valor determinado y bloquea lo que está por debajo. Filtros Band Pass: dejan pasar una banda determinada del espectro y bloquea el resto por encima y por debajo.
21 Elementos y funcionamiento básico de un microscopio de fluorescencia 3. La luz filtrada impacta sobre el espejo dicroico y es reflectada hacia los objetivos, los cuales concentran el haz de luz sobre la muestra de estudio. 4. Al ser excitada la muestra, los fluorocromos emiten fluorescencia, que al ser de una longitud de onda mayor a la presente en la fuente de excitación puede atravesar el espejo dicroico y dirigirse hacia el filtro de emisión. Los filtros de emisión son filtros Band Pass que dejan pasar únicamente la fluorescencia emitida por la muestra
22 Elementos y funcionamiento básico de un microscopio de fluorescencia El espejo dicroico y los filtros de excitación y emisión forman parte de una estructura denominada cubo de filtros.
23 Elementos y funcionamiento básico de un microscopio de fluorescencia 5. La fluorescencia de la muestra filtrada choca contra un prisma que proyecta la luz hacia los sistemas de detección del microscopio (cámaras, fotomultiplicadores), haciendo posible su visualización por el investigador. Eficiencia cuántica de un sistema detector: indica el % de fotones que logra arrancar un electrón y por tanto producir una señal eléctrica detectable por el detector
24 Elementos y funcionamiento básico de un microscopio de fluorescencia Límite de resolución: determina la mínima distancia a la que dos objetos pueden verse separados. Depende principalmente de: La apertura numérica de los objetivos (relación directamente proporcional) La λ de la luz empleada (relación inversamente proporcional) Aumento de resolución
25 Elementos y funcionamiento básico de un microscopio de fluorescencia La apertura numérica del objetivo es un número adimensional que determina el rango de ángulos en los que el sistema óptico puede recoger luz. n = índice de refracción del medio en el que se encuentra la lente Θ = mitad del ángulo de aceptación máximo de la lente Tomado de Kapitza H G. Microscopy from the very begining
26 Elementos y funcionamiento básico de un microscopio de fluorescencia La apertura numérica y el medio de inmersión que necesita el objetivo, entre otros parámetros, suelen aparecer detallados en los objetivos. Medio de inmersión Índice de refracción Aire 1 Agua 1,333 Glicerol 80% (H2O) 1,451 Glicerol 1,462 Aceite 1,518 Principales medios de inmersión y sus índices de refracciión Ejemplo de un objetivo (Leica mycrosistems) con sus características detalladas
5. Microscopía de fluorescencia y epifluorescencia
y epifluorescencia Fluorescencia Espectro de luz visible: La longitud de onda determina el color Fluorescencia Qué es? Es un proceso de interacción entre la radiación y la materia en el cual un material
6. Fundamentos de la microscopía confocal espectral
6. Fundamentos de la microscopía confocal espectral Microscopio confocal Microscopio confocal La distinción fundamental entre la microscopía óptica convencional y la microscopía óptica confocal es la manera
Espectroscopía Clase integradora
Espectroscopía Clase integradora Qué es la espectroscopía? La espectroscopia es el estudio de la INTERACCIÓN entre la materia y energía radiante, por ejemplo, radiación electromagnética. Busca relacionar
LOS RAYOS X FUNDAMENTOS FÍSICOS DE IMÁGENES DIAGNÓSTICAS - PILAR INFANTE L - FIACIBI
LOS RAYOS X FUNDAMENTOS FÍSICOS DE IMÁGENES DIAGNÓSTICAS - PILAR INFANTE L - FIACIBI FUNDAMENTOS FÍSICOS DE IMÁGENES DIAGNÓSTICAS - PILAR INFANTE L - FIACIBI -Se propagan en línea recta. -Ionizan el aire.
Radiaciones Ionizantes: Utilización y Riesgos RIUR. Guía de estudio
Radiaciones Ionizantes: Utilización y Riesgos RIUR . Estructura y radiaciones atómicas Esta guía describe el conjunto de actividades que forman el tema 2 del módulo 1: " Estructura y radiaciones atómicas"
Seminario 1: Reflexión, Refracción y ángulo crítico
Seminario 1: Reflexión, Refracción y ángulo crítico Fabián Andrés Torres Ruiz Departamento de Física,, Chile 21 de Marzo de 2007. Problemas 1. Problema 16, capitulo 33,física para la ciencia y la tecnología,
LASER Conceptos Básicos
LASER Conceptos Básicos Laser - Light Amplification by Stimulate Emission of Radiation Amplificación de Luz por Emisión Estimulada de Radiación Como Funciona? Usa a emisión estimulada para desencadenar
RADIACIÓN ELECTROMAGNÉTICA Y TÉCNICAS DE OBSERVACIÓN. Curso Introducción a la Astronomía 1
RADIACIÓN ELECTROMAGNÉTICA Y TÉCNICAS DE OBSERVACIÓN Curso 2011-12 Introducción a la Astronomía 1 Brillo Magnitud aparente El ojo detecta la luz de forma logarítmica, es decir, detecta cambios no de manera
Del LASER I Principio de funcionamiento del láser
Del LASER I Principio de funcionamiento del láser Gilberto Basilio Sánchez La palabra láser proviene del acrónimo en inglés Ligth Amplification by Stimulated Emission of Radiation; en español, láser(1)
Ayudantía 1 Fibras Ópticas
Ayudantía 1 Fibras Ópticas Ley de Snell Utilizada básicamente para calcular el ángulo de refracción de la luz cuando cambia la superficie entre dos medios de propagación (con distinto índice de refracción).
CAPITULO I: La Luz CAPITULO I: LA LUZ 1
CAPITULO I: La Luz CAPITULO I: LA LUZ 1 1.- La luz 1.1.- El nanómetro 1.2.- El espectro visible 1.3.- Naturaleza de la luz 1.4.- Fuentes de luz 2.- La Materia y la luz 2.1.- Fórmula R.A.T. 22-2.2. Absorción
Pr.B Boletín de problemas de la Unidad Temática B.III: Detección y generación de señales luminosas
Pr.B Boletín de problemas de la Unidad Temática B.III: Detección y generación de señales luminosas Pr.B.4. Detección de luz e imágenes 1. Un detector de Ge debe ser usado en un sistema de comunicaciones
MATERIA MOLÉCULAS ÁTOMOS PARTÍCULAS SUBATÓMICAS. Partícula Masa (g) Carga (Coulombs) Carga unitaria. Electrón
MATERIA MOLÉCULAS ÁTOMOS PARTÍCULAS SUBATÓMICAS Partícula Masa (g) Carga (Coulombs) Carga unitaria Electrón 9.10939 10-28 -1.6022 10-19 -1 Protón 1.67262 10-24 +1.6022 10-19 +1 Neutrón 1.67493 10-24 0
Módulo 1.2 Lámparas: tipos y características. Héctor Beltrán San Segundo Universitat Jaume I - Fundación F2e
Módulo 1.2 Lámparas: tipos y características. Héctor Beltrán San Segundo Universitat Jaume I - Fundación F2e Contenido: Fenómenos que producen luz (principios físicos). Tipos de las lámparas según su modo
INTERACCION DE LAS RADIACIONES ELECTROMAGNETICAS CON LA MATERIA
NTERACCON DE LAS RADACONES ELECTROMAGNETCAS CON LA MATERA B.C. Paola Audicio Asistente de Radiofarmacia, CN Radiación ionizante: ionización del material atravesado M M + + e - excitación de las estructuras
VENTAJAS DE LA ILUMINACIÓN LED
VENTAJAS DE LA ILUMINACIÓN LED Qué es un LED? LED viene de las siglas en inglés Lighting Emitting Diode (Diodo emisor de Luz). El LED es un diodo semiconductor que al ser atravesado por una corriente eléctrica
Métodos para estudiar las células
Métodos para estudiar las células Sumario Historia de la Teoría Celular Estructura y función celular Transporte celular Métodos para estudiar las células El microscopio compuesto de luz El microscopio
B.0. Introducción y unidades de medida
B.0. Introducción y unidades de medida B.0.1. La era de la información. Corresponde al auge de la optoelectrónica. Optoelectrónica: técnica de procesar la información mediante la luz. Necesidad de medios
TRABAJO PRÁCTICO Nº 1 LA CÉLULA VEGETAL
BIODIVERSIDAD DE VEGETALES (Paleontólogos) Guía de Trabajos Prácticos 2015 TRABAJO PRÁCTICO Nº 1 LA CÉLULA VEGETAL DESCRIPCIÓN Y FUNCIONAMIENTO DEL MICROSCOPIO ÓPTICO Un microscopio óptico (figuras 1 y
13. Por qué no se observa dispersión cuando la luz blanca atraviesa una lámina de vidrio de caras planas y paralelas? 14. Sobre una lámina de vidrio,
PROBLEMAS ÓPTICA 1. Una de las frecuencias utilizadas en telefonía móvil (sistema GSM) es de 900 MHz. Cuántos fotones GSM necesitamos para obtener la misma energía que con un solo fotón de luz violeta,
Dpto. de Física y Química. IES N. Salmerón A. Ondas 6.2 ( )
CUESTIONES 1. (2004) a) Por qué la profundidad real de una piscina llena de agua es siempre mayor que la profundidad aparente? b) Explique qué es el ángulo límite y bajo qué condiciones puede observarse.
Capítulo 24. Emisión y absorción de la luz. Láser
Capítulo 24 Emisión y absorción de la luz. Láser 1 Absorción y emisión La frecuencia luminosa depende de los niveles atómicos entre los que se produce la transición electrónica a través de: hν = E f E
Que es la fluorescencia?
INMUNOFLUORESCENCIA Que es la fluorescencia?....es la propiedad de una sustancia de emitir luz cuando es expuesta a radiaciones de baja longitud de onda y alta energía a (UV Rx). Las radiaciones absorbidas
PRACTICO N 1: ESPECTROFOTOMETRIA
UNIVERSIDAD MAYOR FACULTAD DE MEDICINA ESCUELA DE TECNOLOGIA MEDICA BIOQUIMICA PRACTICO N 1: ESPECTROFOTOMETRIA 1.- INTRODUCCIÓN Utilizando términos quizás excesivamente simplistas puede definirse la espectrofotometría
J.M.L.C. IES Aguilar y Cano ALGUNOS DERECHOS RESERVADOS
La radiactividad o radioactividad es un fenómeno físico natural, por el cual algunas sustancias o elementos químicos llamados radiactivos, emiten radiaciones que tienen la propiedad de impresionar placas
Se tiene para tener una idea el siguiente cuadro de colores perceptibles por el ojo humano dependiendo de la longitud de onda.
La luz es una forma de energía la cual llega a nuestros ojos y nos permite ver, es un pequeño conjunto de radiaciones electromagnéticas de longitudes de onda comprendidas entre los 380 nm y los 770 nm.(nm
Nueva Normatividad ASTM para las Lámparas UV-A utilizadas en PND. Bernardo Ordóñez Esquivel
Nueva Normatividad ASTM para las Lámparas UV-A utilizadas en PND Bernardo Ordóñez Esquivel Alcance Esta presentación detallará la forma en que los fabricantes de lámparas UV-A con tecnología LED deben
LASER DE HELIO-NEON. (Juan Israel Rivas Sánchez)
LASER DE HELIO-NEON (Juan Israel Rivas Sánchez) El láser de Helio-Neón fue el primer láser de gas construido y actualmente sigue siendo uno de los láseres más útil y frecuentemente utilizado. Esto a pesar
15/03/2010. Espectrofotometría INTRODUCCIÓN
Espectrofotometría Daniel Olave Tecnología Médica 2007 INTRODUCCIÓN Espectrofotometría Es la medida de la cantidad de energía radiante absorbida por las moléculas a longitudes de onda específicas. La espectrofotometría
La luz y las ondas electromagnéticas
La luz y las ondas electromagnéticas Cuestiones (96-E) a) Qué se entiende por interferencia de la luz? b) Por qué no observamos la interferencia de la luz producida por los dos faros de un automóvil? (96-E)
Introducción al calor y la luz
Introducción al calor y la luz El espectro electromagnético es la fuente principal de energía que provee calor y luz. Todos los cuerpos, incluído el vidrio, emiten y absorben energía en forma de ondas
Técnicas analíticas para la determinación de arsénico: Espectrometría atómica Proyecto Arsénico II
Problemática y alternativas tecnológicas para la remoción de arsénico en la obtención de agua potable Técnicas analíticas para la determinación de arsénico: Proyecto Arsénico II Espectroscopía La espectroscopía
Puntos de ebullición.
1.-Indica el tipo de enlace de los siguientes hidruros. Ayundándote de la siguiente tabla comenta la polaridad de los enlaces. Hidruro % carácter iónico HF 43 HCl 17 HBr 11 HI 6 Representa gráficamente
COMPORTAMIENTO DE LOS MATERIALES ANTE LA LUZ
COMPORTAMIENTO DE LOS MATERIALES ANTE LA LUZ LUZ La luz es una radiación que hace posible la visión en la medida que se refleja en las diferentes superficies LUZ Y MATERIALES (τ) (α) (ρ) E incidente
FORMACIÓN DE IMÁGENES EN ESPEJOS
FORMACIÓN DE IMÁGENES EN ESPEJOS La reflexión que producen los objetos depende de las características de los cuerpos, de esta forma existen dos tipos de reflexiones a saber: 1.- Reflexión especular o regular.
COLOR. Pag.1/7. Área: FÍSICO-QUÍMICA Asignatura: FÍSICA. Título. Curso: 4 TO Año: 2012 AÑO
Área: FÍSICO-QUÍMICA Asignatura: FÍSICA Título COLOR Prof: BOHORQUEZ MARTINEZ LARGHI STRUM - TAITZ WALITZKY -IGNACIO D AMORE EZEQUIEL Curso: 4 TO Año: 2012 AÑO Pag.1/7 Dispersión de la luz Ya sabemos que
EL ESPECTRO ELECTROMAGNÉTICO
FACULTAD DE CIENCIAS QUÍMICAS Espectrometría Objeto de Estudio Nº 1 LECTURA N 2 EL ESPECTRO ELECTROMAGNÉTICO Bibliografía: http://almaak.tripod.com/temas/espectro.htm Facultad de Ciencias Químicas F.C.Q.
radiación electromagnética
radiación electromagnética ondas propagándose en el espacio con velocidad c crestas amplitud l valles longitud de onda [ l]=cm, nm, μm, A Frecuencia=n=c/l [ n ]=HZ=1/s l= numero de ondas por unidad de
Dispositivos y Medios de Transmisión Ópticos
Dispositivos y Medios de Transmisión Ópticos Módulo 2. Propagación en Fibras Ópticas. EJERCICIOS Autor: Isabel Pérez/José Manuel Sánchez /Carmen Vázquez Revisado: Pedro Contreras Grupo de Displays y Aplicaciones
Experimento 12 LÍNEAS ESPECTRALES. Objetivos. Teoría. Postulados de Bohr. El átomo de hidrógeno, H
Experimento 12 LÍNEAS ESPECTRALES Objetivos 1. Describir el modelo del átomo de Bohr 2. Observar el espectro del H mediante un espectrómetro de rejilla 3. Medir los largos de onda de las líneas de la serie
Detector de Mercurio por Fluorescencia Modelo 2500
Detector de Mercurio por Fluorescencia Modelo 2500 El Modelo 2500 es un detector de mercurio elemental por Espectrometría de Fluorescencia Atómica de Vapor Frío (CVAFS). Las ventajas de la fluorescencia
Tópicos en Biofísica Molecular. Práctica de laboratorio nº 3: Microscopía de Fluorescencia
Tópicos en Biofísica Molecular 2do Cuatrimestre de 2011 Docentes: Lía Pietrasanta y Catalina von Bilderling Práctica de laboratorio nº 3: Microscopía de Fluorescencia OBJETIVOS Identificar las partes y
ESPECTROSCOPÍA DE FLUORESCENCIA MOLECULAR
ESPECTROSCOPÍA DE FLUORESCENCIA MOLECULAR INTRODUCCIÓN La fluorescencia es un proceso de emisión en el cual las moléculas son excitadas por la absorción de radiación electromagnética. Las especies excitadas
Masterclass Aceleradores de partículas
Unidad de Divulgación Científica del Centro Nacional de Aceleradores (CNA) Masterclass Aceleradores de partículas 1. Técnicas experimentales empleadas en el CNA 2. Ley de decaimiento radiactivo y su aplicación
RADIACIÓN ELECTROMAGNÉTICA
FACULTAD DE CIENCIAS QUÍMICAS Espectrometría Objeto de Estudio Nº 1 LECTURA N 1 RADIACIÓN ELECTROMAGNÉTICA Bibliografía: SKOOG, D.A.; Leary J.J.; ANÁLISIS INSTRUMENTAL, 4 ed.; Ed. McGraw-Hill (1994), págs.
ORGANOS, CELULAS y ATOMOS
ORGANOS, CELULAS y ATOMOS TAMAÑO DE CÉLULAS, SUS COMPONENTES Y PODER DE RESOLUCIÓN DE LOS MICROSCOPIOS Principios del MICROSCOPIO OPTICO SISTEMA OPTICO DE UN MICROSCOPIO DE FLUORESCENCIA COLORANTES FLUORESCENTES
ESPECTROFOTOMETRÍA UV-VISIBLE. Mª Luisa Fernández de Córdova Universidad de Jaén
ESPECTROFOTOMETRÍA UV-VISIBLE 1. Propiedades de la luz 2. Absorción de luz 2.1. Fenómeno de la absorción 2.2. Espectros de absorción molecular 2.3. Tipos de transiciones electrónicas 3. Ley de Lambert-Beer
FARMACOPEA MERCOSUR: MÉTODO GENERAL PARA ESPECTROFOTOMETRIA ULTRAVIOLETA Y VISIBLE
MERCOSUL/XLIII SGT Nº 11/P.RES. Nº FARMACOPEA MERCOSUR: MÉTODO GENERAL PARA ESPECTROFOTOMETRIA ULTRAVIOLETA Y VISIBLE VISTO: El Tratado de Asunción, el Protocolo de Ouro Preto y las Resoluciones N 31/11
EJERCICIOS DE SELECTIVIDAD LA LUZ Y LAS ONDAS ELECTROMAGNÉTICAS
EJERCICIOS DE SELECTIVIDAD LA LUZ Y LAS ONDAS ELECTROMAGNÉTICAS 1. Un foco luminoso puntual está situado bajo la superficie de un estanque de agua. a) Un rayo de luz pasa del agua al aire con un ángulo
Apéndice 2. Puesta a punto y uso del Espectrómetro
Puesta a punto del espectrómetro 1 Apéndice 2. Puesta a punto y uso del Espectrómetro I) INTRODUCCIÓN II) DESCRIPCIÓN DEL EQUIPO III) ENFOQUE IV) MEDIDA DE ÁNGULOS DE DIFRACCIÓN V) USO DE LA REJILLA DE
Radiación. La radiación electromagnética
Radiación Curso Introducción a las Ciencias de la Tierra y el Espacio II La radiación electromagnética Es el portador de la información de los objetos astronómicos. Es la forma en que la energía electromagnética
RADIACIÓN ELECTROMAGNÉTICA Y ESPECTROS ATÓMICOS. Tipos de radiaciones electromagnéticas según λ.
RADIACIÓN ELECTROMAGNÉTICA Y ESPECTROS ATÓMICOS λ Tipos de radiaciones electromagnéticas según λ. Rayos γ Rayos X Rayos UV Radiación visible. Rayos IR Microondas Ondas de radio Ondas de radar Ondas de
superficie de una lámina de aceite de linaza. Determine los ángulos θ y θ. El índice de refracción del aceite de linaza es 1,48.
EJERCICIOS OPTICA GEOMÉTRICA. 2.- El rayo de luz que se muestra en la Figura 2, forma un ángulo de 20 0 con la normal NN a la superficie de una lámina de aceite de linaza. Determine los ángulos θ y θ.
COMPORTAMIENTO DE LOS MATERIALES ANTE LA LUZ. abril 2012
COMPORTAMIENTO DE LOS MATERIALES ANTE LA LUZ abril 2012 LUZ La luz es una radiación que hace posible la visión en la medida que se refleja en las diferentes superficies LUZ Y MATERIALES (τ) (α) (ρ) E
UNIVERSIDAD COMPLUTENSE DE MADRID PRUEBAS DE ACCESO A LOS ESTUDIOS UNIVERSITARIOS DE LOS ALUMNOS DE BACHILLERATO LOGSE AÑO 1999
La prueba consta de dos partes: INSTRUCCIONES GENERALES Y VALORACIÓN La primera parte consiste en un conjunto de cinco cuestiones de tipo teórico, conceptual o teórico-práctico, de las cuales el alumno
FICHAS DE PRÁCTICAS 1ºBACHILLERATO FÍSICA
FICHAS DE PRÁCTICAS 1ºBACHILLERATO FÍSICA UNIDAD DIDÁCTICA : MOVIMIENTO 01.- Movimiento rectilíneo uniforme Duración Estimada: 1 h Capacidad Terminal Conocer las características de un movimiento rectilíneo
FOTOMETRÍA DE LLAMA ALEJANDRA DAMIÁN V. CAROLINA FIGUEROA T. ROCIO PAINEMAL R. ALEJANDRA SANDOVAL B. PAMELA URIBE C.
FOTOMETRÍA DE LLAMA ALEJANDRA DAMIÁN V. CAROLINA FIGUEROA T. ROCIO PAINEMAL R. ALEJANDRA SANDOVAL B. PAMELA URIBE C. FOTOMETRÍA Un gran número de las determinaciones que se realizan habitualmente en los
DECONVOLUCIÓN criterio de Nyquist
DECONVOLUCIÓN La deconvolución surgió como alternativa al confocal, con ella se pretendía eliminar la luz fuera de foco de imágenes tomadas con una cámara digital o en fluorescencia convencional, pero
VALORACIÓN SEMINAL. CITÓMETRO DE FLUJO
. CITÓMETRO DE FLUJO 1 VALORACIÓN DE LA VIABILIDAD ESPERMÁTICA MEDIANTE LA TÉCNICA DE CITOMETRÍA DE FLUJO En las últimas dos décadas, la citometría de flujo se ha convertido en una técnica importante gran
Practica nº n 5: Fenómenos de Difracción.
Facultad de Farmacia Universidad de Granada Departamento de Química Física Practica nº n 5: Fenómenos de Difracción. OBJETIVOS 1.Observar los fenómenos de difracción Rendija simple Rendija doble 2.Calcular
Qué es un espectrofotómetro?
Qué es un espectrofotómetro? Un espectrofotómetro es un instrumento usado en el análisis químico que sirve para medir, en función de la longitud de onda, la relación entre valores de una misma magnitud
Por qué hay diferentes colores?
Qué son los LEDs? Los LEDs son dispositivos semiconductores de estado sólido que pueden convertir la energía eléctrica directamente en luz al aplicarle una pequeña corriente. El hecho de ser sólidos los
La luz y las ondas electromagnéticas
La luz y las ondas electromagnéticas Cuestiones (96-E) a) Qué se entiende por interferencia de la luz? b) Por qué no observamos la interferencia de la luz producida por los dos faros de un automóvil? (96-E)
Física P.A.U. ÓPTICA 1 ÓPTICA
Física P.A.U. ÓPTICA 1 ÓPTICA PROBLEMAS DIOPTRIO PLANO 1. Un rayo de luz de frecuencia 5 10¹⁴ Hz incide con un ángulo de incidencia de 30 sobre una lámina de vidrio de caras plano-paralelas de espesor
5.1. Magnitudes radiométricas
5. Radiometría y fotometría 5.1. Magnitudes radiométricas y fotométricas tricas 1 5. Radiometría y fotometría. 2 Magnitudes radiométricas y fotométricas tricas Radiometría rama de la Física dedicada a
Láser Semiconductor. La Excitación Bombeo es la corriente del diodo. Haz Laser. Reflector 99% Reflector 100% Zona N Medio activo
Láser Semiconductor Relacionando con la teoría de láser: Al medio activo lo provee la juntura P-N altamente contaminada. Esta juntura está formada por materiales N y P degenerados por su alta contaminación.
Espectros de emisión y absorción.
Espectros de emisión y absorción. Los espectros de emisión y absorción de luz por los átomos permitieron la justificación y ampliación del modelo cuántico. Espectros de emisión: Calentar un gas a alta
El Espectro Electromagnético
El Espectro Electromagnético ONDAS ELECTROMAGNETICAS Se componen de un campo eléctrico y un campo magnético, ambos variando en el tiempo Su energía aumenta con la frecuencia Se distinguen ondas ionizantes
ÓPTICA GEOMÉTRICA. Teniendo en cuenta que se trata de ángulos paraxiales, la expresión se puede simplificar a: En el triángulo APC:
ÓPTICA GEOMÉTRICA Conceptos generales: Imágenes reales. No se ven a simple vista, pero pueden recogerse sobre una pantalla. Se forman por la intersección de rayos convergentes. Imágenes virtuales. No existen
LA LUZ. 1.- Qué es la luz?
1.- Qué es la luz? LA LUZ La luz es una radiación que se propaga en forma de ondas. Las ondas que se pueden propagar en el vacío se llaman ONDAS ELECTROMAGNÉTICAS. La luz es una radiación electromagnética.
DIRECCION DE CRIMINALISTICA CRIMINALÍSTICA REACTIVOS ESPECIALES PARA DETECCION DE ACTOS DESHONESTOS
DIRECCION DE CRIMINALISTICA CRIMINALÍSTICA REACTIVOS ESPECIALES PARA DETECCION DE ACTOS DESHONESTOS SUSANA GUTIERREZ CORNELIO MAYOR S PNP PERITO CRIMINALISTICO PÁGINA Nº 1 PRESENTACION Uno de los problemas
ABSORCIÓN DE RADIACIÓN QUÍMICA ANALÍTICA III
ABSORCIÓN DE RADIACIÓN QUÍMICA ANALÍTICA III Tipos Colorímetro Fotómetro Espectrofotómetro Componentes Fuentes de radiación Selectores de longitud de onda Recipientes para muestras Detectores de radiación
Principios básicos de Absorciometría
Principios básicos de Absorciometría Prof. Dr. Luis Salazar Depto. de Ciencias Básicas UFRO 2004 NATURALEZA DE LA LUZ MECÁNICA CUÁNTICA Isaac Newton (1643-1727) Niels Bohr (1885-1962) Validación del modelo
BLOQUE 4.1 ÓPTICA FÍSICA
BLOQUE 4.1 ÓPTICA FÍSICA 1. NATURALEZA DE LA LUZ Hasta ahora hemos considerado a la luz como algo que transporta energía de un lugar a otro. Por otra parte, sabemos que existen dos formas básicas de transportar
Capítulo 23. Microscopios
Capítulo 23 Microscopios 1 Aumento angular El aumento angular m (a) de una lente convergente viene dado por: m (a) = tan θ rmim tan θ ob = q 0.25 (d + q )p en donde d es la separación entre la lente y
8. Ensayos con materiales
8. Ensayos con materiales Los materiales de interés tecnológico se someten a una variedad de ensayos para conocer sus propiedades. Se simulan las condiciones de trabajo real y su estudia su aplicación.
Tabla de Contenido. Introducción 1
Tabla de Contenido Introducción 1 1. Antecedentes 4 1.1. Resistividad del cobre en baja dimensionalidad................. 4 1.2. Crecimiento de óxido en superficies de cobre.................. 5 1.3. Tioles
Química Biológica TP 1: ESPECTROFOTOMETRIA.
TP 1: ESPECTROFOTOMETRIA. Introducción Al observar una solución acuosa de un colorante a trasluz, observamos una leve coloración, la cual se debe a la interacción entre las moléculas del colorante y la
EL MODELO ATOMICO DE BOHR
EL MODELO ATOMICO DE BOHR En 1913, Niels Bohr ideó un modelo atómico que explica perfectamente los espectros determinados experimentalmente para átomos hidrogenoides. Estos son sistemas formados solamente
TEMA 4: OPTICA. Cómo puede un buceador estimar la profundidad a la que se encuentra?
Cómo puede un buceador estimar la profundidad a la que se encuentra? http://www.buceando.es/ Física A qué distancia podemos distinguir los ojos de un gato montés? Soy daltónico? La luz: naturaleza dual
ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL INSTITUTO DE CIENCIAS FÍSICAS II TÉRMINO PRIMERA EVALUACIÓN DE FÍSICA D.
ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL INSTITUTO DE CIENCIAS FÍSICAS II TÉRMINO 2011-2012 PRIMERA EVALUACIÓN DE FÍSICA D Nombre: Paralelo: PRIMERA PARTE: Ejercicios de opción múltiple (2 puntos c/u)
Luz polarizada y el microscopio de polarización. Prof. Martin Reich
Luz polarizada y el microscopio de polarización Prof. Martin Reich Componentes de la radiación electromagnética Ondas transversales direcciones de vibración Vector de Poynting (flujo de energía) Longitudes
LOS ESPECTROS DE ONDAS
LOS ESPECTROS DE ONDAS Introducción Nos detenemos para explicar dos innovaciones, introducidas en la física del siglo XIX, que han tenido una importancia trascendental en el desarrollo de la Cosmología
CONOCIMIENTO DE TÉCNICAS ANALÍTICAS PARTE I: FUNDAMENTOS DE ESPECTROFOTOMETRÍA.
CONOCIMIENTO DE TÉCNICAS ANALÍTICAS PARTE I: FUNDAMENTOS DE ESPECTROFOTOMETRÍA. I. OBJETIVO GENERAL Conocer y aplicar los fundamentos de la ESPECTROFOTOMETRÍA para la determinación de concentraciones en
Fundamento Tipo de muestras Particularidad Diagrama óptico Imagen del microscopio Imagen que se obtiene o gráfico
óptica de tren óptico La iluminación es proporcionada por una lámpara de Tungsteno- Haluro posicionado en el portalámparas, que emite luz que pasa primero a través de una lente colectora y luego en un
DESARROLLO. La frecuencia tiene una relación inversa con el concepto de longitud de onda, a mayor frecuencia menor
CONSIGNAS TP1 Teoría de la luz Desarrollar una investigación teniendo como base el origen de la luz como fenómeno físico y su comportamiento. Dicho trabajo práctico requiere rigor en los datos técnicos
Los fundamentos de la espectroscopia: teoría CONSTRUYENDO UNA CIENCIA MEJOR ENTRE AGILENT Y USTED
Los fundamentos de la espectroscopia: teoría CONSTRUYENDO UNA CIENCIA MEJOR ENTRE AGILENT Y USTED 1 Agilent es una empresa comprometida con la comunidad educativa y no duda en ofrecer acceso a materiales
Este anexo explica la radiación UV e índices en Colombia tomando
APÉNDICE E 5. LA RADIACIÓN ULTRAVIOLETA (UV) Y SUS ÍNDICES EN COLOMBIA Este anexo explica la radiación UV e índices en Colombia tomando la Red Nacional de Radiación; se destaca entre otros la determinación
Espectroscopia ultravioleta-visible (temas complementarios)
1 Espectroscopia ultravioleta-visible (temas complementarios) Ley de Lambert y Beer Cuando se hace incidir radiación electromagnética en un medio, la energía dependerá de la longitud de onda de la radiación
ONDAS. Clasificación y magnitudes que las caracterizan. Ecuación de las ondas armónicas. Energía e intensidad. Ondas transversales en
IES JIMENA MENÉNDEZ PIDAL DEPARTAMENTO DE FÍSICA Y QUÍMICA MATERIA: FÍSICA 2º bachillerato SEGUNDO TRIMESTRE CONTENIDOS, CRITERIOS DE EVALUACIÓN, ESTÁNDARES DE APRENDIZAJE, INSTRUMENTOS DE CALIFICACIÓN
Problemas de Ondas Electromagnéticas
Problemas de Ondas Electromagnéticas AP Física B de PSI Nombre Multiopción 1. Cuál de las siguientes teorías puede explicar la curvatura de las ondas detrás de los obstáculos en la "región de sombra"?
R=mv/qBvmax=AAAωF=kxB=µoI/2πd; ;ertyuied3rgfghjklzxc;e=mc 2
E=hf;p=mv;F=dp/dt;I=Q/t;Ec=mv 2 /2; TEMA 6: ÓPTICA F=KQq/r 2 ;L=rxp;x=Asen(ωt+φo);v=λf c 2 =1/εoµo;A=πr 2 ;T 2 =4π 2 /GMr 3 ;F=ma; L=dM/dtiopasdfghjklzxcvbvv=dr/dt; M=rxF;sspmoqqqqqqqqqqqp=h/λ; Ejercicios
Espectro electromagnético
RADIOCOMUNICACIONES 11-03-2015 Espectro electromagnético La naturaleza de la luz ha sido estudiada desde hace muchos años por científicos tan notables como Newton y Max Plank. Para los astrónomos conocer
5.1.1 Geometría, condiciones de frontera y modos de propagación en una fibra óptica.
5.1 CARACTERÍSTICAS GENERALES DE LAS FIBRAS ÓPTICAS 5.1.1 Geometría, condiciones de frontera y modos de propagación en una fibra óptica. Una fibra óptica consta fundamentalmente de dos cilindros dieléctricos
L m u i m n i o n t o ec e n c i n a
LUMINOTECNIA LA LUZ Y LA VISIÓN LUMINOTECNIA La Luminotecnia es la ciencia que estudia las distintas formas de producción de luz, así como su control y aplicación. LUMINOTECNIA La luz natural y artificial
INSTRUMENTACIÓN PARA ESPECTROSCOPIA
INSTRUMENTACIÓN PARA ESPECTROSCOPIA Los instrumentos utilizados para el estudio de la absorción o emisión de la radiación electromagnética como función de la longitud de onda, son llamados Espectrómetros
TRANSDUCCIÓN Y MEDICIÓN DE EVENTOS FISIOLÓGICOS (parte 1)
TRANSDUCCIÓN Y MEDICIÓN DE EVENTOS FISIOLÓGICOS (parte 1) * Transductores Dispositivos que convierten eventos fisiológicos en señales eléctricas, aplicando también a la conversión de un tipo de energía
