Cuestiones: Variable dependiente, variable independiente, variable extraña
|
|
|
- Óscar Ruiz Ortiz
- hace 7 años
- Vistas:
Transcripción
1 ESTADÍSTICA II. Nom i Cognoms: data: SUPUESTO DE INVESTIGACIÓN: trastornos del lenguaje y Alzheimer. Supongamos que un investigador está interesado en estimar la magnitud de la diferencia entre dos medias muestrales (tamaño del efecto) cuyos datos se presentan en la Tabla 16. Vamos a utilizar el ejemplo de Zakzanis (2001). El estudio incluye 10 participantes en el grupo experimental (n 1 ) y 10 participantes en el grupo de control (n 2 ). El objetivo del estudio es comprobar la ejecución de todos los participantes en el Boston Naming Test (BNT, Kaplan, Goodglass y Weintraub, 1983, 2001). El test denominado BNT es uno de los instrumento neuropsicológico más utilizado en el área de los trastornos del lenguaje, concretamente en el área de la capacidad de denominación visuo-verbal o la dificultad para denominar. La prueba está formada por un cuaderno con 60 láminas con dibujos lineales en blanco y negro que el sujeto debe denominar. Por ejemplo se representa una cama, un helicóptero, una raqueta, un cactus, una pirámide y así hasta sesenta dibujos. El orden de presentación de los estímulos va de menor a mayor dificultad. La puntuación final de la prueba se obtiene mediante la suma de las respuestas correctas de forma espontánea y las correctas tras la pista semántica. La máxima puntuación es de 60 (Quiñones-Úbeda, Peña-Casanova, Böhm, Gramunt-Fombuena y Comas, 2004). En español existe una versión reducida de 12 ítems (Serrano, Allegri, Drake, Butman, Harris, Nagle C. et al., 2001). Este instrumento se suele aplicar para detectar la enfermedad de Alzheimer. En la tabla 16 se detallan los datos de la evaluación con el BNT en ambos grupos (N = 20) junto con los resultados descriptivos de puntuaciones medias, desviaciones típicas (DT), errores típicos (ET), puntuación máxima y mínima de cada grupo, la moda o puntuación con mayor frecuencia y los valores empíricos de las pruebas estadísticas t de Student y también la de la razón F del análisis de la varianza junto con los valores de probabilidad correspondientes. Por supuesto nunca se deben aplicar ambas pruebas en un trabajo de investigación. Aquí se han ejecutado las dos pruebas para presentar de forma didáctica ambos tipos de contrastes pero el investigador decide qué prueba de las dos debe aplicar en su estudio. Además se incluye la duración de la enfermedad en años. Cuestiones: Variable dependiente, variable independiente, variable extraña Diseño n: N: Media de los grupos y la total: Desviación Típica de cada grupo: 1
2 Varianza de cada grupo: Error Típico de cada grupo: Mínimo de cada grupo: Máximo de cada grupo: Moda de cada grupo: Correlación entre la puntuación y la duración de la enfermedad Correlación entre las puntuaciones y los grupos Contraste estadístico: Prueba t o Prueba F (se calculará cuando tratemos el Tema de Constrate Estadístico) (pàg. 92 i següents del llibre recomanat). Variància poblacional coneguda. Exercici 1. Exercici 2. Variància poblacional desconeguda SPSS Exercici d Alzheimer. Estimar l interval de una mitjana i de la diferéncia de mitjanes Exercici 3. Estimar el interval de confiança de la mitjana del grup d Alzheimer (a1). 2
3 Exercici 4. Estimar el interval de confiança de la mitjana del grup de control (a2). Exercici 5. Estimar el interval de confiança de la diferència de mitjanes entre el experimental i el grup de control (a2). Estimar el Error Típico o Estandar para la diferencia de medias 3
4 Solución del ejercicio. Para obtener los descriptivos por grupos podemos hacerlo de dos maneras diferentes: 1. Seleccionando casos 2. A través de la ventana de ANALIZAR---COMPARAR MEDIAS---MEDIAS 1. Seleccionar casos 2. A través de la ventana de ANALIZAR---COMPARAR MEDIAS---MEDIAS RESULTADOS Figura 1. Datos de la investigación: puntuaciones en el Boston Naming Test Grupo Experimental Duración de la enfermedad Grupo de control Enfermedad de Alzheimer en años Sin enfermedad de Alzheimer
5 n: Media: Desviación Típica: Varianza: Error Típico: Mínimo: Máximo: Moda Prueba t: Prueba F: S n 4.6 ( ) 16 amodal t (18) = -3.89, p < 0.01 F (1, 18) = 15.16, p < ( 51 amodal Correlación entre las puntuaciones y los grupos: r = Correlación entre la puntuación y la duración de la enfermedad: r = 0.96, p < S n ) INTRODUCCIÓN DE DATOS ANALIZAR COMPARAR MEDIAS---MEDIAS: descriptivos con el error típico de la media 5
6 6
7 COMPUTAR EL ERROR TÍPICO DE LA DIFERENCIA DE MEDIAS Es necesario ejecutar: Prueba t de Student PARA GRUPOS INDEPENDIENTES (diseño entre-sujetos) 7
8 CONSTRASTE DE DOS MEDIAS: GRUPOS INDEPENDIENTES: prueba t de Student para muestras independientes: ANALIZAR---COMPARAR MEDIAS---PRUEBA T PARA MUESTRAS INDEPENDIENTES Resultados 8
9 9
10 ANOVAS unifactoriales entre-sujetos. Medias Cuadráticas. Prueba F Vamos a realizar el mismo ejercicio pero con un modelo de Análisis de la Varianza (ANOVA) En la práctica real no se deben realizar los dos análisis. Sólo se trata de un ejercicio de clase. El investigador deberá seleccionar la técnica de análisis estadístico que mejor describa sus resultados. Dentro de los modelos de análisis de la varianza se habla de diseños unifactoriales cuando la investigación tiene un factor o variable independiente y diseños entre-sujetos cuando los sujetos sólo son evaluados en una condición de la variable independiente. Frente a ellos, existen los diseños factoriales (con más de una variable independiente o factor; al menos dos factores) y los diseños intra-sujetos o de medidas repetidas (los sujetos son evaluados en más de una ocasión, por ejemplo los diseños pre-test y post-tes). Como no se cumple la homogeneidad de varianzas será necesario calcular el ajuste de los grados de libertad mediante la prueba de Welch. Los grados de libertad, entregrupos (gl 1 ) e intragrupos corregidos (gl 2 ) en función del grado en que las varianzas intragrupos se separan de la igualdad absoluta. Corrección de los grados de libertad del error: Opciones: Ejecutando las pruebas robustas de igualdad de las medias: Como se puede observar los grados de libertad se han reducido de forma marcada de 18 a 9.876, lo que es indicativo de la posible ausencia de homocedasticidad de las varianzas. Cuestión que se ha comprobado con la prueba de Leven (p<0.05). ESTIMACIÓN DE EFECTOS. Las medias cuadráticas o varianzas son las desviaciones típicas al cuadrado. Tamaño del efecto: d de Cohen, coeficiente de correlación, eta cuadrado 10
Existen diferentes criterios de clasificación de las variables: 1.criterio metodológico 2. criterio manipulativo
Qué es una variable Una variable es cualquier entidad que puede tomar diferentes valores. Es decir, una variable es una característica de un individuo o de un objeto que puede tener diferentes valores
Existen diferentes criterios de clasificación de las variables: 1.criterio metodológico 2. criterio manipulativo
Qué es una variable Una variable es cualquier entidad que puede tomar diferentes valores. Es decir, una variable es una característica de un individuo o de un objeto que puede tener diferentes valores
SUPUESTO 1. Enfermedad de Alzheimer y deterioro cognitivo (Zakzanis, 2001)
SUPUESTO 1. Enfermedad de Alzheimer y deterioro cognitivo (Zakzanis, 2001) El instrumento de denominación Boston (Boston Naming Test, BNT, Kaplan, Goodglass, & Weintraub, 2001) es una de las pruebas neuropsicológicas
Prueba t para muestras independientes
Prueba t para muestras independientes El procedimiento Prueba t para muestras independientes compara las medias de dos grupos de casos. Para esta prueba, idealmente los sujetos deben asignarse aleatoriamente
7. De acuerdo con la gráfica siguiente, el contraste estadístico es:
1. Un investigador desea saber si los hombres y las mujeres difieren en flexibilidad cognitiva. Para ello, analiza los datos y obtienen los siguientes resultados. Satisfacen los datos el supuesto de homocedasticidad?
Elaborado por: Pelay, C. y Pérez, J. Prueba t para muestras independientes
Prueba t para muestras independientes 1 El procedimiento Prueba t para muestras independientes compara las medias de dos grupos de casos. Para esta prueba, idealmente los sujetos deben asignarse aleatoriamente
1. Realice la prueba de homogeneidad de variancias e interprete los resultados.
1ª PRÁCTICA DE ORDENADOR (FEEDBACK) Un investigador pretende evaluar la eficacia de dos programas para mejorar las habilidades lectoras en escolares de sexto curso. Para ello asigna aleatoriamente seis
TEMA 10 COMPARAR MEDIAS
TEMA 10 COMPARAR MEDIAS Los procedimientos incluidos en el menú Comparar medias permiten el cálculo de medias y otros estadísticos, así como la comparación de medias para diferentes tipos de variables,
14 horas. 20 horas
EJERCICIOS PROPUESTOS ANALISIS DE VARIANZA. Se realiza un ANOVA para comparar el tiempo que demora en aliviar el dolor de cabeza de varios tipos de analgésicos. Se obtiene como resultado un test observado
DISEÑOS EXPERIMENTALES DE DOS GRUPOS Y MULTIGRUPO
TEMA II ESQUEMA GENERAL Definición y clasificación del diseño experimental de grupos Diseño experimental de dos grupos: definición y clasificación Diseño experimental de dos grupos: análisis estadístico
TEMA 4 FASE ESTADÍSTICO-ANALÍTICA: RECURSOS PARA EL ANÁLISIS DE DATOS
TEMA 4 FASE ESTADÍSTICO-ANALÍTICA: RECURSOS PARA EL ANÁLISIS DE DATOS FASES EN EL ANÁLISIS DE LOS DATOS DE UNA INVESTIGACIÓN SELECCIÓN HIPÓTESIS DE INVESTIGACIÓN Modelo de Análisis Técnica de Análisis
DISEÑO Y ANÁLISIS DE DATOS EN PSICOLOGÍA II
DISEÑO Y ANÁLISIS DE DATOS EN PSICOLOGÍA II PRÁCTICA 5 En una determinada investigación se estudió el rendimiento en matemáticas en función del estilo de aprendizaje de una serie de estudiantes de educación
TÉCNICAS ESTADÍSTICAS APLICADAS EN NUTRICIÓN Y SALUD
TÉCNICAS ESTADÍSTICAS APLICADAS EN NUTRICIÓN Y SALUD Contrastes de hipótesis paramétricos para una y varias muestras: contrastes sobre la media, varianza y una proporción. Contrastes sobre la diferencia
ANALIZAR Comparar medias
Diseño entre-grupos univariado unifactorial con A>2. Contraste de hipótesis específicas Dolores Frías-Navarro Universidad de Valencia http://www.uv.es/friasnav/ Hasta ahora hemos ido desarrollando las
Y ± E max 37,3 ± 0,866 (36,43; 38,17)
Modelo A. Febrero 2015. No debe entregar los enunciados Fórmula de corrección: Aciertos (Errores / 2) Material permitido: Formulario de cualquier curso académico sin anotaciones y cualquier tipo de calculadora
9.- Análisis estadísticos con R Commander
Tipos de datos - Cuantitativos: se expresan numéricamente. - Discretos: Toman valores numéricos aislados - Continuos: Toman cualquier valor dentro de unos límites dados - Categóricos o Cualitativos: No
1. Identifique el tipo de diseño que se ha utilizado en esta investigación.
3ª PRÁCTICA DE ORDENADOR: práctica A (FEEDBACK) Winer (71) describió un experimento en el que se estudió el efecto de tres drogas sobre el tiempo de reacción en una serie de tareas estandarizadas. Se observó
Supuestos y comparaciones múltiples
Supuestos y comparaciones múltiples Diseño de Experimentos Pruebas estadísticas Pruebas de bondad de ajuste Prueba de hipótesis para probar si un conjunto de datos se puede asumir bajo una distribución
DISEÑO CON MÁS DE DOS CONDICIONES (A>2) ANOVA unifactorial con A>2 y contraste de hipótesis específicas
DISEÑO CON MÁS DE DOS CONDICIONES (A>2) ANOVA unifactorial con A>2 y contraste de hipótesis específicas Hasta ahora hemos ido desarrollando las pruebas parámetricas para contrastar hipótesis de un grupo
Análisis de la varianza. Magdalena Cladera Munar Departamento de Economía Aplicada Universitat de les Illes Balears
Análisis de la varianza Magdalena Cladera Munar [email protected] Departamento de Economía Aplicada Universitat de les Illes Balears CONTENIDOS Análisis de la varianza de un factor. Análisis de la varianza
KIBBUTZ.ES. Si se pretende comprobar si la proporción de niños es igual a la de niñas en la población de la que proceden los datos:
Modelo C. Septiembre 015. No debe entregar los enunciados Fórmula de corrección: Aciertos (Errores / ) Material permitido: Formulario y cualquier tipo de calculadora en la que no se pueda introducir texto
T. 4 Inferencia estadística acerca de la relación entre variables (II): el análisis de varianza (ANOVA).
T. 4 Inferencia estadística acerca de la relación entre variables (II): el análisis de varianza (ANOVA). 1. El ANOVA de un factor para muestras independientes 2. El ANOVA de un factor para muestras relacionadas
ANÁLISIS DE LA VARIANZA CON UN FACTOR (ANOVA)
ANÁLISIS DE LA VARIANZA CON UN FACTOR (ANOVA) El análisis de la varianza permite contrastar la hipótesis nula de que las medias de K poblaciones (K >2) son iguales, frente a la hipótesis alternativa de
TÉCNICAS ESTADÍSTICAS APLICADAS EN NUTRICIÓN Y SALUD
TÉCNICAS ESTADÍSTICAS APLICADAS EN NUTRICIÓN Y SALUD Contrastes de hipótesis paramétricos para una y varias muestras: contrastes sobre la media, varianza y una proporción. Contrastes sobre la diferencia
Departamento de Medicina Preventiva y Salud Publica e Historia de la Ciencia. Universidad Complutense de Madrid. SPSS para windows.
TEMA 12 REGRESIÓN LINEAL Mediante la regresión lineal se busca hallar la línea recta que mejor explica la relación entre unas variables independientes o variables de exposición y una variable dependiente
DISEÑO Y ANÁLISIS DE DATOS EN PSICOLOGÍA II
DISEÑO Y ANÁLISIS DE DATOS EN PSICOLOGÍA II PRÁCTICA 6 Problema 1.- Tengamos las variables sexo, nivel económico y consumo de tabaco. Los datos son los siguientes: Hombre Mujer Alto Bajo Alto Bajo 10 10
Tipo de punta (factor) (bloques)
Ejemplo Diseño Bloques al Azar Ejercicio -6 (Pág. 99 Montgomery) Probeta Tipo de punta (factor) (bloques) 9. 9. 9.6 0.0 9. 9. 9.8 9.9 9. 9. 9.5 9.7 9.7 9.6 0.0 0. ) Representación gráfica de los datos
Artículo de los payasos
Artículo de los payasos (Página 30 a 3 del libro de Técnica estadística y diseño de investigación) Utilizando los datos de la tabla 3 podemos completar la siguiente información (valores p de probabilidad
ANALIZAR Comparar medias
Diseño entre-grupos univariado unifactorial con A>2. Contraste de hipótesis específicas Dolores Frías-Navarro Universidad de Valencia http://www.uv.es/friasnav/ Hasta ahora hemos ido desarrollando las
Capítulo 13 Contrastes sobre medias Los procedimientos Medias y Prueba T
Capítulo 13 Contrastes sobre medias Los procedimientos Medias y Prueba T La opción Comparar medias del menú Analizar contiene varios de los procedimientos estadísticos diseñados para efectuar contrastes
Capítulo 13. Contrastes sobre medias: Los procedimientos Medias y Prueba T. Medias
Capítulo 13 Contrastes sobre medias: Los procedimientos Medias y Prueba T La opción Comparar medias del menú Analizar contiene varios de los procedimientos estadísticos diseñados para efectuar contrastes
Folleto de Estadísticas. Teoría del 2do Parcial
Folleto de Estadísticas Teoría del 2do Parcial 2012 Variables aleatorias conjuntas continuas: Sean X y Y dos variables aleatorias continuas con ellas se asocia una función denominada función de densidad
ÍNDICE INTRODUCCIÓN... 21
INTRODUCCIÓN... 21 CAPÍTULO 1. ORGANIZACIÓN DE LOS DATOS Y REPRESENTACIONES GRÁFICAS... 23 1. ORGANIZACIÓN DE LOS DATOS... 23 1.1. La distribución de frecuencias... 24 1.2. Agrupación en intervalos...
Sujeto X 1 V 1 E 1 X 2 V 2 E ,8 3,2 1,6 4,8 3,2 1,6
Ejercicios capítulo 3. Modelo clásico y fiabilidad 11 Ejercicios 3.1. Supongamos que conocemos las puntuaciones observadas, verdaderas y error de una población de 5 personas en dos formas paralelas de
PRÁCTICA 3. REGRESIÓN LINEAL SIMPLE CON SPSS Ajuste de un modelo de regresión lineal simple Porcentaje de variabilidad explicado
PÁCTICA 3. EGESIÓN LINEAL SIMPLE CON SPSS 3.1. Gráfico de dispersión 3.2. Ajuste de un modelo de regresión lineal simple 3.3. Porcentaje de variabilidad explicado 3.4 Es adecuado este modelo para ajustar
Preparación examen PIR Diseños Experimentales, Estadística y Psicometría
Preparación examen PIR Diseños Experimentales, Estadística y Psicometría INDICE DISEÑOS EXPERIMENTALES TEMA 1: LA INVESTIGACIÓN CIENTÍFICA EN PSICOLOGÍA... 14 1. INTRODUCCIÓN... 14 1.1. Conocimiento científico...
Modelado y simulación en Ingeniería Química. Manuel Rodríguez
ÍNDICE Modelos de caja gris Calibración de modelos Estimación de parámetros Análisis de la estimación Regresión no lineal 1. Modelos de caja gris Son modelos de un sistema (o proceso), donde: Desarrollados
GUÍA 5 : EFECTO DEL ESTRÉS EN EL PESO DE RECIÉN NACIDOS
GUÍA 5 : EFECTO DEL ESTRÉS EN EL PESO DE RECIÉN NACIDOS Se realizó un estudio a partir de una muestra aleatoria de mujeres atendidas por el departamento de obstetricia y ginecología de cierta clínica particular.
Inferencia Estadística. Pruebas paramétricas y no paramétricas. Análisis de datos
Inferencia Estadística. Pruebas paramétricas y no paramétricas. Análisis de datos VDC Prof. Mª JOSÉ PRIETO CASTELLÓ ANÁLISIS ESTADÍSTICO DE DATOS Estadística Descriptiva: -Cualitativas: frecuencias, porcentajes
Ejemplo Diseño Completamente aleatorizado (Pág. 470 Montgomery)
Ejemplo Diseño Completamente aleatorizado (Pág. 47 Montgomery) ) Representación gráfica de los datos mediante diagramas de caja Resumen del procesamiento de los casos Tension del papel (psi) Casos Válidos
Práctica 5 ANÁLISIS DE UNA MUESTRA INTERVALOS DE CONFIANZA CONTRASTE DE HIPÓTESIS
Práctica. Intervalos de confianza 1 Práctica ANÁLISIS DE UNA MUESTRA INTERVALOS DE CONFIANZA CONTRASTE DE HIPÓTESIS Objetivos: Ilustrar el grado de fiabilidad de un intervalo de confianza cuando se utiliza
U ED Tudela Diseños de Investigación y Análisis de Datos - Tema 7
Diseños de Investigación y Análisis de Datos Preguntas de exámenes TEMA 7: A OVA PARA MUESTRAS I DEPE DIE TES (2 FACTORES) 1.- Se dice que un diseño bifactorial es equilibrado si: A) Los grupos tienen
Bloque 3 Tema 14 ANÁLISIS DE LA VARIANZA. PRUEBA F
Bloque 3 Tema 4 AÁLISIS DE LA VARIAZA. PRUEBA F El objetivo fundamental de la experimentación es estudiar la posible relación de causalidad existente entre dos o más variables. Este estudio representa
INDICE 1. Qué es la Estadística? 2.Descripción de Datos: Distribuciones de Frecuencia y Presentación Gráfica
INDICE 1. Qué es la Estadística? 1 Introducción 2 Qué significa estadística? 2 Por qué se estudia la estadística? 4 Tipos de estadística 5 Estadística descriptiva 5 Estadística inferencial 6 Tipos de variables
SIGNIFICACIÓN ESTADÍSTICA DE LA DIFERENCIA ENTRE 2 MEDIAS
SIGNIFICACIÓN ESTADÍSTICA DE LA DIFERENCIA ENTRE 2 MEDIAS 3datos 2011 Variables CUANTITATIVAS Valor más representativo: MEDIA aritmética Técnicas Inferenciales sobre la significación de la diferencia entre
DISEÑOS DE INVESTIGACIÓN Y ANÁLISIS DE DATOS Enero/febrero Código asignatura: MODELO A DURACION: 2 HORAS
DISEÑOS DE INVESTIGACIÓN Y ANÁLISIS DE DATOS Enero/febrero 2014. Código asignatura: 62012054 MODELO A DURACION: 2 HORAS Material: Formulario, Tablas y calculadora no programable Calificación= (0,4 x Aciertos)
ESQUEMA GENERAL Concepto y formato del Diseño de grupo control no equivalente (DGCNE) Clasificación
TEMA V ESQUEMA GENERAL Concepto y formato del Diseño de grupo control no equivalente (DGCNE) Clasificación Análisis de la covarianza (ANCOVA) Modelos alternativos de análisis DISEÑO DE GRUPO CONTROL NO
Regresión con variables independientes cualitativas
Regresión con variables independientes cualitativas.- Introducción...2 2.- Regresión con variable cualitativa dicotómica...2 3.- Regresión con variable cualitativa de varias categorías...6 2.- Introducción.
ÍNDICE CAPÍTULO 1. INTRODUCCIÓN
ÍNDICE CAPÍTULO 1. INTRODUCCIÓN 1.1. OBJETO DE LA ESTADÍSTICA... 17 1.2. POBLACIONES... 18 1.3. VARIABLES ALEATORIAS... 19 1.3.1. Concepto... 19 1.3.2. Variables discretas y variables continuas... 20 1.3.3.
INTRODUCCIÓN AL ANÁLISIS DE DATOS FEBRERO Código asignatura: EXAMEN MODELO B DURACION: 2 HORAS
Febrero 2011 EXAMEN MODELO B Pág. 1 INTRODUCCIÓN AL ANÁLISIS DE DATOS FEBRERO Código asignatura: 62011037 EXAMEN MODELO B DURACION: 2 HORAS X Ciudad A Ciudad B 17-20 10 17 13-16 20 27 9-12 25 15 5-8 15
Unidad 1 DISTRIBUCIONES MUESTRALES Objetivo particular El alumno identificará distribuciones discretas y continuas, obtendrá la probabilidad de
Nombre de la materia Estadística Inferencial Departamento Ciencias Aplicadas de la Información Academia Ciencias Básicas Clave Horas-teoría Horas-práctica Horas-AI Total-horas Créditos I4863 60 20 0 80
Objetivo. Conocer la forma de calcular las Medidas de Dispersión de una distribución con OpenOffice Calc CALC: MEDIDAS DE DISPERSIÓN
Objetivo Conocer la forma de calcular las Medidas de Dispersión de una distribución con OpenOffice Calc CALC: MEDIDAS DE DISPERSIÓN La dispersión otorga el grado de distanciamiento de un conjunto de valores
BIOSESTADÍSTICA AMIGABLE
BIOSESTADÍSTICA AMIGABLE EJEMPLO: Ficha solicitud Colección Reserva UNIVERSIDAD AUSTRAL DE CHILE SISTEMA DE BIBLIOTECAS Clasificación: 574.015195 MAR 2001 Vol. y/o Copia: Apellido Autor: Título: C. 1 (SEGÚN
DISEÑOS EXPERIMENTALES DE DOS GRUPOS Y MULTIGRUPO
TEMA II ESQUEMA GENERAL Diseño experimental de dos grupos: definición y clasificación Formatos del diseño y prueba de hipótesis Diseño experimental multigrupo: definición Formato del diseño multigrupo
PROGRAMA DEL CURSO SOBRE PSICOLOGÍA EXPERIMENTAL MANUEL MIGUEL RAMOS ÁLVAREZ
PROGRAMA DEL CURSO SOBRE PSICOLOGÍA EXPERIMENTAL MANUEL MIGUEL RAMOS ÁLVAREZ Resumen de Psicología Experimental 1 PSICOLOGÍA EXPERIMENTAL Manuel Miguel Ramos Alvarez. I. FUNDAMENTOS METODOLÓGICOS DE LA
GUIA DOCENTE ESTADISTICA
1 GUIA DOCENTE ESTADISTICA 1- Datos de identificación Asignatura: Estadística Carácter: Formación básica Titulación: Psicología Ciclo: Grado Curso: 1 Cuatrimestre: Anual Departamento: Metodología de las
PRUEBA DE HIPÓTESIS BENJAMIN MAMANI CONDORI
PRUEBA DE HIPÓTESIS BENJAMIN MAMANI CONDORI 2014 Para qué es útil la estadística inferencial? Se utiliza para probar hipótesis y generalizar los resultados obtenidos en la muestra a la población o universo.
Estas dos clases. ANOVA I - Conceptos generales - Supuestos - ANOVA de una vía - Transformación de datos - Test a Posteriori - ANOVA de dos vías
ANOVA I 19-8-2014 Estas dos clases ANOVA I - Conceptos generales - Supuestos - ANOVA de una vía - Transformación de datos - Test a Posteriori - ANOVA de dos vías ANOVA II - ANOVA factorial - ANCOVA (análisis
Medidas de dispersión
Medidas de dispersión Las medidas de dispersión nos informan sobre cuánto se alejan del centro los valores de la distribución. Las medidas de dispersión son: Rango o recorrido El rango es la diferencia
T2. El modelo lineal simple
T2. El modelo lineal simple Ana J. López y Rigoberto Pérez Dpto Economía Aplicada. Universidad de Oviedo Curso 2010-2011 Curso 2010-2011 1 / 40 Índice 1 Planteamiento e hipótesis básicas 2 Estimación de
ESQUEMA GENERAL DISEÑO CUASI-EXPERIMENTAL
TEMA V ESQUEMA GENERAL Definición y clasificación del diseño cuasi-experimental Estructuras básicas: Diseño pre-experimental Diseño de grupo control no equivalente: Definición Diseño de grupo control no
TEMA 5 Estadística descriptiva. Análisis de datos
TEMA 5 Estadística descriptiva. Análisis de datos Florence Nightingale (1820-1910) 1. Introducción. Modelos matemáticos 2. Métodos numéricos. Resolución de sistemas lineales y ecuaciones no lineales 3.
DISEÑO Y ANÁLISIS DE DATOS EN PSICOLOGÍA II
DISEÑO Y ANÁLISIS DE DATOS EN PSICOLOGÍA II SOLUCIÓN PRACTICA 1 Problema 2-. Para una serie de investigaciones, en las que el tamaño de la muestra era el mismo, se ha calculado la t de Student con objeto
Capítulo 14 Análisis de varianza de un factor El procedimiento ANOVA de un factor
Capítulo 14 Análisis de varianza de un factor El procedimiento ANOVA de un factor El análisis de varianza (ANOVA) de un factor sirve para comparar varios grupos en una variable cuantitativa. Se trata,
Método de cuadrados mínimos
REGRESIÓN LINEAL Gran parte del pronóstico estadístico del tiempo está basado en el procedimiento conocido como regresión lineal. Regresión lineal simple (RLS) Describe la relación lineal entre dos variables,
Estadística II Examen final junio - 17/06/16 Curso 2015/16 Soluciones Duración del examen: 2 h. y 45 min.
Estadística II Examen final junio - 17/06/16 Curso 201/16 Soluciones Duración del examen: 2 h. y 4 min. 1. (3, puntos) La publicidad de un fondo de inversión afirma que la rentabilidad media anual del
ESTAD2 - Estadística II
Unidad responsable: Unidad que imparte: Curso: Titulación: Créditos ECTS: 2013 801 - EUNCET - Centro Universitario Euncet Business School 801 - EUNCET - Centro Universitario Euncet Business School GRADO
ESTADÍSTICA 3º CC. AMBIENTALES PRÁCTICA 1: Introducción al SPSS
ESTADÍSTICA 3º CC. AMBIENTALES PRÁCTICA 1: Introducción al SPSS Experimento y datos: Supongamos que estamos interesados en analizar la influencia del tipo de suelos sobre la abundancia de romeros (Rosmarinus
Longitud = Calcular la media, la mediana, la moda y la desviación estándar de la muestra en Matlab.
LABORATORIO 1 LABORATORIO INFORMÁTICO Un fabricante de hormigón preparado tiene su proceso de producción bajo control. Está interesado en conocer cuál es la distribución de los valores de la resistencia
A: Broca B: velocidad A B AB Vibración Totales 1/ ,2 18,9 12,9 14,4 64,4 = (1) 1/ ,2 24,0 22,4 22,5 96,1 = a
LORTORIO 8 - LORTORIO INFORMÁTICO Caso. Interesa estudiar el efecto del tamaño de broca (factor ) y de la velocidad (factor ) sobre la vibración de la ranuradora (respuesta Y). Para ello se decide utilizar
Estadísticos Aplicados en el SPSS 2008
PRUEBAS ESTADISTICAS QUE SE APLICAN (SPSS 10.0) PARAMÉTRICAS:... 2 Prueba t de Student para una muestra... 2 Prueba t par muestras independientes... 2 ANOVA de una vía (multigrupo)... 2 ANOVA de dos vías
ESTIMACIÓN Y PRUEBA DE HIPÓTESIS INTERVALOS DE CONFIANZA
www.jmontenegro.wordpress.com UNI ESTIMACIÓN Y PRUEBA DE HIPÓTESIS INTERVALOS DE CONFIANZA PROF. JOHNNY MONTENEGRO MOLINA Objetivos Desarrollar el concepto de estimación de parámetros Explicar qué es una
ANOVA. Análisis de la Varianza. Univariante Efectos fijos Muestras independientes
ANOVA Análisis de la Varianza Univariante Efectos fijos Muestras independientes De la t a la F En el test de la t de Student para muestras independientes, aprendimos como usar la distribución t para contrastar
CONTRASTES DE HIPÓTESES
CONTRASTES DE IPÓTESES 1. Contraste de hipótesis 2. Contrastes de tipo paramétrico 2.1 Contraste T para una muestra 2.2 Contraste T para dos muestras independientes 2.3 Análisis de la varianza 3. Contrastes
2. EL DISEÑO UNIFACTORIAL (COMPARACION DE TRATAMIENTOS)
2. EL DISEÑO UNIFACTORIAL (COMPARACION DE TRATAMIENTOS) La idea principal en este capitulo es el inicio a planear los diseño experimentales y su correspondiente análisis estadístico. En este caso iniciaremos
Medidas de dispersión. Rango o recorrido. Desviación media. Medidas de dispersión
Inicio Aritmética Álgebra Geometría Cálculo Estadística Trigonometría A B C D E F G H I J K L M N O P Q R S T U V W X Y Z Medidas de dispersión Las medidas de dispersión nos informan sobre cuánto se alejan
2 Introducción a la inferencia estadística Introducción Teoría de conteo Variaciones con repetición...
Contenidos 1 Introducción al paquete estadístico S-PLUS 19 1.1 Introducción a S-PLUS............................ 21 1.1.1 Cómo entrar, salir y consultar la ayuda en S-PLUS........ 21 1.2 Conjuntos de datos..............................
ALTERNATIVAS NO PARAMÉTRICAS A LOS CONTRASTES DE MEDIAS
ALTERNATIVAS NO PARAMÉTRICAS A LOS CONTRASTES DE MEDIAS 1.- Introducción... 2 2.- Prueba U de Mann Whitney para muestras independientes... 3 3.- Prueba t de Wicoxon para muestras apareadas... 8 1.- Introducción
Guía de actividad Independiente No 5. Estadística Descriptiva. Nombre del estudiante: Fecha:
Guía de actividad Independiente No 5. NOMBRE DE LA ASIGNATURA: Estadística Descriptiva TUTOR: Deivis Galván Cabrera Nombre del estudiante: Fecha: 1. Al comenzar el curso se pasó una encuesta a los alumnos
Tema 4: Otros Métodos de Análisis de Datos Cuantitativos y Cualitativos
Tema 4: Otros Métodos de Análisis de Datos Cuantitativos y Cualitativos Metodología de la Investigación en Fisioterapia Miguel González Velasco Departamento de Matemáticas. Universidad de Extremadura M.
UNIVERSIDAD MARÍA AUXILIADORA UMA
CARRERA PROFESIONAL DE ENFERMERIA SÍLABO DE BIOESTADÍSTICA I. DATOS GENERALES: 1.1. Carreras profesionales : Enfermería 1.2. Semestre académico : 2015 - I 1.3. Ciclo : III 1.4. Pre-requisito : Matemática
Presentación de la Asignatura. Estadística II. Prof. Sergio Jurado Chamorro
Presentación de la Asignatura Estadística II Prof. Sergio Jurado Chamorro Estadística II: La asignatura Contexto Enfoque Nivel matemático Conocimientos básicos Otro requerimientos Herramienta de apoyo
