Curso de Estadística no-paramétrica
|
|
|
- Rafael Ramos de la Fuente
- hace 8 años
- Vistas:
Transcripción
1 Curso de Estadística no-paramétrica Sesión 3: Regresión no paramétrica y Contrastes de Aleatoriedad y bondad de ajuste Facundo Muñoz Grup d Estadística espacial i Temporal Departament d Estadística en Epidemiologia i Medi Ambient i Investigació Operativa Universitat de València Junio 2013 Ejemplo Mortalidad infantil vs. PIB mortalidadinfantil-pib.csv1 Relación entre las tasas de mortalidad infantil (por mil nacidos vivos) y el PIB per cápita (en dólares) para 193 países del mundo. Mortalidad infantil (x 1000) PIB per cápita (US$) Las variables están claramente asociadas, pero la relación es no lineal. La línea de regresión no paramétrica fue producida por el método de regresión polinomial local lowess. Uno de los métodos no paramétricos más comunes. 1 John Fox and Sanford Weisberg (2011). An R Companion to Applied Regression, Second Edition. Thousand Oaks CA: Sage. URL: 2 / 18
2 Regresión paramétrica vs. no paramétrica Métodos de regresión Objetivo: estimar el valor central (media, mediana) de una variable respuesta y (cuantitativa) como una función de una o más (co)variables predictivas (también cuantitativas). Hipótesis de la regresión lineal (paramétrica) Asociación lineal: E(y x) = µ(x) = α + βx Normalidad: y x N ( µ(x), σ 2 (x) ) Homocedasticidad: σ 2 (x) = σ 2 Independencia La regresión no paramétrica sustituye la hipótesis de linealidad por la de suavidad en la función de regresión 3 / 18 Transformación de variables Hipótesis de linealidad Cuando la hipótesis de linealidad falla, a veces es posible trabajar de forma paramétrica con una transformación de las variables. Esto suele ser preferible a una regresión no paramétrica log Mortalidad infantil (x 1000) log PIB per cápita (US$) Interpretabilidad de los coeficientes. Pendiente 0,5: por cada punto porcentual de incremento en el PIB per cápita se observa una reducción de un 0,5 % en la mortalidad infantil (elasticidad). Simplicidad del modelo 4 / 18
3 Métodos de regresión no paramétrica Medias móviles: calcular la media de y en una ventana alrededor de cada valor de x Medias móviles ponderadas (suavización kernel): ponderar los datos en función de la distancia Regresión polinomial local: ajustar un polinomio por mínimos cuadrados a los puntos en una ventana local, ponderados por la distancia 5 / 18 Parámetros de ajuste Función kernel Forma de la función de ponderación Funciones comunes: uniforme, triangular, gaussiana, tricúbica, etc. Difieren en la rapidez con que decae el peso relativo con la distancia 6 / 18
4 Parámetros de ajuste Ancho de banda Regula a cuántos vecinos afecta la función Kernel Normalmente es variable, y se regula para que en cada punto la ponderación se realice sobre una cierta proporción de las observaciones A mayor ancho de banda, más suave es la curva de regresión 7 / 18 Inferencia En una regresión paramétrica, los objetos de estimación son los coeficientes de regresión. Rutinariamente se calculan intervalos de confianza o se contrasta la hipótesis de que sean diferentes de cero. En regresión no paramétrica no hay coeficientes de regresión. El objeto central de estimación es la función de regresión. En cambio, se pueden construir bandas de confianza sobre la media de y para cada valor de x, a partir de las hipótesis de independencia, homocedasticidad y normalidad PIB per cápita (US$) Mortalidad infantil (x 1000) 8 / 18
5 Métodos de regresión no paramétrica Implementación SPSS Puede añadirse manualmente una curva de regresión (lowess) Pero no parece haber forma de recoger los valores predichos en una nueva variable, ni de utilizar la curva como efecto estimado en un modelo más complejo, ni de hacer inferencia Está disponible sólo como un elemento descriptivo para valorar visualmente la relación entre dos variables Ejercicio Ajustar una curva no paramétrica a los datos de mortalidadinfantil-pib.csv Explorar las diferencias en el ajuste con diferentes anchos de banda y funciones kernel Ajustar un modelo lineal con las variables transformadas (log) 9 / 18 Métodos de regresión no paramétrica Más cosas En regresión múltiple (i.e., más de una variable predictiva) aparecen nuevos problemas (e.g., correlación entre predictores, interacciones, etc.) Una estrategia popular son los Modelos de Regresión Aditivos en los que se especifica la media de la variable respuesta como la suma de funciones suaves de los regresores E(y x 1,..., x k ) = α + f 1 (x 1 ) + + f k (x k ) Cuando la variable respuesta no es Normal, se generaliza todo lo anterior a Modelos de Regresión (Aditivos) Generalizados. También aparecen el problema de selección de variables y comparación de modelos Todo esto se escapa del alcance de este curso, y del software utilizado. 10 / 18
6 Aleatoriedad o independencia Ejemplo Queremos saber si la evolución de cierto valor es aleatoria o sigue algún patrón (tendencia, ciclo) que nos permita predecir las ganancias o pérdidas. Esta pregunta la podemos responder con un contraste de aleatoriedad Equivale a preguntarse si las observaciones son independientes entre sí Muchos métodos no paramétricos asumen la independencia como hipótesis de trabajo. 11 / 18 Test de aleatoriedad por Rachas Contraste de Wald Wolfowitz Transformar los datos en una secuencia de dos símbolos, de acuerdo a su valor, y contar el número de rachas de la muestra. Un número de rachas demasiado alto o demasiado bajo será evidencia de una muestra no aleatoria R = 2 rachas (correlación positiva) R = 12 rachas (correlación negativa) R = 4 rachas (posiblem. independientes) Ejemplo: variable continua Codificar los datos como + si el valor está por encima de cierto valor, o como si está por debajo. Si la muestra es aleatoria, se puede calcular el número aproximado de Rachas que deberían observarse Se puede establecer cualquier punto de corte 12 / 18
7 Test de aleatoriedad por Rachas Implementación SPSS La variable debe ser Cuantitativa, o Nominal, con una codificación numérica Ejercicio Si es necesario, Transformar:Recodificación automática Analizar:Pruebas no paramétricas:rachas... Recodificar automáticamente la variable progenie en progenie-cebada.csv Comprobar si la muestra puede considerarse aleatoria utilizando diversos puntos de corte 13 / 18 Variables categóricas Variables categóricas (o cualitativas, o factores) Aquellas que pueden tomar un número finito de valores Ejemplos y clasificación Nominales Grupo sanguíneo {A, B, AB, O} Dicotómicas o binarias Sexo {H, M}; Factor RH {+, -} Ordinales Concentración {Baja, Media, Alta}; Grupo de edad {0-25, 26-40, 40-60, 60+} SPSS Es importante definir correctamente el tipo de variable en SPSS ya que los métodos disponibles dependen de ello Vista de variables:medida 14 / 18
8 Ejemplo Características de una progenie Ejemplo 1.- En un estudio sobre el cruce de variedades de cebada, se observaron dos características: presentar 2 filas de granos (a) o no (A, dominante), y tener color verde (B, dominante) o ser planta clorótica (b). La combinación de estas características nos da cuatro posibilidades: verdes sin dos filas de granos, verdes con dos filas, cloróticas sin dos filas y cloróticas con dos filas. Se recogieron datos de cruces entre heterozigóticos (AaBb), resultando: Verde sin 2 filas 1178 Verde con 2 filas 291 Clorótica sin 2 filas 273 Clorótica con 2 filas 156 Total 1898 Se cumple la segregación normal dihíbrida con dominación completa (AaBb x AaBb > 9 A-B- ; 3 A-bb ; 3 aab- ; 1 aabb)? 15 / 18 Abstracción Bondad de ajuste de una población Tenemos una población (la progenie de los cruces heterozigóticos) Una única variable respuesta: combinación del cruce (categórica con 4 categorías). Objetivo: comprobar si se cumplen las proporciones (9/16, 3/16, 3/16, 1/16). 16 / 18
9 Test de bondad de ajuste Consideremos una variable categórica con k categorías y una muestra aleatoria de N observaciones de esa variable. Las observaciones se clasifican según las k categorías y se representan en una tabla de frecuencias absolutas (O 1,..., O k ). Nuestro objetivo es contrastar si la proporción poblacional de cada categoría (π 1,..., π k ) cumple unas proporciones prefijadas (p 1,..., p k ). H 0 : π 1 = p 1,..., π k = p k Si la hipótesis H 0 fuera cierta, las frecuencias esperadas serían E i = Nπ i. Para comparar las frecuencias observadas con las frecuencias esperadas podemos utilizar el estadístico de contraste: χ 2 s = i (O i E i ) 2 E i χ 2 (k 1) 17 / 18 Test de bondad de ajuste Implementación SPSS La variable debe ser Nominal, con una codificación numérica Ejercicio Si no es así, utilizar Transformar:Recodificación automática Analizar:Pruebas no paramétricas:chi-cuadrado... Comprobar las proporciones teóricas del banco de datos progenie-cebada.csv 18 / 18
Tema 10: Introducción a los problemas de Asociación y Correlación
Tema 10: Introducción a los problemas de Asociación y Correlación Estadística 4 o Curso Licenciatura en Ciencias Ambientales Licenciatura en Ciencias Ambientales (4 o Curso) Tema 10: Asociación y Correlación
TEMA 10 COMPARAR MEDIAS
TEMA 10 COMPARAR MEDIAS Los procedimientos incluidos en el menú Comparar medias permiten el cálculo de medias y otros estadísticos, así como la comparación de medias para diferentes tipos de variables,
ESTADÍSTICA. Tema 4 Regresión lineal simple
ESTADÍSTICA Grado en CC. de la Alimentación Tema 4 Regresión lineal simple Estadística (Alimentación). Profesora: Amparo Baíllo Tema 4: Regresión lineal simple 1 Estructura de este tema Planteamiento del
Estadística Descriptiva II: Relación entre variables
Estadística Descriptiva II: Relación entre variables Iniciación a la Investigación Ciencias de la Salud MUI Ciencias de la Salud, UEx 25 de octubre de 2010 De qué trata? Descripción conjunto concreto de
INFERENCIA ESTADÍSTICA. Metodología de Investigación. Tesifón Parrón
Metodología de Investigación Tesifón Parrón Contraste de hipótesis Inferencia Estadística Medidas de asociación Error de Tipo I y Error de Tipo II α β CONTRASTE DE HIPÓTESIS Tipos de Test Chi Cuadrado
INDICE 1. Introducción 2. Recopilación de Datos Caso de estudia A 3. Descripción y Resumen de Datos 4. Presentación de Datos
INDICE Prefacio VII 1. Introducción 1 1.1. Qué es la estadística moderna? 1 1.2. El crecimiento y desarrollo de la estadística moderna 1 1.3. Estudios enumerativos en comparación con estudios analíticos
Departamento de Medicina Preventiva y Salud Publica e Historia de la Ciencia. Universidad Complutense de Madrid. SPSS para windows.
TEMA 13 REGRESIÓN LOGÍSTICA Es un tipo de análisis de regresión en el que la variable dependiente no es continua, sino dicotómica, mientras que las variables independientes pueden ser cuantitativas o cualitativas.
INDICE. Prólogo a la Segunda Edición
INDICE Prólogo a la Segunda Edición XV Prefacio XVI Capitulo 1. Análisis de datos de Negocios 1 1.1. Definición de estadística de negocios 1 1.2. Estadística descriptiva r inferencia estadística 1 1.3.
Universidad de Chile DIPLOMA PREPARACIÓN Y EVALUACIÓN SOCIAL DE PROYECTOS Prof: Sara Arancibia
Universidad de Chile DIPLOMA PREPARACIÓN Y EVALUACIÓN SOCIAL DE PROYECTOS Prof: Sara Arancibia Estudio de Caso: Estudio Morfología Coeficiente de Correlación Considere el archivo Estudio Morfología.sav.
ADMINISTRACION DE OPERACIONES
Sesión4: Métodos cuantitativos ADMINISTRACION DE OPERACIONES Objetivo específico 1: El alumno conocerá y aplicara adecuadamente los métodos de pronóstico de la demanda para planear la actividad futura
Prueba de Hipótesis. Para dos muestras
Prueba de Hipótesis Para dos muestras Muestras grandes (n mayor a 30) Utilizar tabla Z Ho: μ1 = μ2 H1: μ1 μ2 Localizar en valor de Zt en la tabla Z Error estándar de la diferencia de medias Prueba de
INDICE 1. Qué es la Estadística? 2.Descripción de Datos: Distribuciones de Frecuencia y Presentación Gráfica
INDICE 1. Qué es la Estadística? 1 Introducción 2 Qué significa estadística? 2 Por qué se estudia la estadística? 4 Tipos de estadística 5 Estadística descriptiva 5 Estadística inferencial 6 Tipos de variables
ANÁLISIS DE DATOS. L.A. y M.C.E. Emma Linda Diez Knoth
ANÁLISIS DE DATOS 1 Tipos de Análisis en función de la Naturaleza de los Datos Datos cuantitativos Datos cualitativos Análisis cuantitativos Análisis cuantitativos de datos cuantitativos (Estadística)
478 Índice alfabético
Índice alfabético Símbolos A, suceso contrario de A, 187 A B, diferencia de los sucesos A y B, 188 A/B, suceso A condicionado por el suceso B, 194 A B, intersección de los sucesos A y B, 188 A B, unión
Agro 6998 Conferencia 2. Introducción a los modelos estadísticos mixtos
Agro 6998 Conferencia Introducción a los modelos estadísticos mixtos Los modelos estadísticos permiten modelar la respuesta de un estudio experimental u observacional en función de factores (tratamientos,
Repaso Estadística Descriptiva
Grado en Fisioterapia, 2010/11 Cátedra de Bioestadística Universidad de Extremadura 13 de octubre de 2010 Índice Descriptiva de una variable 1 Descriptiva de una variable 2 Índice Descriptiva de una variable
2 Introducción a la inferencia estadística Introducción Teoría de conteo Variaciones con repetición...
Contenidos 1 Introducción al paquete estadístico S-PLUS 19 1.1 Introducción a S-PLUS............................ 21 1.1.1 Cómo entrar, salir y consultar la ayuda en S-PLUS........ 21 1.2 Conjuntos de datos..............................
Preparación de los datos de entrada
Preparación de los datos de entrada Clase nro. 6 CURSO 2010 Objetivo Modelado de las características estocásticas de los sistemas. Variables aleatorias con su distribución de probabilidad. Por ejemplo:
Teoría de la decisión
1.- Un problema estadístico típico es reflejar la relación entre dos variables, a partir de una serie de Observaciones: Por ejemplo: * peso adulto altura / peso adulto k*altura * relación de la circunferencia
Regresión lineal SIMPLE MÚLTIPLE N A Z IRA C A L L E J A
Regresión lineal REGRESIÓN LINEAL SIMPLE REGRESIÓN LINEAL MÚLTIPLE N A Z IRA C A L L E J A Qué es la regresión? El análisis de regresión: Se utiliza para examinar el efecto de diferentes variables (VIs
INDICE Prefacio 1. Introducción 2. Distribuciones de frecuencia: tablas estadísticas y graficas
INDICE Prefacio XIII 1. Introducción 1.1. la imagen de la estadística 1 1.2. dos tipos de estadísticas 1.3. estadística descriptiva 2 1.4. estadística inferencial 1.5. naturaleza interdisciplinaria de
Curso de Estadística no-paramétrica
Curso de Estadística no-paramétrica Sesión 4: Análisis de datos categóricos Facundo Muñoz Grup d Estadística espacial i Temporal Departament d Estadística en Epidemiologia i Medi Ambient i Investigació
Introducción a la regresión ordinal
Introducción a la regresión ordinal Jose Barrera [email protected] 20 de mayo 2009 Jose Barrera (UAB) Introducción a la regresión ordinal 20 de mayo 2009 1 / 11 Introducción a la regresión ordinal 1
Diplomado en Estadística Aplicada
Diplomado en Estadística Aplicada Con el propósito de mejorar las habilidades para la toma de decisiones, la División de Estudios de Posgrado de la Facultad de Economía ha conjuntado a profesores con especialidad
Funciones de Regresión No Lineales (SW Cap. 6)
Funciones de Regresión No Lineales (SW Cap. 6) Todo anteriormente ha sido lineal en las X s La aproximación de que la función de regresión es lineal puede ser satisfactoria para algunas variables pero
MANEJO DE VARIABLES EN INVESTIGACIÓN CLÍNICA Y EXPERIMENTAL
MANEJO DE VARIABLES EN INVESTIGACIÓN CLÍNICA Y EXPERIMENTAL Israel J. Thuissard David Sanz-Rosa IV JORNADAS INVESTIGACIÓN COEM UNIVERSIDADES 4 de marzo de 2016 Escuela de Doctorado e Investigación. Vicerrectorado
Se permite un folio escrito por las dos caras. Cada problema se realiza en hojas diferentes y se entregan por separado.
NORMAS El examen consta de dos partes: 0.0.1. Diez Cuestiones: ( tiempo: 60 minutos) No se permite ningún tipo de material (libros, apuntes, calculadoras,...). No se permite abandonar el aula una vez repartido
Análisis de datos Categóricos
Introducción a los Modelos Lineales Generalizados Universidad Nacional Agraria La Molina 2016-1 Introducción Modelos Lineales Generalizados Introducción Componentes Estimación En los capítulos anteriores
Formulario. Estadística Administrativa. Módulo 1. Introducción al análisis estadístico
Formulario. Estadística Administrativa Módulo 1. Introducción al análisis estadístico Histogramas El número de intervalos de clase, k, se elige de tal forma que el valor 2 k sea menor (pero el valor más
Estadística Descriptiva. Poblaciones y muestras.
Estadística Descriptiva. Poblaciones y muestras. [email protected] CIPF s Research Development Programme Indice 1 Introducción 2 3 Análisis Estadístico Población y muestra Software estadístico CIPF s Research
TÉCNICAS ESTADÍSTICAS APLICADAS EN NUTRICIÓN Y SALUD
TÉCNICAS ESTADÍSTICAS APLICADAS EN NUTRICIÓN Y SALUD Contrastes de hipótesis paramétricos para una y varias muestras: contrastes sobre la media, varianza y una proporción. Contrastes sobre la diferencia
ESTADÍSTICA. Población Individuo Muestra Muestreo Valor Dato Variable Cualitativa ordinal nominal. continua
ESTADÍSTICA Población Individuo Muestra Muestreo Valor Dato Variable Cualitativa ordinal nominal Cuantitativa discreta continua DISTRIBUCIÓN DE FRECUENCIAS Frecuencia absoluta: fi Frecuencia relativa:
A. PRUEBAS DE BONDAD DE AJUSTE: B.TABLAS DE CONTINGENCIA. Chi cuadrado Metodo G de Fisher Kolmogorov-Smirnov Lilliefords
A. PRUEBAS DE BONDAD DE AJUSTE: Chi cuadrado Metodo G de Fisher Kolmogorov-Smirnov Lilliefords B.TABLAS DE CONTINGENCIA Marta Alperin Prosora Adjunta de Estadística [email protected] http://www.fcnym.unlp.edu.ar/catedras/estadistica
Introducción a la Estadística Aplicada en la Química
Detalle de los Cursos de Postgrado y Especialización en Estadística propuestos para 2015 1/5 Introducción a la Estadística Aplicada en la Química FECHAS: 20/04 al 24/04 de 2015 HORARIO: Diario de 10:00
MODELO DE RESPUESTAS Objetivos 2, 3, 4, 5, 6, 7, Y 8.
UNIVERSIDAD NACIONAL ABIERTA ESTADÍSTICA GENERAL 745) VICERRECTORADO ACADÉMICO INTEGRAL ÁREA DE MATEMÁTICA Fecha: 17/ 01 /009 MODELO DE RESPUESTAS Objetivos, 3, 4, 5, 6, 7, Y 8. OBJ. 1 PTA 1 Una compañía
Pruebas para evaluar diferencias
Pruebas para evaluar diferencias Métodos paramétricos vs no paramétricos Mayoría se basaban en el conocimiento de las distribuciones muestrales (t- student, Normal, F): EsFman los parámetros de las poblaciones
viii CAPÍTULO 2 Métodos de muestreo CAPÍTULO 3 Análisis exploratorio de datos
Contenido Acerca de los autores.............................. Prefacio.... xvii CAPÍTULO 1 Introducción... 1 Introducción.............................................. 1 1.1 Ideas de la estadística.........................................
CURSO: ANALISIS ESTADISTICO DE RIESGOS
MANAGEMENT CONSULTORES CURSO: ANALISIS ESTADISTICO DE RIESGOS Cnel. R.L. Falcón 1435 C1406GNC 35 Buenos Aires, Argentina Tel.: 054-11-15-5468-3369 Fax: 054-11-4433-4202 Mail: [email protected]
LICENCIATURA EN ECONOMÍA Y LICENCIATURA EN ADMINISTRACIÓN DE EMPRESAS
DEPARTAMENT D ECONOMIA APLICADA UNIVERSITAT DE VALENCIA LICENCIATURA EN ECONOMÍA Y LICENCIATURA EN ADMINISTRACIÓN DE EMPRESAS PROGRAMA DE ESTADÍSTICA E INTRODUCCIÓN A LA ECONOMETRÍA TEMA 1: INTRODUCCIÓN
Estadística y sus aplicaciones en Ciencias Sociales 5. Estimación. Facultad de Ciencias Sociales, UdelaR
Estadística y sus aplicaciones en Ciencias Sociales 5. Estimación Facultad de Ciencias Sociales, UdelaR Índice 1. Repaso: estimadores y estimaciones. Propiedades de los estimadores. 2. Estimación puntual.
ESTADISTICA II. INGENIERIA INFORMATICA, 3 ER Curso Septiembre Primera Parte
ESTADISTICA II INGENIERIA INFORMATICA, 3 ER Curso 13 - Septiembre - 2.004 Primera Parte Apellidos y Nombre:... D.N.I. :... Nota : En la realización de este examen sólo esta permitido utilizar calculadoras
Estadísticos Aplicados en el SPSS 2008
PRUEBAS ESTADISTICAS QUE SE APLICAN (SPSS 10.0) PARAMÉTRICAS:... 2 Prueba t de Student para una muestra... 2 Prueba t par muestras independientes... 2 ANOVA de una vía (multigrupo)... 2 ANOVA de dos vías
Guía docente MÉTODOS ESTADÍSTICOS PARA LA EMPRESA
1. Introducción Guía docente MÉTODOS ESTADÍSTICOS PARA LA EMPRESA Los análisis económicos y empresariales se efectúan sobre la base de la toma de decisiones, las cuales se toman a partir de la información
CONTENIDO. Prólogo a la 3. a edición en español ampliada... Prólogo...
CONTENIDO Prólogo a la 3. a edición en español ampliada.................................. Prólogo.................................................................. vii xvii 1. Métodos descriptivos................................................
ESTADÍSTICA SEMANA 2
ESTADÍSTICA SEMANA 2 ÍNDICE CUADROS DE DISTRIBUCIÓN DE FRECUENCIAS Y REPRESENTACIÓN GRÁFICA... 3 APRENDIZAJES ESPERADOS... 3 INTRODUCCIÓN... 3 REPRESENTACIÓN GRÁFICA... 3 MÉTODOS GRÁFICOS:... 3 DIAGRAMAS
CM0244. Suficientable
IDENTIFICACIÓN NOMBRE ESCUELA ESCUELA DE CIENCIAS NOMBRE DEPARTAMENTO Ciencias Matemáticas ÁREA DE CONOCIMIENTO MATEMATICAS, ESTADISTICA Y AFINES NOMBRE ASIGNATURA EN ESPAÑOL ESTADÍSTICA GENERAL NOMBRE
ESTADISTICA II. INGENIERIA INFORMATICA, 3 ER Curso
ESTADISTICA II INGENIERIA INFORMATICA, 3 ER Curso 22 - Diciembre - 2.006 Primera Parte - Test Apellidos y Nombre:... D.N.I. :... Nota : En la realización de este examen sólo esta permitido utilizar calculadoras
Contraste de hipótesis Tema Pasos del contraste de hipótesis. 1.1 Hipótesis estadísticas: nula y alternativa. 1.3 Estadístico de contraste
1 Contraste de hipótesis Tema 3 1. Pasos del contraste de hipótesis 1.1 Hipótesis estadísticas: nula y alternativa 1.2 Supuestos 1.3 Estadístico de contraste 1.4 Regla de decisión: zona de aceptación y
TEMA 3.- EL ANALISIS ESTADISTICO DE LA INFORMACION (MODELIZACION) DIFERENTES TIPOS DE PROCEDIMIENTOS ESTADISTICOS
TEMA 3.- EL ANALISIS ESTADISTICO DE LA INFORMACION (MODELIZACION) PROCEDIMIENTOS ESTADISTICOS CONSTRUCCION DE MODELOS DIFERENTES TIPOS DE PROCEDIMIENTOS ESTADISTICOS Cada procedimiento es aplicable a un
Selección de fuentes de datos y calidad de datos
Selección de fuentes de datos y calidad de datos ESCUELA COMPLUTENSE DE VERANO 2014 MINERIA DE DATOS CON SAS E INTELIGENCIA DE NEGOCIO Juan F. Dorado José María Santiago . Valores atípicos. Valores faltantes.
ÍNDICE INTRODUCCIÓN... 21
INTRODUCCIÓN... 21 CAPÍTULO 1. ORGANIZACIÓN DE LOS DATOS Y REPRESENTACIONES GRÁFICAS... 23 1. ORGANIZACIÓN DE LOS DATOS... 23 1.1. La distribución de frecuencias... 24 1.2. Agrupación en intervalos...
TODO ECONOMETRIA. Bondad del ajuste Contraste de hipótesis
TODO ECONOMETRIA Bondad del ajuste Contraste de hipótesis Índice Bondad del ajuste: Coeficiente de determinación, R R ajustado Contraste de hipótesis Contrastes de hipótesis de significación individual:
Estadística Espacial en Ecología del Paisaje
Estadística Espacial en Ecología del Paisaje Introducción H. Jaime Hernández P. Facultad de Ciencias Forestales U. de Chile Tipos de datos en análisis espacial Patrones espaciales puntuales Muestras geoestadísticas
Tema 5. Muestreo y distribuciones muestrales
1 Tema 5. Muestreo y distribuciones muestrales En este tema: Muestreo y muestras aleatorias simples. Distribución de la media muestral: Esperanza y varianza. Distribución exacta en el caso normal. Distribución
CUERPO TÉCNICO, OPCION ESTADISTICA
CUERPO TÉCNICO, OPCION ESTADISTICA ESTADÍSTICA TEÓRICA BÁSICA TEMA 1. Fenómenos aleatorios. Conceptos de probabilidad. Axiomas. Teoremas de probabilidad. Sucesos independientes. Teorema de Bayes. TEMA
PROGRAMA DE ESTADÍSTICA DESCRIPTIVA
PROGRAMA DE ESTADÍSTICA DESCRIPTIVA CONCEPTOS BÁSICOS DE ESTADÍSTICA Definición de Estadística Origen del concepto. Evolución histórica de la Estadística Estadística Descriptiva y Estadística Inferencial
DIFERENCIAS EN LA UTILIZACIÓN DE LA BIBLIOTECA DEL IIESCA ANTE UN CAMBIO DE INFORMACIÓN
DIFERENCIAS EN LA UTILIZACIÓN DE LA BIBLIOTECA DEL IIESCA ANTE UN CAMBIO DE INFORMACIÓN Beatriz Meneses A. de Sesma * I. INTRODUCCIÓN En todo centro educativo, es de suma importancia el uso que se haga
Estadísticos Descriptivos
ANÁLISIS EXPLORATORIO DE DATOS El análisis exploratorio tiene como objetivo identificar el modelo teórico más adecuado para representar la población de la cual proceden los datos muéstrales. Dicho análisis
1 Introducción. 2 Modelo. Hipótesis del modelo MODELO DE REGRESIÓN LOGÍSTICA
MODELO DE REGRESIÓN LOGÍSTICA Introducción A grandes rasgos, el objetivo de la regresión logística se puede describir de la siguiente forma: Supongamos que los individuos de una población pueden clasificarse
INSTITUTO NACIONAL DE ESTADÍSTICAS (INE) 29 de Abril de 2016
ANEXO ESTADÍSTICO 1 : COEFICIENTES DE VARIACIÓN Y ERROR ASOCIADO AL ESTIMADOR ENCUESTA NACIONAL DE EMPLEO (ENE) INSTITUTO NACIONAL DE ESTADÍSTICAS (INE) 9 de Abril de 016 1 Este anexo estadístico es una
Análisis de datos cualitativos
Capítulo Análisis de datos cualitativos DEFINICIÓN DE VARIABLES CUALITATIVAS Son aquellas variables cuyos valores son un conjunto de cualidades no numéricas a las que se llama categorías o modalidades.
3. ASOCIACIÓN ENTRE DOS VARIABLES CUALITATIVAS
1. INTRODUCCIÓN Este tema se centra en el estudio conjunto de dos variables. Dos variables cualitativas - Tabla de datos - Tabla de contingencia - Diagrama de barras - Tabla de diferencias entre frecuencias
ESTADÍSTICA, SISTEMAS DE INFORMACIÓN Y NUEVAS TECONOLOGÍAS Código de la Asignatura Créditos
ESTADÍSTICA, SISTEMAS DE INFORMACIÓN Y NUEVAS TECONOLOGÍAS Código de la Asignatura 46497 Créditos 6 ECTS Carácter Básica Rama de Conocimiento Ciencias de la Salud Materia Fisiología Ubicación dentro del
PROGRAMA DE ESTUDIO : UN SEMESTRE ACADÉMICO : TERCER AÑO, PRIMER SEMESTRE
PROGRAMA DE ESTUDIO A. Antecedentes Generales ASIGNATURA : Estadística CÓDIGO : IIM313A DURACIÓN : UN SEMESTRE ACADÉMICO PRE - REQUISITO : PROBABILIDADES CO REQUISITO : NO TIENE UBICACIÓN : TERCER AÑO,
PROGRAMA DETALLADO VIGENCIA TURNO UNIVERSIDAD NACIONAL EXPERIMENTAL POLITÉCNICA DE LA FUERZA ARMADA 2009 DIURNO INGENIERÌA EN SISTEMAS ASIGNATURA
PROGRAMA DETALLADO VIGENCIA TURNO UNIVERSIDAD NACIONAL EXPERIMENTAL POLITÉCNICA DE LA FUERZA ARMADA 2009 DIURNO INGENIERÌA EN SISTEMAS SEMESTRE ASIGNATURA 8vo TEORÍA DE DECISIONES CÓDIGO HORAS MAT-31314
DISTRIBUCIONES BIDIMENSIONALES
La estadística unidimensional estudia los elementos de un conjunto de datos considerando sólo una variable o característica. Si ahora incorporamos, otra variable, y se observa simultáneamente el comportamiento
CURSO-TALLER DE ANÁLISIS ESTADÍSTICO BÁSICO CON EXCEL Y SPSS Instructor: Mario Alberto Barajas Malacara
CURSO-TALLER DE ANÁLISIS ESTADÍSTICO BÁSICO CON EXCEL Y SPSS Instructor: Mario Alberto Barajas Malacara Descripción: Los temas de estadística propuestos corresponden con los conocimientos mínimos que un
INSTITUTO POLITÉCNICO NACIONAL SECRETARIA ACADEMICA DIRECCIÓN DE ESTUDIOS PROFESIONALES EN INGENIERÍA Y CIENCIAS FÍSICO MATEMÁTICAS
ESCUELA: UPIICSA CARRERA: INGENIERÍA EN TRANSPORTE ESPECIALIDAD: COORDINACIÓN: ACADEMIAS DE MATEMÁTICAS DEPARTAMENTO: CIENCIAS BÁSICAS PROGRAMA DE ESTUDIO ASIGNATURA: ESTADÍSTICA APLICADA CLAVE: TMPE SEMESTRE:
ESTADÍSTICA DESCRIPTIVA Y ANÁLISIS DE DATOS CON LA HOJA DE CÁLCULO EXCEL
ESTADÍSTICA DESCRIPTIVA Y ANÁLISIS DE DATOS CON LA HOJA DE CÁLCULO EXCEL Organiza: INSTITUTO CÁNTABRO DE ESTADÍSTICA http://www.icane.es Responsable: Francisco Parra Rodríguez Jefe de Servicio de Estadísticas
Tema: ESTADÍSTICA DESCRIPTIVA BÁSICA CON SPSS 8.0
Ignacio Martín Tamayo 11 Tema: ESTADÍSTICA DESCRIPTIVA BÁSICA CON SPSS 8.0 ÍNDICE ------------------------------------------------------------- 1. Introducción 2. Frecuencias 3. Descriptivos 4. Explorar
Método de cuadrados mínimos
REGRESIÓN LINEAL Gran parte del pronóstico estadístico del tiempo está basado en el procedimiento conocido como regresión lineal. Regresión lineal simple (RLS) Describe la relación lineal entre dos variables,
Capítulo 8. Análisis Discriminante
Capítulo 8 Análisis Discriminante Técnica de clasificación donde el objetivo es obtener una función capaz de clasificar a un nuevo individuo a partir del conocimiento de los valores de ciertas variables
TEMA V ANÁLISIS DE REGRESIÓN LOGÍSTICA
TEMA V ANÁLISIS DE REGRESIÓN LOGÍSTICA LECTURA OBLIGATORIA Regresión Logística. En Rial, A. y Varela, J. (2008). Estadística Práctica para la Investigación en Ciencias de la Salud. Coruña: Netbiblo. Páginas
Pronósticos, Series de Tiempo y Regresión. Capítulo 4: Regresión Lineal Múltiple
Pronósticos, Series de Tiempo y Regresión Capítulo 4: Regresión Lineal Múltiple Temas Modelo de regresión lineal múltiple Estimaciones de Mínimos Cuadrados Ordinarios (MCO); estimación puntual y predicción
Indicaciones para el lector... xv Prólogo... xvii
ÍNDICE Indicaciones para el lector... xv Prólogo... xvii 1. INTRODUCCIÓN Qué es la estadística?... 3 Por qué estudiar estadística?... 5 Empleo de modelos en estadística... 6 Perspectiva hacia el futuro...
Métodos Estadísticos Multivariados
Métodos Estadísticos Multivariados Victor Muñiz ITESM Victor Muñiz (ITESM) Métodos Estadísticos Multivariados Agosto-Diciembre 2011 1 / 20 Victor Muñiz (ITESM) Métodos Estadísticos Multivariados Agosto-Diciembre
Motivación. Motivación PRONOSTICOS DE DEMANDA
4 PRONOSTICOS DE DEMANDA Dr. Jorge Ibarra Salazar Profesor Asociado Departamento de Economía Tecnológico de Monterrey Motivación Estudio de los métodos para pronosticar las ventas a partir de datos observados.
TEMA 3: Contrastes de Hipótesis en el MRL
TEMA 3: Contrastes de Hipótesis en el MRL Econometría I M. Angeles Carnero Departamento de Fundamentos del Análisis Económico Curso 2011-12 Econometría I (UA) Tema 3: Contrastes de Hipótesis Curso 2011-12
CARGA HORARIA Horas totales: 80 Horas totales de resolución de problemas de aplicación: 32
PROBABILIDAD Y ESTADISTICA OBJETIVOS: 1. Extraer y sintetizar información de un conjunto de datos. 2. Aprehender los conceptos de aleatoriedad y probabilidad. 3. Estudiar los modelos más importantes de
07 Estimación puntual e introducción a la estadística inferencial
07 Estimación puntual e introducción a la estadística inferencial Diego Andrés Alvarez Marín Profesor Asistente Universidad Nacional de Colombia Sede Manizales 1 Contenido Qué es la estadística inferencial?
INTRODUCCIÓN AL ANÁLISIS DE DATOS ORIENTACIONES (TEMA Nº 7)
TEMA Nº 7 DISTRIBUCIONES CONTINUAS DE PROBABILIDAD OBJETIVOS DE APRENDIZAJE: Conocer las características de la distribución normal como distribución de probabilidad de una variable y la aproximación de
GUÍA 5 : EFECTO DEL ESTRÉS EN EL PESO DE RECIÉN NACIDOS
GUÍA 5 : EFECTO DEL ESTRÉS EN EL PESO DE RECIÉN NACIDOS Se realizó un estudio a partir de una muestra aleatoria de mujeres atendidas por el departamento de obstetricia y ginecología de cierta clínica particular.
Teorema Central del Límite (1)
Teorema Central del Límite (1) Definición. Cualquier cantidad calculada a partir de las observaciones de una muestra se llama estadístico. La distribución de los valores que puede tomar un estadístico
Guía docente 2007/2008
Guía docente 2007/2008 Plan 247 Lic.Investigación y Tec.Mercado Asignatura 43579 METODOS CUANTITATIVOS PARA LA INVESTIGACION DE MERCADOS Grupo 1 Presentación Métodos y técnicas cuantitativas de investigación
Unidad IV: Distribuciones muestrales
Unidad IV: Distribuciones muestrales 4.1 Función de probabilidad En teoría de la probabilidad, una función de probabilidad (también denominada función de masa de probabilidad) es una función que asocia
Capítulo 13. Contrastes sobre medias: Los procedimientos Medias y Prueba T. Medias
Capítulo 13 Contrastes sobre medias: Los procedimientos Medias y Prueba T La opción Comparar medias del menú Analizar contiene varios de los procedimientos estadísticos diseñados para efectuar contrastes
Manejo del entorno windows y nociones básicas de estadística.
ANÁLISIS ESTADÍSTICO CON EL SPSS Profesor: J. Manuel Tejero González. METODOLOGÍA. Prensencial, en el aula de informática, utilizando un ordenador por alumno (Programa SPSS Versión 11.0, paquete básico,
CONTRASTES DE HIPÓTESIS NO PARAMÉTRICOS
CONTRASTES DE HIPÓTESIS NO PARAMÉTRICOS 1 POR QUÉ SE LLAMAN CONTRASTES NO PARAMÉTRICOS? A diferencia de lo que ocurría en la inferencia paramétrica, ahora, el desconocimiento de la población que vamos
Tercera práctica de REGRESIÓN.
Tercera práctica de REGRESIÓN. DATOS: fichero practica regresión 3.sf3 1. Objetivo: El objetivo de esta práctica es aplicar el modelo de regresión con más de una variable explicativa. Es decir regresión
T2. El modelo lineal simple
T2. El modelo lineal simple Ana J. López y Rigoberto Pérez Dpto Economía Aplicada. Universidad de Oviedo Curso 2010-2011 Curso 2010-2011 1 / 40 Índice 1 Planteamiento e hipótesis básicas 2 Estimación de
Contrastes de hipótesis. 1: Ideas generales
Contrastes de hipótesis 1: Ideas generales 1 Inferencia Estadística paramétrica población Muestra de individuos Técnicas de muestreo X 1 X 2 X 3.. X n Inferencia Estadística: métodos y procedimientos que
Índice general. Pág. N. 1. Capítulo 1 ETAPAS DE UNA INVESTIGACIÓN. Diseño. Población. Muestra. Individuo (Observación, Caso, Sujeto) Variables
Pág. N. 1 Índice general Capítulo 1 ETAPAS DE UNA INVESTIGACIÓN 1.1 Diseño 1.2 Descriptiva 1.3 Inferencia Diseño Población Muestra Individuo (Observación, Caso, Sujeto) Variables Ejercicios de Población
UNIVERSIDAD TECNICA PARTICULAR DE LOJA ESTADISTICA Y PROBABILIDAD ENSAYO N 8
UNIVERSIDAD TECNICA PARTICULAR DE LOJA ESTADISTICA Y PROBABILIDAD ENSAYO N 8 DOCENTE: Ing. Patricio Puchaicela ALUMNA: Andrea C. Puchaicela G. CURSO: 4to. Ciclo de Electrónica y Telecomunicaciones AÑO
ANÁLISIS DESCRIPTIVO DE LOS DATOS DE VARIABLES CUANTITATIVAS
ANÁLISIS DESCRIPTIVO DE LOS DATOS DE VARIABLES CUANTITATIVAS 3datos 2011 Variables CUANTITATIVAS Números con unidad de medida (con un instrumento, o procedimiento, de medición formal) Ej.: Tasa cardiaca;
Gráfico 1: Evolución del exceso de rentabilidad de la empresa y de la cartera de mercado
Caso 1: Solución Apartado a) - 2 0 2 4 6 0 2 0 4 0 6 0 8 0 1 0 0 p e r i o d E x c e s s r e t u r n, c o m p a n y a e x c e s s r e t u r n m a r k e t p o r t f o l i o Gráfico 1: Evolución del exceso
Valorización de Bonos Estructurados. Omar Pinedo
Valorización de Bonos Estructurados Omar Pinedo Qué es un bono estructurado? Es un bono que, debido a sus cláusulas, tiene una opción financiera implícita. Se valoriza descomponiendo en: V(Estructurado)=
MASTER EN CIENCIAS ACTUARIALES Y FINANCIERAS PLAN Módulo: FORMACIÓN FUNDAMENTAL. Créditos ECTS: 6 Presenciales: 5 No presenciales: 1
MASTER EN CIENCIAS ACTUARIALES Y FINANCIERAS PLAN 2009 Nombre de asignatura: AMPLIACIÓN DE ESTADÍSTICA Código:603358 Materia: MATEMÁTICAS Y ESTADÍSTICA Módulo: FORMACIÓN FUNDAMENTAL Carácter: OBLIGATORIA
CORRELACION Y REGRESION
CORRELACION Y REGRESION En el siguiente apartado se presenta como calcular diferentes índices de correlación, así como la forma de modelar relaciones lineales mediante los procedimientos de regresión simple
EL PLAN DE ANALISIS. Patricio Suárez Gil Julio Alonso Lorenzo. La Fresneda, Asturias 2011 Programa MFyC
EL PLAN DE ANALISIS Patricio Suárez Gil Julio Alonso Lorenzo La Fresneda, Asturias 2011 Programa MFyC Qué es investigar? En esencia es RESPONDER PREGUNTAS FASES DE UN PROYECTO Formular una PREGUNTA Antecedente
