EJERCICIOS UNIDAD 1. V(v) I(A) I + Dispositivo. - a) Construcción del modelo matemático

Tamaño: px
Comenzar la demostración a partir de la página:

Download "EJERCICIOS UNIDAD 1. V(v) I(A) I + Dispositivo. - a) Construcción del modelo matemático"

Transcripción

1 EJERCICIOS UNIDAD Construcción de un modelo de circuito basándose en medidas en los voltajes. Se miden los voltajes y las corrientes en las terminales del dispositivo mostrado y obtener los valores de V e i los cuales se muestran en la tabla V(v) I(A) I + Dispositivo v - a) Construcción del modelo matemático SOLUCIÓN La ordenada al origen en este caso será de 40v se procede a obtener la pendiente, que revisando la grafica será negativa m = y2 y1 m = = 2 la ecuación de la recta nos queda de la siguiente x2 X1 10 manera v = 2i + 20 ahora se calcula la resistencia del elemento de la siguiente manera R = v R = 20 = 2 i 10

2 b) Utilizando el siguiente modelo de circuito, encontrar la potencia que este dispositivo entregara a una resistencia de 18Ω 2Ω DC 40v 18Ω R=2Ω+18Ω=20Ω i = 40v 20Ω = 2A P = (2)2 (18) = 72w 2.- LEY DE VOLTAJES DE KIRCHOFF Del siguiente circuito obtener voltajes utilizando LVK + V2-2Ω + DC 24v 7Ω V7 - + V2 -

3 SOLUCIÓN -24V+V2+V7-V2=0 2i+7i-2i=24v 7i=24v i = 24/7 = 3.42A 3.- Aplicar la LCK para obtener las Corrientes del siguiente circuito obtener ig, ia Ia=20A 9Ω io ia 12Ω 20Ω ig - 15Ω Para la solución de este problema tomamos la siguiente convención las corrientes que entran son (-) las que salen (+) Además reducimos al circuito de la siguiente manera R= =44

4 io ia 12Ω 44Ω ig - -ig+io+ia=0 ia=20a Ecuación del nodo Se obtiene el voltaje de de R=44Ω V = RI V = (44Ω)(20A) = 880V i = 880v 12Ω = 73.33A por lo tanto ig se obtiene de la siguiente manera Io+ia=ig =93.33ª 4.- Del siguiente circuito obtener a) la respuesta libre b) forzada c) total d) transitoria e) permanente f) constante de tiempo Vi=12v Vo Vo(0)=5v

5 3mH CA Vi=12v 12Ω Vo -Vi+VL+Vo=0 Vo=VR VR=Ri i = vr R VL = L(di) dt Se sustituye i VL + Vo = Vi L(di) dt + Ri = Vj ( L R ) dvo dt + ( R R ) Vo = Vi se normaliza (R L ) ( ((L R ) dvo dt + (1 )Vo = Vi L La ecuación nos queda de la siguiente manera dvo dt + (1 l ) Vo = Vi(1 l ) RESPUESTA LIBRE CONDICIONES INICIALES (CI 0 EXCITACIÓN=0 1 SVo(S) Vo(0) + ( ) Vo(S) = 0 SVo(S) Vo(s) = 0 SVo(S) Vo(S) = 5

6 Se factoriza Vo(S) Vo(S)(S ) = 5 Vo(S) = 5 S Se transforma Vo(t) = 5e t respuesta libre Se realizara la respuesta forzada EXC 0 CI=0 Se retoma la ecuación que se obtuvo anteriormente dvo dt Vo = (12) Vo(S)S Vo(S) = S Vo(S)(S ) = S Vo(S) = 36 3 (S)(S ) Vo(S) = A S + B = S S S Se transforma Vo(t) = e T Respuesta forzada Respuesta total Votot = 4.99e t respuesta total

7 UNIDAD 2 EJERCICIO 1 De las siguientes expresiones convertir a fasores y graficarlos a) V = 18.6 cos(ωt 54) V V = V b) V = 48.8 cos(ωt + 90 ) V V = V c) I = 25 cos(ωt + 75) V V = V V= cos -54 i=25 90

8 EJERCICIO 2 Del circuito obtener Ztotal, Voltaje y corriente 50Ω 6µf CA V=30cos(ωt+ 60) 30mH ω =4000rad/ seg Z c = 1 JωC = 1 RAD J(4000( rad = J41.6Ω Z L = JωL = J(4000 ( seg )(6µF) SEG ) (30mH) = J120Ω Z TOT = 50+J78.4 Z TOT = I = = J A V R = (50Ω)( J ) = J = V V L = (J120Ω)( J A) = J38.67 = V L = ( J41.6Ω)( J A) = J13.40 = )

9 RESONANCIA EJERCICIO 3 Del siguiente circuito obtener frecuencia central, valor del resistor, valor del inductor, teniendo las siguientes frecuencias fc1=10khz fc2=10000khz y valor del capacitor c= 1µf L C=1µF CA Vi R a) Obtener la frecuencia de corte F C = F C1 F C2 = (1000HZ)(10000HZ) = Hz = rad seg ω C = 2πF = 2π( Hz) b) Obtener el valor del inductor L ω o = 1 LC despejar L L = 1 = 1 ω 2 C ( rad seg 2 )(1 10 6) = 50.32mH c) Obtener el factor de calidad Q d) Obtener R Q = f Hz = f c2 f c2 1000Hz 10000Hz =

10 Q = L CR 2 L Despejar R R = = 50.32mH = Ω CQ 2 ( )( ) EJERCICIO 4 Problema de potencia Del siguiente circuito obtener a) Corriente I b) Voltajes V c) Potencias, P, Q, S 1kΩ CA j2ω j25ω 1 Z tot = 1 J K + 1 = J2.173 = J25 I C = = J Q C = J 1 2 V mi m sin(θ V θ I ) = J 1 (12)(6) sin(23 113) = J36VAR 2 I R = = P = 1 2 V mi m cos(θ V θ I ) = 1 (12)(1000) cos(23 0) = Watts 2

11 I L = = A EJERCICIO 5 Q L = J 1 2 V mi m sin(θ V θ I ) = J 1 (12)(0.48) sin( ) = J2.88VAR 2 S = P + Q = J33.12 Un sistema trifásico ABC, con un voltaje de línea Vrms=120V, tiene tres impedancias conectadas en delta de valores Z=5 45 Ω determinar las corrientes de línea y representar el diagrama fasorial de los voltajes y corrientes

12 I CA A I A V AB I AB V BC I BC V CA C I C V AB = = V AB = V V BC = V CA = OBTENER LAS CORRIENTES DE LÍNEAS I AB = V AB Z = = A

13 I BC = V BC Z I CA = V CA Z I AB = J32.74A = I BC = J23.97A = = A I CA = J8.77A = A UTILIZANDO LA LCK LA CORRIENTE IA SE OBTIENE DE LA SIGUIENTE MANERA I A = I AB I AC = ( J32.74) ( J32.74) = j41.53 = I B = I BC I AB = (23.97 J23.97) ( J32.74) = 15.2 J56.71 = I C = I CA I BC = ( J8.77) (23.97 J23.97) = J15.2 = DIAGRAMA FASORIAL Y VAB IAB IA IC IAC X VBC ICA IBC VCA IAB IB

14 Ejercicio tomado del libro de circuitos eléctricos, Mahmood Nahvi, Joseph A. Edminister. Editorial Schaum EJERCICIO 6 Un sistema trifásico CBA a cuatro hilos, con un voltaje de línea de valor eficaz de 130v, tiene tres impedancias Ω conectadas en Y. Determina las corrientes de línea y representar el diagrama fasorial de los voltajes y corrientes V AN I A Z N I N V BN I B B I C V CN C

15 V L = = V an = = V V bn = = V cn = = I A = V AN 3 Z = = I CN = V CN Z = I B = V BN Z = = = UNIDAD 4 Del siguiente circuito obtener el voltaje total que circula por la rama a-b a j3ω 4Ω -j5ω 6Ω j2ω 4A 6Ω j2ω 3Ω b Reducimos las impedancias Z 1 = 4 + j3 Ω Z 2 = 6 j2 Ω Z 3 = j5ω Z 4 = 3 + j2ω Z 5 = 6Ω Redibujamos el circuito

16 4+j3Ω -j5ω CA j2Ω 4A 6Ω 3+j2Ω Empezamos quitando la fuente de corriente y el circuito nos queda de la siguiente manera 4+j3Ω -j5ω CA j2Ω 6Ω 3+j2Ω Una ves quitada la fuente de corriente, nos podemos dar cuenta que dos de las impedancias quedan volando por lo tanto por estas no circula corriente y por lo tanto se quitan el circuito queda de la siguiente manera

17 a 4+j3Ω CA j2Ω 6Ω b Una ves que se tiene este circuito se comienza a obtener el voltaje de las rama a- b por medio del divisor de voltaje Convirtiendo a polar V a b = ( j7.079) (6 j2) (4 + j3) + (6 j2) + (6) V a b = = j j3Ω -j5ω CA j2Ω 4A 6Ω 3+j2Ω

18 Regresamos al circuito original y quitamos ahora la fuente de voltaje a 4+j3Ω -j5ω 6-j2Ω 4A 6Ω 3+j2Ω b Se realiza el serie Z e1 = 4 + j3 + 6 = 10 + j3 a -j5ω 6-j2Ω 4A 10+j3 3+j2Ω b Se realiza el paralelo Z eq2 = El circuito queda de la siguiente forma (10 + j3) (6 j2) = 9.2 j1.6 = (10 + j3) + (6 j2)

19 a -j5ω 9.2-j1.6 4A 3+j2Ω b Como se encuentran en serie la corriente en un circuito serie es la misma por lo tanto para obtener el voltaje de la rama a-b V a b = (9.2 j1.6) 4 = 36.8 j6.4 V a b tot = ( j1.54) + (36.8 j6.4) = j4.86 MÉTODO DE SUSTITUCIÓN Del siguiente circuito sustituir la parte marcada a-b a 20Ω b DC 10V 15Ω 30Ω

20 (10v)(20Ω) V 20Ω = (20Ω + 15Ω + 30Ω) = 3.07v V (10v)(15Ω) 15Ω = (20Ω + 15Ω + 30Ω) (10v)(30) = 2.30vΩ V 30Ω = (20Ω + 15Ω + 30Ω) = 4.6v Sustituir por una fuente de voltaje I = 10v 65Ω = 152.8mA 3.07v DC DC 10V 15Ω 30Ω También se puede sustituir por una fuente de voltaje y una resistencia V=1.07v 19.98Ω DC 2v DC 10V 15Ω 30Ω Transformación de fuentes Del siguiente circuito obtener el voltaje Vo utilizando transformación de fuentes

21 j5ω -j0.2ω 5Ω + CA Ω -j0.12ω Vo j3ω 10Ω - Se realizan las impedancias de algunas de las ramas del circuito, para simplificar el circuito Z 1 = 2 + j3ω Z 2 = 5 j0.2ω Z 3 = 10 j. 12Ω 5-j0.2Ω j5ω 2+j3Ω 10-j0.12Ω Se transforma la fuente de voltaje a fuente de corriente Z 4 = I = = (j5)(2 + j3) j2.5 (j6) + (2 + j3)

22 5-j0.2Ω j j0.12Ω V = Z 4 I = j1.71 Por divisor de voltaje se obtiene el voltaje de salida Vo convirtiendo la fuente de corriente a voltaje j j0.2Ω Vo CA V=1.49-j j0.12Ω V o = ((1.49 j7.04)(10 j0.12) j2.03 = j4.04 =

23 UNIDAD 3 MÉTODOS GENERALES DE ANÁLISIS DE REDES ELÉCTRICAS

1) En el sistema trifásico de la figura se tiene el siguientes señales de voltaje medidas entre cada fase y neutro. Calcule:

1) En el sistema trifásico de la figura se tiene el siguientes señales de voltaje medidas entre cada fase y neutro. Calcule: UNIVERSIDAD TECNOLOGICA DE PEREIRA Taller Nº 1- Circuitos Eléctricos II. 1) En el sistema trifásico de la figura se tiene el siguientes señales de voltaje medidas entre cada fase y neutro. v an = 2 13200

Más detalles

Circuitos eléctricos Básicos

Circuitos eléctricos Básicos Circuitos eléctricos Básicos Escuela de Ingeniería Civil en Informática Universidad de Valparaíso, Chile http:// Fecha revisión: 02/09/2014 Modelos de sistemas eléctricos 2 Diagramas eléctricos v a 3 Cables

Más detalles

TEOREMAS DE REDES EN C.A. Mg. Amancio R. Rojas Flores

TEOREMAS DE REDES EN C.A. Mg. Amancio R. Rojas Flores TEOREMAS DE REDES EN C.A Mg. Amancio R. Rojas Flores TEOREMA DE SUPERPOSICION 2 El teorema de superposición enuncia lo siguiente: El voltaje a través (o corriente a través) un elemento es determinado sumando

Más detalles

GUÍA 7: CORRIENTE ALTERNA Electricidad y Magnetismo

GUÍA 7: CORRIENTE ALTERNA Electricidad y Magnetismo GUÍA 7: CORRIENTE ALTERNA Primer Cuatrimestre 2013 Docentes: Dr. Alejandro Gronoskis Lic. María Inés Auliel Andrés Sabater Universidad Nacional de Tres de febrero Depto de Ingeniería Universidad de Tres

Más detalles

TEORÍA DE LOS CIRCUITOS I Araguás & Perez Paina. Guia 5. Fasores

TEORÍA DE LOS CIRCUITOS I Araguás & Perez Paina. Guia 5. Fasores Guia 5. Fasores 1. Utilizando el metodo fasorial, encontrar la respuesta de estado estable de la tensión en el capacitor v C (t) del circuito de la figura 1. i(t) = 10cos(4t)[A] 4Ω 0,25F v C (t) Figura

Más detalles

TEORÍA DE LOS CIRCUITOS I Araguás & Perez Paina. Guia 5. Fasores

TEORÍA DE LOS CIRCUITOS I Araguás & Perez Paina. Guia 5. Fasores Guia 5. Fasores 1. Utilizando el metodo fasorial, encontrar la respuesta de estado estable de la tensión en el capacitor v C (t) del circuito de la figura 1. i(t) = 10cos(4t)[A] 4Ω 0,25F v C (t) Figura

Más detalles

Ejercicio 1 Sea el circuito de la siguiente figura: a) Calcula la resistencia equivalente del circuito.

Ejercicio 1 Sea el circuito de la siguiente figura: a) Calcula la resistencia equivalente del circuito. Ejercicio Sea el circuito de la siguiente figura: a) Calcula la resistencia equivalente del circuito. b) Calcula la intensidad de la corriente que atraviesa el circuito. c) Calcula la diferencia de potencial

Más detalles

UNIVERSIDAD DE VIGO. Escuela de Ingeniería de Telecomunicación

UNIVERSIDAD DE VIGO. Escuela de Ingeniería de Telecomunicación UNIVESIDAD DE VIGO Escuela de Ingeniería de Telecomunicación Grado en Ingeniería de Tecnologías de Telecomunicación Primer curso Análisis de circuitos lineales Examen de 8 mayo 0 Departamento de Teoría

Más detalles

Ejercicios Tipo Examen:

Ejercicios Tipo Examen: Universidad Autónoma Metropolitana, Unidad Azcapotzalco Departamento de Energía Área de Ingeniería Energética y Electromagnética 2 Ejercicios Tipo Examen: Circuitos Eléctricos en Corriente Alterna (1131071)

Más detalles

Guia 6. Mallas y nudos

Guia 6. Mallas y nudos Guia 6. Mallas y nudos. En el circuito de la figura elegir las corrientes de mallas, calcular sus impedancias propias y copedancias, y armar la matríz de impedancias. Luego resolver el sistema matricial.

Más detalles

Conceptos básicos Sistemas trifásicos balanceados

Conceptos básicos Sistemas trifásicos balanceados Introducción menudo, se estudian redes o circuitos lineales de corriente directa (DC) con fuentes de valor constantes, los cuales tienen una amplia aplicación en el campo de la electrónica, puesto que

Más detalles

Aplicando la identidad trigonometrica en la expresión anterior:

Aplicando la identidad trigonometrica en la expresión anterior: UNIDAD 1: Fundamentos de los Sistemas Electicos de Potencia 1. Potencia en Circuitos de Corriente Alterna (C.A): La potencia es la rapidez con la cual se transforma la energía electrica en cualquier otro

Más detalles

Teoremas de Redes. Experimento I Circuito de referencia

Teoremas de Redes. Experimento I Circuito de referencia Objetivo Analizar los teoremas de Sustitución, Tellegen, Superposición, Thévenin, Norton y Reciprocidad haciendo uso de la herramienta de simulación Pspice. Teorema de Sustitución Este teorema se aplica

Más detalles

UNIVERSIDAD NACIONAL DEL SANTA

UNIVERSIDAD NACIONAL DEL SANTA UNIVERSIDAD NACIONAL DEL SANTA ESCUELA DE INGENIERIA EN ENERGIA MODULO 3 CURSO: SISTEMAS ELECTRICOS DE POTENCIA PROFESOR : MSC. CESAR LOPEZ AGUILAR INGENIERO EN ENERGIA INGENIERO MECANICO ELECTRICISTA

Más detalles

PRÁCTICA 3 DE FÍSICA GENERAL II

PRÁCTICA 3 DE FÍSICA GENERAL II PRÁCTCA 3 DE FÍSCA GENERAL CURSO 2016-17 Departamento de Física Aplicada e ngeniería de Materiales GRADO EN NGENERÍA DE ORGANZACÓN Coordinador: Rafael Muñoz Bueno rafael.munoz@upm.es Práctica 3 Corriente

Más detalles

Físíca II-2016 Agrimensura- Alimentos -Bioingeniería - Civil-Química

Físíca II-2016 Agrimensura- Alimentos -Bioingeniería - Civil-Química FAUTAD DE INGENIEÍA - DEPATAMENTO DE FÍSIA FÍSIA II-06 ESPEIAIDADES: AGIMENSUA-IVI-QUÍMIA-AIMENTOS- BIOINGENIEÍA GUÍA DE POBEMAS POPUESTOS Y ESUETOS OIENTE ATENA Problema Nº Una inductancia de 0,0 H y

Más detalles

CIRCUITOS DE CORRIENTE ALTERNA CON NUMEROS COMPLEJOS

CIRCUITOS DE CORRIENTE ALTERNA CON NUMEROS COMPLEJOS CIRCUITOS DE CORRIENTE ALTERNA CON NUMEROS COMPLEJOS CIRCUITO R-L-C CONECTADO EN SERIE. Debido a que la impedancia (Z) es un termino general que se puede referir a una resistencia, una reactancia o combinación

Más detalles

Circuitos de corriente directa. Circuito eléctrico es cualquier conexión de elementos eléctricos

Circuitos de corriente directa. Circuito eléctrico es cualquier conexión de elementos eléctricos Circuitos de corriente directa Circuito eléctrico es cualquier conexión de elementos eléctricos (resistencia, baterías, fuentes, capacitores, etc.) a través de los cuales puede circular corriente en forma

Más detalles

Resonancia en Circuito RLC en Serie AC

Resonancia en Circuito RLC en Serie AC Laboratorio 5 Resonancia en Circuito RLC en Serie AC 5.1 Objetivos 1. Determinar las caracteristicas de un circuito resonante RLC en serie. 2. Construir las curvas de corriente, voltaje capacitivo e inductivo

Más detalles

CIRCUITO RC. Se llama circuito RC a la combinación en serie de un capacitor y un resistor.

CIRCUITO RC. Se llama circuito RC a la combinación en serie de un capacitor y un resistor. Se llama circuito RC a la combinación en serie de un capacitor y un resistor. Dicho circuito puede representar cualquier conexión de resistores y capacitores cuyo equivalente sea un solo resistor en serie

Más detalles

Temas: Corresponden a la Unidad 6 y 7 del programa analítico de la asignatura Electrotecnia 1 correspondiente al plan 2003.

Temas: Corresponden a la Unidad 6 y 7 del programa analítico de la asignatura Electrotecnia 1 correspondiente al plan 2003. Temas: Corresponden a la Unidad 6 y 7 del programa analítico de la asignatura Electrotecnia 1 correspondiente al plan 2003. PROBLEMA Nº 1: Por un circuito serie formado por un elemento resistivo de resistencia

Más detalles

CARACTERÍSTICAS FUNDAMENTALES DEL MULTISIM

CARACTERÍSTICAS FUNDAMENTALES DEL MULTISIM INTRODUCCIÓN El propósito del presente trabajo es hacer uso del Multisim, el cual nos permite verificar los resultados teóricos que se obtienen por medio de técnicas circuitales, aplicando las leyes principales

Más detalles

1.1. Divisor de voltaje y corriente.

1.1. Divisor de voltaje y corriente. 1.1. Divisor de voltaje y corriente. Los dos resistores están en serie, ya que en ambos fluye la misma corriente i. Al aplicar la ley de Ohm a cada uno de los resistores se obtiene Si se aplica la LTK

Más detalles

Tema 5. Régimen Permanente Senoidal. Sistemas y Circuitos

Tema 5. Régimen Permanente Senoidal. Sistemas y Circuitos Tema 5. Régimen Permanente Senoidal Sistemas y Circuitos 5. Respuesta SLT a exponenciales complejas Analicemos la respuesta de los SLT ante exponenciales complejas Tiempo continuo: xt () e st s σ + jω

Más detalles

Análisis Senoidal Permanente de Circuitos Trifásicos Balanceados y Desbalanceados

Análisis Senoidal Permanente de Circuitos Trifásicos Balanceados y Desbalanceados Análisis Senoidal Permanente de Circuitos Trifásicos Balanceados y Desbalanceados Objetivo Analizar circuitos trifásicos balanceados y desbalanceados mediante el empleo del simulador PSpice. Primero se

Más detalles

1.1. Divisor de voltaje y corriente.

1.1. Divisor de voltaje y corriente. 1.1. Divisor de voltaje y corriente. Los dos resistores están en serie, ya que en ambos fluye la misma corriente i. Al aplicar la ley de Ohm a cada uno de los resistores se obtiene Si se aplica la LTK

Más detalles

CIDEAD. 2º Bachillerato. Electrotecnia Tema 12.- Sistemas trifásicos.

CIDEAD. 2º Bachillerato. Electrotecnia Tema 12.- Sistemas trifásicos. Desarrollo del tema.1. Concepto de sistemas polifásicos. 2. Conexión de las fuentes en estrella y en triángulo. 3. La conexión de los receptores. 4. Conexión en estrella y triángulo en receptores. 5. Resolución

Más detalles

CORRIENTE ALTERNA. S b) La potencia disipada en R2 después que ha pasado mucho tiempo de haber cerrado S.

CORRIENTE ALTERNA. S b) La potencia disipada en R2 después que ha pasado mucho tiempo de haber cerrado S. CORRIENTE ALTERNA 1. En el circuito de la figura R1 = 20 Ω, R2 = 30Ω, R3 =40Ω, L= 2H. Calcular: (INF-ExSust- 2003-1) a) La potencia entrega por la batería justo cuando se cierra S. S b) La potencia disipada

Más detalles

Circuitos Eléctricos Trifásicos. Introducción.

Circuitos Eléctricos Trifásicos. Introducción. Circuitos Eléctricos Trifásicos. Introducción. La mayor parte de la generación, transmisión, distribución y utilización de la energía eléctrica se efectúa por medio de sistemas polifásicos; por razones

Más detalles

Ley de Ohm. I = Intensidad en amperios (A) VAB = Diferencia de potencial en voltios (V) R = Resistencia en ohmios (Ω).

Ley de Ohm. I = Intensidad en amperios (A) VAB = Diferencia de potencial en voltios (V) R = Resistencia en ohmios (Ω). V Ley de Ohm I = Intensidad en amperios (A) VAB = Diferencia de potencial en voltios (V) R = Resistencia en ohmios (Ω). En un conductor recorrido por una corriente eléctrica, el cociente entre la diferencia

Más detalles

CIRCUITOS ELEMENTALES CC

CIRCUITOS ELEMENTALES CC UNIVESIDAD JOSE CALOS MAIATEGUI LECCIÓN Nº 02 CICUITOS ELEMENTALES CC. LEY DE OHM La corriente fluye por un circuito eléctrico siguiendo varias leyes definidas. La ley básica del flujo de la corriente

Más detalles

INTRODUCCIÓN: OBJETIVOS:

INTRODUCCIÓN: OBJETIVOS: INTRODUCCIÓN: En el desarrollo de esta práctica se observará experimentalmente el comportamiento del transistor bipolar BJT como amplificador, mediante el diseño, desarrollo e implementación de dos amplificadores

Más detalles

Departamento de Ingeniería Eléctrica y Electrónica. Guía de Prácticas de Laboratorio. Materia: Circuitos Eléctricos II

Departamento de Ingeniería Eléctrica y Electrónica. Guía de Prácticas de Laboratorio. Materia: Circuitos Eléctricos II Instituto Tecnológico de Querétaro Departamento de Ingeniería Eléctrica y Electrónica Guía de Prácticas de Laboratorio Materia: Circuitos Eléctricos II Laboratorio de Ingeniería Electrónica Santiago de

Más detalles

EJERCICIOS RESUELTOS DE: ANÁLISIS DE CIRCUITOS

EJERCICIOS RESUELTOS DE: ANÁLISIS DE CIRCUITOS EJERCICIOS RESUELTOS DE: ANÁLISIS DE CIRCUITOS .-LEY DE OHM: VOLTAJE, CORRIENTE Y RESISTENCIA La ley de Ohm expresa la relación que existe entre voltaje (V), la corriente (I) y la resistencia (R) en un

Más detalles

Desarrollo de la Práctica Unidad de aprendizaje: Practica número: 11, 12 y 13 Nombre de la practica:

Desarrollo de la Práctica Unidad de aprendizaje: Practica número: 11, 12 y 13 Nombre de la practica: Desarrollo de la Práctica Unidad de aprendizaje: Practica número: 11, 12 y 13 Nombre de la practica: 11. Comprobar el teorema de máxima transferencia de potencia. 12. Observar y medir los voltajes en terminales

Más detalles

CIRCUITO DE CORRIENTE ALTERNA EN PARALELO RC

CIRCUITO DE CORRIENTE ALTERNA EN PARALELO RC CIRCUITO DE CORRIENTE ALTERNA EN PARALELO RC Fundamento En este circuito de corriente alterna, se sitúan una resistencia y un condensador en paralelo y se colocan tres amperímetros como indica la fig..

Más detalles

ELO102 Teoría de Redes I Tercer Certamen y soluciones 1er. Semestre 2009

ELO102 Teoría de Redes I Tercer Certamen y soluciones 1er. Semestre 2009 EO10 Teoría de edes I Tercer Certamen y soluciones 1er. Semestre 009 Sin formularios, sin libros, sin apuntes, sin calculadora y sin cualquier tipo de dispositivo electrónico. No hay preguntas durante

Más detalles

Examen de recuperación

Examen de recuperación Tecnológico de Costa Rica Semestre 2014 Escuela de Ingeniería Electrónica EL-2114 Circuitos Eléctricos en Corriente Alterna Profesores: Ing Aníbal Coto, Ing Javier Pérez, Ing Leonardo Cardinale II Nombre:

Más detalles

V cos(wt) = V + V. = L. Sustituyendo, se obtiene la ecuación del dt circuito RL: di L + Ri = Vmcos(wt) dt

V cos(wt) = V + V. = L. Sustituyendo, se obtiene la ecuación del dt circuito RL: di L + Ri = Vmcos(wt) dt ircuitos y en estado estable ircuito Supongamos un circuito como el mostrado en la figura. Suponga que se desea calcular la corriente i(t) que circula por el circuito. De acuerdo con la ey de Kirchoff

Más detalles

Solucionario de circuitos eléctricos en estado estable

Solucionario de circuitos eléctricos en estado estable Solucionario de circuitos eléctricos en estado estable Pedro Infante Moreira Tomo 3 ESPOCH 2016 Solucionario de circuitos eléctricos en estado estable Solucionario de circuitos eléctricos en estado

Más detalles

INDICE Capitulo 1. Variables del Circuito Eléctrico Capitulo 2. Elementos del Circuito Capitulo 3. Circuitos Resistivos

INDICE Capitulo 1. Variables del Circuito Eléctrico Capitulo 2. Elementos del Circuito Capitulo 3. Circuitos Resistivos INDICE Capitulo 1. Variables del Circuito Eléctrico 1 1.1. Albores de la ciencia eléctrica 2 1.2. Circuitos eléctricos y flujo de corriente 10 1.3. Sistemas de unidades 16 1.4. Voltaje 18 1.5. Potencia

Más detalles

FUNDAMENTOS DE INGENIERÍA ELÉCTRICA - PROBLEMAS -

FUNDAMENTOS DE INGENIERÍA ELÉCTRICA - PROBLEMAS - PROBLEMAS EN CORRIENTE CONTINUA 1. Calcular la intensidad que circula por la siguiente rama si en todos los casos se tiene V AB = 24 V 2. Calcular la diferencia de potencial entre los puntos A y B de los

Más detalles

Boletín Tema 6. FFI. Ingeniería Informática (Software). Grupo 2. curso

Boletín Tema 6. FFI. Ingeniería Informática (Software). Grupo 2. curso oletín Tema 6 Generador de corriente alterna 1. Un generador sencillo de corriente alterna consiste en una bobina girando en un campo magnético uniforme. La variación temporal del flujo que atraviesa a

Más detalles

Centro Universitario UAEM Zumpango Ingeniería en Computación. Dr. Arturo Redondo Galván

Centro Universitario UAEM Zumpango Ingeniería en Computación. Dr. Arturo Redondo Galván Centro Universitario UAEM Zumpango Ingeniería en Computación Dr. Arturo edondo Galván CICUITOS ELÉCTICOS UNIDAD I Conocer la teoría básica de los circuitos relativa a los diversos métodos de análisis y

Más detalles

Se quiere construir el diagrama fasorial cualitativo (DF) del circuito mostrado.

Se quiere construir el diagrama fasorial cualitativo (DF) del circuito mostrado. Análisis de circuitos monofásicos en corriente alterna Objetivo Aplicar los teoremas y métodos generales de análisis de circuitos eléctricos, los conceptos y fórmulas de los distintos tipos de potencia,

Más detalles

TCI - Teoría de Circuitos

TCI - Teoría de Circuitos Unidad responsable: 330 - EPSEM - Escuela Politécnica Superior de Ingeniería de Manresa Unidad que imparte: 750 - EMIT - Departamento de Ingeniería Minera, Industrial y TIC Curso: 2016 Titulación: Créditos

Más detalles

Los estudiantes aprenderán cómo analizar y resolver problemas de circuitos con resistencias en paralelo.

Los estudiantes aprenderán cómo analizar y resolver problemas de circuitos con resistencias en paralelo. Resistencia Eléctrica Resistencia en paralelo Los estudiantes aprenderán cómo analizar y resolver problemas de circuitos con resistencias en paralelo. Ecuaciones clave Resistencias en paralelo: Todas las

Más detalles

PROGRAMA DE TECNOLOGÍA ELECTRICA - UTP LABORATORIO DE CIRCUITOS - PRÁCTICA 12:

PROGRAMA DE TECNOLOGÍA ELECTRICA - UTP LABORATORIO DE CIRCUITOS - PRÁCTICA 12: PROGRAMA DE TECNOLOGÍA ELECTRICA - UTP LABORATORIO DE CIRCUITOS - PRÁCTICA 12: CIRCUITOS TRIFASICOS BALANCEADOS EN ESTRELLA Y EN DELTA. MEDIDA DE TENSIÓN, CORRIENTE Y POTENCIA 1. OBJETIVOS Medir tensión,

Más detalles

Capítulo 1 SISTEMAS POLIFÁSICOS

Capítulo 1 SISTEMAS POLIFÁSICOS Capítulo 1 SISTEMAS POLIFÁSICOS Un sistema polifásico es el formado por varias fuentes de voltaje señales de igual frecuencia y amplitud, pero desfasadas entre sí 1. Figura 1.1 Sistema polifasico Por ejemplo:

Más detalles

Módulo 1. Sesión 1: Circuitos Eléctricos

Módulo 1. Sesión 1: Circuitos Eléctricos Módulo 1 Sesión 1: Circuitos Eléctricos Electricidad Qué es electricidad? Para qué sirve la electricidad? Términos relacionados: Voltaje Corriente Resistencia Capacitor, etc. Tipos de materiales Conductores

Más detalles

LEYES BASICAS DE LOS CIRCUITOS ELECTRICOS. Mg. Amancio R. Rojas Flores

LEYES BASICAS DE LOS CIRCUITOS ELECTRICOS. Mg. Amancio R. Rojas Flores LEYES BASICAS DE LOS CIRCUITOS ELECTRICOS Mg. Amancio R. Rojas Flores LEY DE OHM Ohm determino experimentalmente que la corriente en un circuito resistivo es directamente proporcional al voltaje aplicado

Más detalles

1. La ley de Ohm, es una propiedad específica de ciertos materiales. La relación

1. La ley de Ohm, es una propiedad específica de ciertos materiales. La relación CIRCUITOS RESISTIVOS: 1. La ley de Ohm, es una propiedad específica de ciertos materiales. La relación es un enunciado de la ley de Ohm. Un conductor cumple con la ley de Ohm sólo si su curva V-I es lineal;

Más detalles

Temas: Corresponden a la Unidad 6 y 7 del programa analítico de la asignatura Electrotecnia 1 correspondiente al plan 2003.

Temas: Corresponden a la Unidad 6 y 7 del programa analítico de la asignatura Electrotecnia 1 correspondiente al plan 2003. Temas: Corresponden a la Unidad 6 y 7 del programa analítico de la asignatura Electrotecnia 1 correspondiente al plan 2003. PROBLEMA Nº 1: Por un circuito serie formado por un elemento resistivo de resistencia

Más detalles

Análisis de circuitos eléctricos en estado estable y circuitos acoplados

Análisis de circuitos eléctricos en estado estable y circuitos acoplados Análisis de circuitos eléctricos en estado estable y circuitos acoplados Pedro Infante Moreira Tomo 1 ESPOCH 2016 Análisis de circuitos eléctricos en estado estable y circuitos acoplados Análisis de

Más detalles

PRÁCTICA Nro. 9 MEDICIÓN DE POTENCIA Y FACTOR DE POTENCIA EN SISTEMAS TRIFÁSICOS BALANCEADOS CON CARGAS RESISTIVAS, CAPACITIVAS E INDUCTIVAS

PRÁCTICA Nro. 9 MEDICIÓN DE POTENCIA Y FACTOR DE POTENCIA EN SISTEMAS TRIFÁSICOS BALANCEADOS CON CARGAS RESISTIVAS, CAPACITIVAS E INDUCTIVAS PRÁCTICA Nro. 9 MEDICIÓN DE POTENCIA Y FACTOR DE POTENCIA EN SISTEMAS TRIFÁSICOS BALANCEADOS CON CARGAS RESISTIVAS, CAPACITIVAS E INDUCTIVAS A. OBJETIVOS: 1. Determinar en forma teórica y experimentalmente;

Más detalles

LECCIÓN Nº 08 CIRCUITOS EQUIVALENTE DE CA. TEOREMA DE REDES

LECCIÓN Nº 08 CIRCUITOS EQUIVALENTE DE CA. TEOREMA DE REDES LECCIÓN Nº 08 CIRCUITOS EQUIVALENTE DE CA. TEOREMA DE REDES 1. TEOREMA DE THEVENIN Y DE NORTON Las transformaciones de fuentes y los circuitos equivalentes de Thévenin y Norton que se vieron anteriormente

Más detalles

CIRCUITOS ELECTRICOS I

CIRCUITOS ELECTRICOS I 1. JUSTIFICACIÓN. CIRCUITOS ELECTRICOS I PROGRAMA DEL CURSO: Circuitos Eléctricos I AREA: MATERIA: Circuitos Eléctricos I CODIGO: 3001 PRELACIÓN: Electricidad y Magnetismo UBICACIÓN: IV T.P.L.U: 5.0.0.5

Más detalles

Programa de Acceso Inclusivo, Equidad y Permanencia PAIEP U. de Santiago. Corriente directa

Programa de Acceso Inclusivo, Equidad y Permanencia PAIEP U. de Santiago. Corriente directa Corriente directa La corriente alterna es muy útil para transmitir la energía eléctrica, pues presenta menos pérdidas disipativas, y permite una fácil conversión entre voltaje y corriente por medio de

Más detalles

Esta guía es una herramienta que usted debe usar para lograr los siguientes objetivos:

Esta guía es una herramienta que usted debe usar para lograr los siguientes objetivos: FIS0: FÍSIA GENEA II GUÍA #0: orriente alterna Objetivos de aprendizaje. Esta guía es una herramienta que usted debe usar para lograr los siguientes objetivos: Estudiar el funcionamiento de circuitos de

Más detalles

CAPITULO III ANALISIS DE REDES RESISTIVAS.

CAPITULO III ANALISIS DE REDES RESISTIVAS. CAPITULO III ANALISIS DE REDES RESISTIVAS. 3.1.-METODO DE MALLAS Y METODO DE NODOS. El análisis de circuitos eléctricos está vinculado por lo general con la solución de un conjunto de n ecuaciones con

Más detalles

INACAP ELECTRICIDAD 2 GUIA DE APRENDIZAJE UNIDAD-3 CIRCUITOS ALTERNOS MONOFASICOS EN REGIMEN PERMANENTE SINUSOIDAL

INACAP ELECTRICIDAD 2 GUIA DE APRENDIZAJE UNIDAD-3 CIRCUITOS ALTERNOS MONOFASICOS EN REGIMEN PERMANENTE SINUSOIDAL INACAP ELECTRICIDAD 2 GUIA DE APRENDIAJE UNIDAD-3 CIRCUITOS ALTERNOS MONOFASICOS EN REGIMEN PERMANENTE SINUSOIDAL CIRCUITOS ALTERNOS MONOFASICOS EN REGIMEN PERMANENTE SINUSOIDAL La aplicación de una tensión

Más detalles

Circuitos Electrónicos Digitales Práctica 1 Introducción al laboratorio de circuitos

Circuitos Electrónicos Digitales Práctica 1 Introducción al laboratorio de circuitos Circuitos Electrónicos Digitales Práctica 1 Introducción al laboratorio de circuitos Grado en Ingeniería Informática: Ingeniería del Software 2010/2011 Objetivos Repasar los conceptos de circuitos eléctricos

Más detalles

FACULTAD DE INGENIERÍAS Y ARQUITECTURA SÍLABO

FACULTAD DE INGENIERÍAS Y ARQUITECTURA SÍLABO I. DATOS GENERALES SÍLABO CARRERA PROFESIONAL : INGENIERÍA ELECTRÓNICA Y CÓDIGO CARRERA PROFESIONAL : 29 ASIGNATURA : ANÁLISIS DE CIRCUITOS ELÉCTRICOS I CÓDIGO DE ASIGNATURA : 29-205 CÓDIGO DE SÍLABO :

Más detalles

Zab Zac. Resolución de Circuitos

Zab Zac. Resolución de Circuitos Resolución de Circuitos. Ya estudiamos cómo sustituir una red de dos terminales o dipolos por una impedancia o admitancia equivalente, según sea un circuito serie o paralelo respectivamente.. Redes de

Más detalles

PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.G.S.E.

PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.G.S.E. PRUES DE ESO UNVERSDD.O.G.S.E. URSO 006-007 - ONVOTOR: SEPTEMRE EETROTEN E UMNO EEGRÁ UNO DE OS DOS MODEOS riterios de calificación.- Expresión clara y precisa dentro del lenguaje técnico y gráfico si

Más detalles

9 José Fco. Gómez Glez., Benjamín Glez. Díaz, María de la Peña Fabiani, Ernesto Pereda de Pablo

9 José Fco. Gómez Glez., Benjamín Glez. Díaz, María de la Peña Fabiani, Ernesto Pereda de Pablo PROBLEMAS DE CIRCUITOS EN CORRIENTE ALTERNA 25. Una fuente de voltaje senoidal, de amplitud Vm = 200 V y frecuencia f=500 Hz toma el valor v(t)=100 V para t=0. Determinar la dependencia del voltaje en

Más detalles

MIGUEL ANGEL MENDOZA MENDOZA LINEAS DE TRANSMISIÓN

MIGUEL ANGEL MENDOZA MENDOZA LINEAS DE TRANSMISIÓN MIGUEL ANGEL MENDOZA MENDOZA LINEAS DE TRANSMISIÓN PARTE I ANÁLISIS DE LINEAS DE TRANSMISIÓN. ANÁLISIS DE LINEAS DE TRANSMISIÓN. A altas frecuencias, la longitud de onda es mucho más pequeña que el tamaño

Más detalles

CORRIENTE ALTERNA. Fasor tensión Vm. Por supuesto, en forma análoga podrá escribirse la expresión de la transformada de la intensidad comoi

CORRIENTE ALTERNA. Fasor tensión Vm. Por supuesto, en forma análoga podrá escribirse la expresión de la transformada de la intensidad comoi CORRENTE ALTERNA 1 1) Dominio de la frecuencia y ecuaciones transformadas Sea una tensión senoidal del tipo v( t) = V$ cos( ωt+ ϕ ). En virtud de la ecuación de Euler, la anterior expresión puede ser escrita

Más detalles

Guía de ejercicios N 1: Instrumentos y mediciones eléctricas

Guía de ejercicios N 1: Instrumentos y mediciones eléctricas DEPARTAMENTO DE INGENIERÍA ELÉCTRICA ÁREA MÁQUINAS ELÉCTRICAS MÁQUINAS Y ACCIONAMIENTOS ELÉCTRICOS (3M4) Guía de ejercicios N 1: Instrumentos y mediciones eléctricas 1. Se conecta un amperímetro analógico

Más detalles

PRUEBAS DE ACCESO A LA UNIVERSIDAD DE 2005 EXAMEN DE JUNIO DE MATERIA: ELECTROTECNIA

PRUEBAS DE ACCESO A LA UNIVERSIDAD DE 2005 EXAMEN DE JUNIO DE MATERIA: ELECTROTECNIA PRUEBAS DE ACCESO A LA UNIVERSIDAD DE 2005 EXAMEN DE JUNIO DE 2005. MATERIA: ELECTROTECNIA C1) En el circuito de la figura una fuente de tensión senoidal está alimentando a tres resistencias R 1, R 2 y

Más detalles

DIODOS EL DIODO IDEAL

DIODOS EL DIODO IDEAL DIODOS EL DIODO IDEAL Con este modelo VD = 0,7 V EL MODELO DE VOLTAJE CONSTANTE EL RECTIFICADOR VOLTAJE EN LA CARGA Y EN EL DIODO Voltaje en la carga Voltaje en el diodo RECTIFICADOR DE MEDIA ONDA VALOR

Más detalles

INDICE 1 Introducción 2 Circuitos resistivos 3 Fuentes dependientes y amplificadores operacionales (OP AMPS) 4 Métodos de análisis

INDICE 1 Introducción 2 Circuitos resistivos 3 Fuentes dependientes y amplificadores operacionales (OP AMPS) 4 Métodos de análisis INDICE 1 Introducción 1 1.1. Definiciones y unidades 2 1.2. Carga y corriente 5 1.3. Voltaje, energía y potencia 9 1.4. Elementos activos y pasivos 12 1.5. Análisis de circuitos y diseño 15 16 Problemas

Más detalles

GUIA DE PROBLEMAS CIRCUITOA ELECTRICOS MODULO CORRIENTE ALTERNA

GUIA DE PROBLEMAS CIRCUITOA ELECTRICOS MODULO CORRIENTE ALTERNA GUIA DE PROBLEMAS CIRCUITOA ELECTRICOS MODULO CORRIENTE ALTERNA 1. Un circuito serie de corriente alterna consta de una resistencia R de 200 una autoinducción de 0,3 H y un condensador de 10 F. Si el generador

Más detalles

Tecnología Eléctrica Ingeniero Químico

Tecnología Eléctrica Ingeniero Químico Dpto. de ngeniería Eléctrica Tecnología Eléctrica ngeniero Químico Universidad de Valladolid Problemas de Sistemas Trifásicos Problema 4. Una carga trifásica con configuración en estrella y otra en triángulo

Más detalles

COLECCIÓN DE PROBLEMAS IV REPASO

COLECCIÓN DE PROBLEMAS IV REPASO COLECCIÓN DE PROBLEMAS I REPASO 1. Una tensión alterna de 100Hz tiene un valor eficaz de 10. Deducir la expresión de la corriente instantánea que circularía por una bobina de L=3H si se le aplica dicha

Más detalles

FUNDAMENTOS DE INGENIERÍA ELÉCTRICA - PROBLEMAS -

FUNDAMENTOS DE INGENIERÍA ELÉCTRICA - PROBLEMAS - SITEMAS DE CORRIENTE TRIFÁSICA 9. Tres bobinas de resistencia 10 Ω y coeficiente de autoinducción 0,01 H cada una se conectan en estrella a una línea trifásica de 80 V, 50 Hz. Calcular: a) Tensión de fase.

Más detalles

EC 1177 CIRCUITOS ELECTRÓNICOS I

EC 1177 CIRCUITOS ELECTRÓNICOS I EC 1177 CIRCUITOS ELECTRÓNICOS I PRESENTACIÓN PERSONAL SECCIÓN 1 Prof. María Isabel Giménez de Guzmán Correo electrónico: mgimenez@usb.ve SECCIÓN 2 Prof. Aníbal Carpio Correo electrónico: anibal.carpio@gmail.com

Más detalles

Aula Virtual Análisis de Circuitos D.C. Facultad Tecnológica Universidad Distrital Francisco José de Caldas.

Aula Virtual Análisis de Circuitos D.C. Facultad Tecnológica Universidad Distrital Francisco José de Caldas. http:///wpmu/gispud/ 3.7 EQUIVALENTE THEVENIN Y NORTON Ejercicio 52. Equivalente Thévenin y Norton. a) Determine el equivalente Thévenin visto desde los terminales a y b. Circuito 162. Equivalente Thévenin

Más detalles

PRACTICA 2: CIRCUITOS DE CORRIENTE CONTINUA

PRACTICA 2: CIRCUITOS DE CORRIENTE CONTINUA Laboratorio de Circuitos/ Electrotecnia PRÁCTICA 2 LABORATORIO DE CIRCUITOS/ELECTROTECNIA PRACTICA 2: CIRCUITOS DE CORRIENTE CONTINUA OBJETIVOS Analizar el funcionamiento de circuitos resistivos conectados

Más detalles

Circuitos. Métodos de Análisis Marzo Plantear el método de las nudos en el circuito de la Figura y determinar todas las magnitudes del circuito.

Circuitos. Métodos de Análisis Marzo Plantear el método de las nudos en el circuito de la Figura y determinar todas las magnitudes del circuito. Circuitos. Métodos de Análisis Marzo 003 POBLEMA 3.1 Plantear el método de las mallas en el circuito de la Figura y determinar todas las magnitudes del circuito ( tensiones en nudos y corrientes en ramas

Más detalles

PROBLEMAS DE FUNDAMENTOS DE TECNOLOGÍA ELÉCTRICA. PRIMERA PARTE

PROBLEMAS DE FUNDAMENTOS DE TECNOLOGÍA ELÉCTRICA. PRIMERA PARTE PROBLEMAS DE FUNDAMENTOS DE TECNOLOGÍA ELÉCTRICA. PRIMERA PARTE GRADO EN INGENIERÍA ELÉCTRICA GRADO EN INGENIERÍA ELECTRÓNICA INDUSTRIAL Y AUTOMÁTICA GRADO EN INGENIERÍA MECÁNICA GRADO EN INGENIERÍA QUÍMICA

Más detalles

Dispositivos Semiconductores Última actualización: 1 er Cuatrimestre de TP N o 5. Dispositivos de potencia

Dispositivos Semiconductores  Última actualización: 1 er Cuatrimestre de TP N o 5. Dispositivos de potencia TP N o 5 Dispositivos de potencia Objetivos del trabajo Afianzar los conocimientos teóricos respecto de los dispositivos de potencia. Analizar la complejidad que pueden llegar a tener los circuitos asociados

Más detalles

Problemas Tema 3. Introducción al análisis de circuitos eléctricos

Problemas Tema 3. Introducción al análisis de circuitos eléctricos Problemas Tema 3. Introducción al análisis de circuitos eléctricos PROBLEMA 1. Calcule la potencia total generada en el circuito siguiente [Prob. 2.3 del Nilsson]: PROBLEMA 2. Calcule la potencia total

Más detalles

CURSO: CIRCUITOS Y MAQUINAS ELECTRICAS Profesor del Curso : Ms.Sc. César L. López Aguilar Ingeniero Mecánico Electricista CIP 67424

CURSO: CIRCUITOS Y MAQUINAS ELECTRICAS Profesor del Curso : Ms.Sc. César L. López Aguilar Ingeniero Mecánico Electricista CIP 67424 21/11/2013 UNIVERSIDAD NACIONAL DEL SANTA ESCUELA DE INGENIERIA AGROINDUSTRIAL MODULO SEMANA 8 CURSO: CIRCUITOS Y MAQUINAS ELECTRICAS Profesor del Curso : Ms.Sc. César L. López Aguilar Ingeniero Mecánico

Más detalles

UNIVERSIDAD DE ALCALÁ Escuela Politécnica Superior Grado en Electrónica y Automática Industrial

UNIVERSIDAD DE ALCALÁ Escuela Politécnica Superior Grado en Electrónica y Automática Industrial 1.- En el circuito de la figura, se pide: a) Calcular i 1 (t) e i 2 (t) analizando el circuito por corrientes. b) Calcular v B (t), analizando el circuito por tensiones. c) Confirmar que la suma de las

Más detalles

3º ESO TECNOLOGÍA, PROGRAMACIÓN Y ROBÓTICA TEMA ELECTRICIDAD

3º ESO TECNOLOGÍA, PROGRAMACIÓN Y ROBÓTICA TEMA ELECTRICIDAD 3º ESO Tecnología, programación y robótica Tema Electricidad página 1 de 12 3º ESO TECNOLOGÍA, PROGRAMACIÓN Y ROBÓTICA TEMA ELECTRICIDAD 1.Circuito eléctrico...2 2.MAGNITUDES ELÉCTRICAS...2 3.LEY de OHM...3

Más detalles

10.2. PRODUCCIÓN DE UN SISTEMA TRIFÁSICO DE TENSIONES EQUILIBRADAS

10.2. PRODUCCIÓN DE UN SISTEMA TRIFÁSICO DE TENSIONES EQUILIBRADAS CAPITULO 10 SISTEMAS TRIFASICOS 10.1 INTRODUCCION Un sistema equilibrado de corrientes trifásicas es el conjunto de tres corrientes alternas monofásicas de igual frecuencia y amplitud (y, por consiguiente,

Más detalles

0...3 A C.A. 500 ma...10 A % % Sobrecarga (permanente) 300 % 150 % 300 % % 150 %

0...3 A C.A. 500 ma...10 A % % Sobrecarga (permanente) 300 % 150 % 300 % % 150 % Descripción Amplia diversidad de tipos para medir los principales parámetros de la red eléctrica. Dispositivos de alta fiabilidad y robustez Aptos para trabajar en condiciones exigentes Aplicación Sistemas

Más detalles

ELECTROTECNIA Y MÁQUINAS ELÉCTRICAS

ELECTROTECNIA Y MÁQUINAS ELÉCTRICAS ASIGNATURA: CURSO: SEMESTRE: 3 5 NOMBRE Y APELLIDO: ALUMNO DOCENTES FOTO Prof. Tit. J.T.P. J.T.P. Aux. Docente Ayte Ad Honorem TRABAJO PRÁCTICO DE GABINETE N 2 FECHA DE ENTREGA / / Legajo N : ESPECIALIDAD:

Más detalles

Ejercicio 8.1. Calcular la información de potencia del la impedancia serie de la figura cuando circula por ella. [ma

Ejercicio 8.1. Calcular la información de potencia del la impedancia serie de la figura cuando circula por ella. [ma Ejercicio 8.1. Calcular la información de potencia del la impedancia serie de la figura cuando circula por ella un corriente i 100 cos 1600t + 65º ( ) [ ma] olución: fp 0.901 ; 277.3 25.64º [ mva] ; ]

Más detalles

SISTEMA TRIFASICO. Mg. Amancio R. Rojas Flores

SISTEMA TRIFASICO. Mg. Amancio R. Rojas Flores SISTEMA TRIFASICO Mg. Amancio R. Rojas Flores GENERACION DE VOLTAJE TRIFASICO (b) Forma de onda de voltaje (a) Generador Básico de CA (c) Fasor Un generador monofásico básico 2 (b) Forma de onda de voltaje

Más detalles

CURSO: Circuitos Eléctricos UNIDAD IV: CORRIENTE ALTERNA - TEORÍA

CURSO: Circuitos Eléctricos UNIDAD IV: CORRIENTE ALTERNA - TEORÍA www.ceduvirt.com CURSO: Circuitos Eléctricos UNIDAD IV: CORRIENTE ALTERNA - TEORÍA EJEMPLO 1: Cinco ciclos de una señal ocurren en un tiempo de 25 msg. Hallar el periodo y la frecuencia. Solución Si

Más detalles

FS-200 Física General II UNAH. Universidad Nacional Autónoma de Honduras. Facultad de Ciencias Escuela de Física.

FS-200 Física General II UNAH. Universidad Nacional Autónoma de Honduras. Facultad de Ciencias Escuela de Física. Universidad Nacional Autónoma de Honduras Facultad de Ciencias Escuela de Física Leyes de Kirchoff Objetivos 1. Establecer la relación matemática que existe entre diferencia de potencial, resistencia y

Más detalles

Tarea 1 1-Calcular la potencia en cada uno de los elementos. E = 36 V. 7-Calcular la tensión V ab. Respuesta: - 2 V

Tarea 1 1-Calcular la potencia en cada uno de los elementos. E = 36 V. 7-Calcular la tensión V ab. Respuesta: - 2 V Tarea 1 1-Calcular la potencia en cada uno de los elementos. 2- Calcular la potencia en todos los resistores. Datos: Vab = Vac = 4 V 4 W, 8 W, 6 W, 12 W, 0 W 3-Calcular E. E = 36 V Dato: I 0 = 5 A Respuesta:

Más detalles

150 Problemas de Teoría de Circuitos 1

150 Problemas de Teoría de Circuitos 1 50 Problemas de Teoría de Circuitos 50 Problemas de Teoría de Circuitos 50 PROBLEMAS DE TEORIA DE CIRCUITOS EXÁMENES RESUELTOS Y PROBLEMAS ADICIONALES. César Fernández Peris M.Asunción Vicente Ripoll 50

Más detalles

Análisis de circuitos. Unidad II

Análisis de circuitos. Unidad II Análisis de circuitos Unidad II Objetivo del análisis de circuitos: Determinar todos los voltajes y corrientes en un circuito. Método de las tensiones (o voltajes) de nodo. 1. Identificar los nodos del

Más detalles

Procesos transitorios y frecuencia compleja

Procesos transitorios y frecuencia compleja Procesos transitorios y frecuencia compleja Objetivos 1. Comprender y familiarizarse con los procesos transitorios en circuitos de primer orden estimulados con corriente alterna, aplicando el método clásico

Más detalles

Universidad Autónoma del Estado de México Licenciatura en Ingeniería de Software Programa de estudio de la Unidad de Aprendizaje:

Universidad Autónoma del Estado de México Licenciatura en Ingeniería de Software Programa de estudio de la Unidad de Aprendizaje: Universidad Autónoma del Estado de México Licenciatura en Software Programa de estudio de la Unidad de Aprendizaje: eléctricos I. Datos de identificación Espacio educativo donde se imparte Licenciatura

Más detalles

Características de un circuito en serie

Características de un circuito en serie Circuitos en serie Características de un circuito en serie Las características principales de un circuito en serie son: 1. Las resistencias se colocan una al lado de la otra. 2. La resistencia total es

Más detalles

RESPUESTA COMPLETA DE UN CIRCUITO RLC EN SERIE EXCITADO CON UNA FUNCIÓN FORZANTE SENOIDAL

RESPUESTA COMPLETA DE UN CIRCUITO RLC EN SERIE EXCITADO CON UNA FUNCIÓN FORZANTE SENOIDAL RESPUESTA COMPLETA DE UN CIRCUITO RLC EN SERIE EXCITADO CON UNA FUNCIÓN FORZANTE SENOIDAL PROFESOR: LUIS RODOLFO DÁVILA MÁRQUEZ Departamento de Electricidad y Electrónica UNIVERSIDAD FRANCISCO DE PAULA

Más detalles