Interacción de la Radiación con la Materia

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Interacción de la Radiación con la Materia"

Transcripción

1 Interacción de la Radiación con la Materia Presentado por: Fausto Suriel

2 PROPÓSITOS Diferenciar el proceso de interacción de los electrones con la materia del proceso de interacción de los fotones con la materia. Desglosar los tres mecanismos de interacción de los electrones con la materia. Explicar los efectos Fotoeléctrico y Compton, relacionándolos con su significación en una imagen radiográfica. Mencionar algunos de los mecanismos de interacción de radiación y materia que NO ocurren en radiodiagnóstico. Valorar la importancia de la protección radiológica frente a los efectos nocivos que puede producir la radiación ionizante al interaccionar con el organismo humano.

3 Interacción Electrones con la Materia Fotones con la Materia

4 Fuente de Radiación Haz de Radiación シンハラ, タカシ新原, 孝司 YEAR 1948/11/18 M OITA UNIVERSITY HOSP TV 透視放科 ^ 食道 下咽頭 2007/07/31 08: N Dispersión Compton Absorción Fotoeléctrica ページ 32 of 39 cm Z: C: W: Compressed: IM Receptor de Imagen Rayos X Transmitidos

5 Interacción de los Electrones con la Materia

6 COLISIÓN ELÁSTICA Interacción de la Radiación con la Materia Electrón Incidente Una partícula puede interaccionar con los electrones corticales de los átomos del medio cediéndoles parte de su energía y desviando su trayectoria. Sin embargo, no se produce ninguna alteración atómica o nuclear. Electrón Dispersado

7 COLISIÓN INELÁSTICA - EXCITACIÓN Interacción de la Radiación con la Materia Los electrones corticales pasan a un nivel de energía superior, pero siguen ligados al mismo átomo. Electrón incidente Posteriormente los átomos se desexcitan espontáneamente y vuelve a la normalidad emitiendo energía en forma de fotón. Fotón de Energía

8 COLISIÓN INELÁSTICA - IONIZACIÓN Interacción de la Radiación con la Materia Si en el choque de la partícula con los electrones corticales atómicos la energía transferida es superior a la energía de enlace del electrón colisionado, éste es arrancado de su órbita y abandona el átomo. Crea un par de iones: uno negativo y otro positivo. Electón incidente - Electrón

9 COLISIÓN RADIATIVA Interacción de la Radiación con la Materia Fotón de Radiación Electrón Proyectil Una partícula que pasa cerca del núcleo puede sufrir desaceleración o frenado, desviándola de su trayectoria. La partícula cargada emite un fotón con energía igual a su pérdida de energía cinética. Las partículas pueden sufrir colisiones con los núcleos atómicos, pero es relativamente muy improbable, por lo que no se suele considerar en los procesos de interacción.

10 Interacción de Fotones con la Materia

11 Interacción de Fotones Con la Materia Interacción de Fotones con la materia Atraviese el paciente sin interaccionar: no deposita energía y no produce ningún efecto Colisione con algún electrón cortical, cediéndole toda o parte de su energía Efecto o Absorción Fotoeléctrica Efecto o Dispersión Compton

12 Efecto Compton El rayo X incidente interacciona con el electrón de la capa más externa y lo expulsa del átomo, ionizándolo. Rayo X Incidente - Electrón Compton Ángulo de Desvío Es inversamente proporcional a la energía del fotón El Efecto Compton disminuye el Contraste de la imagen Rayo X Dispersado con Mayor Longitud de Onda

13 Efecto Fotoeléctrico Es la interacción con la absorción total del Rayo X. Rayo X Incidente - Fotoelectrón El fotoelectrón escapa con una EC = a la energía del Rx incidente menos la E de unión del electrón.

14 Otras Interacciones de Bajo Interés en Radiodiagnóstico

15 Otras formas de interacción Dispersión Coherente Formación de Pares Desintegración Fotónica

16 Dispersión Coherente Rayo X Incidente El Rayo X incide con el átomo, éste libera su energía en exceso en forma de un rayo X de igual longitud de onda. 10 kev. Rayo X Dispersado

17 Producción de Pares El rayo X incidente interacciona con el campo eléctrico nuclear, desapareciendo el Rx y formándose dos electrones, uno negativo y otro positivo (positrón) Rayo X Incidente - Electrón 1,02 MeV!! Producción de Pares no sucede en imágenes con Rayos X - + 0,51 MeV Positrón 0,51 MeV

18 Desintegración Fotónica El rayo X incidente es absorbido directamente por el núcleo, que pasa a estar excitado y emite un nucleón u otro fragmento nuclear. Rayo X Incidente 10 MeV!! Desintegración fotónica no sucede en imágenes con Rayos X Fragmento Nuclear

19 Material de Consulta * Bushong, Stewart C. Manual de Radiología para Técnicos. Física, Biología y Protección Radiológica. 8 va. edición, Páginas * Delabat, Ricardo G.; González Rico, Javier; Muñoz Beltrán, Cayetano. Tecnología Radiológica. Madrid, España, Páginas * Miguel Alcaraz Baños. Bases Físicas y Biológicas del Radiodiagnóstico Médico. Texto y Cuaderno de Prácticas. 2da. Edición. España, Páginas

20 Comentarios y Sugerencias: faustosuriel@hotmail.com

21

Interacción de la radiación con la materia

Interacción de la radiación con la materia Interacción de la radiación con la materia Fernando Mata Colodro Servicio de Radiofísica y Protección Radiológica. Hospital General Universitario Santa Lucía. Cartagena. RADIACION PARTICULAS FOTONES Colisiones

Más detalles

Interacción de la radiación con la materia. Laura C. Damonte 2014

Interacción de la radiación con la materia. Laura C. Damonte 2014 Interacción de la radiación con la materia Laura C. Damonte 2014 Mecanismos Básicos Fotones: interactúan con los electrones del medio mediante dos procesos fundamentales, en un caso son absorbidos por

Más detalles

INTERACCIÓN DE LA RADIACIÓN IONIZANTE CON LA MATERIA.

INTERACCIÓN DE LA RADIACIÓN IONIZANTE CON LA MATERIA. CAPÍTULO 2 INTERACCIÓN DE LA RADIACIÓN IONIZANTE CON LA MATERIA. La radiación ionizante es aquella capaz de excitar y ionizar átomos en la materia con que interactúa. Entre las radiaciones ionizantes tenemos

Más detalles

LOS RAYOS X FUNDAMENTOS FÍSICOS DE IMÁGENES DIAGNÓSTICAS - PILAR INFANTE L - FIACIBI

LOS RAYOS X FUNDAMENTOS FÍSICOS DE IMÁGENES DIAGNÓSTICAS - PILAR INFANTE L - FIACIBI LOS RAYOS X FUNDAMENTOS FÍSICOS DE IMÁGENES DIAGNÓSTICAS - PILAR INFANTE L - FIACIBI FUNDAMENTOS FÍSICOS DE IMÁGENES DIAGNÓSTICAS - PILAR INFANTE L - FIACIBI -Se propagan en línea recta. -Ionizan el aire.

Más detalles

Curso de Radiactividad y Medioambiente clase 4

Curso de Radiactividad y Medioambiente clase 4 Curso de Radiactividad y Medioambiente clase 4 Departamento de Física, Facultad de Ciencias Exactas - UNLP Instituto de Física La Plata CONICET Calle 49 y 115 La Plata Interacción de la radiación con la

Más detalles

7.- Los corpúsculos de energía sin masa de la radiación electromagnética recibe el nombre de: a) Muones b) Electrones c) Rayos X d) Fotones

7.- Los corpúsculos de energía sin masa de la radiación electromagnética recibe el nombre de: a) Muones b) Electrones c) Rayos X d) Fotones EXAMEN PARCIAL 1.- El número de protones de un átomo se denomina a) número atómico A b) número másico A c) número atómico Z d) número másico Z 2.- En el núcleo se encuentran: a) Los protones y neutrones

Más detalles

Conceptos básicos sobre interacción de la radiación ionizante con la materia

Conceptos básicos sobre interacción de la radiación ionizante con la materia Conceptos básicos sobre interacción de la radiación ionizante con la materia Martín Gascón Introducción al laboratorio de Física Nuclear Técnicas experimentales avanzadas Departamento de Física de Partículas

Más detalles

TEMA 2: INTERACCIÓN DE DE LA RADIACIÓN CON LA MATERIA

TEMA 2: INTERACCIÓN DE DE LA RADIACIÓN CON LA MATERIA TEMA 2: INTERACCIÓN DE DE LA RADIACIÓN CON LA MATERIA CSN 2009 1. INTERACCIÓN DE PARTÍCULAS CON LA MATERIA 1. 1.- Interacción de las partículas cargadas. Tipos de colisiones 1. 2.- Poder de frenado y alcance

Más detalles

DETECTORES DE RADIACIÓN

DETECTORES DE RADIACIÓN DETECTORES DE RADIACIÓN ( I ) - INTERACCIÓN RADIACIÓN-MATERIA CURSO 2012 2013 INTRODUCCIÓN La mayoría de los detectores de radiación presentan un comportamiento similar: 1. La radiación entra en el detector

Más detalles

Interacción de neutrones con la materia. Laura C. Damonte 2014

Interacción de neutrones con la materia. Laura C. Damonte 2014 Interacción de neutrones con la materia Laura C. Damonte 2014 Interacción de neutrones con la materia La interacción de los neutrones con la materia tiene interés tanto experimental y teórico como también

Más detalles

Interacción de las Radiaciones con la Materia Medicina Nuclear (1993) Radioterapia y Radiodiagnóstico (2008) Facultad de Ingeniería, UNER

Interacción de las Radiaciones con la Materia Medicina Nuclear (1993) Radioterapia y Radiodiagnóstico (2008) Facultad de Ingeniería, UNER Interacción de las Radiaciones con la Materia Medicina Nuclear (993) Radioterapia y Radiodiagnóstico (008) Facultad de Ingeniería, UNER. Interacción de la radiación ionizante con la materia Cuando la radiación

Más detalles

Interacción Radiación-Materia Conceptos Básicos

Interacción Radiación-Materia Conceptos Básicos Conceptos Básicos Técnicas Experimentales Avanzadas 5 febrero 2013 Índice Qué es la radiación ionizante Fuentes de la radiación ionizante Mecanismos de interacción de: - partículas cargadas pesadas - partículas

Más detalles

Pasaje de partículas cargadas por la materia. Efecto Cherenkov. Bremsstrahlung Laura C. Damonte 2014

Pasaje de partículas cargadas por la materia. Efecto Cherenkov. Bremsstrahlung Laura C. Damonte 2014 Pasaje de partículas cargadas por la materia. Efecto Cherenkov. Bremsstrahlung Laura C. Damonte 014 Pasaje de partículas cargadas por la materia Cuando una partícula cargada atraviesa materia, alguno o

Más detalles

INTERACCION DE LAS RADIACIONES ELECTROMAGNETICAS CON LA MATERIA

INTERACCION DE LAS RADIACIONES ELECTROMAGNETICAS CON LA MATERIA NTERACCON DE LAS RADACONES ELECTROMAGNETCAS CON LA MATERA B.C. Paola Audicio Asistente de Radiofarmacia, CN Radiación ionizante: ionización del material atravesado M M + + e - excitación de las estructuras

Más detalles

TEMA 2: INTERACCION DE DE LA RADIACIÓN CON LA MATERIA

TEMA 2: INTERACCION DE DE LA RADIACIÓN CON LA MATERIA TEMA 2: INTERACCION DE DE LA RADIACIÓN CON LA MATERIA CSN 2009 1. INTERACCIÓN DE PARTÍCULAS CON LA MATERIA 1. 1.- Interacción de las partículas cargadas. Tipos de colisiones 1. 2.- Poder de frenado y alcance

Más detalles

Procesos Físicos. Los rayos gamma son un tipo de radiación electromagnética de muy alta energía. Sus características son:

Procesos Físicos. Los rayos gamma son un tipo de radiación electromagnética de muy alta energía. Sus características son: Capítulo 3. Procesos Físicos. 3.1. Rayos Gamma Los rayos gamma son un tipo de radiación electromagnética de muy alta energía. Sus características son: Frecuencia: Mayores a 1 x 10 20 Hz Longitud de Onda:

Más detalles

Conceptos básicos sobre interacción de la radiación con la materia

Conceptos básicos sobre interacción de la radiación con la materia Conceptos básicos sobre interacción de la radiación con la materia Yassid Ayyad Introducción al laboratorio de Física Nuclear Técnicas experimentales avanzadas Departamento de Física de Partículas Radiaciones

Más detalles

Fotones, Una Radiación Electromagnética en su Interacción con la Materia. Haydy Peralta Solórzano 1. Yira Tatiana Ramírez 2. Resumen.

Fotones, Una Radiación Electromagnética en su Interacción con la Materia. Haydy Peralta Solórzano 1. Yira Tatiana Ramírez 2. Resumen. Fotones, Una Radiación Electromagnética en su Interacción con la Materia Haydy Peralta Solórzano 1 Yira Tatiana Ramírez 2 Resumen En este artículo se presenta una propuesta metodológica para la enseñanza

Más detalles

Guía I: Radiactividad e Interacción de las Radiaciones con la Materia

Guía I: Radiactividad e Interacción de las Radiaciones con la Materia Guía I: Radiactividad e Interacción de las Radiaciones con la Materia Cátedra de Medicina Nuclear (93) / Radioterapia y Radiodiagnóstico (08) Facultad de Ingeniería, UNER 1. Introducción Teórica 1.1. Radiactividad

Más detalles

Principios Básicos de la Radiación

Principios Básicos de la Radiación UNIVERSIDAD DE SAN CARLOS DE GUATEMALA FACULTAD DE ODONTOLOGÍA AREA BÁSICA CURSO: FÍSICO-MATEMÁTICA DOCENTES: DR. EDWIN LÓPEZ ING. FREDY CONTRERAS DOCUMENTO ELABORADO POR DRA. BRENDA MARÍA LÓPEZ LEIVA

Más detalles

La Teoría Cuántica Preguntas de Multiopcion

La Teoría Cuántica Preguntas de Multiopcion Slide 1 / 71 La Teoría Cuántica Preguntas de Multiopcion Slide 2 / 71 1 El experimento de "rayos catódicos" se asocia con: A B C D E Millikan Thomson Townsend Plank Compton Slide 3 / 71 2 La carga del

Más detalles

TEMA 1 EL ÁTOMO Miguel Alcaraz Baños Objetivos generales

TEMA 1 EL ÁTOMO Miguel Alcaraz Baños Objetivos generales TEMA 1 EL ÁTOMO Miguel Alcaraz Baños Objetivos generales 1. Describir las partes del átomo y enumerar los componentes más importantes. 2. Enunciar que es el numero atómico Z. 3. Explicar qué propiedades

Más detalles

Curso de SUPERVISORES de instalaciones radiactivas (IR) MÓDULO BÁSICO TEMA 2: INTERACCIÓN DE LA RADIACIÓN CON LA MATERIA

Curso de SUPERVISORES de instalaciones radiactivas (IR) MÓDULO BÁSICO TEMA 2: INTERACCIÓN DE LA RADIACIÓN CON LA MATERIA TEMA 2: INTERACCIÓN DE LA RADIACIÓN CON LA MATERIA CSN-2013 INDICE 1. INTRODUCCIÓN... 3 2.- INTERACCIÓN DE FOTONES CON LA MATERIA... 3 2.1. Atenuación... 3 2.2. Procesos de interacción... 4 Efecto fotoeléctrico...

Más detalles

Figura 1.-Estructura simplificada de un átomo

Figura 1.-Estructura simplificada de un átomo FUNDAENTO TEÓRICO DE FUORESCENCIA DE RAYOS-X Dentro de los métodos físicos utilizados para la caracterización de materiales, las técnicas basadas en la utilización de los rayos-x constituyen un grupo especialmente

Más detalles

LABORATORIO DE FÍSICA NUCLEAR. FISICA NUCLEAR y PARTÍCULAS CURSO

LABORATORIO DE FÍSICA NUCLEAR. FISICA NUCLEAR y PARTÍCULAS CURSO LABORATORIO DE FÍSICA NUCLEAR FISICA NUCLEAR y PARTÍCULAS CURSO 2010 2011 PRÁCTICAS DE LABORATORIO 1 ) LECTURA DE APUNTES 2 ) REALIZACIÓN DEL CUESTIONARIO EN LA WEB CLAVE 3 ) RESERVAR HORA EN LABORATORIO

Más detalles

T = Al sustituir el valor de la longitud de onda para la que la energía radiada es máxima, l máx, se obtiene: = 1379 K 2, m

T = Al sustituir el valor de la longitud de onda para la que la energía radiada es máxima, l máx, se obtiene: = 1379 K 2, m 2 Física cuántica Actividades del interior de la unidad. Calcula la temperatura de un ierro al rojo vivo para el cual l máx = 2, µm. Para calcular la temperatura que solicita el enunciado, aplicamos la

Más detalles

Propiedades Generales de Radiación X y Gamma. Curso de actualización en Protección Radiológica Lic. Alejandro Germanier. 2013

Propiedades Generales de Radiación X y Gamma. Curso de actualización en Protección Radiológica Lic. Alejandro Germanier. 2013 Propiedades Generales de Radiación X y Gamma. Curso de actualización en Protección Radiológica Lic. Alejandro Germanier. 2013 Radiación. Radiación No ionizante Ionizante Directamente Ionizante. Indirectamente

Más detalles

ÁREA 2 INTERACCION DE LOS ELECTRONES CON LA MATERIA

ÁREA 2 INTERACCION DE LOS ELECTRONES CON LA MATERIA ÁREA 2 INTERACCION DE LOS ELECTRONES CON LA MATERIA 2.1 INTERACCION DE RADIACIONES DIRECTAMENTE IONIZANTES CON LA MATERIA. Las radiaciones constituidas por partículas cargadas se suelen denominar directamente

Más detalles

Tema 6 Radiactividad en el Laboratorio

Tema 6 Radiactividad en el Laboratorio Departamento de Física Universidad de Jaén Tema 6 Radiactividad en el Laboratorio Jose A. Moleón. Dpto. de Física 1 Características de la Radioactividad. Efectos biológicos. Protección y medidas de seguridad.

Más detalles

CAPÍTULO II. Reacciones nucleares y sus secciones eficaces 12

CAPÍTULO II. Reacciones nucleares y sus secciones eficaces 12 CAPÍTULO II. Reacciones nucleares y sus secciones eicaces 12 En este capítulo se describen todos los tipos de reacciones que se pueden producir en el núcleo de un reactor nuclear y se muestran ejemplos

Más detalles

Masterclass Aceleradores de partículas

Masterclass Aceleradores de partículas Unidad de Divulgación Científica del Centro Nacional de Aceleradores (CNA) Masterclass Aceleradores de partículas 1. Técnicas experimentales empleadas en el CNA 2. Ley de decaimiento radiactivo y su aplicación

Más detalles

Radiación. Tipos de radiación

Radiación. Tipos de radiación Radiación Las radiaciones son ondas electromagnéticas o partículas que se propagan con una velocidad dada. Contienen energía, carga eléctrica y magnética. Pueden ser generadas por fuentes naturales o instrumentos

Más detalles

Clase 4:Radiación del cuerpo, efecto fotoeléctrico y modelos atómicos

Clase 4:Radiación del cuerpo, efecto fotoeléctrico y modelos atómicos Clase 4:Radiación del cuerpo, efecto fotoeléctrico y modelos atómicos El experimento de Millikan Determina la carga del electrón 1.602 x 10-19 C Atomizador de gotas de aceite Fuente de Rayos X (ioniza

Más detalles

TÉCNICAS EXPERIMENTALES V FÍSICA CUÁNTICA

TÉCNICAS EXPERIMENTALES V FÍSICA CUÁNTICA TÉCNICAS EXPERIMENTALES V FÍSICA CUÁNTICA P1 Medida de la Constante de Planck. Efecto fotoeléctrico. RNB P2 Experimento de Franck-Hertz. Niveles de energía de los átomos RNB P3 Dispersión de Rutherford

Más detalles

EXAMEN FINAL Página 1 de 9.

EXAMEN FINAL Página 1 de 9. CDPD-1284-01 EXAMEN FINAL Página 1 de 9. 1.- El átomo consta de: a) Un núcleo central con carga positiva y casi toda la masa y una corteza con carga negativa y casi sin masa. b) Un núcleo central sin masa

Más detalles

Física Cuántica Problemas de Practica AP Física B de PSI

Física Cuántica Problemas de Practica AP Física B de PSI Física Cuántica Problemas de Practica AP Física B de PSI Nombre 1. El experimento de "rayos catódicos" se asocia con: (A) R. A. Millikan (B) J. J. Thomson (C) J. S. Townsend (D) M. Plank (E) A. H. Compton

Más detalles

Física P.A.U. FÍSICA MODERNA 1 FÍSICA MODERNA

Física P.A.U. FÍSICA MODERNA 1 FÍSICA MODERNA Física P.A.U. FÍSICA MODERNA FÍSICA MODERNA PROBLEMAS MECÁNICA CUÁNTICA.. En una célula fotoeléctrica, el cátodo metálico se ilumina con una radiación de λ = 5 nm, el potencial de frenado para los electrones

Más detalles

Física Nuclear y Reacciones Nucleares

Física Nuclear y Reacciones Nucleares Slide 1 / 34 Física Nuclear y Reacciones Nucleares El Núcleo Slide 2 / 34 Protón: La carga de un protón es 1,6 x10-19 C. La masa de un protón es 1,6726x10-27 kg. Neutrones: El neutrón es neutro. La masa

Más detalles

Slide 1 / 34. Física Nuclear y Reacciones Nucleares

Slide 1 / 34. Física Nuclear y Reacciones Nucleares Slide 1 / 34 Física Nuclear y Reacciones Nucleares Slide 2 / 34 El Núcleo Protón: La carga de un protón es 1,6 x10-19 C. La masa de un protón es 1,6726x10-27 kg. Neutrones: El neutrón es neutro. La masa

Más detalles

ESTRUCTURA DE LA MATERIA VICENTE PUCHADES PUCHADES. SERVICIO DE RADIOFÍSICA Y PROTECCIÓN RADIOLÓGICA DEL HGU SANTA LUCÍA. CARTAGENA.

ESTRUCTURA DE LA MATERIA VICENTE PUCHADES PUCHADES. SERVICIO DE RADIOFÍSICA Y PROTECCIÓN RADIOLÓGICA DEL HGU SANTA LUCÍA. CARTAGENA. ESTRUCTURA DE LA MATERIA VICENTE PUCHADES PUCHADES. SERVICIO DE RADIOFÍSICA Y PROTECCIÓN RADIOLÓGICA DEL HGU SANTA LUCÍA. CARTAGENA. INDICE Qué es la materia? Modelos de la materia Fuerzas Fundamentales

Más detalles

PROGRAMA. Curso de PR para OPERAR instalaciones de Rayos X con fines de diagnóstico médico (IRD) ESPECIALIDAD: DENTAL HORAS TEÓRICAS HORAS PRÁCTICAS

PROGRAMA. Curso de PR para OPERAR instalaciones de Rayos X con fines de diagnóstico médico (IRD) ESPECIALIDAD: DENTAL HORAS TEÓRICAS HORAS PRÁCTICAS Curso de PR para OPERAR instalaciones de Rayos X con fines de diagnóstico médico (IRD). DENTAL. PROGRAMA Curso de PR para OPERAR instalaciones de Rayos X con fines de diagnóstico médico (IRD) ESPECIALIDAD:

Más detalles

J.M.L.C. IES Aguilar y Cano ALGUNOS DERECHOS RESERVADOS

J.M.L.C. IES Aguilar y Cano ALGUNOS DERECHOS RESERVADOS La radiactividad o radioactividad es un fenómeno físico natural, por el cual algunas sustancias o elementos químicos llamados radiactivos, emiten radiaciones que tienen la propiedad de impresionar placas

Más detalles

ESPECIALIDAD: GENERAL

ESPECIALIDAD: GENERAL Curso de PR para DIRIGIR instalaciones de Rayos X con fines de diagnóstico médico (IRD). GENERAL. PROGRAMA Curso de PR para DIRIGIR instalaciones de Rayos X con fines de diagnóstico médico (IRD) ESPECIALIDAD:

Más detalles

RADIACIÓN ELECTROMAGNÉTICA

RADIACIÓN ELECTROMAGNÉTICA FACULTAD DE CIENCIAS QUÍMICAS Espectrometría Objeto de Estudio Nº 1 LECTURA N 1 RADIACIÓN ELECTROMAGNÉTICA Bibliografía: SKOOG, D.A.; Leary J.J.; ANÁLISIS INSTRUMENTAL, 4 ed.; Ed. McGraw-Hill (1994), págs.

Más detalles

A mi esposo, Ernesto, por el amor, la paciencia y comprensión que ha tenido hacia mi persona.

A mi esposo, Ernesto, por el amor, la paciencia y comprensión que ha tenido hacia mi persona. Dedico esta tesis Con todo mi cariño a mis padres, Dra. Guillermina Vega Mercado (Billie) y Dr. Juan Azorín Nieto (Giova) por el inmenso amor y apoyo incondicional que me han dado siempre. Por ser un ejemplo

Más detalles

Tema 5: Interacción Radiación-Materia

Tema 5: Interacción Radiación-Materia Tema 5: Interacción Radiación-Materia 1. Interacción de partículas cargadas pesadas con la materia Partículas cargadas: excitación o ionización de los átomos del medio. Partículas pesadas (respecto al

Más detalles

Radiación: es la propagación de energía a través del espacio o la materia sin la intervención de un medio de transporte.

Radiación: es la propagación de energía a través del espacio o la materia sin la intervención de un medio de transporte. ASPECTOS BÁSICOS DE LAS RADIACIONES: Radiación: es la propagación de energía a través del espacio o la materia sin la intervención de un medio de transporte. Se acepta para las radiaciones el modelo dual

Más detalles

EL MODELO ATOMICO DE BOHR

EL MODELO ATOMICO DE BOHR EL MODELO ATOMICO DE BOHR En 1913, Niels Bohr ideó un modelo atómico que explica perfectamente los espectros determinados experimentalmente para átomos hidrogenoides. Estos son sistemas formados solamente

Más detalles

La perturbación electromagnética se propaga a la velocidad de la luz c. ADEMAS :c= f

La perturbación electromagnética se propaga a la velocidad de la luz c. ADEMAS :c= f EL EFECTO FOTOÈLECTRICO. ONDA ELECTROMAGNÈTICA: Es una variación en el tiempo de un campo eléctrico Una onda al oscilar genera un campo magnético. La perturbación electromagnética se propaga a la velocidad

Más detalles

Las siguientes Secciones se enfocarán en las radiaciones provenientes de procesos nucleares.

Las siguientes Secciones se enfocarán en las radiaciones provenientes de procesos nucleares. Interacción de la radiación con la materia Desde el punto de vista de la Física Nuclear o de Partículas, el conocimiento de la interacción de la radiación con la materia es de gran importancia, no sólo

Más detalles

Utiliza radiación X para el diagnóstico médico

Utiliza radiación X para el diagnóstico médico RAYOS X: NATURALEZA, PROPIEDADES, INTERACCIÓN CON LA MATERIA Prof. Dr. Guillermo J. Pepe Cátedra de Diagnóstico por Imágenes Facultad de Medicina- UNNE- RADIOLOGÍA CONVENCIONAL Utiliza radiación X para

Más detalles

FÍSICA. 2º BACHILLERATO BLOQUE V: INTRODUCCIÓN A LA FÍSICA MODERNA Examen 1

FÍSICA. 2º BACHILLERATO BLOQUE V: INTRODUCCIÓN A LA FÍSICA MODERNA Examen 1 Examen 1 1. En la explosión de una bomba atómica se produce Sr-90, que es un peligroso contaminante radiactivo, cuyo periodo de semidesintegración es de 28,8 años. Cuánto tiempo debe transcurrir para que

Más detalles

FÍSICA MODERNA. a) Explique las transformaciones energéticas en el proceso de fotoemisión y calcule la

FÍSICA MODERNA. a) Explique las transformaciones energéticas en el proceso de fotoemisión y calcule la FÍSICA MODERNA 2001 1. Un haz de luz de longitud de onda 546 10-9 m incide en una célula fotoeléctrica de cátodo de cesio, cuyo trabajo de extracción es de 2 ev: a) Explique las transformaciones energéticas

Más detalles

Medición y comparación del coeficiente de atenuación lineal de líquidos (con y sin gas)

Medición y comparación del coeficiente de atenuación lineal de líquidos (con y sin gas) Medición y comparación del coeficiente de atenuación lineal de líquidos (con y sin gas) Marlen Hernández Ortiz Héctor Antonio Durán Muñoz Eduardo Manzanares Acuña Héctor René Vega Carrillo Unidad de Académica

Más detalles

INTERACCION DE LA RADIACION CON LA MATERIA

INTERACCION DE LA RADIACION CON LA MATERIA Pág. 1 de 11 INTERACCION DE LA RADIACION CON LA MATERIA Cuando se habla de reacciones nucleares se hace referencia a todo tipo de interacción con los núcleos atómicos. Un tema más general, que engloba

Más detalles

Espectroscopía de Absorción Molecular

Espectroscopía de Absorción Molecular Espectroscopía de Absorción Molecular La espectroscopía consiste en el estudio cualitativo y cuantitativo de la estructura de los átomos o moléculas o de distintos procesos físicos y químicos mediante

Más detalles

Rayos-X en el control de calidad y seguridad alimentaria

Rayos-X en el control de calidad y seguridad alimentaria Rayos-X en el control de calidad y seguridad alimentaria Objetivos: Presentar a Multiscan Technologies S.L. Qué son los Rayos X? Conocer la normativa aplicable a los equipos de Rayos X Mostrar las modalidades

Más detalles

TECNOLOGÍA DE LAS IMÁGENES III MEDICINA NUCLEAR Lic. Amalia Pérez. LFM. Leandro Urrutia, LDI. Roberto Galli 2008

TECNOLOGÍA DE LAS IMÁGENES III MEDICINA NUCLEAR Lic. Amalia Pérez. LFM. Leandro Urrutia, LDI. Roberto Galli 2008 TECNOLOGÍA DE LAS IMÁGENES III MEDICINA NUCLEAR Lic. Amalia Pérez LFM. Leandro Urrutia, LDI. Roberto Galli 2008 Programa (Teórico) 1. Bases físicas de la formación de las imágenes de Medicina Nuclear.

Más detalles

Física Nuclear y de Partículas 2005/2006 Tema 1

Física Nuclear y de Partículas 2005/2006 Tema 1 TEMA 1 INTRODUCCIÓN. CONCEPTOS BÁSICOS CONTENIDOS Breve introducción histórica. Átomos, electrones y núcleos. Quarks y leptones. Interacciones fundamentales. Escala de las fuerzas y distancias subatómicas.

Más detalles

2 La carga del electrón fue determinada por primera vez en: D Difracción de electrones a partir del papel de aluminio.

2 La carga del electrón fue determinada por primera vez en: D Difracción de electrones a partir del papel de aluminio. Slide 1 / 32 1 Un Tubo de Crooke (un tubo que contiene gas rarificado a través del cual se hace pasar una corriente entre un cátodo y un ánodo) fue utilizado en el descubrimiento del electrón por: A R.

Más detalles

TEMAS SELECTOS DE FÍSICA CONTEMPORÁNEA. 1. Introducción a la mecánica cuántica Nanotecnología 18

TEMAS SELECTOS DE FÍSICA CONTEMPORÁNEA. 1. Introducción a la mecánica cuántica Nanotecnología 18 TEMAS SELECTOS DE FÍSICA CONTEMPORÁNEA 3 horas a la semana 6 créditos 3 horas teóricas y 0 de laboratorio OBJETIVO: Que el alumno adquiera conceptos básicos de física contemporánea y que construya una

Más detalles

Métodos y Terapias 2.2 Interacción Partículas Cargadas

Métodos y Terapias 2.2 Interacción Partículas Cargadas Métodos y Terapias 2.2 Interacción Partículas Cargadas Materia Dr. Willy H. Gerber Instituto de Fisica Universidad Austral de Chile Valdivia, Chile Objetivos: Comprender como interactúan partículas cargadas

Más detalles

Física P.A.U. FÍSICA MODERNA 1 FÍSICA MODERNA

Física P.A.U. FÍSICA MODERNA 1 FÍSICA MODERNA Física P.A.U. FÍSICA MODERNA 1 FÍSICA MODERNA PROBLEMAS EFECTO FOTOELÉCTRICO 1. En una célula fotoeléctrica, el cátodo metálico se ilumina con una radiación de λ = 175 nm, el potencial de frenado para

Más detalles

radiación electromagnética

radiación electromagnética radiación electromagnética ondas propagándose en el espacio con velocidad c crestas amplitud l valles longitud de onda [ l]=cm, nm, μm, A Frecuencia=n=c/l [ n ]=HZ=1/s l= numero de ondas por unidad de

Más detalles

La perturbación electromagnética se propaga a la velocidad de la luz c. ADEMAS :c= f

La perturbación electromagnética se propaga a la velocidad de la luz c. ADEMAS :c= f Tema: Efecto fotoeléctrico Efecto Compton-longitud de ondas de De Broglie ONDA ELECTROMAGNÈTICA: Es una variación en el tiempo de un campo eléctrico Una onda al oscilar genera un campo magnético. La perturbación

Más detalles

TEORÍA CORPUSCULAR DE LA LUZ.

TEORÍA CORPUSCULAR DE LA LUZ. Marta Vílchez TEORÍA CORPUSCULAR DE LA LUZ. Max Planck (1858-1947) Albert Einstein (1879-1955) Arthur H. Compton (189-196) 1 Marta Vílchez Antecedentes de la teoría corpuscular. Radiación del cuerpo negro.

Más detalles

Capítulo 1. Antecedentes de la Química Cuántica y primeras Teorías Atómicas

Capítulo 1. Antecedentes de la Química Cuántica y primeras Teorías Atómicas Capítulo 1. Antecedentes de la Química Cuántica y primeras Teorías Atómicas Objetivos: Recordar y actualizar los conocimientos sobre las características de electrones, protones y neutrones Describir la

Más detalles

ATENUACIÓN DE LA RADIACIÓN IONIZANTE

ATENUACIÓN DE LA RADIACIÓN IONIZANTE UNIVERSIDAD NACIONAL AUTÓNOMA DE HONDURAS FACULTAD DE CIENCIAS MÉDICAS DEPARTAMENTO DE CIENCIAS BIOMÉDICAS E IMÁGENES CARRERA CORTA DE RADIOTECNOLOGIA FRP-101 LABORATORIO 2 INTRODUCCIÓN: ATENUACIÓN DE

Más detalles

Efecto fotoeléctrico:

Efecto fotoeléctrico: ELECTRONES Y CUANTOS. EFECTO FOTOELÉCTRICO - EFECTO COMPTON - NATURALEZA DUAL DE LA LUZ En el siglo XIX ya era conocido el electrón. En 1897 Thomson midió la relación carga a masa: e m = 5.27 1017 u.e.s./g

Más detalles

Radiaciones, ser humano y medio ambiente. María Eugenia Pérez

Radiaciones, ser humano y medio ambiente. María Eugenia Pérez Radiaciones, ser humano y medio ambiente María Eugenia Pérez 1- Núcleo atómico 2- Radiactividad 3- Modos de decaimiento 4- Cinética de decaimiento radioactivo 5-Tabla de nucleidos Núcleo atómico Fue descubierto

Más detalles

Relación Problemas Tema 11: Física Cuántica

Relación Problemas Tema 11: Física Cuántica 1.- Determinar la energía de un fotón para: a) Ondas de radio de 1500 khz b) Luz verde de 550 nm c) Rayos X de 0,06 nm Relación Problemas Tema 11: Física Cuántica Problemas (para todas, el medio de propagación

Más detalles

ÓPTICA FÍSICA. (luz) Física 2º bachillerato Óptica física (luz) 1

ÓPTICA FÍSICA. (luz) Física 2º bachillerato Óptica física (luz) 1 ÓPTICA FÍSICA (luz) 1. Ondas electromagnéticas. 2. Espectro electromagnético 3. Naturaleza de la luz. 4. Propagación de la luz. 5. Fenómenos ondulatorios. 6. Fenómenos corpusculares. Física 2º bachillerato

Más detalles

Transferencia de Calor por Radiación

Transferencia de Calor por Radiación INSTITUTO TECNOLÓGICO de Durango Transferencia de Calor por Radiación Dr. Carlos Francisco Cruz Fierro Revisión 1 67004.97 12-jun-12 1 INTRODUCCIÓN A LA RADIACIÓN ELECTROMAGNÉTICA 2 Dualidad de la Luz

Más detalles

N está formado por 7 protones y 8 neutrones, luego su masa teórica debería ser:

N está formado por 7 protones y 8 neutrones, luego su masa teórica debería ser: 01. Calcular la energía de enlace por nucleón del isótopo 15 N sabiendo que su masa es 15,0001089 u. Datos: 1 u = 1, 10-2 g ; m p = 1,002 u; m n = 1,0085 u El núcleo 15 N está formado por protones y 8

Más detalles

RADIOACTIVIDAD - (2015)

RADIOACTIVIDAD - (2015) RADIOACTIVIDAD - (2015) A- CONCEPTOS GENERALES SOBRE RADIACTIVIDAD B- ISÓTOPOS C- TIPOS Y PROPIEDADES DE LAS RADIACCIONES D- REACCIONES NUCLEARES E- VIDA MEDIA A- CONCEPTOS GENERALES SOBRE RADIACTIVIDAD

Más detalles

DEPARTAMENTO DE QUÍMICA SERIE DE EJERCICIOS. Tema 1: Estructura Atómica Semestre

DEPARTAMENTO DE QUÍMICA SERIE DE EJERCICIOS. Tema 1: Estructura Atómica Semestre DEPARTAMENTO DE QUÍMICA SERIE DE EJERCICIOS (Basada en reactivos de exámenes colegiados) Tema 1: Estructura Atómica Semestre 2017-2 Experimento de Thomson 1. En un experimento como el de Thomson, un haz

Más detalles

Ejercicios de Física cuántica y nuclear. PAU (PAEG)

Ejercicios de Física cuántica y nuclear. PAU (PAEG) 1. Las longitudes de onda del espectro visible están comprendidas, aproximadamente, entre 390 nm en el violeta y 740 nm en el rojo. Qué intervalo aproximado de energías, en ev, corresponde a los fotones

Más detalles

Aparato de rayos x. Generación de rayos x

Aparato de rayos x. Generación de rayos x Aparato de rayos x Generación de rayos x Dr. Alejandro R. Padilla Profesor en la cátedra de Radiología Oral y Maxilo-Facial Facultad de Odontología Universidad de Los Andes Mérida-Venezuela Dr. Jaynes,Robert

Más detalles

PPTCEL001QM11-A16V1 Clase. Fenómenos nucleares I: partículas radiactivas

PPTCEL001QM11-A16V1 Clase. Fenómenos nucleares I: partículas radiactivas PPTCEL001QM11-A16V1 Clase Fenómenos nucleares I: partículas radiactivas Aprendizajes esperados Conocer las partículas radiactivas. Conocer el concepto de isótopos. Aplicar el concepto de masa atómica promedio.

Más detalles

Física 2º Bto. (A y B) Campo magnético. Óptica. Física Moderna 04 junio 2008 B 1 = 2 $

Física 2º Bto. (A y B) Campo magnético. Óptica. Física Moderna 04 junio 2008 B 1 = 2 $ Nombre y apellidos: Puntuación:. Descripción vectorial del campo magnético Dos conductores eléctricos, rectos y paralelos, están separados por una distancia de,00 m y colocados perpendicularmente al plano

Más detalles

EJERCICIOS EFECTO FOTOELÉCTRICO

EJERCICIOS EFECTO FOTOELÉCTRICO EJERCICIOS EFECTO FOTOELÉCTRICO Teoría Distribución de la radiación de cuerpo negro, según Planck: Esta era una expresión empírica, para explicarla teóricamente, Planck propuso un modelo detallado de los

Más detalles

EL ÁTOMO CONTENIDOS. ANTECEDENTES HISTÓRICOS. ( ) MODELOS ATÓMICOS. RAYOS CATÓDICOS. MODELO DE THOMSON.

EL ÁTOMO CONTENIDOS. ANTECEDENTES HISTÓRICOS. ( ) MODELOS ATÓMICOS. RAYOS CATÓDICOS. MODELO DE THOMSON. EL ÁTOMO CONTENIDOS. 1.- Antecedentes históricos.( ) 2.- Partículas subatómicas. ( ) 3.- Modelo atómico de Thomsom. 4.- Los rayos X. 5.- La radiactividad. 6.- Modelo atómico de Rutherford. 7.- Radiación

Más detalles

protección en radiología odontológica

protección en radiología odontológica 369 textos docents protección en radiología odontológica Fernando Finestres Zubeldia Departamento de Odontoestomatología Protección en radiología odontológica Fernando Finestres Zubeldia Departamento de

Más detalles

INTRODUCCIÓN A LA FÍSICA MODERNA MODELO 2016

INTRODUCCIÓN A LA FÍSICA MODERNA MODELO 2016 INTRODUCCIÓN A LA FÍSICA MODERNA MODELO 2016 1- La masa de cierto isótopo radiactivo decae a un octavo de su cantidad original en un tiempo de 5 h. Determine: a) La constante de desintegración de dicho

Más detalles

Conceptos Básicos de la Energía Nuclear

Conceptos Básicos de la Energía Nuclear Conceptos Básicos de la Energía Nuclear El átomo En la naturaleza el átomo más simple que hay es el hidrógeno, cuenta con un protón y un electrón. Por tanto, para explicar el resto de los átomos, ha de

Más detalles

QUÍMICA INORGÁNICA AVANZADA NOCIONES DE RADIOQUÍMICA

QUÍMICA INORGÁNICA AVANZADA NOCIONES DE RADIOQUÍMICA QUÍMICA INORGÁNICA AVANZADA NOCIONES DE RADIOQUÍMICA Química nuclear Comprende el estudio de: reacciones nucleares (energía, tipo de decaimiento, energía de desactivación), propiedades de los elementos

Más detalles

EL EFECTO FOTOELÉCTRICO

EL EFECTO FOTOELÉCTRICO EL EFECTO FOTOELÉCTRICO LAS OEM, A PARTIR DE AHORA LAS PODREMOS LLAMAR TAMBIEN RADIACIÓN ELECTROMAGNÉTICA (REM) SON PORTADORAS DE ENERGÍA, MOMENTO LINEAL Y MOMENTO ANGULAR, ENTONCES CABE ESPERAR QUE CUANDO

Más detalles

El átomo según Rutherford y Bohr

El átomo según Rutherford y Bohr El átomo según Rutherford y Bohr Fernando Barreiro Universidad Autónoma de Madrid Fundamentos Fisica III Fernando Barreiro Fundamentos Fisica III : El átomo según Rutherford y Bohr 1 / 29 Propiedades de

Más detalles

interacción de la radiación con la atmósfera

interacción de la radiación con la atmósfera 1 interacción de la radiación lección 4 sumario 2 Introducción. Composición de la atmósfera. Efectos atmosféricos: Dispersión. Absorción. Correcciones atmosféricas. introducción 3 La atmósfera se interpone

Más detalles

Espectroscopía de electrón Auger (AES)

Espectroscopía de electrón Auger (AES) ESPECTROSCOPIAS Espectroscopía de electrón Auger (AES) Técnica superficial específica mediante emisión de electrones de baja energía en el proceso Auger. Determinación de composición de las capas superficiales

Más detalles

Teoría atómica de Dalton (1803)

Teoría atómica de Dalton (1803) EL ÁTOMO DIVISIBLE El átomo Desde los tiempos de la antigua Grecia,los pensadores se preguntaban cómo estaba constituida la materia en su interior? Demócrito (S.V a.c.) introduce el término de átomo como

Más detalles

El núcleo y las partículas subatómicas

El núcleo y las partículas subatómicas La radiactividad y su naturaleza En 896 el físico A. Henry Becquerel descubrió que un mineral de uranio, denominado pechblenda, era capaz de impresionar placas fotográficas protegidas de la luz solar,

Más detalles

PRUEBAS DE ACCESO A LA UNIVERSIDAD MATERIAS DE MODALIDAD: FASES GENERAL Y ESPECÍFICA

PRUEBAS DE ACCESO A LA UNIVERSIDAD MATERIAS DE MODALIDAD: FASES GENERAL Y ESPECÍFICA PRUEBAS DE ACCESO A LA UNIVERSIDAD MATERIAS DE MODALIDAD: FASES GENERAL Y ESPECÍFICA CURSO 013 014 CONVOCATORIA: PROBLEMAS OPCIÓN A MATERIA: FÍSICA De las dos opciones propuestas, sólo hay que desarrollar

Más detalles

Física moderna. José Mariano Lucena Cruz Física 2 o Bachillerato

Física moderna. José Mariano Lucena Cruz Física 2 o Bachillerato José Mariano Lucena Cruz chenalc@gmail.com Física 2 o Bachillerato Radiación térmica Todo cuerpo, no importa a la temperatura que se encuentre, es fuente de radiación térmica. (Emite energía en forma de

Más detalles

5º CURSO LICENCIATURA DE ODONTOLOGÍA RADIOLOGÍA ODONTOLÓGICA Y PROTECCIÓN RADIOLÓGICA

5º CURSO LICENCIATURA DE ODONTOLOGÍA RADIOLOGÍA ODONTOLÓGICA Y PROTECCIÓN RADIOLÓGICA DEPARTAMENTO DE DERMATOLOGIA, ESTOMATOLOGIA Y RADIOLOGIA Y MEDICINA FISICA. AREA DE RADIOLOGIA Y MEDICINA FISICA 5º CURSO LICENCIATURA DE ODONTOLOGÍA RADIOLOGÍA ODONTOLÓGICA Y PROTECCIÓN RADIOLÓGICA PROFESORADO

Más detalles

! " # $ % $ # # & ' & ( % $ ) " $ * ) + $ ' $ ( *, ) - $ & ( % +. $ ( / # / ( 5 % 1 - $ % ) " ", # %! $ % ). $ # * ) * %

!  # $ % $ # # & ' & ( % $ )  $ * ) + $ ' $ ( *, ) - $ & ( % +. $ ( / # / ( 5 % 1 - $ % )  , # %! $ % ). $ # * ) * % ! " # $ % $ # # & ' & ( % $ ) " $ * ) + $ ' $ ( *, ) - $ & ( % +. $ ( / 0. 0 1 # 2 3 4 / ( 5 % 1 - $ % ) " ", # %! $ % ). $ # * ) * % ! " # $ % & % & '! &! & " ( # ) * & & % + & +, - % % +. $ & + / +

Más detalles

CLASE. Estructura de la Materia

CLASE. Estructura de la Materia PROTECCION RADIOLOGICA EN line@ CLASE Estructura de la Materia Estructura de la materia El concepto del Átomo Modelos atómicos Estructura del Átomo Modelos Nucleares Estructura Nuclear Defecto de masa

Más detalles

LICENCIATURA EN TECNOLOGÍA FÍSICA MODERNA. III. Antecedente de la Teoría Cuántica. IV. Mecánica Cuántica

LICENCIATURA EN TECNOLOGÍA FÍSICA MODERNA. III. Antecedente de la Teoría Cuántica. IV. Mecánica Cuántica III. y IV. Teoría Cuántica LICENCIATURA EN TECNOLOGÍA FÍSICA MODERNA III. Antecedente de la Teoría Cuántica IV. Mecánica Cuántica M. en C. Angel Figueroa Soto. angfsoto@geociencias.unam.mx Centro de Geociencias,

Más detalles

Radiaciones Ionizantes: Utilización y Riesgos RIUR. Guía de estudio

Radiaciones Ionizantes: Utilización y Riesgos RIUR. Guía de estudio Radiaciones Ionizantes: Utilización y Riesgos RIUR . Estructura y radiaciones atómicas Esta guía describe el conjunto de actividades que forman el tema 2 del módulo 1: " Estructura y radiaciones atómicas"

Más detalles