Cuestiones: Variable dependiente, variable independiente, variable extraña

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Cuestiones: Variable dependiente, variable independiente, variable extraña"

Transcripción

1 ESTADÍSTICA II. Nom i Cognoms: data: SUPUESTO DE INVESTIGACIÓN: trastornos del lenguaje y Alzheimer. Supongamos que un investigador está interesado en estimar la magnitud de la diferencia entre dos medias muestrales (tamaño del efecto) cuyos datos se presentan en la Tabla 16. Vamos a utilizar el ejemplo de Zakzanis (2001). El estudio incluye 10 participantes en el grupo experimental (n 1 ) y 10 participantes en el grupo de control (n 2 ). El objetivo del estudio es comprobar la ejecución de todos los participantes en el Boston Naming Test (BNT, Kaplan, Goodglass y Weintraub, 1983, 2001). El test denominado BNT es uno de los instrumento neuropsicológico más utilizado en el área de los trastornos del lenguaje, concretamente en el área de la capacidad de denominación visuo-verbal o la dificultad para denominar. La prueba está formada por un cuaderno con 60 láminas con dibujos lineales en blanco y negro que el sujeto debe denominar. Por ejemplo se representa una cama, un helicóptero, una raqueta, un cactus, una pirámide y así hasta sesenta dibujos. El orden de presentación de los estímulos va de menor a mayor dificultad. La puntuación final de la prueba se obtiene mediante la suma de las respuestas correctas de forma espontánea y las correctas tras la pista semántica. La máxima puntuación es de 60 (Quiñones-Úbeda, Peña-Casanova, Böhm, Gramunt-Fombuena y Comas, 2004). En español existe una versión reducida de 12 ítems (Serrano, Allegri, Drake, Butman, Harris, Nagle C. et al., 2001). Este instrumento se suele aplicar para detectar la enfermedad de Alzheimer. En la tabla 16 se detallan los datos de la evaluación con el BNT en ambos grupos (N = 20) junto con los resultados descriptivos de puntuaciones medias, desviaciones típicas (DT), errores típicos (ET), puntuación máxima y mínima de cada grupo, la moda o puntuación con mayor frecuencia y los valores empíricos de las pruebas estadísticas t de Student y también la de la razón F del análisis de la varianza junto con los valores de probabilidad correspondientes. Por supuesto nunca se deben aplicar ambas pruebas en un trabajo de investigación. Aquí se han ejecutado las dos pruebas para presentar de forma didáctica ambos tipos de contrastes pero el investigador decide qué prueba de las dos debe aplicar en su estudio. Además se incluye la duración de la enfermedad en años. Cuestiones: Variable dependiente, variable independiente, variable extraña Diseño n: N: Media de los grupos y la total: Desviación Típica de cada grupo: 1

2 Varianza de cada grupo: Error Típico de cada grupo: Mínimo de cada grupo: Máximo de cada grupo: Moda de cada grupo: Correlación entre la puntuación y la duración de la enfermedad Correlación entre las puntuaciones y los grupos Contraste estadístico: Prueba t o Prueba F (se calculará cuando tratemos el Tema de Constrate Estadístico) (pàg. 92 i següents del llibre recomanat). Variància poblacional coneguda. Exercici 1. Exercici 2. Variància poblacional desconeguda SPSS Exercici d Alzheimer. Estimar l interval de una mitjana i de la diferéncia de mitjanes Exercici 3. Estimar el interval de confiança de la mitjana del grup d Alzheimer (a1). 2

3 Exercici 4. Estimar el interval de confiança de la mitjana del grup de control (a2). Exercici 5. Estimar el interval de confiança de la diferència de mitjanes entre el experimental i el grup de control (a2). Estimar el Error Típico o Estandar para la diferencia de medias 3

4 Solución del ejercicio. Para obtener los descriptivos por grupos podemos hacerlo de dos maneras diferentes: 1. Seleccionando casos 2. A través de la ventana de ANALIZAR---COMPARAR MEDIAS---MEDIAS 1. Seleccionar casos 2. A través de la ventana de ANALIZAR---COMPARAR MEDIAS---MEDIAS RESULTADOS Figura 1. Datos de la investigación: puntuaciones en el Boston Naming Test Grupo Experimental Duración de la enfermedad Grupo de control Enfermedad de Alzheimer en años Sin enfermedad de Alzheimer

5 n: Media: Desviación Típica: Varianza: Error Típico: Mínimo: Máximo: Moda Prueba t: Prueba F: S n 4.6 ( ) 16 amodal t (18) = -3.89, p < 0.01 F (1, 18) = 15.16, p < ( 51 amodal Correlación entre las puntuaciones y los grupos: r = Correlación entre la puntuación y la duración de la enfermedad: r = 0.96, p < S n ) INTRODUCCIÓN DE DATOS ANALIZAR COMPARAR MEDIAS---MEDIAS: descriptivos con el error típico de la media 5

6 6

7 COMPUTAR EL ERROR TÍPICO DE LA DIFERENCIA DE MEDIAS Es necesario ejecutar: Prueba t de Student PARA GRUPOS INDEPENDIENTES (diseño entre-sujetos) 7

8 CONSTRASTE DE DOS MEDIAS: GRUPOS INDEPENDIENTES: prueba t de Student para muestras independientes: ANALIZAR---COMPARAR MEDIAS---PRUEBA T PARA MUESTRAS INDEPENDIENTES Resultados 8

9 9

10 ANOVAS unifactoriales entre-sujetos. Medias Cuadráticas. Prueba F Vamos a realizar el mismo ejercicio pero con un modelo de Análisis de la Varianza (ANOVA) En la práctica real no se deben realizar los dos análisis. Sólo se trata de un ejercicio de clase. El investigador deberá seleccionar la técnica de análisis estadístico que mejor describa sus resultados. Dentro de los modelos de análisis de la varianza se habla de diseños unifactoriales cuando la investigación tiene un factor o variable independiente y diseños entre-sujetos cuando los sujetos sólo son evaluados en una condición de la variable independiente. Frente a ellos, existen los diseños factoriales (con más de una variable independiente o factor; al menos dos factores) y los diseños intra-sujetos o de medidas repetidas (los sujetos son evaluados en más de una ocasión, por ejemplo los diseños pre-test y post-tes). Como no se cumple la homogeneidad de varianzas será necesario calcular el ajuste de los grados de libertad mediante la prueba de Welch. Los grados de libertad, entregrupos (gl 1 ) e intragrupos corregidos (gl 2 ) en función del grado en que las varianzas intragrupos se separan de la igualdad absoluta. Corrección de los grados de libertad del error: Opciones: Ejecutando las pruebas robustas de igualdad de las medias: Como se puede observar los grados de libertad se han reducido de forma marcada de 18 a 9.876, lo que es indicativo de la posible ausencia de homocedasticidad de las varianzas. Cuestión que se ha comprobado con la prueba de Leven (p<0.05). ESTIMACIÓN DE EFECTOS. Las medias cuadráticas o varianzas son las desviaciones típicas al cuadrado. Tamaño del efecto: d de Cohen, coeficiente de correlación, eta cuadrado 10

Existen diferentes criterios de clasificación de las variables: 1.criterio metodológico 2. criterio manipulativo

Existen diferentes criterios de clasificación de las variables: 1.criterio metodológico 2. criterio manipulativo Qué es una variable Una variable es cualquier entidad que puede tomar diferentes valores. Es decir, una variable es una característica de un individuo o de un objeto que puede tener diferentes valores

Más detalles

Existen diferentes criterios de clasificación de las variables: 1.criterio metodológico 2. criterio manipulativo

Existen diferentes criterios de clasificación de las variables: 1.criterio metodológico 2. criterio manipulativo Qué es una variable Una variable es cualquier entidad que puede tomar diferentes valores. Es decir, una variable es una característica de un individuo o de un objeto que puede tener diferentes valores

Más detalles

SUPUESTO 1. Enfermedad de Alzheimer y deterioro cognitivo (Zakzanis, 2001)

SUPUESTO 1. Enfermedad de Alzheimer y deterioro cognitivo (Zakzanis, 2001) SUPUESTO 1. Enfermedad de Alzheimer y deterioro cognitivo (Zakzanis, 2001) El instrumento de denominación Boston (Boston Naming Test, BNT, Kaplan, Goodglass, & Weintraub, 2001) es una de las pruebas neuropsicológicas

Más detalles

Prueba t para muestras independientes

Prueba t para muestras independientes Prueba t para muestras independientes El procedimiento Prueba t para muestras independientes compara las medias de dos grupos de casos. Para esta prueba, idealmente los sujetos deben asignarse aleatoriamente

Más detalles

7. De acuerdo con la gráfica siguiente, el contraste estadístico es:

7. De acuerdo con la gráfica siguiente, el contraste estadístico es: 1. Un investigador desea saber si los hombres y las mujeres difieren en flexibilidad cognitiva. Para ello, analiza los datos y obtienen los siguientes resultados. Satisfacen los datos el supuesto de homocedasticidad?

Más detalles

Elaborado por: Pelay, C. y Pérez, J. Prueba t para muestras independientes

Elaborado por: Pelay, C. y Pérez, J. Prueba t para muestras independientes Prueba t para muestras independientes 1 El procedimiento Prueba t para muestras independientes compara las medias de dos grupos de casos. Para esta prueba, idealmente los sujetos deben asignarse aleatoriamente

Más detalles

1. Realice la prueba de homogeneidad de variancias e interprete los resultados.

1. Realice la prueba de homogeneidad de variancias e interprete los resultados. 1ª PRÁCTICA DE ORDENADOR (FEEDBACK) Un investigador pretende evaluar la eficacia de dos programas para mejorar las habilidades lectoras en escolares de sexto curso. Para ello asigna aleatoriamente seis

Más detalles

TEMA 10 COMPARAR MEDIAS

TEMA 10 COMPARAR MEDIAS TEMA 10 COMPARAR MEDIAS Los procedimientos incluidos en el menú Comparar medias permiten el cálculo de medias y otros estadísticos, así como la comparación de medias para diferentes tipos de variables,

Más detalles

14 horas. 20 horas

14 horas. 20 horas EJERCICIOS PROPUESTOS ANALISIS DE VARIANZA. Se realiza un ANOVA para comparar el tiempo que demora en aliviar el dolor de cabeza de varios tipos de analgésicos. Se obtiene como resultado un test observado

Más detalles

DISEÑOS EXPERIMENTALES DE DOS GRUPOS Y MULTIGRUPO

DISEÑOS EXPERIMENTALES DE DOS GRUPOS Y MULTIGRUPO TEMA II ESQUEMA GENERAL Definición y clasificación del diseño experimental de grupos Diseño experimental de dos grupos: definición y clasificación Diseño experimental de dos grupos: análisis estadístico

Más detalles

TEMA 4 FASE ESTADÍSTICO-ANALÍTICA: RECURSOS PARA EL ANÁLISIS DE DATOS

TEMA 4 FASE ESTADÍSTICO-ANALÍTICA: RECURSOS PARA EL ANÁLISIS DE DATOS TEMA 4 FASE ESTADÍSTICO-ANALÍTICA: RECURSOS PARA EL ANÁLISIS DE DATOS FASES EN EL ANÁLISIS DE LOS DATOS DE UNA INVESTIGACIÓN SELECCIÓN HIPÓTESIS DE INVESTIGACIÓN Modelo de Análisis Técnica de Análisis

Más detalles

DISEÑO Y ANÁLISIS DE DATOS EN PSICOLOGÍA II

DISEÑO Y ANÁLISIS DE DATOS EN PSICOLOGÍA II DISEÑO Y ANÁLISIS DE DATOS EN PSICOLOGÍA II PRÁCTICA 5 En una determinada investigación se estudió el rendimiento en matemáticas en función del estilo de aprendizaje de una serie de estudiantes de educación

Más detalles

TÉCNICAS ESTADÍSTICAS APLICADAS EN NUTRICIÓN Y SALUD

TÉCNICAS ESTADÍSTICAS APLICADAS EN NUTRICIÓN Y SALUD TÉCNICAS ESTADÍSTICAS APLICADAS EN NUTRICIÓN Y SALUD Contrastes de hipótesis paramétricos para una y varias muestras: contrastes sobre la media, varianza y una proporción. Contrastes sobre la diferencia

Más detalles

ANALIZAR Comparar medias

ANALIZAR Comparar medias Diseño entre-grupos univariado unifactorial con A>2. Contraste de hipótesis específicas Dolores Frías-Navarro Universidad de Valencia http://www.uv.es/friasnav/ Hasta ahora hemos ido desarrollando las

Más detalles

Y ± E max 37,3 ± 0,866 (36,43; 38,17)

Y ± E max 37,3 ± 0,866 (36,43; 38,17) Modelo A. Febrero 2015. No debe entregar los enunciados Fórmula de corrección: Aciertos (Errores / 2) Material permitido: Formulario de cualquier curso académico sin anotaciones y cualquier tipo de calculadora

Más detalles

9.- Análisis estadísticos con R Commander

9.- Análisis estadísticos con R Commander Tipos de datos - Cuantitativos: se expresan numéricamente. - Discretos: Toman valores numéricos aislados - Continuos: Toman cualquier valor dentro de unos límites dados - Categóricos o Cualitativos: No

Más detalles

1. Identifique el tipo de diseño que se ha utilizado en esta investigación.

1. Identifique el tipo de diseño que se ha utilizado en esta investigación. 3ª PRÁCTICA DE ORDENADOR: práctica A (FEEDBACK) Winer (71) describió un experimento en el que se estudió el efecto de tres drogas sobre el tiempo de reacción en una serie de tareas estandarizadas. Se observó

Más detalles

Supuestos y comparaciones múltiples

Supuestos y comparaciones múltiples Supuestos y comparaciones múltiples Diseño de Experimentos Pruebas estadísticas Pruebas de bondad de ajuste Prueba de hipótesis para probar si un conjunto de datos se puede asumir bajo una distribución

Más detalles

DISEÑO CON MÁS DE DOS CONDICIONES (A>2) ANOVA unifactorial con A>2 y contraste de hipótesis específicas

DISEÑO CON MÁS DE DOS CONDICIONES (A>2) ANOVA unifactorial con A>2 y contraste de hipótesis específicas DISEÑO CON MÁS DE DOS CONDICIONES (A>2) ANOVA unifactorial con A>2 y contraste de hipótesis específicas Hasta ahora hemos ido desarrollando las pruebas parámetricas para contrastar hipótesis de un grupo

Más detalles

Análisis de la varianza. Magdalena Cladera Munar Departamento de Economía Aplicada Universitat de les Illes Balears

Análisis de la varianza. Magdalena Cladera Munar Departamento de Economía Aplicada Universitat de les Illes Balears Análisis de la varianza Magdalena Cladera Munar [email protected] Departamento de Economía Aplicada Universitat de les Illes Balears CONTENIDOS Análisis de la varianza de un factor. Análisis de la varianza

Más detalles

KIBBUTZ.ES. Si se pretende comprobar si la proporción de niños es igual a la de niñas en la población de la que proceden los datos:

KIBBUTZ.ES. Si se pretende comprobar si la proporción de niños es igual a la de niñas en la población de la que proceden los datos: Modelo C. Septiembre 015. No debe entregar los enunciados Fórmula de corrección: Aciertos (Errores / ) Material permitido: Formulario y cualquier tipo de calculadora en la que no se pueda introducir texto

Más detalles

T. 4 Inferencia estadística acerca de la relación entre variables (II): el análisis de varianza (ANOVA).

T. 4 Inferencia estadística acerca de la relación entre variables (II): el análisis de varianza (ANOVA). T. 4 Inferencia estadística acerca de la relación entre variables (II): el análisis de varianza (ANOVA). 1. El ANOVA de un factor para muestras independientes 2. El ANOVA de un factor para muestras relacionadas

Más detalles

ANÁLISIS DE LA VARIANZA CON UN FACTOR (ANOVA)

ANÁLISIS DE LA VARIANZA CON UN FACTOR (ANOVA) ANÁLISIS DE LA VARIANZA CON UN FACTOR (ANOVA) El análisis de la varianza permite contrastar la hipótesis nula de que las medias de K poblaciones (K >2) son iguales, frente a la hipótesis alternativa de

Más detalles

TÉCNICAS ESTADÍSTICAS APLICADAS EN NUTRICIÓN Y SALUD

TÉCNICAS ESTADÍSTICAS APLICADAS EN NUTRICIÓN Y SALUD TÉCNICAS ESTADÍSTICAS APLICADAS EN NUTRICIÓN Y SALUD Contrastes de hipótesis paramétricos para una y varias muestras: contrastes sobre la media, varianza y una proporción. Contrastes sobre la diferencia

Más detalles

Departamento de Medicina Preventiva y Salud Publica e Historia de la Ciencia. Universidad Complutense de Madrid. SPSS para windows.

Departamento de Medicina Preventiva y Salud Publica e Historia de la Ciencia. Universidad Complutense de Madrid. SPSS para windows. TEMA 12 REGRESIÓN LINEAL Mediante la regresión lineal se busca hallar la línea recta que mejor explica la relación entre unas variables independientes o variables de exposición y una variable dependiente

Más detalles

DISEÑO Y ANÁLISIS DE DATOS EN PSICOLOGÍA II

DISEÑO Y ANÁLISIS DE DATOS EN PSICOLOGÍA II DISEÑO Y ANÁLISIS DE DATOS EN PSICOLOGÍA II PRÁCTICA 6 Problema 1.- Tengamos las variables sexo, nivel económico y consumo de tabaco. Los datos son los siguientes: Hombre Mujer Alto Bajo Alto Bajo 10 10

Más detalles

Tipo de punta (factor) (bloques)

Tipo de punta (factor) (bloques) Ejemplo Diseño Bloques al Azar Ejercicio -6 (Pág. 99 Montgomery) Probeta Tipo de punta (factor) (bloques) 9. 9. 9.6 0.0 9. 9. 9.8 9.9 9. 9. 9.5 9.7 9.7 9.6 0.0 0. ) Representación gráfica de los datos

Más detalles

Artículo de los payasos

Artículo de los payasos Artículo de los payasos (Página 30 a 3 del libro de Técnica estadística y diseño de investigación) Utilizando los datos de la tabla 3 podemos completar la siguiente información (valores p de probabilidad

Más detalles

ANALIZAR Comparar medias

ANALIZAR Comparar medias Diseño entre-grupos univariado unifactorial con A>2. Contraste de hipótesis específicas Dolores Frías-Navarro Universidad de Valencia http://www.uv.es/friasnav/ Hasta ahora hemos ido desarrollando las

Más detalles

Capítulo 13 Contrastes sobre medias Los procedimientos Medias y Prueba T

Capítulo 13 Contrastes sobre medias Los procedimientos Medias y Prueba T Capítulo 13 Contrastes sobre medias Los procedimientos Medias y Prueba T La opción Comparar medias del menú Analizar contiene varios de los procedimientos estadísticos diseñados para efectuar contrastes

Más detalles

Capítulo 13. Contrastes sobre medias: Los procedimientos Medias y Prueba T. Medias

Capítulo 13. Contrastes sobre medias: Los procedimientos Medias y Prueba T. Medias Capítulo 13 Contrastes sobre medias: Los procedimientos Medias y Prueba T La opción Comparar medias del menú Analizar contiene varios de los procedimientos estadísticos diseñados para efectuar contrastes

Más detalles

Folleto de Estadísticas. Teoría del 2do Parcial

Folleto de Estadísticas. Teoría del 2do Parcial Folleto de Estadísticas Teoría del 2do Parcial 2012 Variables aleatorias conjuntas continuas: Sean X y Y dos variables aleatorias continuas con ellas se asocia una función denominada función de densidad

Más detalles

ÍNDICE INTRODUCCIÓN... 21

ÍNDICE INTRODUCCIÓN... 21 INTRODUCCIÓN... 21 CAPÍTULO 1. ORGANIZACIÓN DE LOS DATOS Y REPRESENTACIONES GRÁFICAS... 23 1. ORGANIZACIÓN DE LOS DATOS... 23 1.1. La distribución de frecuencias... 24 1.2. Agrupación en intervalos...

Más detalles

Sujeto X 1 V 1 E 1 X 2 V 2 E ,8 3,2 1,6 4,8 3,2 1,6

Sujeto X 1 V 1 E 1 X 2 V 2 E ,8 3,2 1,6 4,8 3,2 1,6 Ejercicios capítulo 3. Modelo clásico y fiabilidad 11 Ejercicios 3.1. Supongamos que conocemos las puntuaciones observadas, verdaderas y error de una población de 5 personas en dos formas paralelas de

Más detalles

PRÁCTICA 3. REGRESIÓN LINEAL SIMPLE CON SPSS Ajuste de un modelo de regresión lineal simple Porcentaje de variabilidad explicado

PRÁCTICA 3. REGRESIÓN LINEAL SIMPLE CON SPSS Ajuste de un modelo de regresión lineal simple Porcentaje de variabilidad explicado PÁCTICA 3. EGESIÓN LINEAL SIMPLE CON SPSS 3.1. Gráfico de dispersión 3.2. Ajuste de un modelo de regresión lineal simple 3.3. Porcentaje de variabilidad explicado 3.4 Es adecuado este modelo para ajustar

Más detalles

Preparación examen PIR Diseños Experimentales, Estadística y Psicometría

Preparación examen PIR Diseños Experimentales, Estadística y Psicometría Preparación examen PIR Diseños Experimentales, Estadística y Psicometría INDICE DISEÑOS EXPERIMENTALES TEMA 1: LA INVESTIGACIÓN CIENTÍFICA EN PSICOLOGÍA... 14 1. INTRODUCCIÓN... 14 1.1. Conocimiento científico...

Más detalles

Modelado y simulación en Ingeniería Química. Manuel Rodríguez

Modelado y simulación en Ingeniería Química. Manuel Rodríguez ÍNDICE Modelos de caja gris Calibración de modelos Estimación de parámetros Análisis de la estimación Regresión no lineal 1. Modelos de caja gris Son modelos de un sistema (o proceso), donde: Desarrollados

Más detalles

GUÍA 5 : EFECTO DEL ESTRÉS EN EL PESO DE RECIÉN NACIDOS

GUÍA 5 : EFECTO DEL ESTRÉS EN EL PESO DE RECIÉN NACIDOS GUÍA 5 : EFECTO DEL ESTRÉS EN EL PESO DE RECIÉN NACIDOS Se realizó un estudio a partir de una muestra aleatoria de mujeres atendidas por el departamento de obstetricia y ginecología de cierta clínica particular.

Más detalles

Inferencia Estadística. Pruebas paramétricas y no paramétricas. Análisis de datos

Inferencia Estadística. Pruebas paramétricas y no paramétricas. Análisis de datos Inferencia Estadística. Pruebas paramétricas y no paramétricas. Análisis de datos VDC Prof. Mª JOSÉ PRIETO CASTELLÓ ANÁLISIS ESTADÍSTICO DE DATOS Estadística Descriptiva: -Cualitativas: frecuencias, porcentajes

Más detalles

Ejemplo Diseño Completamente aleatorizado (Pág. 470 Montgomery)

Ejemplo Diseño Completamente aleatorizado (Pág. 470 Montgomery) Ejemplo Diseño Completamente aleatorizado (Pág. 47 Montgomery) ) Representación gráfica de los datos mediante diagramas de caja Resumen del procesamiento de los casos Tension del papel (psi) Casos Válidos

Más detalles

Práctica 5 ANÁLISIS DE UNA MUESTRA INTERVALOS DE CONFIANZA CONTRASTE DE HIPÓTESIS

Práctica 5 ANÁLISIS DE UNA MUESTRA INTERVALOS DE CONFIANZA CONTRASTE DE HIPÓTESIS Práctica. Intervalos de confianza 1 Práctica ANÁLISIS DE UNA MUESTRA INTERVALOS DE CONFIANZA CONTRASTE DE HIPÓTESIS Objetivos: Ilustrar el grado de fiabilidad de un intervalo de confianza cuando se utiliza

Más detalles

U ED Tudela Diseños de Investigación y Análisis de Datos - Tema 7

U ED Tudela Diseños de Investigación y Análisis de Datos - Tema 7 Diseños de Investigación y Análisis de Datos Preguntas de exámenes TEMA 7: A OVA PARA MUESTRAS I DEPE DIE TES (2 FACTORES) 1.- Se dice que un diseño bifactorial es equilibrado si: A) Los grupos tienen

Más detalles

Bloque 3 Tema 14 ANÁLISIS DE LA VARIANZA. PRUEBA F

Bloque 3 Tema 14 ANÁLISIS DE LA VARIANZA. PRUEBA F Bloque 3 Tema 4 AÁLISIS DE LA VARIAZA. PRUEBA F El objetivo fundamental de la experimentación es estudiar la posible relación de causalidad existente entre dos o más variables. Este estudio representa

Más detalles

INDICE 1. Qué es la Estadística? 2.Descripción de Datos: Distribuciones de Frecuencia y Presentación Gráfica

INDICE 1. Qué es la Estadística? 2.Descripción de Datos: Distribuciones de Frecuencia y Presentación Gráfica INDICE 1. Qué es la Estadística? 1 Introducción 2 Qué significa estadística? 2 Por qué se estudia la estadística? 4 Tipos de estadística 5 Estadística descriptiva 5 Estadística inferencial 6 Tipos de variables

Más detalles

SIGNIFICACIÓN ESTADÍSTICA DE LA DIFERENCIA ENTRE 2 MEDIAS

SIGNIFICACIÓN ESTADÍSTICA DE LA DIFERENCIA ENTRE 2 MEDIAS SIGNIFICACIÓN ESTADÍSTICA DE LA DIFERENCIA ENTRE 2 MEDIAS 3datos 2011 Variables CUANTITATIVAS Valor más representativo: MEDIA aritmética Técnicas Inferenciales sobre la significación de la diferencia entre

Más detalles

DISEÑOS DE INVESTIGACIÓN Y ANÁLISIS DE DATOS Enero/febrero Código asignatura: MODELO A DURACION: 2 HORAS

DISEÑOS DE INVESTIGACIÓN Y ANÁLISIS DE DATOS Enero/febrero Código asignatura: MODELO A DURACION: 2 HORAS DISEÑOS DE INVESTIGACIÓN Y ANÁLISIS DE DATOS Enero/febrero 2014. Código asignatura: 62012054 MODELO A DURACION: 2 HORAS Material: Formulario, Tablas y calculadora no programable Calificación= (0,4 x Aciertos)

Más detalles

ESQUEMA GENERAL Concepto y formato del Diseño de grupo control no equivalente (DGCNE) Clasificación

ESQUEMA GENERAL Concepto y formato del Diseño de grupo control no equivalente (DGCNE) Clasificación TEMA V ESQUEMA GENERAL Concepto y formato del Diseño de grupo control no equivalente (DGCNE) Clasificación Análisis de la covarianza (ANCOVA) Modelos alternativos de análisis DISEÑO DE GRUPO CONTROL NO

Más detalles

Regresión con variables independientes cualitativas

Regresión con variables independientes cualitativas Regresión con variables independientes cualitativas.- Introducción...2 2.- Regresión con variable cualitativa dicotómica...2 3.- Regresión con variable cualitativa de varias categorías...6 2.- Introducción.

Más detalles

ÍNDICE CAPÍTULO 1. INTRODUCCIÓN

ÍNDICE CAPÍTULO 1. INTRODUCCIÓN ÍNDICE CAPÍTULO 1. INTRODUCCIÓN 1.1. OBJETO DE LA ESTADÍSTICA... 17 1.2. POBLACIONES... 18 1.3. VARIABLES ALEATORIAS... 19 1.3.1. Concepto... 19 1.3.2. Variables discretas y variables continuas... 20 1.3.3.

Más detalles

INTRODUCCIÓN AL ANÁLISIS DE DATOS FEBRERO Código asignatura: EXAMEN MODELO B DURACION: 2 HORAS

INTRODUCCIÓN AL ANÁLISIS DE DATOS FEBRERO Código asignatura: EXAMEN MODELO B DURACION: 2 HORAS Febrero 2011 EXAMEN MODELO B Pág. 1 INTRODUCCIÓN AL ANÁLISIS DE DATOS FEBRERO Código asignatura: 62011037 EXAMEN MODELO B DURACION: 2 HORAS X Ciudad A Ciudad B 17-20 10 17 13-16 20 27 9-12 25 15 5-8 15

Más detalles

Unidad 1 DISTRIBUCIONES MUESTRALES Objetivo particular El alumno identificará distribuciones discretas y continuas, obtendrá la probabilidad de

Unidad 1 DISTRIBUCIONES MUESTRALES Objetivo particular El alumno identificará distribuciones discretas y continuas, obtendrá la probabilidad de Nombre de la materia Estadística Inferencial Departamento Ciencias Aplicadas de la Información Academia Ciencias Básicas Clave Horas-teoría Horas-práctica Horas-AI Total-horas Créditos I4863 60 20 0 80

Más detalles

Objetivo. Conocer la forma de calcular las Medidas de Dispersión de una distribución con OpenOffice Calc CALC: MEDIDAS DE DISPERSIÓN

Objetivo. Conocer la forma de calcular las Medidas de Dispersión de una distribución con OpenOffice Calc CALC: MEDIDAS DE DISPERSIÓN Objetivo Conocer la forma de calcular las Medidas de Dispersión de una distribución con OpenOffice Calc CALC: MEDIDAS DE DISPERSIÓN La dispersión otorga el grado de distanciamiento de un conjunto de valores

Más detalles

BIOSESTADÍSTICA AMIGABLE

BIOSESTADÍSTICA AMIGABLE BIOSESTADÍSTICA AMIGABLE EJEMPLO: Ficha solicitud Colección Reserva UNIVERSIDAD AUSTRAL DE CHILE SISTEMA DE BIBLIOTECAS Clasificación: 574.015195 MAR 2001 Vol. y/o Copia: Apellido Autor: Título: C. 1 (SEGÚN

Más detalles

DISEÑOS EXPERIMENTALES DE DOS GRUPOS Y MULTIGRUPO

DISEÑOS EXPERIMENTALES DE DOS GRUPOS Y MULTIGRUPO TEMA II ESQUEMA GENERAL Diseño experimental de dos grupos: definición y clasificación Formatos del diseño y prueba de hipótesis Diseño experimental multigrupo: definición Formato del diseño multigrupo

Más detalles

PROGRAMA DEL CURSO SOBRE PSICOLOGÍA EXPERIMENTAL MANUEL MIGUEL RAMOS ÁLVAREZ

PROGRAMA DEL CURSO SOBRE PSICOLOGÍA EXPERIMENTAL MANUEL MIGUEL RAMOS ÁLVAREZ PROGRAMA DEL CURSO SOBRE PSICOLOGÍA EXPERIMENTAL MANUEL MIGUEL RAMOS ÁLVAREZ Resumen de Psicología Experimental 1 PSICOLOGÍA EXPERIMENTAL Manuel Miguel Ramos Alvarez. I. FUNDAMENTOS METODOLÓGICOS DE LA

Más detalles

GUIA DOCENTE ESTADISTICA

GUIA DOCENTE ESTADISTICA 1 GUIA DOCENTE ESTADISTICA 1- Datos de identificación Asignatura: Estadística Carácter: Formación básica Titulación: Psicología Ciclo: Grado Curso: 1 Cuatrimestre: Anual Departamento: Metodología de las

Más detalles

PRUEBA DE HIPÓTESIS BENJAMIN MAMANI CONDORI

PRUEBA DE HIPÓTESIS BENJAMIN MAMANI CONDORI PRUEBA DE HIPÓTESIS BENJAMIN MAMANI CONDORI 2014 Para qué es útil la estadística inferencial? Se utiliza para probar hipótesis y generalizar los resultados obtenidos en la muestra a la población o universo.

Más detalles

Estas dos clases. ANOVA I - Conceptos generales - Supuestos - ANOVA de una vía - Transformación de datos - Test a Posteriori - ANOVA de dos vías

Estas dos clases. ANOVA I - Conceptos generales - Supuestos - ANOVA de una vía - Transformación de datos - Test a Posteriori - ANOVA de dos vías ANOVA I 19-8-2014 Estas dos clases ANOVA I - Conceptos generales - Supuestos - ANOVA de una vía - Transformación de datos - Test a Posteriori - ANOVA de dos vías ANOVA II - ANOVA factorial - ANCOVA (análisis

Más detalles

Medidas de dispersión

Medidas de dispersión Medidas de dispersión Las medidas de dispersión nos informan sobre cuánto se alejan del centro los valores de la distribución. Las medidas de dispersión son: Rango o recorrido El rango es la diferencia

Más detalles

T2. El modelo lineal simple

T2. El modelo lineal simple T2. El modelo lineal simple Ana J. López y Rigoberto Pérez Dpto Economía Aplicada. Universidad de Oviedo Curso 2010-2011 Curso 2010-2011 1 / 40 Índice 1 Planteamiento e hipótesis básicas 2 Estimación de

Más detalles

ESQUEMA GENERAL DISEÑO CUASI-EXPERIMENTAL

ESQUEMA GENERAL DISEÑO CUASI-EXPERIMENTAL TEMA V ESQUEMA GENERAL Definición y clasificación del diseño cuasi-experimental Estructuras básicas: Diseño pre-experimental Diseño de grupo control no equivalente: Definición Diseño de grupo control no

Más detalles

TEMA 5 Estadística descriptiva. Análisis de datos

TEMA 5 Estadística descriptiva. Análisis de datos TEMA 5 Estadística descriptiva. Análisis de datos Florence Nightingale (1820-1910) 1. Introducción. Modelos matemáticos 2. Métodos numéricos. Resolución de sistemas lineales y ecuaciones no lineales 3.

Más detalles

DISEÑO Y ANÁLISIS DE DATOS EN PSICOLOGÍA II

DISEÑO Y ANÁLISIS DE DATOS EN PSICOLOGÍA II DISEÑO Y ANÁLISIS DE DATOS EN PSICOLOGÍA II SOLUCIÓN PRACTICA 1 Problema 2-. Para una serie de investigaciones, en las que el tamaño de la muestra era el mismo, se ha calculado la t de Student con objeto

Más detalles

Capítulo 14 Análisis de varianza de un factor El procedimiento ANOVA de un factor

Capítulo 14 Análisis de varianza de un factor El procedimiento ANOVA de un factor Capítulo 14 Análisis de varianza de un factor El procedimiento ANOVA de un factor El análisis de varianza (ANOVA) de un factor sirve para comparar varios grupos en una variable cuantitativa. Se trata,

Más detalles

Método de cuadrados mínimos

Método de cuadrados mínimos REGRESIÓN LINEAL Gran parte del pronóstico estadístico del tiempo está basado en el procedimiento conocido como regresión lineal. Regresión lineal simple (RLS) Describe la relación lineal entre dos variables,

Más detalles

Estadística II Examen final junio - 17/06/16 Curso 2015/16 Soluciones Duración del examen: 2 h. y 45 min.

Estadística II Examen final junio - 17/06/16 Curso 2015/16 Soluciones Duración del examen: 2 h. y 45 min. Estadística II Examen final junio - 17/06/16 Curso 201/16 Soluciones Duración del examen: 2 h. y 4 min. 1. (3, puntos) La publicidad de un fondo de inversión afirma que la rentabilidad media anual del

Más detalles

ESTAD2 - Estadística II

ESTAD2 - Estadística II Unidad responsable: Unidad que imparte: Curso: Titulación: Créditos ECTS: 2013 801 - EUNCET - Centro Universitario Euncet Business School 801 - EUNCET - Centro Universitario Euncet Business School GRADO

Más detalles

ESTADÍSTICA 3º CC. AMBIENTALES PRÁCTICA 1: Introducción al SPSS

ESTADÍSTICA 3º CC. AMBIENTALES PRÁCTICA 1: Introducción al SPSS ESTADÍSTICA 3º CC. AMBIENTALES PRÁCTICA 1: Introducción al SPSS Experimento y datos: Supongamos que estamos interesados en analizar la influencia del tipo de suelos sobre la abundancia de romeros (Rosmarinus

Más detalles

Longitud = Calcular la media, la mediana, la moda y la desviación estándar de la muestra en Matlab.

Longitud = Calcular la media, la mediana, la moda y la desviación estándar de la muestra en Matlab. LABORATORIO 1 LABORATORIO INFORMÁTICO Un fabricante de hormigón preparado tiene su proceso de producción bajo control. Está interesado en conocer cuál es la distribución de los valores de la resistencia

Más detalles

A: Broca B: velocidad A B AB Vibración Totales 1/ ,2 18,9 12,9 14,4 64,4 = (1) 1/ ,2 24,0 22,4 22,5 96,1 = a

A: Broca B: velocidad A B AB Vibración Totales 1/ ,2 18,9 12,9 14,4 64,4 = (1) 1/ ,2 24,0 22,4 22,5 96,1 = a LORTORIO 8 - LORTORIO INFORMÁTICO Caso. Interesa estudiar el efecto del tamaño de broca (factor ) y de la velocidad (factor ) sobre la vibración de la ranuradora (respuesta Y). Para ello se decide utilizar

Más detalles

Estadísticos Aplicados en el SPSS 2008

Estadísticos Aplicados en el SPSS 2008 PRUEBAS ESTADISTICAS QUE SE APLICAN (SPSS 10.0) PARAMÉTRICAS:... 2 Prueba t de Student para una muestra... 2 Prueba t par muestras independientes... 2 ANOVA de una vía (multigrupo)... 2 ANOVA de dos vías

Más detalles

ESTIMACIÓN Y PRUEBA DE HIPÓTESIS INTERVALOS DE CONFIANZA

ESTIMACIÓN Y PRUEBA DE HIPÓTESIS INTERVALOS DE CONFIANZA www.jmontenegro.wordpress.com UNI ESTIMACIÓN Y PRUEBA DE HIPÓTESIS INTERVALOS DE CONFIANZA PROF. JOHNNY MONTENEGRO MOLINA Objetivos Desarrollar el concepto de estimación de parámetros Explicar qué es una

Más detalles

ANOVA. Análisis de la Varianza. Univariante Efectos fijos Muestras independientes

ANOVA. Análisis de la Varianza. Univariante Efectos fijos Muestras independientes ANOVA Análisis de la Varianza Univariante Efectos fijos Muestras independientes De la t a la F En el test de la t de Student para muestras independientes, aprendimos como usar la distribución t para contrastar

Más detalles

CONTRASTES DE HIPÓTESES

CONTRASTES DE HIPÓTESES CONTRASTES DE IPÓTESES 1. Contraste de hipótesis 2. Contrastes de tipo paramétrico 2.1 Contraste T para una muestra 2.2 Contraste T para dos muestras independientes 2.3 Análisis de la varianza 3. Contrastes

Más detalles

2. EL DISEÑO UNIFACTORIAL (COMPARACION DE TRATAMIENTOS)

2. EL DISEÑO UNIFACTORIAL (COMPARACION DE TRATAMIENTOS) 2. EL DISEÑO UNIFACTORIAL (COMPARACION DE TRATAMIENTOS) La idea principal en este capitulo es el inicio a planear los diseño experimentales y su correspondiente análisis estadístico. En este caso iniciaremos

Más detalles

Medidas de dispersión. Rango o recorrido. Desviación media. Medidas de dispersión

Medidas de dispersión. Rango o recorrido. Desviación media. Medidas de dispersión Inicio Aritmética Álgebra Geometría Cálculo Estadística Trigonometría A B C D E F G H I J K L M N O P Q R S T U V W X Y Z Medidas de dispersión Las medidas de dispersión nos informan sobre cuánto se alejan

Más detalles

2 Introducción a la inferencia estadística Introducción Teoría de conteo Variaciones con repetición...

2 Introducción a la inferencia estadística Introducción Teoría de conteo Variaciones con repetición... Contenidos 1 Introducción al paquete estadístico S-PLUS 19 1.1 Introducción a S-PLUS............................ 21 1.1.1 Cómo entrar, salir y consultar la ayuda en S-PLUS........ 21 1.2 Conjuntos de datos..............................

Más detalles

ALTERNATIVAS NO PARAMÉTRICAS A LOS CONTRASTES DE MEDIAS

ALTERNATIVAS NO PARAMÉTRICAS A LOS CONTRASTES DE MEDIAS ALTERNATIVAS NO PARAMÉTRICAS A LOS CONTRASTES DE MEDIAS 1.- Introducción... 2 2.- Prueba U de Mann Whitney para muestras independientes... 3 3.- Prueba t de Wicoxon para muestras apareadas... 8 1.- Introducción

Más detalles

Guía de actividad Independiente No 5. Estadística Descriptiva. Nombre del estudiante: Fecha:

Guía de actividad Independiente No 5. Estadística Descriptiva. Nombre del estudiante: Fecha: Guía de actividad Independiente No 5. NOMBRE DE LA ASIGNATURA: Estadística Descriptiva TUTOR: Deivis Galván Cabrera Nombre del estudiante: Fecha: 1. Al comenzar el curso se pasó una encuesta a los alumnos

Más detalles

Tema 4: Otros Métodos de Análisis de Datos Cuantitativos y Cualitativos

Tema 4: Otros Métodos de Análisis de Datos Cuantitativos y Cualitativos Tema 4: Otros Métodos de Análisis de Datos Cuantitativos y Cualitativos Metodología de la Investigación en Fisioterapia Miguel González Velasco Departamento de Matemáticas. Universidad de Extremadura M.

Más detalles

UNIVERSIDAD MARÍA AUXILIADORA UMA

UNIVERSIDAD MARÍA AUXILIADORA UMA CARRERA PROFESIONAL DE ENFERMERIA SÍLABO DE BIOESTADÍSTICA I. DATOS GENERALES: 1.1. Carreras profesionales : Enfermería 1.2. Semestre académico : 2015 - I 1.3. Ciclo : III 1.4. Pre-requisito : Matemática

Más detalles

Presentación de la Asignatura. Estadística II. Prof. Sergio Jurado Chamorro

Presentación de la Asignatura. Estadística II. Prof. Sergio Jurado Chamorro Presentación de la Asignatura Estadística II Prof. Sergio Jurado Chamorro Estadística II: La asignatura Contexto Enfoque Nivel matemático Conocimientos básicos Otro requerimientos Herramienta de apoyo

Más detalles