EXPERIMENTO DE J. J. THOMSON
|
|
|
- Tomás Saavedra Martin
- hace 8 años
- Vistas:
Transcripción
1 EXPERIMENTO DE J. J. THOMSON (Determinación de la Relación Carga/Masa de los Electrones) M. C. Q. Alfredo Velásquez Márquez
2 Tubo de Geissler (~1857) Con gas a presión normal se observa poca conductividad, pero aplicando una diferencia de potencial elevada también se aprecian descargas eléctricas.
3 Tubo de Geissler (~1857) Con gas a baja presión, se observa un haz luminoso entre los electrodos y la conductividad aumenta considerablemente. El haz se asoció al desprendimiento de partículas del electrodo negativo (cátodo), posteriormente a dichas partículas se les dio el nombre de electrones.
4 Tubo de rayos catódicos Cuando se perfora el electrodo positivo (ánodo), se observa como pasa a través del orificio un haz luminoso.
5 Tubo de rayos catódicos
6 Tubo de rayos catódicos
7 Tubo de rayos catódicos Fuerza eléctrica (F e )
8 Tubo de rayos catódicos Fuerza magnética (F m )
9 Experimento de J. J. Thomson?
10 Experimento de J. J. Thomson F e > F m
11 Experimento de J. J. Thomson F e < F m
12 Experimento de J. J. Thomson F e = F m
13 Desarrollo Matemático La fuerza magnética que se ejerce sobre los electrones se determina con la expresión de Lorentz. F m = q v B senq Cuando el ángulo q es de 90º, la expresión se simplifica. 1 Como los electrones se mueven describiendo una trayectoria circular, se ejerce sobre éstos una fuerza centrípeta: 2 F m = q v B F c = m v2 r Igualando F m y F c se obtiene: La fuerza eléctrica que se ejerce sobre una partícula que pasa a través de un campo eléctrico se determina con: 4 F e = q E Cuando actúan los campos eléctrico y magnético, y el haz describe una trayectoria recta, las fuerzas eléctrica y magnética son de igual magnitud y sus expresiones se pueden igualar: q v B = q E Simplificando y despejando v, se obtiene: 5 v = E B q B = m v r Despejando q/m, se obtiene: 3 q m = v B r
14 Experimento de J. J. Thomson F e = 0
15 Experimento de J. J. Thomson F e << F m
16 Experimento de J. J. Thomson F e < F m
17 Experimento de J. J. Thomson F e = F m
18 Experimento de J. J. Thomson (laboratorio)
19 Experimento de J. J. Thomson (laboratorio)
20 Desarrollo Matemático (laboratorio) La fuerza magnética que se ejerce sobre los electrones se determina con la expresión de Lorentz. F m = q v B senq Cuando el ángulo q es de 90º, la expresión se simplifica. 1 Como los electrones se mueven describiendo una trayectoria circular, se ejerce sobre éstos una fuerza centrípeta: 2 F m = q v B F c = m v2 r Igualando F m y F c se obtiene: La fuerza eléctrica que se ejerce sobre una partícula que pasa a través de un campo eléctrico se determina con: 4 F e = q E Cuando actúan los campos eléctrico y magnético, y el haz describe una trayectoria recta, las fuerzas eléctrica y magnética son de igual magnitud y sus expresiones se pueden igualar: q v B = q E Simplificando y despejando v, se obtiene: 5 v = E B q B = m v r Despejando q/m, se obtiene: 3 q m = v B r
21 Desarrollo Matemático (laboratorio) La fuerza magnética que se ejerce sobre los electrones se determina con la expresión de Lorentz. Cuando una partícula cargada es acelerada por una diferencia de potencial, adquiere una energía cinética. F m = q v B senq 4 E c = q V Cuando el ángulo q es de 90º, la expresión se simplifica. 1 F m = q v B Como los electrones se mueven describiendo una trayectoria circular, se ejerce sobre éstos una fuerza centrípeta: 2 F c = m v2 r Igualando F m y F c se obtiene: q B = m v r Despejando q/m, se obtiene: 3 q m = v B r 5 E c = ½ m v 2 Las expresiones se pueden igualar para obtener: 6 7 q V = ½ m v 2 q v 2 m = 2 V v = q 2 V m De esta forma se puede sustituir la expresión 7 en la 3 para obtener: 8 q 2 V m = B r 2
22 Desarrollo Matemático (laboratorio) Si el campo magnético se genera con un par de bobinas de Helmholtz, entonces la intensidad del campo generado se determinaría con la expresión: 9 Sustituyendo la expresión 9 en la 8, se tendría: 10 B = q m = N m o I a 2 V a 2 (N m o I r) Se requieren solo dos variables para obtener un modelo matemático lineal. Una opción es mantener la corriente constante y otra es mantener el voltaje constante. En tales casos se obtendrían las expresiones siguientes: 2 r 2 = y r 2 = y (N m o I) a 2 2 q m V = m x b 2 V 5 4 (N m o ) 3 a 2 q m 2 I -2 = m x b
23 Presentación revisada por: Q. Adriana Ramírez González Ing. Ayesha Sagrario Román García M. A. Claudia Elisa Sánchez Navarro Ing. Jacquelyn Martínez Alavez Dr. Ramiro Maravilla Galván Dr. Rogelio Soto Ayala Profesores de la, UNAM
RELACIÓN CARGA - MASA DEL ELECTRÓN
Práctica 5 RELACIÓN CARGA - MASA DEL ELECTRÓN OBJETIVO Determinar la relación carga-masa del electrón (e/m e ), a partir de las trayectorias observadas de un haz de electrones que cruza una región en la
U N A M. Facultad de Ingeniería MODELO ATÓMICO DE J. J. THOMSON MODELO ATÓMICO DE ERNEST RUTHERFORD DESCUBRIMIENTO DEL PROTÓN Y DEL NEUTRON
MODELO ATÓMICO DE J. J. THOMSON MODELO ATÓMICO DE ERNEST RUTHERFORD DESCUBRIMIENTO DEL PROTÓN Y DEL NEUTRON M. C. Q. Alfredo Velásquez Márquez Modelo Atómico de J. J. Thomson Electrones de Carga Negativa
RELACIÓN CARGA/MASA DEL ELECTRÓN
RELACIÓN CARGA/MASA DEL ELECTRÓN Objetivo Determinar el cociente de la carga eléctrica del electrón entre su masa. Introducción En 1897 J. J. Thomson realizó un experimento crucial que consistió en medir
DINÁMICA DE UN ELÉCTRON EN UN CAMPO ELÉCTRICO UNIFORME
DINÁMICA DE UN ELÉCTRON EN UN CAMPO ELÉCTRICO UNIFORME Maicol Llano Moncada, Alex Rollero Dita, Carlos Martínez Agudelo, Luis Santos ID: 000294172, ID: 000293236, ID: 000170111, ID: 000292336 [email protected],
Enseñanza - Aprendizaje.
Desde hace siglos el hombre consideró al átomo como una partícula componente de la materia. No podía verlo ni separarlo, pero su presencia fue admitida para explicar los diferentes fenómenos que se conocían.
Departamento de Física y Química. PAU Física, junio 2012 OPCIÓN A
1 PAU Física, junio 2012 OPCIÓN A Pregunta 1.- Un satélite de masa m gira alrededor de la Tierra describiendo una órbita circular a una altura de 2 10 4 km sobre su superficie. Calcule la velocidad orbital
ELECTRICIDAD Y MAGNETISMO LABORATORIO PRESENCIAL 1. Coordinación Curso Agosto de 2016
ELECTRICIDAD Y MAGNETISMO LABORATORIO PRESENCIAL 1 Coordinación Curso Agosto de 2016 TEMA : MOVIMIENTO DE ELECTRONES EN UN CAMPO ELÉCTRICO UNIFORME Hipótesis de trabajo: Siempre que un electrón entre a
ESTRUCTURA DE LOS ATOMOS Ing. Alfredo Luis Rojas B.
CAPITULO 4 ESTRUCTURA DE LOS ATOMOS Ing. Alfredo Luis Rojas B. Aproximadamente 400 a.c. el filosofo griego Democrito sugirió que toda la materia esta formada por partículas minúsculas, discretas e indivisibles,
1.1. OBJETIVO GENERAL: Estudiar el movimiento de electrones en un campo eléctrico uniforme
1 PRÁCTICA DE LABORATORIO: MOVIMIENTO DE ELCTRONES EN UN CAMPO ELÉCTRICO UNIFORME 1.1. OBJETIVO GENERAL: Estudiar el movimiento de electrones en un campo eléctrico uniforme 1.2. OBJETIVOS ESPECÍFICOS -
Movimiento de electrones en campos E y B: el ciclotrón
DEMO 25 Movimiento de electrones en campos E y B: el ciclotrón GUÍA DETALLADA DE LA DEMOSTRACIÓN INTRODUCCIÓN La Fuerza de Lorentz determina el movimiento de las cargas eléctricas en campos eléctricos
Cálculo aproximado de la carga específica del electrón Fundamento
Cálculo aproximado de la carga específica del electrón Fundamento La medida de la carga específica del electrón, esto es, la relación entre su carga y su masa, se realizó por vez primera en los años ochenta
Introducción a la Física Experimental Guía de la experiencia. Relación carga masa del electrón.
Introducción a la Física Experimental Guía de la experiencia Relación carga masa del electrón. Departamento de Física Aplicada. Universidad de Cantabria Junio 9, 005 Resumen Se indica cómo utilizar un
FISICA 2º BACHILLERATO CAMPO MAGNÉTICO E INDUCCIÓN ELECTROMAGNÉTICA
A) CAMPO MAGNÉTICO El Campo Magnético es la perturbación que un imán o una corriente eléctrica producen en el espacio que los rodea. Esta perturbación del espacio se manifiesta en la fuerza magnética que
FÍSICA 2º Bachillerato Ejercicios: Campo magnético y corriente eléctrica
1(9) Ejercicio nº 1 Una partícula alfa se introduce en un campo cuya inducción magnética es 1200 T con una velocidad de 200 Km/s en dirección perpendicular al campo. Calcular la fuerza qué actúa sobre
EL ÁTOMO Modelos Atómicos
EL ÁTOMO Modelos Atómicos Cómo está formada la materia en su interior? Desde los tiempos de la antigua Grecia,los pensadores venían haciéndose esta pregunta, acerca de cómo estaba constituida la materia
DESVIACIÓN DE UN HAZ DE ELECTRONES POR CAMPOS ELÉCTRICOS Y MAGNÉTICOS.
PRÁCTICA Nº 1. DESVIACIÓN DE UN HAZ DE ELECTRONES POR CAMPOS ELÉCTRICOS Y MAGNÉTICOS. 1. OBJETIVOS: a) Observar la trayectoria de partículas cargadas en el seno de campos eléctricos y magnéticos. b) Determinar
PARTÍCULAS DEL ÁTOMO MODELOS ATÓMICOS. TEMA 7 Pág. 155 libro nuevo
PARTÍCULAS DEL ÁTOMO MODELOS ATÓMICOS TEMA 7 Pág. 155 libro nuevo DESCUBRIMIENTO DEL ÁTOMO. PARTÍCULAS SUBATÓMICAS En la antigua Grecia ya había dos teorías sobre la materia: Teoría Atomística (siglo IV
Tema 2: Campo magnético
Tema 2: Campo magnético A. Fuentes del campo magnético A1. Magnetismo e imanes Magnetismo. Imán: características. Acción a distancia. Campo magnético. Líneas de campo. La Tierra: gran imán. Campo magnético
Física 2º Bachillerato Curso Cuestión ( 2 puntos) Madrid 1996
1 Cuestión ( 2 puntos) Madrid 1996 Un protón y un electrón se mueven perpendicularmente a un campo magnético uniforme, con igual velocidad qué tipo de trayectoria realiza cada uno de ellos? Cómo es la
SOLUCIONARIO GUÍAS ELECTIVO
SOLUCIONARIO GUÍAS ELECTIVO Electricidad IV: campo magnético, fuerza magnética SGUICEL013FS11-A16V1 Solucionario guía Electricidad IV: campo magnético, fuerza magnética Ítem Alternativa Habilidad 1 E Aplicación
Examen Final. Electricidad Magnetismo y Materiales. Pontificia Universidad Javeriana. Nombre:
Examen Final. Electricidad Magnetismo y Materiales. Pontificia Universidad Javeriana. Nombre: 1. (2 puntos) 1.1 En las siguientes afirmaciones, indica verdadero (V) o falso (F) según corresponda. A. La
Campo Magnético. Cuestiones y problemas de las PAU-Andalucía
Campo Magnético. Cuestiones y problemas de las PAU-Andalucía Cuestiones 1. a) (12) Fuerza magnética sobre una carga en movimiento; ley de Lorentz. b) Si la fuerza magnética sobre una partícula cargada
EL ÁTOMO CONTENIDOS. ANTECEDENTES HISTÓRICOS. ( ) MODELOS ATÓMICOS. RAYOS CATÓDICOS. MODELO DE THOMSON.
EL ÁTOMO CONTENIDOS. 1.- Antecedentes históricos.( ) 2.- Partículas subatómicas. ( ) 3.- Modelo atómico de Thomsom. 4.- Los rayos X. 5.- La radiactividad. 6.- Modelo atómico de Rutherford. 7.- Radiación
El átomo: sus partículas elementales
El átomo: sus partículas elementales Los rayos catódicos estaban constituidos por partículas cargadas negativamente ( a las que se llamo electrones) y que la relación carga/masa de éstas partículas era
TEMA 1 NATURALEZA ELÉCTRICA DE LA MATERIA
TEMA 1 NATURALEZA ELÉCTRICA DE LA MATERIA Hoy en día el mundo científico tiene una idea lo suficientemente precisa de la estructura atómica, como para poder explicar el comportamiento de los átomos y moléculas
PAU CASTILLA Y LEON JUNIO Y SEPTIEMBRE CAMPO MAGNETICO. INDUCCIÓN MAGNETICA José Mª Martín Hernández
Fuerza de Lorentz: Efecto del campo magnético sobre una carga 1. (48-S09) Son verdaderas o falsas las siguientes afirmaciones? Razone su respuesta. a) La fuerza ejercida por un campo magnético sobre una
R=mv/qBvmax=AAAωF=kxB=µoI/2πd; ;ertyuied3rgfghjklzxc;e=mc 2
E=hf;p=mv;F=dp/dt;I=Q/t;Ec=mv 2 /2; TEMA 4: ELECTROMAGNETISMO F=KQq/r 2 ;L=rxp;x=Asen(ωt+φo);v=λf c 2 =1/εoµo;A=πr 2 ;T 2 =4π 2 /GMr 3 ;F=ma; L=dM/dtiopasdfghjklzxcvbvv=dr/dt; M=rxF;sspmoqqqqqqqqqqqp=h/λ;
Enseñanza - Aprendizaje
El primer modelo atómico con bases científicas, fue formulado por John Dalton descubrió a los átomos en 1804. Pensaba que eran las partículas más pequeñas de la materia, que no podían ser divididas en
ÁTOMO..su historia y su estudio
ÁTOMO.su historia y su estudio LOS GRIEGOS Y SU APORTE 2000 años antes de Cristo, la civilización griega representada por varios filósofos, ya se preguntaban acerca de qué estaba formado el universo?...
masa es aproximadamente cuatro veces la del protón y cuya carga es dos veces la del mismo? e = 1, C ; m p = 1, kg
MAGNETISMO 2001 1. Un protón se mueve en el sentido positivo del eje OY en una región donde existe un campo eléctrico de 3 10 5 N C - 1 en el sentido positivo del eje OZ y un campo magnetico de 0,6 T en
Carga Eléctrica. Una propiedad fundamental de la materia ya observada desde la antigüedad. Los cuerpos pueden cargarse eléctricamente por frotamiento.
ELECTROSTATICA Carga Eléctrica Una propiedad fundamental de la materia ya observada desde la antigüedad. Los cuerpos pueden cargarse eléctricamente por frotamiento. Aparecen fuerzas de atracción n o repulsión
Theory Espanol (Colombia) El Gran Colisionador de Hadrones (Large Hadron Collider) (10 puntos)
Q3-1 El Gran Colisionador de Hadrones (Large Hadron Collider) (10 puntos) Por favor asegúrese de leer las instrucciones generales dentro del sobre adjunto antes de comenzar a resolver este problema. En
ELECTROMAGNETISMO Profesor: Juan T. Valverde
CAMPO MAGNÉTICO 1.- Considere un átomo de hidrógeno con el electrón girando alrededor del núcleo en una órbita circular de radio igual a 5,29.10-11 m. Despreciamos la interacción gravitatoria. Calcule:
Departamento de Física y Química
1 PAU Física, septiembre 2011 OPCIÓN A Cuestión 1.- Un espejo esférico convexo, proporciona una imagen virtual de un objeto que se encuentra a 3 m del espejo con un tamaño 1/5 del de la imagen real. Realice
ESTRUCTURA ATOMICA FINES DEL SIGLO XIX Y COMIENZOS DEL SIGLO XX
ESTRUCTURA ATOMICA FINES DEL SIGLO XIX Y COMIENZOS DEL SIGLO XX William Crookes, (1832-1919). Químico y Físico inglés. Inventó y diseñó el tubo electrónico conocido como «tubo de Crookes». Demostró que
Intensidad del campo eléctrico
Intensidad del campo eléctrico Intensidad del campo eléctrico Para describir la interacción electrostática hay dos posibilidades, podemos describirla directamente, mediante la ley de Coulomb, o través
Formatos para prácticas de laboratorio
CARRERA PLAN DE ESTUDIO CLAVE ASIGNATURA NOMBRE DE LA ASIGNATURA TRONCO COMÚN 2005-2 4348 DINÁMICA PRÁCTICA NO. DIN-09 LABORATORIO DE NOMBRE DE LA PRÁCTICA LABORATORIO DE CIENCIAS BÁSICAS PÉNDULO SIMPLE
CAMPO MAGNÉTICO FCA 07 ANDALUCÍA
1. Una cáara de niebla es un dispositivo para observar trayectorias de partículas cargadas. Al aplicar un capo agnético unifore, se observa que las trayectorias seguidas por un protón y un electrón son
Magnetismo e inducción electromagnética. Ejercicios PAEG
1.- Por un hilo vertical indefinido circula una corriente eléctrica de intensidad I. Si dos espiras se mueven, una con velocidad paralela al hilo y otra con velocidad perpendicular respectivamente, se
Electricidad y Magnetismo. Ley de Coulomb.
Electricidad y Magnetismo. Ley de Coulomb. Electricidad y Magnetismo. 2 Electricidad y Magnetismo. 3 Electricidad y Magnetismo. 4 Electricidad y Magnetismo. 5 Electricidad y Magnetismo. Electrización es
Fuerza magnética. Ley de Lorentz Ley de Laplace Interacción entre conductores Aceleradores de partículas
uerza magnética Ley de Lorentz Ley de Laplace Interacción entre conductores Aceleradores de partículas Video uerza de Lorentz Simulador i Regla de la mano izquierda La ecuación para determinar la uerza
de 2/(3) 1/2 de lado y en el tercero hay una la Tierra?.
1. Calcula la altura necesaria que hay que subir por encima de la superficie terrestre para que la intensidad del campo Determinar la velocidad de una masa m' cuando partiendo del reposo del primero de
Un modelo atómico, por lo tanto consiste en representar de manera grafica, la dimensión atómica de la materia. El objetivo de estos modelos es que el
Modelos atómicos Debido a que no se podían ver los átomos los científicos crearon modelos para describirlos, éstos fueron evolucionando a lo largo de la historia a medida que se descubrieron nuevas cosas.
E L E C T R I C I D A D. Tubo de Plasma. Tubo de Plasma
E L E C T R I C I D A D Tubo de Plasma Tubo de Plasma E L E C T R I C I D A D Además de los sólidos, líquidos y gases, es frecuente utilizar el término cuarto estado de la materia para los plasmas. En
LA TEORIA ATOMICA John Dalton
LA TEORIA ATOMICA En 1808, un científico inglés, el profesor John Dalton, formuló una definición precisa de las unidades indivisibles con las que está formada la materia y que llamamos átomos 1766-1844
ÓPTICA GEOMÉTRICA. Teniendo en cuenta que se trata de ángulos paraxiales, la expresión se puede simplificar a: En el triángulo APC:
ÓPTICA GEOMÉTRICA Conceptos generales: Imágenes reales. No se ven a simple vista, pero pueden recogerse sobre una pantalla. Se forman por la intersección de rayos convergentes. Imágenes virtuales. No existen
CONCEPTO DE CINEMÁTICA: es el estudio del movimiento sin atender a las causas que lo producen
CINEMÁTICA CONCEPTO DE CINEMÁTICA: es el estudio del movimiento sin atender a las causas que lo producen CONCEPTO DE MOVIMIENTO: el movimiento es el cambio de posición, de un cuerpo, con el tiempo (este
RELACIÓN DE PROBLEMAS CAMPO ELÉCTRICO 1. Se tienen dos cargas puntuales; q1= 0,2 μc está situada a la derecha del origen de coordenadas y dista de él 3 m y q2= +0,4 μc está a la izquierda del origen y
Descarga Glow. Introducción. Características de la descarga glow
Descarga Glow Introducción La descarga glow es una descarga eléctrica autosostenida que se produce en un medio gaseoso. Consideremos un dispositivo como el que se esquematiza en la Figura 1. Una fuente
Una ecuación puede tener ninguna, una o varias soluciones. Por ejemplo: 5x 9 = 1 es una ecuación con una incógnita con una solución, x = 2
Podemos definir a las ecuaciones como una igualdad entre expresiones algebraicas (encadenamiento de números y letras ligados por operaciones matemáticas diversas),en la que intervienen una o más letras,
ELECTRICIDAD Y MAGNETISMO
9-11-011 UNAM ELECTRICIDAD Y MAGNETISMO TEMA CUATRO ING. SANTIAGO GONZALEZ LOPEZ CAPITULO CUATRO Una fuerza magnética surge en dos etapas. Una carga en movimiento o un conjunto de cargan en movimiento
MODELOS LINEALES. Alejandro Vera Trejo
MODELOS LINEALES Alejandro Vera Trejo Objetivo Se representará una situación determinada a través de la construcción de una o varias ecuaciones lineales. Se resolverán situaciones reales por medio de ecuaciones
MODELOS ATÓMICOS 2ª PARTE
MODELOS ATÓMICOS 2ª PARTE Teoría Atómica de Joseph John Thomson Diseño Experimental de Joseph John Thomson (1856-1940) Utiliza Tubos de Rayos Catódicos, en los cuales estudia el comportamiento de los gases
Colegio Alberto Pérez Institución Teresiana Departamento de Ciencias Química Profesora Caterina González Poblete. Núcleo. (protones y neutrones)
Colegio Alberto Pérez Institución Teresiana Departamento de Ciencias Química Profesora Caterina González Poblete EL ÁTOMO Núcleo Envoltura (electrones) (protones y neutrones) El átomo, como lo conocemos
TEMA 2. CAMPO ELECTROSTÁTICO
TEMA 2. CAMPO ELECTROSTÁTICO CUESTIONES TEÓRICAS RELACIONADAS CON ESTE TEMA. Ejercicio nº1 Indica qué diferencias respecto al medio tienen las constantes K, de la ley de Coulomb, y G, de la ley de gravitación
UNIDAD 4. CAMPO MAGNÉTICO
UNIDAD 4. CAMPO MAGNÉTICO P.IV- 1. Un protón se mueve con una velocidad de 3 10 7 m/s a través de un campo magnético de 1.2 T. Si la fuerza que experimenta es de 2 10 12 N, qué ángulo formaba su velocidad
Fuerzas ejercidas por campos magnéticos
Fuerzas ejercidas por campos magnéticos Ejemplo resuelto nº 1 Se introduce un electrón en un campo magnético de inducción magnética 25 T a una velocidad de 5. 10 5 m. s -1 perpendicular al campo magnético.
CUESTIONARIO 2 DE FISICA 2
CUESTIONARIO 2 DE FISICA 2 Contesta brevemente a cada uno de los planteamientos siguientes: 1.- Cuáles son los tipos de carga eléctrica y porqué se llaman así? 2.- Menciona los procedimientos para obtener
Campo magnético Ejercicios de la PAU Universidad de Oviedo Página 1
Página 1 Junio 98 1. 4) (a) Explicar el funcionamiento del dispositivo experimental utilizado para la definición del amperio, la unidad de corriente eléctrica en el Sistema Internacional de Unidades, que
Tema 5.-Corriente eléctrica
Tema 5: Corriente eléctrica Fundamentos Físicos de la Ingeniería Primer curso de Ingeniería Industrial Curso 2006/2007 Dpto. Física Aplicada III Universidad de Sevilla 1 Índice Introducción Corriente eléctrica
Exceso o defecto de electrones que posee un cuerpo respecto al estado neutro. Propiedad de la materia que es causa de la interacción electromagnética.
1 Carga eléctrica Campo léctrico xceso o defecto de electrones que posee un cuerpo respecto al estado neutro. Propiedad de la materia que es causa de la interacción electromagnética. Un culombio es la
Ecuaciones Diferenciales
Ecuaciones Diferenciales Definición de Ecuación diferencial. A toda igualdad que relaciona a una función desconocida o variable dependiente con sus variables independientes y sus derivadas se le conoce
Fundamentos del magnetismo
Práctica 9 Fundamentos del magnetismo Elaborado por: Revisado por: Autorizado por: Vigente a partir de : M.I. Juan Carlos Cedeño Vázquez Ing. Juan Manuel Gil Pérez Ing. Francisco Miguel Pérez Ramírez M.I.
SEGUNDA EVALUACIÓN DE FÍSICA NIVEL 0B Curso de Nivel Cero - Invierno del 2010
ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL INSTITUTO DE CIENCIAS FÍSICAS SEGUNDA EVALUACIÓN DE FÍSICA NIVEL 0B Curso de Nivel Cero - Invierno del 2010 VERSIÓN 0 NOMBRE: Este examen consta de 25 preguntas,
TUTORIAL BÁSICO DE MECÁNICA FLUIDOS
TUTORIAL BÁSICO DE MECÁNICA FLUIDOS El tutorial es básico pues como habréis visto en muchos de ellos es haceros entender no sólo la aplicación práctica de cada teoría sino su propia existencia y justificación.
Departamento de Física José Würschmidt Año Sistema de Enseñanza Aprendizaje por Proyectos Experimentales Simples y por Simulación en Computadora
Sistema de Enseñanza Aprendizaje por Proyectos Experimentales Simples y por Simulación en Computadora Proyecto Física III Motor Magneto hidrodinámico: Comprobación practica de la ley de Lorentz Autor:
IES VILLALBA HERVAS. Se dice que entre ellos hay una, pero este concepto se conoce más como eléctrica o y se mide en.
Electricidad La materia está formada por constituidos por tres tipos de partículas:, y. Los protones tienen carga eléctrica. Están en el. Los electrones tienen carga eléctrica y giran alrededor del núcleo
DEPARTAMENTO DE FÍSICA DE LA UNIVERSIDAD DE SONORA ORGANIZACIÓN DE LA MATERIA DE FÍSICA III
DEPARTAMENTO DE FÍSICA DE LA UNIVERSIDAD DE SONORA ORGANIZACIÓN DE LA MATERIA DE FÍSICA III HERMOSILLO, SONORA, OCTUBRE DEL 2005 NOMBRE: FISICA III CON LABORATORIO UNIDAD REGIONAL: CENTRO EJE BÁSICO DE
[a] Se cumple que la fuerza ejercida sobre el bloque es proporcional, y de sentido contrario, a la
Opción A. Ejercicio 1 Un bloque de 50 g, está unido a un muelle de constante elástica 35 N/m y oscila en una superficie horizontal sin rozamiento con una amplitud de 4 cm. Cuando el bloque se encuentra
2 o Bachillerato. Conceptos básicos
Física 2 o Bachillerato Conceptos básicos Movimiento. Cambio de posición de un cuerpo respecto de un punto que se toma como referencia. Cinemática. Parte de la Física que estudia el movimiento de los cuerpos
SESIÓN 13 DERIVACIÓN DE FUNCIONES EXPONENCIALES Y LOGARÍTMICAS (2ª PARTE)
SESIÓN 13 DERIVACIÓN DE FUNCIONES EXPONENCIALES Y LOGARÍTMICAS (2ª PARTE) I. CONTENIDOS: 1. Ejercicios resueltos aplicando exponentes y logaritmos (2ª. Parte) 2. Derivación de funciones exponenciales y
Experimento 6. El osciloscopio y las señales alternas. Objetivos. Información preliminar. Teoría
Experimento 6 El osciloscopio y las señales alternas Objetivos 1. Describir los aspectos básicos del tubo de rayos catódicos 2. Explicar y describir las modificaciones que sufre un tubo de rayos catódicos
Aplicaciones de la fuerza de Lorentz
Aplicaciones de la fuerza de Lorentz Selector de velocidades La fuerza magnética sobre una partícula cargada que se mueve en el interior un campo magnético uniforme puede equilibrarse por una fuerza electrostática
TEMA 4.- Campo magnético
TEMA 4.- Campo magnético CUESTIONES 31.- a) Dos conductores rectos y paralelos están separados 10 cm. Por ellos circulan, respectivamente, corrientes de 10 A y 20 A en el mismo sentido. Determine a qué
ECUACIONES NO POLINÓMICAS CON UNA INCÓGNITA
Unidad didáctica. Ecuaciones, inecuaciones y sistemas de ecuaciones e inecuaciones ECUACIONES NO POLINÓMICAS CON UNA INCÓGNITA Una ecuación no polinómica es, en general, más difícil de resolver que una
Trayectoria, es el camino recorrido por un móvil para ir de un punto a otro. Entre dos puntos hay infinitas trayectorias, infinitos caminos.
Taller de lectura 3 : Cinemática Cinemática, es el estudio del movimiento sin atender a sus causas. Se entiende por movimiento, el cambio de posición de una partícula con relación al tiempo y a un punto
I I 5. MAGNETISMO. Representación gráfica útil:
5. MAGNETSMO 5. Cargas en un campo magnético. (Origen relativista del campo magnético). 5. Efecto del campo magnético sobre una corriente. 5.3 Dinámica de una carga en presencia de campos magnéticos y
Ecuación de la recta. Ing. Jonathan Alejandro Cortés Montes de Oca. Calculo Vectorial INSTITUTO POLITÉCNICO NACIONAL.
INSTITUTO POLITÉCNICO NACIONAL. ESCUELA SUPERIOR DE INGENIERIA MECÁNICA Y ELÉCTRICA. UNIDAD CULHUACÁN. Ecuación de la recta Calculo Vectorial Ing. Jonathan Alejandro Cortés Montes de Oca Antes de iniciar
ELECTRONES EN UN CAMPO MAGNÉTICO Y MEDICIÓN DE e/m
PRÁCTICA DE LABORATORIO II-08 ELECTRONES EN UN CAMPO MAGNÉTICO Y MEDICIÓN DE e/m OBJETIVOS Observar las órbitas de los electrones en un campo magnético. Identificar el tipo de polo magnético de las caras
Se insta a los estudiantes a estudiar y, en caso que corresponda, completar los ejercicios del material publicado anteriormente:
Material de apoyo para la realización de las actividades correspondientes a la preparación para el primer examen quimestral de la asignatura Física II. Parte A El presente material sirve de apoyo para
Trabajo De Tecnología. (La Electricidad) Saint Georger s college Area de tecnología III Unidad
Saint Georger s college Area de tecnología III Unidad Trabajo De Tecnología (La Electricidad) Integrantes (10º E): Stefan Jercic Ignacio Larraín Crsitian Majluf Profesor: Luis Paredes Fecha: Viernes 16
Ejercicios Física PAU Comunidad de Madrid Enunciados Revisado 10 junio 2015
2015-Junio A. Pregunta 3.- Una varilla conductora desliza sin rozamiento con una velocidad de 0,2 m s -1 sobre unos raíles también conductores separados 2 cm, tal y como se indica en la figura. El sistema
SCUACAC030MT22-A16V1. SOLUCIONARIO Ejercitación Operatoria de Logaritmos
SCUACAC00MT-A6V SOLUCIONARIO Ejercitación Operatoria de Logaritmos TABLA DE CORRECCIÓN GUÍA PRÁCTICA EJERCITACIÓN DE OPERATORIA DE LOGARITMOS Ítem Alternativa B A A 4 A 5 B 6 E ASE 7 B ASE B 9 B 0 E D
LOS RAYOS X FUNDAMENTOS FÍSICOS DE IMÁGENES DIAGNÓSTICAS - PILAR INFANTE L - FIACIBI
LOS RAYOS X FUNDAMENTOS FÍSICOS DE IMÁGENES DIAGNÓSTICAS - PILAR INFANTE L - FIACIBI FUNDAMENTOS FÍSICOS DE IMÁGENES DIAGNÓSTICAS - PILAR INFANTE L - FIACIBI -Se propagan en línea recta. -Ionizan el aire.
a) Si la intensidad de corriente circula en el mismo sentido en ambas. b) Si la intensidad de corriente circula en sentidos contrarios.
PROBLEMAS DE CAMPO MAGNÉTICO 1. Las líneas de campo gravitatorio y eléctrico pueden empezar o acabar en masas o cargas, sin embargo, no ocurre lo mismo con las líneas de campo magnético que son líneas
EXAMEN DE AUTOEVALUACION DEL PRIMER BIMESTRE GRADO 1 GRUPO I TECNOLOGIA: ELECTRONICA
Averigua lo que sabes La corriente eléctrica es: La agitación de los átomos de un objeto. EXAMEN DE AUTOEVALUACION DEL PRIMER BIMESTRE GRADO 1 GRUPO I TECNOLOGIA: ELECTRONICA El movimiento ordenado de
MATEMÁTICAS II TEMA 6 Planos y rectas en el espacio. Problemas de ángulos, paralelismo y perpendicularidad, simetrías y distancias
Geometría del espacio: problemas de ángulos y distancias; simetrías MATEMÁTICAS II TEMA 6 Planos y rectas en el espacio Problemas de ángulos, paralelismo y perpendicularidad, simetrías y distancias Ángulos
Movimiento circular. Las varillas de un reloj análogo se mueven en forma circular.
Movimiento circular La Luna se mueve casi en forma circular alrededor de la Tierra. La Tierra se mueve casi circularmente alrededor del Sol, a ese movimiento le llamamos de traslación. Y, además, la Tierra
EFECTO TERMOLÉCTRICO. Este efecto, conocido como Peltier Seebeck, es reversible. Esto no se produce en todos los materiales
EFECTO TERMOLÉCTRICO Los dispositivos termoeléctricos se basan en el hecho de que cuando ciertos materiales son calentados, generan un voltaje eléctrico significativo. Los electrones se mueven del extremo
Módulo Formativo 1 ÍNDICE. Soldadura de acero inoxidable para homologaciones G con TIG y electrodos.
Módulo Formativo 1 Soldadura de acero inoxidable para homologaciones G con TIG y electrodos. ÍNDICE 1. Fundamentos del procedimiento TIG. 5 2. Electrodos de tungsteno, características, selección, afilado,
Interacción electrostática
Interacción electrostática Cuestiones 1. Dos cargas puntuales iguales están separadas por una distancia d. a) Es nulo el campo eléctrico total en algún punto? Si es así, cuál es la posición de dicho punto?
Theory Spanish (Costa Rica) El Gran Colisionador de Hadrones (Large Hadron Collider LHC) (10 puntos)
Q3-1 El Gran Colisionador de Hadrones (Large Hadron Collider LHC) (10 puntos) Por favor asegúrese de leer las instrucciones generales del sobre adjunto antes de comenzar a resolver este problema. En este
Las leyes de Newton. Unidad III, tema 2 Segundo medio Graciela Lobos G. Profesora de física
Las leyes de Newton Unidad III, tema 2 Segundo medio Graciela Lobos G. Profesora de física Diagrama de cuerpo libre (DCL) Esquema que sirve para representar y visualizar las fuerzas que actúan en un cuerpo.
QUÍMICA Reactividad y equilibrio químico. Oxido - reducción. Tutora: Romina Saavedra
QUÍMICA Reactividad y equilibrio químico Oxido - reducción Tutora: Romina Saavedra Balance de reacciones de óxido reducción Una reacción redox o de óxido reducción se caracteriza por la existencia de dos
Campo Magnético en un alambre recto.
Campo Magnético en un alambre recto. A.M. Velasco (133384) J.P. Soler (133380) O.A. Botina (133268) Departamento de física, facultad de ciencias, Universidad Nacional de Colombia Resumen. Se hizo pasar
CORRIENTE ELECTRICA. Presentación extraída de Slideshare.
FISICA II CORRIENTE ELECTRICA Presentación extraída de Slideshare. 1.1 CORRIENTE ELECTRICA CORRIENTE ELECTRICA Moviemiento ordenado y permanente de las partículas cargadas en un conductor, bajo la influencia
Fuerza de origen magnético en conductores
Práctica 10 Fuerza de origen magnético en conductores Elaborado por: Revisado por: Autorizado por: Vigente a partir de : M.I. Juan Carlos Cedeño Vázquez Ing. Juan Manuel Gil Pérez Ing. Francisco Miguel
Introducción. Flujo Eléctrico.
Introducción La descripción cualitativa del campo eléctrico mediante las líneas de fuerza, está relacionada con una ecuación matemática llamada Ley de Gauss, que relaciona el campo eléctrico sobre una
Complejo Educacional Joaquín Edwards Bello QUIMICA 2º MEDIO TRABAJO 2 LEA CUIDADOSAMENTE EL SIGUIENTE TEXTO Y CONTESTE LAS PREGUNTAS
Complejo Educacional Joaquín Edwards Bello QUIMICA 2º MEDIO TRABAJO 2 NOMBRE: CURSO: LEA CUIDADOSAMENTE EL SIGUIENTE TEXTO Y CONTESTE LAS PREGUNTAS..Naturaleza Eléctrica de la Materia La electricidad fue
