TEMA 10 COMPARAR MEDIAS
|
|
|
- Monica Catalina Márquez Henríquez
- hace 9 años
- Vistas:
Transcripción
1 TEMA 10 COMPARAR MEDIAS Los procedimientos incluidos en el menú Comparar medias permiten el cálculo de medias y otros estadísticos, así como la comparación de medias para diferentes tipos de variables, mediante las pruebas t de Student y ANOVA. MEDIAS Mediante el procedimiento Medias pueden calcularse medias y otros estadísticos para variables dependientes dentro de las categorías de una o varias variables independientes. Además puede realizarse el análisis de la varianza para variables cualitativas de varias categorías. Por lo tanto las variables dependientes o variables resultado serán cuantitativas y las variables independientes, categóricas. Pueden seleccionarse varias variables dependientes, y también varias independientes de forma que los resultados irán mostrando los valores de las variables resultado para cada variable independiente por separado. Se puede realizar una estratificación por más de una variable independiente, seleccionando éstas e incluyéndolas en diferentes capas. De este modo el análisis se realizará estratificando por esas variables en el orden en que las hayamos puesto en las capas. OPCIONES El subcuadro de diálogo Medias: Opciones nos muestra la información adicional que podemos pedir en este procedimiento; se trata de una serie de estadísticos cuyo orden de aparición será el mismo en el que quedan en el cuadro Estadísticos de casilla. Además puede obtenerse una tabla de análisis de la varianza si la variable independiente tiene más de dos categorías, y parámetros de asociación (eta y eta cuadrado). Otra opción es la de presentar también parámetros de linealidad como son R y R 2. Napoleón Pérez Farinós y David Martínez Hernández Página 1 de 6
2 PRUEBAS T DE STUDENT La prueba t de Student es utilizada para la estimación de medias y proporciones en variables cuantitativas y para la comparación de medias y proporciones en distintas poblaciones. El procedimiento Comparar medias ofrece varias opciones en función de la procedencia de los datos que queremos comparar. PRUEBA T PARA MUESTRAS INDEPENDIENTES La t de Student para datos independientes se usa para comparar medias de variables en dos grupos de casos que son independientes entre sí, de forma que los sujetos de cada grupo deberían haber sido elegidos de forma aleatoria. En caso contrario elegiríamos la opción de t de Student para datos apareados o dependientes. Al hacer la comparación de medias hay que tener en cuenta otro factor, que es la igualdad o no de las varianzas en los dos grupos, pues los resultados no serán iguales en ambos casos. Si asumimos igualdad de varianzas podremos calcular un estimador único y más estable de la varianza poblacional a partir de las varianzas muestrales. Si las varianzas no son iguales no podremos hacer esto. El procedimiento Comparar medias realiza automáticamente un test de hipótesis para la igualdad de las varianzas (test de Levene). En el cuadro de diálogo podemos seleccionar las variables que queremos analizar, y en función de qué vamos a comparar los grupos, mediante la variable de agrupación, que puede ser cualitativa o cuantitativa. Una vez elegida esta variable hemos de definir los grupos de comparación pulsando el botón Definir grupos. Aquí tenemos dos opciones. Pueden elegirse dos valores especificados para comparar las medias (en general, dos categorías en variables cualitativas), pero también puede establecerse un punto de corte para variables cuantitativas que divida esa variable en dos grupos, por encima y por debajo de ese valor. Napoleón Pérez Farinós y David Martínez Hernández Página 2 de 6
3 Los resultados que SPSS muestra vienen en dos tablas: la primera, Estadísticos de grupo, incluye el tamaño muestral, la media, la desviación típica y el error estándar de la media. En la segunda se efectúa la prueba t. En primer lugar se muestra el resultado para la prueba de Levene de igualdad de varianzas. Si éste es estadísticamente significativo, asumiremos que las varianzas no son iguales y entonces tomaremos los datos de la comparación de medias de la fila inferior (No se han asumido varianzas iguales). Si el test de Levene no es significativo, asumiremos igualdad de varianzas y nos quedaremos con los datos de la fila superior. Los datos que el procedimiento nos muestra son: t: estadístico utilizado para el contraste de hipótesis. gl: número de grados de libertad del estadístico t. Cuando se asumen varianzas iguales, gl es igual a (n 1 + n 2 2), pero cuando las varianzas no son iguales hay que calcularlo de otras formas. La más usada es la aproximación de Satterthwaite, que SPSS calcula. Este valor será menor que el anterior porque se pierde precisión con la desigualdad de las varianzas. Sig. (bilateral): valor p de significación estadística obtenido para el contraste de hipótesis. Diferencia de medias: estimador puntual de la diferencia de medias. Error típ. de la diferencia: valor del error estándar de la diferencia de medias (obtenido a partir de los errores estándar de la tabla superior). Intervalo de confianza para la media: límites inferior y superior del intervalo de confianza que valora la precisión dela estimación que estamos realizando para la diferencia de medias. PRUEBA T PARA MUESTRAS RELACIONADAS En este caso las muestras no son independientes, sino que están relacionadas. Lo más habitual es que se trate de variables mediadas en los mismos casos en dos momentos temporales diferentes, o que sean casos apareados en función de otras variables. Napoleón Pérez Farinós y David Martínez Hernández Página 3 de 6
4 En el cuadro de diálogo hay que seleccionar el par de variables cuyas medias vamos a comparar, y pasarlo al campo de la derecha Variables relacionadas. Igual que en el caso anterior primero aparece una tabla con los estadísticos de las muestras y después la prueba t de Student. En esta ocasión se tratan los datos como parejas de datos, y se halla la media de las diferencias entre cada pareja, así como su desviación típica para calcular el error estándar de la media. El resto de los valores son equivalentes a los del caso anterior. PRUEBA T PARA UNA MUESTRA La prueba t para una muestra efectúa un contraste de hipótesis para comprobar si la media de una variable difiere de forma significativa de un valor que nosotros mismos seleccionamos. En este caso hay que seleccionar la variable elegida y el valor que queremos contrastar. Al pulsar Aceptar se efectuará el contraste de hipótesis. Napoleón Pérez Farinós y David Martínez Hernández Página 4 de 6
5 ANOVA DE UN FACTOR Este procedimiento es el equivalente a la t de Student para más de dos muestras, es decir, realiza una comparación de medias en variables cuantitativas para más de dos grupos de casos. Se usa para contrastar la hipótesis de que varias medias son iguales. En el correspondiente cuadro de diálogo seleccionaremos la variable cuantitativa que vamos analizar así como la variable cualitativa de más de dos categorías (Factor). Además tenemos varios botones que nos ofrecen distintas posibilidades. OPCIONES Podemos pedir los estadísticos descriptivos para cada grupo de casos, así como la prueba de Levene para la homogeneidad de las varianzas. También puede presentarse un gráfico con las medias para cada grupo. CONTRASTES Además pueden efectuarse contrastes individuales entre varios de los valores que puede adquirir la variable factor. Esto se hace asignando coeficientes a cada uno de los valores posibles. Pueden contrastarse varios grupos con uno solo, o varios con varios, en función de los valores que se les dé a los coeficientes. La suma de estos coeficientes debe ser 0. Napoleón Pérez Farinós y David Martínez Hernández Página 5 de 6
6 Napoleón Pérez Farinós y David Martínez Hernández Página 6 de 6
Departamento de Medicina Preventiva y Salud Publica e Historia de la Ciencia. Universidad Complutense de Madrid. SPSS para windows.
TEMA 12 REGRESIÓN LINEAL Mediante la regresión lineal se busca hallar la línea recta que mejor explica la relación entre unas variables independientes o variables de exposición y una variable dependiente
Prueba t para muestras independientes
Prueba t para muestras independientes El procedimiento Prueba t para muestras independientes compara las medias de dos grupos de casos. Para esta prueba, idealmente los sujetos deben asignarse aleatoriamente
TÉCNICAS ESTADÍSTICAS APLICADAS EN NUTRICIÓN Y SALUD
TÉCNICAS ESTADÍSTICAS APLICADAS EN NUTRICIÓN Y SALUD Contrastes de hipótesis paramétricos para una y varias muestras: contrastes sobre la media, varianza y una proporción. Contrastes sobre la diferencia
Departamento de Medicina Preventiva y Salud Publica e Historia de la Ciencia. Universidad Complutense de Madrid. SPSS para windows.
TEMA 9 DESCRIPTIVOS El submenú Estadísticos descriptivos está en el menú Analizar, y ofrece una serie de opciones para analizar datos de una forma sencilla. En este capítulo serán descritos estos procedimientos.
Elaborado por: Pelay, C. y Pérez, J. Prueba t para muestras independientes
Prueba t para muestras independientes 1 El procedimiento Prueba t para muestras independientes compara las medias de dos grupos de casos. Para esta prueba, idealmente los sujetos deben asignarse aleatoriamente
Capítulo 13 Contrastes sobre medias Los procedimientos Medias y Prueba T
Capítulo 13 Contrastes sobre medias Los procedimientos Medias y Prueba T La opción Comparar medias del menú Analizar contiene varios de los procedimientos estadísticos diseñados para efectuar contrastes
Capítulo 13. Contrastes sobre medias: Los procedimientos Medias y Prueba T. Medias
Capítulo 13 Contrastes sobre medias: Los procedimientos Medias y Prueba T La opción Comparar medias del menú Analizar contiene varios de los procedimientos estadísticos diseñados para efectuar contrastes
ANÁLISIS DE LA VARIANZA CON UN FACTOR (ANOVA)
ANÁLISIS DE LA VARIANZA CON UN FACTOR (ANOVA) El análisis de la varianza permite contrastar la hipótesis nula de que las medias de K poblaciones (K >2) son iguales, frente a la hipótesis alternativa de
Prueba T de Student. Descripción de la Prueba T de student. Proceso de cálculo. Criterios de la prueba T de student
Descripción de la Prueba T de student Prueba T de student Víctor Cuchillac (padre) Prueba paramétrica para evaluar la asociación entre una variable nominal y una variable cuantitativa dicotómica (que posea
Departamento de Medicina Preventiva y Salud Publica e Historia de la Ciencia. Universidad Complutense de Madrid. SPSS para windows.
TEMA 13 REGRESIÓN LOGÍSTICA Es un tipo de análisis de regresión en el que la variable dependiente no es continua, sino dicotómica, mientras que las variables independientes pueden ser cuantitativas o cualitativas.
1. Realice la prueba de homogeneidad de variancias e interprete los resultados.
1ª PRÁCTICA DE ORDENADOR (FEEDBACK) Un investigador pretende evaluar la eficacia de dos programas para mejorar las habilidades lectoras en escolares de sexto curso. Para ello asigna aleatoriamente seis
paramétrica comparar dos grupos de puntuaciones
t de Student Es una prueba paramétrica de comparación de dos muestras independientes, debe cumplir las siguientes características: Asignación aleatoria de los grupos Homocedasticidad (homogeneidad de las
7. De acuerdo con la gráfica siguiente, el contraste estadístico es:
1. Un investigador desea saber si los hombres y las mujeres difieren en flexibilidad cognitiva. Para ello, analiza los datos y obtienen los siguientes resultados. Satisfacen los datos el supuesto de homocedasticidad?
SIGNIFICACIÓN ESTADÍSTICA DE LA DIFERENCIA ENTRE 2 MEDIAS
SIGNIFICACIÓN ESTADÍSTICA DE LA DIFERENCIA ENTRE 2 MEDIAS 3datos 2011 Variables CUANTITATIVAS Valor más representativo: MEDIA aritmética Técnicas Inferenciales sobre la significación de la diferencia entre
ESTADÍSTICA 1º AMBIENTALES TERCERA PRÁCTICA: INTERVALOS DE CONFIANZA & CONTRASTES DE HIPÓTESIS (GUIADA & RESUELTA)
ESTADÍSTICA 1º AMBIENTALES TERCERA PRÁCTICA: INTERVALOS DE CONFIANZA & CONTRASTES DE HIPÓTESIS (GUIADA & RESUELTA) El objetivo de esta práctica es calcular Intervalos de Confianza (IC) y Contrastes de
DISEÑO Y ANÁLISIS DE DATOS EN PSICOLOGÍA II
DISEÑO Y ANÁLISIS DE DATOS EN PSICOLOGÍA II SOLUCIÓN PRACTICA 1 Problema 2-. Para una serie de investigaciones, en las que el tamaño de la muestra era el mismo, se ha calculado la t de Student con objeto
Capítulo 14 Análisis de varianza de un factor El procedimiento ANOVA de un factor
Capítulo 14 Análisis de varianza de un factor El procedimiento ANOVA de un factor El análisis de varianza (ANOVA) de un factor sirve para comparar varios grupos en una variable cuantitativa. Se trata,
14 horas. 20 horas
EJERCICIOS PROPUESTOS ANALISIS DE VARIANZA. Se realiza un ANOVA para comparar el tiempo que demora en aliviar el dolor de cabeza de varios tipos de analgésicos. Se obtiene como resultado un test observado
INTRODUCCIÓN A LA ECONOMETRÍA (LE Y LADE, mañana) Prof. Magdalena Cladera APLICACIONES DE INFERENCIA ESTADÍSTICA DE EXCEL Y SPSS
INTRODUCCIÓN A LA ECONOMETRÍA (LE Y LADE, mañana) Prof. Magdalena Cladera APLICACIONES DE INFERENCIA ESTADÍSTICA DE EXCEL Y SPSS CONTENIDOS APLICACIONES DE INFERENCIA ESTADÍSTICA DE EXCEL... 2 1. Probabilidad...
Práctica 5 ANÁLISIS DE UNA MUESTRA INTERVALOS DE CONFIANZA CONTRASTE DE HIPÓTESIS
Práctica. Intervalos de confianza 1 Práctica ANÁLISIS DE UNA MUESTRA INTERVALOS DE CONFIANZA CONTRASTE DE HIPÓTESIS Objetivos: Ilustrar el grado de fiabilidad de un intervalo de confianza cuando se utiliza
Cuestiones: Variable dependiente, variable independiente, variable extraña
ESTADÍSTICA II. Nom i Cognoms: data: SUPUESTO DE INVESTIGACIÓN: trastornos del lenguaje y Alzheimer. Supongamos que un investigador está interesado en estimar la magnitud de la diferencia entre dos medias
TÉCNICAS ESTADÍSTICAS APLICADAS EN NUTRICIÓN Y SALUD
TÉCNICAS ESTADÍSTICAS APLICADAS EN NUTRICIÓN Y SALUD Contrastes de hipótesis paramétricos para una y varias muestras: contrastes sobre la media, varianza y una proporción. Contrastes sobre la diferencia
Al nivel de confianza del 95%, las puntuaciones típicas son: 2- La hipótesis alternativa es; A) ; B) ; C).
A continuación se presentan 4 situaciones. Cada situación viene seguida por una serie de preguntas referidas a la misma así como de preguntas teóricas generales. SITUACIÓN 1: La empresa SND's de sondeos
TEMA 4 FASE ESTADÍSTICO-ANALÍTICA: RECURSOS PARA EL ANÁLISIS DE DATOS
TEMA 4 FASE ESTADÍSTICO-ANALÍTICA: RECURSOS PARA EL ANÁLISIS DE DATOS FASES EN EL ANÁLISIS DE LOS DATOS DE UNA INVESTIGACIÓN SELECCIÓN HIPÓTESIS DE INVESTIGACIÓN Modelo de Análisis Técnica de Análisis
Análisis de la varianza. Magdalena Cladera Munar Departamento de Economía Aplicada Universitat de les Illes Balears
Análisis de la varianza Magdalena Cladera Munar [email protected] Departamento de Economía Aplicada Universitat de les Illes Balears CONTENIDOS Análisis de la varianza de un factor. Análisis de la varianza
Estrategia de análisis estadístico de los datos. Inferencia Estadística y contraste de hipótesis
Estrategia de análisis estadístico de los datos. Inferencia Estadística y contraste de hipótesis VDC Prof. Mª JOSÉ PRIETO CASTELLÓ MÉTODOS ESTADÍSTICOS. TÉCNICAS ESTADÍSTICA DESCRIPTIVA TEORÍA DE LA PROBABILIDAD
INFERENCIA PARÁMETRICA: RELACIÓN ENTRE DOS VARIABLES CUALITATIVAS
. Metodología en Salud Pública INFERENCIA PARÁMETRICA: RELACIÓN ENTRE DOS VARIABLES CUALITATIVAS Autor: Clara Laguna 7.1 INTRODUCCIÓN Los datos categóricos o variables cualitativas son muy frecuentes en
Tema: ESTADÍSTICA DESCRIPTIVA BÁSICA CON SPSS 8.0
Ignacio Martín Tamayo 11 Tema: ESTADÍSTICA DESCRIPTIVA BÁSICA CON SPSS 8.0 ÍNDICE ------------------------------------------------------------- 1. Introducción 2. Frecuencias 3. Descriptivos 4. Explorar
9.- Análisis estadísticos con R Commander
Tipos de datos - Cuantitativos: se expresan numéricamente. - Discretos: Toman valores numéricos aislados - Continuos: Toman cualquier valor dentro de unos límites dados - Categóricos o Cualitativos: No
CORRELACION Y REGRESION
CORRELACION Y REGRESION En el siguiente apartado se presenta como calcular diferentes índices de correlación, así como la forma de modelar relaciones lineales mediante los procedimientos de regresión simple
ESTIMACIÓN Y PRUEBA DE HIPÓTESIS INTERVALOS DE CONFIANZA
www.jmontenegro.wordpress.com UNI ESTIMACIÓN Y PRUEBA DE HIPÓTESIS INTERVALOS DE CONFIANZA PROF. JOHNNY MONTENEGRO MOLINA Objetivos Desarrollar el concepto de estimación de parámetros Explicar qué es una
MÉTODOS ESTADÍSTICOS 4º Biológicas Septiembre 2009 PRIMER EJERCICIO
MÉTODOS ESTADÍSTICOS 4º Biológicas Septiembre 2009 PRIMER EJERCICIO Resultados obtenidos por los hombres ganadores de las medallas de oro en salto de longitud y salto de altura en las olimpiadas desde
CONTRASTES DE HIPÓTESES
CONTRASTES DE IPÓTESES 1. Contraste de hipótesis 2. Contrastes de tipo paramétrico 2.1 Contraste T para una muestra 2.2 Contraste T para dos muestras independientes 2.3 Análisis de la varianza 3. Contrastes
Universidad de Chile DIPLOMA PREPARACIÓN Y EVALUACIÓN SOCIAL DE PROYECTOS Prof: Sara Arancibia
Universidad de Chile DIPLOMA PREPARACIÓN Y EVALUACIÓN SOCIAL DE PROYECTOS Prof: Sara Arancibia Estudio de Caso: Estudio Morfología Coeficiente de Correlación Considere el archivo Estudio Morfología.sav.
ACTIVIDAD PRÁCTICA 3 COMPARACIÓN DE DOS MUESTRAS INDEPENDIENTES Comparación de dos medias independientes (prueba t de Student, prueba paramétrica)
ACTIVIDAD PRÁCTICA 3 COMPARACIÓN DE DOS MUESTRAS INDEPENDIENTES Comparación de dos medias independientes (prueba t de Student, prueba paramétrica) Con esta actividad se pretende que aprendamos a realizar
Estimación de Parámetros.
Estimación de Parámetros. Un estimador es un valor que puede calcularse a partir de los datos muestrales y que proporciona información sobre el valor del parámetro. Por ejemplo la media muestral es un
Estado civil Frecuencia observada Casado 50 Soltero 30 Viudo 15 Divorciado 5 Total 100
Prueba de Ji-cuadrado Bondad de ajuste: Se refiere a la comparación de la distribución de una muestra con alguna distribución teórica que se supone describe a la población de la cual se extrajo la muestra.
ANOVA. Análisis de la Varianza. Univariante Efectos fijos Muestras independientes
ANOVA Análisis de la Varianza Univariante Efectos fijos Muestras independientes De la t a la F En el test de la t de Student para muestras independientes, aprendimos como usar la distribución t para contrastar
4 Análisis de Varianza
4 Análisis de Varianza 4. Análisis de Varianza e.4.1. Quiénes obtienen mejores resultados en Matemáticas, los estudiantes que viven en zonas rurales, en pequeñas ciudades, en ciudades medias o en grandes
Operadores aritméticos: suma (+), resta (-), producto (*), cociente (/) y potencia (**).
TEMA 3 TRANSFORMACIÓN DE DATOS En ocasiones es necesario crear nuevas variables a partir de otras ya existentes o modificarlas para poder explotarlas de forma más adecuada. Esto se realiza mediante las
Distribuciones de parámetros conocidos
10.3. CONTRASTE DE BONDAD DE AJUSTE PARA DISTRIBUCIONES265 350 300 observaciones esperado(x) 250 Frecuencias esperadas 200 150 100 Frecuencias observadas 50 0 55 60 65 70 75 80 85 90 Figura 10.2: En los
Valores de glucemia en 36 varones sanos
Prueba Kolmogorov-Smirnov para una muestra: Es una prueba de bondad de ajuste. Se emplea en una muestra independiente. El tipo de variable es cuantitativa continua (debe ser medida en escala al menos ordinal).
Comparación de dos grupos independientes Solución no paramétrica. En capítulo 12: Métodos no paramétricos
Comparación de dos grupos independientes Solución no paramétrica En capítulo 12: Métodos no paramétricos Los métodos que hemos visto hasta ahora, asumen como distribución muestral la distribución Normal,
CURSO: Métodos estadísticos de uso frecuente en salud
CURSO: Métodos estadísticos de uso frecuente en salud Información General Versión: 2016 Modalidad: Presencial. Duración Total: 40 horas. NUEVA FECHA Fecha de inicio: 01 de octubre Fecha de término: 10
Estadística Inferencial. Resúmen
Ofimega - Estadística inferencial - 1 Estadística Inferencial. Resúmen Métodos y técnicas que permiten inducir el comportamiento de una población. Muestreo o selección de la muestra: 1. Aleatorio simple:
Objetivo. Conocer la forma de calcular las Medidas de Dispersión de una distribución con OpenOffice Calc CALC: MEDIDAS DE DISPERSIÓN
Objetivo Conocer la forma de calcular las Medidas de Dispersión de una distribución con OpenOffice Calc CALC: MEDIDAS DE DISPERSIÓN La dispersión otorga el grado de distanciamiento de un conjunto de valores
Lucila Finkel Temario
Lucila Finkel Temario 1. Introducción: el análisis exploratorio de los datos. 2. Tablas de contingencia y asociación entre variables. 3. Correlación bivariada. 4. Contrastes sobre medias. 5. Regresión
ANÁLISIS DE DATOS EN PSICOLOGÍA II CUADERNO DE PRÁCTICAS DE SPSS. Ludgerio Espinosa Antonio Pardo Javier Revuelta Rafael San Martín
ANÁLISIS DE DATOS EN PSICOLOGÍA II CUADERNO DE PRÁCTICAS DE SPSS Ludgerio Espinosa Antonio Pardo Javier Revuelta Rafael San Martín ÍNDICE 1. Archivos de datos... 1 Lectura de datos con el SPSS... 1 Introducción
Análisis descriptivo con SPSS. Favio Murillo García
Análisis descriptivo con SPSS Favio Murillo García Autoevaluación 3 1. Descargue el archivo eval3.xls a) Importe los datos de Excel a SPSS. b) Agregue etiquetas de valor a cada variable según lo indique
Práctica 4 Intervalos de Confianza y Pruebas de Hipótesis
Práctica 4 Intervalos de Confianza y Pruebas de Hipótesis Contenido 1 Introducción 1 2 Contrastes de normalidad 1 3 Intervalos de confianza y pruebas de hipótesis sobre parámetros poblacionales 3 3.1 Intervalo
Métodos de Investigación en Psicología (11) Dra. Lucy Reidl Martínez Dra. Corina Cuevas Reynaud Dra. Renata López Hernández
Métodos de Investigación en Psicología (11) Dra. Lucy Reidl Martínez Dra. Corina Cuevas Reynaud Dra. Renata López Hernández El método incluye diferentes elementos Justificación Planteamiento del problema
ÍNDICE INTRODUCCIÓN... 21
INTRODUCCIÓN... 21 CAPÍTULO 1. ORGANIZACIÓN DE LOS DATOS Y REPRESENTACIONES GRÁFICAS... 23 1. ORGANIZACIÓN DE LOS DATOS... 23 1.1. La distribución de frecuencias... 24 1.2. Agrupación en intervalos...
Estadística II Curso 2011/12
Estadística II Curso 2011/12 Guión de la Práctica 1 Introducción a Statgraphics. Intervalos de confianza y contrastes de hipótesis para una y dos poblaciones 1. Contenidos de la práctica - Introducción
2 Introducción a la inferencia estadística Introducción Teoría de conteo Variaciones con repetición...
Contenidos 1 Introducción al paquete estadístico S-PLUS 19 1.1 Introducción a S-PLUS............................ 21 1.1.1 Cómo entrar, salir y consultar la ayuda en S-PLUS........ 21 1.2 Conjuntos de datos..............................
DISTRIBUCIONES UNIDIMENSIONALES:
DISTRIBUCIONES UNIDIMENSIONALES: INTRODUCCIÓN Todo análisis estadístico se inicia con una primera fase descriptiva de los datos. Ésta tiene por objeto sintetizar la información mediante la elaboración
Curso de Estadística con R: Nivel Medio
Curso de Estadística con R: Nivel Medio Prof. Vanesa Jordá Departamento de Economía Facultad de Ciencias Económicas y Empresariales Universidad de Cantabria Índice Introducción Contrastes de hipótesis
TABLAS DE CONTINGENCIA
Tablas de contingencia 1 TABLAS DE CONTINGENCIA En SPSS, el procedimiento de Tablas de Contingencia crea tablas de clasificación doble y múltiple y, además, proporciona una serie de pruebas y medidas de
Cómo se hace la Prueba t a mano?
Cómo se hace la Prueba t a mano? Sujeto Grupo Grupo Grupo Grupo 33 089 74 5476 84 7056 75 565 3 94 8836 75 565 4 5 704 76 5776 5 4 6 76 5776 6 9 8 76 5776 7 4 78 6084 8 65 45 79 64 9 86 7396 80 6400 0
DISEÑO Y ANÁLISIS DE DATOS EN PSICOLOGÍA II
DISEÑO Y ANÁLISIS DE DATOS EN PSICOLOGÍA II PRÁCTICA 5 En una determinada investigación se estudió el rendimiento en matemáticas en función del estilo de aprendizaje de una serie de estudiantes de educación
Estadística. Contrastes para los parámetros de la Normal
Contrastes para los parámetros de la Normal Prof, Dr. Jose Jacobo Zubcoff Departamento de Ciencias del Mar y Biología Aplicada Contrastes para los parámetros de la Normal Contrastes para los parámetros
INGENIERO AGRÓNOMO EN PRODUCCIÓN TEMA: ESTIMACION Y PRUEBA DE HIPÓTESIS
UNIVERSIDAD AUTÓNOMA DEL ESTADO DE MÉXICO CENTRO UNIVERSITARIO UAEM ZUMPANGO INGENIERO AGRÓNOMO EN PRODUCCIÓN TEMA: ESTIMACION Y PRUEBA DE HIPÓTESIS ELABORÓ: M. EN C. LUIS ENRIQUE KU MOO FECHA: ENERO DE
Prueba Ji-cuadrado de Homogeneidad cuando tengo los datos tabulados (en tablas resumidos ya):
Prueba Ji-cuadrado de Homogeneidad cuando tengo los datos tabulados (en tablas resumidos ya): Objetivo de la prueba: se utiliza cuando se tienen varias muestras independientes de n individuos que se clasifican
Estadística II Examen final enero 19/1/17 Curso 2016/17 Soluciones Duración del examen: 2 h y 15 min
Estadística II Examen final enero 19/1/17 Curso 016/17 Soluciones Duración del examen: h y 15 min 1. 3 puntos El Instituto para la Diversificación y Ahorro de la Energía IDAE ha publicado un estudio sobre
Comparación de poblaciones con STATGRAPHICS -Intervalos de Confianza y Contrastes de Hipótesis-
Comparación de poblaciones con STATGRAPHICS -Intervalos de Confianza y Contrastes de Hipótesis- 1. Introducción Ficheros de datos: longitudclavos, reciennacidos, calibretornillos. En las siguientes líneas
Inferencia Estadística. Pruebas paramétricas y no paramétricas. Análisis de datos
Inferencia Estadística. Pruebas paramétricas y no paramétricas. Análisis de datos VDC Prof. Mª JOSÉ PRIETO CASTELLÓ ANÁLISIS ESTADÍSTICO DE DATOS Estadística Descriptiva: -Cualitativas: frecuencias, porcentajes
Estructura de este tema. Tema 3 Contrastes de hipótesis. Ejemplo
Estructura de este tema Tema 3 Contrastes de hipótesis José R. Berrendero Departamento de Matemáticas Universidad Autónoma de Madrid Qué es un contraste de hipótesis? Elementos de un contraste: hipótesis,
BIOSESTADÍSTICA AMIGABLE
BIOSESTADÍSTICA AMIGABLE EJEMPLO: Ficha solicitud Colección Reserva UNIVERSIDAD AUSTRAL DE CHILE SISTEMA DE BIBLIOTECAS Clasificación: 574.015195 MAR 2001 Vol. y/o Copia: Apellido Autor: Título: C. 1 (SEGÚN
Caso particular: Contraste de homocedasticidad
36 Bioestadística: Métodos y Aplicaciones 9.5.5. Caso particular: Contraste de homocedasticidad En la práctica un contraste de gran interés es el de la homocedasticidad o igualdad de varianzas. Decimos
TEMA 8 PRESENTACIÓN DE TABLAS
TEMA 8 PRESENTACIÓN DE TABLAS Muchos de los resultados obtenidos con SPSS se presentan en forma de tablas ( Tablas pivote ), pero a menudo esta presentación no es la que más nos conviene para nuestros
La Estadística inferencial. Estadística inferencial. La Estadística inferencial. La Estadística inferencial. La Estadística inferencial
Estadística inferencial DEFINICIÓN Estadística Inferencial (o Estadística Analítica): Es la que se ocupa de obtener conclusiones sobre las poblaciones a partir de la información recogida en las muestras.
Regresión con variables independientes cualitativas
Regresión con variables independientes cualitativas.- Introducción...2 2.- Regresión con variable cualitativa dicotómica...2 3.- Regresión con variable cualitativa de varias categorías...6 2.- Introducción.
Departamento de Medicina Preventiva y Salud Publica e Historia de la Ciencia. Universidad Complutense de Madrid. SPSS para windows.
TEMA 7 REPRESENTACIONES GRÁFICAS SPSS incluye una amplia gama de posibilidades para realizar representaciones gráficas de variables o de procedimientos estadísticos. Antes de detallarlos, repasaremos brevemente
ANALISIS DE CLUSTER CON SPSS: INMACULADA BARRERA
ANALISIS DE CLUSTER CON SPSS: INMACULADA BARRERA ANALISIS DE CLUSTER EN SPSS Opción: Analizar Clasificar ANALISIS DE CLUSTER EN SPSS Tres posibles OPCIONES 1.- Cluster en dos etapas 2.- K-means 3.- Jerárquicos
ESTADÍSTICA CON EXCEL
ESTADÍSTICA CON EXCEL 1. INTRODUCCIÓN La estadística es la rama de las matemáticas que se dedica al análisis e interpretación de series de datos, generando unos resultados que se utilizan básicamente en
DESCRIPCIÓN DE DATOS POR MEDIO DE GRÁFICAS
ÍNDICE Introducción: Entrene su cerebro para la estadística... 1 La población y la muestra... 3 Estadísticas descriptivas e inferenciales... 4 Alcanzar el objetivo de estadísticas inferenciales: los pasos
Matemáticas aplicadas a las Ciencias Sociales II
a la Matemáticas aplicadas a las Ciencias Sociales II a la Manuel Molina Fernández y Jiménez Basado en apuntes del Máster Universitario en Formación del Profesorado en Educación Secundaria CPR Mérida 24
DISEÑO Y ANÁLISIS DE DATOS EN PSICOLOGÍA II
DISEÑO Y ANÁLISIS DE DATOS EN PSICOLOGÍA II PRÁCTICA 6 Problema 1.- Tengamos las variables sexo, nivel económico y consumo de tabaco. Los datos son los siguientes: Hombre Mujer Alto Bajo Alto Bajo 10 10
PRUEBA CHI-CUADRADO. Para realizar un contraste Chi-cuadrado la secuencia es:
PRUEBA CHI-CUADRADO Esta prueba puede utilizarse incluso con datos medibles en una escala nominal. La hipótesis nula de la prueba Chi-cuadrado postula una distribución de probabilidad totalmente especificada
ASOCIACIÓN ENTRE DOS VARIABLES CONTINUAS: REGRESIÓN Y CORRELACIÓN
CURSO DE BIOESTADÍSTICA BÁSICA Y SPSS ASOCIACIÓN ENTRE DOS VARIABLES CONTINUAS: REGRESIÓN Y CORRELACIÓN Amaia Bilbao González Unidad de Investigación Hospital Universitario Basurto (OSI Bilbao-Basurto)
GUIA DOCENTE ESTADÍSTICA II
GUIA DOCENTE 2016-17 ESTADÍSTICA II Mayo 2016 DATOS GENERALES Nombre del curso: Código: ESTADÍSTICA II 801101, ADE 801916, MKCD Curso: 2016-17 Titulación: Grado en Administración y Dirección de Empresas
Dr. Abner A. Fonseca Livias
UNIVERSIDAD NACIONAL HERMILIO VALDIZAN FACULTAD DE ENFERMERÍA Dr. Abner A. Fonseca Livias 3/21/2015 6:17 AM Dr. Abner Fonseca Livias 1 UNIVERSIDAD NACIONAL HERMILIO VALDIZAN ESCUELA DE POST GRADO Dr. Abner
Estadística; 3º CC. AA. Examen final, 23 de enero de 2009
Estadística; 3º CC. AA. Examen final, 3 de enero de 9 Apellidos Nombre: Grupo: DNI. (5 ptos.) En un estudio sobre las variables que influyen en el peso al nacer se han obtenido utilizando SPSS los resultados
