Las bombas y maquinaria proporcionan energía a los fluidos, realizando trabajo para hacerlos fluir y aumentar la presión. Por su parte, las turbinas

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Las bombas y maquinaria proporcionan energía a los fluidos, realizando trabajo para hacerlos fluir y aumentar la presión. Por su parte, las turbinas"

Transcripción

1 BOMBAS

2 Las bombas y maquinaria proporcionan energía a los fluidos, realizando trabajo para hacerlos fluir y aumentar la presión. Por su parte, las turbinas extraen energía del fluido. Las bombas en general pueden ser vistas como máquinas de bombeo, es decir, bombas, abanicos, sopladores y compresores. rotor. Por tanto, las turbomáquinas son dispositivos mecánicos que extraen o proporcionan energía a un fluido como resultado de interacciones dinámicas entre el dispositivo y el fluido.

3 Las turbomáquinas se pueden clasificar como de flujo axial, radial o mixto, dependiendo de la dirección de flujo que impriman al fluido con respecto al eje del rotor.

4 U = velocidad de la hoja V = velocidad absoluta del fluido W = velocidad relativa del fluido V = W + U

5 En las turbomáquinas, las aspas giran a una velocidad constante w, produciendo una velocidad de aspas U=r*w. Se supone por simplicidad que el fluido conserva su posición radial. Por tanto, U 1 =U 2 =r*w. Para esta imagen, las aspas ejercen un trabajo sobre el fluido al incrementar la componente de la velocidad absoluta del fluido en una dirección tangencial. La fuerza ejercida por las aspas y el movimiento del aspa están en la misma dirección.

6 ሶ ሶ Un balance de energía sobre las aspas del rotor permite obtener la ecuación de torque T eje = m r 2 V θ2 r 1 V θ1 V q : componente tangencial de la velocidad absoluta T eje es el torque de empuje que realiza el eje o biela sobre el volumen de control. El signo de las velocidades V depende de la dirección de V q y del movimiento de las aspas U. Si están en la misma dirección, V q es positiva. El signo del torque es positivo si está en la misma dirección que la rotación de las aspas. El trabajo está relacionado con el torque por medio de la ecuación W eje = T eje ω = m U 2 V θ2 U 1 V θ1 m ሶ = ρq El trabajo es positivo cuando el torque y la velocidad angular están en la misma dirección y negativo si no ocurre así. Es decir, el trabajo es positivo cuando se suministra potencia al contenido del volumen de control. w eje = U 1 V θ1 + U 2 V θ2

7 V θ U = V2 + U 2 W 2 2 Considerando las componentes vectoriales de las velocidades, esta ecuación puede escribirse

8 Consiste en un impulsor sujeto a un eje rotatorio, con una envoltura sólida alrededor. El impulsor tiene aspas curvas, conocidas como propelas.

9 La bomba aumenta la cabeza de flujo entre el punto de entrada y de salida: w eje = U 1 V θ1 + U 2 V θ2 = W eje ρq A partir de un análisis de Bernoulli, obtenemos: w eje = p ρ + V2 p ρ + V2 + pérdidas 2 + gz s Igualando y rearreglando tenemos: U 2 V θ2 U 1 V θ1 g 2 + gz e = H s H e + h L Por tanto DUV q /g representa el trabajo del eje añadido al agua. h L son pérdidas en la bomba

10 Se puede establecer P = ωt = ρg U 2 V θ2 U 1 V θ1 H = P ρgg = 1 g U 2V θ2 U 1 V θ1 En donde U es la velocidad tangencial, y es igual a w*r.

11 De la figura cot β 2 = U 2 V θ2 V r2 Poniendo la cabeza en función del ángulo b y sabiendo que el flujo es se tiene G = 2πr 2 b 2 V r2 h i = U 2 2 g U 2 cot β 2 2πr 2 b 2 g G b1 y b2 son las anchuras de las aspas en la entrada y salida. Con todos los parámetros de la bomba conocidos, se puede calcular una potencia y cabeza vs descarga ideales. Como parámetros de diseño se puede estimar el flujo asumiendo que el flujo entra exactamente normal al impulsor (a=90º y V q1 =V 1 ). a es el ángulo que tiene la velocidad del fluido con respecto a la velocidad tangencial. b es el ángulo de la velocidad relativa. G

12 Se observa que las pérdidas reducen el aumento de cabeza H s -H e que podría conseguir el fluido. h i = U 2V θ2 U 1 V θ1 g El aumento real o disponible h r siempre es menor que el ideal, en una cantidad igual a las pérdidas en la bomba. Para que el aumento ideal de cabeza sea máximo, se debe tener h i = U 2V θ2 g Es decir, el fluido no debe tener una componente tangencial en la entrada, lo que significa que el ángulo entre la velocidad absoluta y la dirección tangencial debe ser 90 (a 1 =90 ).

13 Para las bombas actuales, el ángulo de hoja b 2 está entre 15 y 35 (normalmente ) y b 1 está entre 15 y 50.

14 La cabeza neta H es una parámetro de salida básico para cualquier turbomáquina. Las velocidades y las alturas son muy aproximadas, de modo que: h r p 2 p 1 ρg La potencia ganada por el fluido es P f = ρgqh r que se conoce como el caballaje de agua. En el caso de la bomba, se requiere un caballaje para impulsarla bhp = ωt En donde w es la velocidad angular del impulsor y T el torque. P f = γqh r 550 en HP

15 Es importante la eficiencia total de la bomba ρgqh r Τ550 η = bhp La eficiencia está afectada por las pérdidas hidráulicas en la bomba y por las pérdidas mecánicas de anillos y sellos. Existen además otros factores menores conocidos como pérdidas volumétricas. Aquí, las pérdidas en la bomba h f constan de pérdidas por choques, pérdidas por fricción y pérdidas por circulación. P f es la potencia perdida por fricción mecánica.

16

17 De manera razonable, estos cálculos arrojan resultados dentro del 25% de precisión de la cabeza, pérdidas y potencia de agua. Se bombea agua a 1400 gpm a través de una bomba centrífuga que opera a 1750 rpm. El impulsor tiene una anchura uniforme de hoja, b, de 2 in con r 1 =1.9 in y r 2 =7 in, siendo el ángulo de salida b 2 de 23. Suponga condiciones de flujo ideal y que la componente tangencial de la velocidad del agua que entra a la bomba es cero (a 1 =90 ). Determine (a) la componente tangencial de la velocidad a la salida; (b) el aumento de cabeza ideal h i ; (c) la potencia transferida al fluido, W eje.

18 Ejemplo. Given are the following data for a commercial centrifugal water pump: r 1 =4 in, r 2 =7 in, b 1 =30, b 2 = 20, speed 1440 rev/min. Estimate (a)the design point discharge (b) the water horsepower (c) the head if b 1 = b 2 = 1.75 in. Calcular u 1 y u 2.

19 Para un punto de diseño inicial se tiene a=90º. El diagrama de velocidad aquí es: V r1 =V 1 = u 1 tan 30º = 29 ft/s Con este dato se calcula el gasto volumétrico G. Calculado el G, se calcula la velocidad radial 2, V r2. Se tendrá otro diagrama de velocidad en r=r 2.

20 Se conoce b 2, pero no se conoce a 2. Con los cálculos de u 2, V r2 y b 2, se calcula V q2. Según este diagrama, V q2 será: V θ2 = U 2 V r2 cot β 2 α = tan 1 V r 2 V θ2 Finalmente la potencia será Y la cabeza se calcula como

21 DESEMPEÑO DE BOMBAS CENTRÍFUGAS En las bombas centrífugas hay una fuerte dependencia entre la capacidad y la presión de entrega.

22 La carga total de la bomba se calcula a partir de la ecuación general de la energía y representa la cantidad de energía añadida a una unidad de peso del fluido al pasar por la bomba. Por ejemplo, el flujo se detiene por completo cuando toda la energía de la bomba se utiliza para mantener la carga. Son importantes asimismo la eficiencia y la potencia requeridas. El funcionamiento normal de una bomba debe estar en las cercanías del pico de la curva de eficiencia con valores entre 60-80%.

23

24

25 LEYES DE AFINIDAD Cuando varía la velocidad angular: La capacidad varía directamente con la velocidad angular: La capacidad de carga total varía con el cuadrado del módulo de la velocidad angular: La potencia requerida por la bomba varía con el cubo de la velocidad angular:

26 Cuando varía el diámetro del impulsor: La capacidad varía directamente con el diámetro del impulsor: La carga total varía con el cuadrado del diámetro del impulsor: La potencia requerida por la bomba varía con el cubo del diámetro del impulsor:

27 Por su parte la eficiencia permanece casi constante cuando hay cambios en la rapidez rotacional y modificaciones pequeñas en el diámetro del impulsor.

28 Eficiencia(%) Carga total (ft) Potencia (hp) EJEMPLO Se tiene una bomba operando a una rapidez de 1750 rpm con un diámetro de impulsor de 13 in. Determine A) La carga que resultaría en una capacidad de 1500 gal/min B) La potencia requerida para accionar la bomba. Calcule el desempeño cuando la magnitud de la velocidad es de 1250 rpm. Capacidad de la bomba (gal/min) Capacidad de la bomba (L/min)

29 Las curvas de desempeño de una bomba se muestran en formas características, en capacidad vs carga total y añadiendo curvas ya sea de eficiencia o potencia:

30 NPSH La carga de succión positiva neta requerida (NPSH R ) se relaciona con la presión existente a la entrada de la bomba. Una vez localizado un punto en el diagrama de carga total y capacidad, la NPSH se lee a partir del conjunto de curvas. Una bomba centrífuga debe entregar al menos 200 gal/min de agua con una carga total de 300 ft de agua. Especifique una bomba adecuada. Liste sus características de desempeño.

31 La NPSH es la carga requerida a la entrada de la bomba para evitar cavitación o ebullición en el líquido. El punto de succión es un punto de baja presión en el que ocurrirá la cavitación.

32 Hay dos valores de interés para la NPSH: la NPSH requerida (NPSH R ) la cual debe mantenerse o excederse para evitar la cavitación, y la NPSH disponible (NPSH A ) que representa la cabeza que se tiene en la realidad en un sistema de flujo específico. Si la bomba se coloca a una altura z i sobre la superficie de un depósito a p a, tenemos:

33 El diseñador de un sistema de bombeo tiene la responsabilidad de asegurar que la carga de succión positiva neta disponible, NPSH A, sea significativamente superior a la NPSH R. El ANSI y el HI establecen que debe existir una diferencia mínima del 10% entre la NPSHA y la NPSHR. M = NPSH A NPSH R Para aplicaciones como control de inundaciones, oleoductos y servicio de generación de energía, M debe ser de hasta el 100%. Algunos diseñadores exigen un margen de 5 ft de altura para los sistemas de gran tamaño. El valor de NPSHA depende de la presión de vapor del fluido bombeado, de las pérdidas de energía de la tubería de succión, de la elevación del depósito de fluido y de la presión aplicada en el depósito. NPSH A = h sp ± h s h f h pv

34

35 Cuando una bomba se hace operar a una velocidad diferente a la especificada, se puede calcular la nueva NPSHR como NPSH R 2 = N 2 N 1 2 NPSH R 1 Determine la NPSH disponible para el sistema de la figura anterior, inciso (a). El depósito del fluido es un tanque cerrado con una presión de 20 kpa por encima del agua a 70 C. La presión atmosférica es de kpa. En el depósito el nivel del agua es de 2.5 m por encima de la entrada de la bomba. La tubería es de acero inoxidable DN 40 cédula 40 con una longitud total de 12 m. El codo es estándar y la válvula de globo está completamente abierta. El caudal es de 95 L/min. Calcule también la NPSHR máxima permisible para la bomba en este sistema.

36 Los datos reales se alejan de los teóricos de manera importante debido a pérdidas irrecuperables de 3 tipos: 1. Pérdidas por recirculación en el impulsor 2. Pérdidas por fricción 3. Pérdidas por choque

37 EJEMPLO

38 Curva de resistencia El punto de operación de una bomba es el caudal que entrega la bomba dentro de un sistema dado y operando contra una carga total específica. La bomba debe realizar las siguientes tareas: 1. Elevar el fluido desde el depósito hasta el punto de destino. 2. Aumentar la presión del fluido desde el origen hasta el punto de destino. 3. Superar la resistencia causada por fricción en tubería, válvulas y accesorios. 4. Superar la resistencia causada por los elementos del proceso. 5. Suministrar energía relacionada con la operación de válvulas de control de flujo que causan cambios a la carga del sistema para conseguir los caudales deseados.

39 h st = p 2 p 1 + z γ 2 z 1 Se desea que la bomba suministre liquido con un caudal especificado, por lo que la carga debido a las pérdidas de energía cinética dependerá de este término. Esta variación establece la curva de resistencia del sistema (SRC).

40 Se tiene un sistema diseñado para conducir 225 gal/min de agua a 60 F desde un depósito inferior abierto hasta un tanque elevado a una presión de 35 psig. La línea de succión tiene 8 ft de tubería de acero y la línea de descarga tiene 360 ft de tubería. Establezca la curva de resistencia del sistema, SRC, para este problema considerando caudales desde cero hasta 250 gal/min, calcule los valores de la carga en incrementos de 50 gal/min.

41 El primer paso sería calcular la carga estática total, ft. La carga dinámica se recomienda calcularla mediante una hoja de cálculo que permita variar los caudales y calcular h L, para calcular h B como: h B = z 2 z 1 + p 2 γ + h L A 225 gal/min, el valor de la carga de la bomba es ft. La curva de resistencia del sistema se obtendrá sumando los valores de la carga dinámica a la carga estática total.

42 Para obtener el punto de operación de una bomba, se superpone la curva de desempeño de la bomba sobre la curva de resistencia del sistema. La intersección de las dos curvas es el punto de operación.

43 Directrices para la selección de una bomba 1. Buscar una bomba con alta eficiencia en el punto de diseño y para la cual el punto de operación esté cerca del punto de máxima eficiencia (BEP) de la bomba. 2. La región de operación recomendada (POR) está entre el 70 y 120% del BEP, según el ANSI y el HI. 3. Para la bomba seleccionada, especifique la designación del modelo, el módulo de la velocidad angular, el tamaño del impulsor y los tamaños de los puertos de succión y de descarga. 4. En el punto de operación real, determine la potencia requerida, la rapidez de flujo volumétrico real entregado, la eficiencia y la NPSH R. Verifique el tipo de bomba, los requisitos de montaje y los tipos y tamaños de las líneas de succión y de descarga para asegurarse de que son compatibles con la instalación pretendida. 5. Calcule la NPSH A para el sistema. 6. Asegure una NPSH A > 1.10 NPSH R para todas las condiciones de operación.

44 Para el ejemplo anterior, seleccione una bomba adecuada para permitir el que el sistema suministre al menos 225 gal/min de agua a 60 F con una carga total de ft. Luego muestre el punto de operación de la bomba en ese sistema. Liste además la eficiencia de la bomba en el punto de operación, la potencia requerida para accionar la bomba y la NPSH R. Analice la parte de la línea de succión del sistema para determinar la NPSH A y asegúrese de que es adecuada para la bomba elegida. Recomiende los ajustes deseables para el sistema de tuberías con el fin de que pueda alojar a la bomba seleccionada.

45 Se obtienen algunas ecuaciones de desempeño adimensional de la bomba: Coeficiente de capacidad Coeficiente de cabeza Coeficiente de potencia La eficiencia es Asimismo, se sugieren otras reglas de similitud: Cambio de tamaño Cambio de capacidad

46

47 Un balance de energía en un sistema típico puede ser: h a = z 2 z 1 + h L Donde h a es la cabeza disponible proporcionada por la bomba al fluido y h L son las pérdidas mayores y menores en la tubería. Si se ponen las pérdidas en función de todas las constantes de resistencia del sistema de tubería: h a = z 2 z 1 + KQ 2 Esta es la curva del sistema.

48

49

50 Las bombas pueden ser acomodadas en serie o en paralelo para proporcionar una cabeza adicional o un flujo más grande. Cuando se colocan dos bombas en serie, la gráfica de desempeño de las bombas se obtiene sumando las cabezas a la misma velocidad de flujo.

51 Para dos bombas en paralelo, la curva de desempeño combinada se obtiene sumando flujos a la misma cabeza. El flujo no se verá duplicado con la adición de dos bombas en paralelo para la misma curva del sistema.

Holger Benavides Muñoz. Contenidos de la sesión

Holger Benavides Muñoz. Contenidos de la sesión www.utpl.edu.ec/ucg Hidráulica de tuberías MÁQUINAS HIDRÁULICAS Holger Benavides Muñoz Contenidos de la sesión CAPÍTULO 4 del texto: Hidráulica de tuberías, de PhD. Juan Saldarriaga. CAPÍTULO 18 y 19 del

Más detalles

Bombas y Ventiladores. Fundamentos teóricos y prácticos Cómo podemos aportar a la EE con estos equipos?

Bombas y Ventiladores. Fundamentos teóricos y prácticos Cómo podemos aportar a la EE con estos equipos? Bombas y Ventiladores Fundamentos teóricos y prácticos Cómo podemos aportar a la EE con estos equipos? Índice 1. Descripción. 2. Clasificación. 3. Curvas Características. 4. Pérdidas de Carga en Sistemas.

Más detalles

BOMBAS HIDRAULICAS. Mg. Amancio R. Rojas Flores

BOMBAS HIDRAULICAS. Mg. Amancio R. Rojas Flores BOMBAS HIDRAULICAS Mg. Amancio R. Rojas Flores 1 CLASIFICACION La primera clasificación posible de las bombas es separarlas en el grupo de bombas de desplazamiento positivo y bombas rotodinámicas. bombas

Más detalles

TURBINAS DE VAPOR. Pedro Fernández Díez pfernandezdiez.es

TURBINAS DE VAPOR. Pedro Fernández Díez pfernandezdiez.es TURBINAS DE VAPOR Pedro Fernández Díez I.- PARÁMETROS DE DISEÑO DE LAS TURBINAS DE FLUJO AXIAL I..- INTRODUCCIÓN Para estudiar las turbinas de flujo axial, se puede suponer que las condiciones de funcionamiento

Más detalles

HIDRÁULICA Ingeniería en Acuicultura.

HIDRÁULICA Ingeniería en Acuicultura. HIDRÁULICA Ingeniería en Acuicultura. Omar Jiménez Henríquez Departamento de Física, Universidad de Antofagasta, Antofagasta, Chile, I semestre 2011. Omar Jiménez. Universidad de Antofagasta. Chile Hidráulica

Más detalles

CONTENIDO. Pérdidas por fricción. Pérdidas por fricción. Ecuación General de Energía 17/07/2013

CONTENIDO. Pérdidas por fricción. Pérdidas por fricción. Ecuación General de Energía 17/07/2013 CONTENIDO Conceptos básicos sobre bombas. Tipos de bombas. Sistemas de bombeo. Mantenimiento y bombas. Ejemplo industrial. Pérdidas por fricción Un fluido en movimiento ofrece una resistencia de fricción

Más detalles

1. MÁQUINAS HIDRÁULICAS

1. MÁQUINAS HIDRÁULICAS . MÁQUINAS HIDRÁULICAS. MÁQUINAS HIDRÁULICAS.. DEFINICIÓN DE MÁQUINA Una máquina es un transformador de energía. La máquina absorbe energía de una clase y restituye energía de otra clase o de la misma

Más detalles

PRÁCTICO DE MÁQUINAS PARA FLUIDOS II

PRÁCTICO DE MÁQUINAS PARA FLUIDOS II 44) En la instalación de la figura la bomba gira a 1700rpm, entregando un caudal de agua a 20 o C de 0.5m 3 /s al tanque elevado. La cañería es de acero galvanizado, rígida y de 500mm de diámetro y cuenta

Más detalles

Cómo leer la curva característica de una bomba?

Cómo leer la curva característica de una bomba? Cómo leer la curva característica de una bomba? Este boletín trata sobre la lectura y la comprensión de las curvas de funcionamiento de una bomba centrífuga. Se consideran tres tipos de curvas: bomba autocebante

Más detalles

67.18 Mecánica de Fluidos

67.18 Mecánica de Fluidos Ejercicio 2.1. Un tanque cerrado está parcialmente lleno con glicerina. Si la presión del aire dentro del tanque es de 6 psi (41,37 kpa) y el nivel de glicerina es de 10 ft (3,05 m), cual será la presión

Más detalles

CÓMO SELECCIONAR UNA BOMBA.

CÓMO SELECCIONAR UNA BOMBA. CÓMO SELECCIONAR UNA BOMBA. En los sistemas de riego localizados para mover el agua de un punto inicial a otro a traves de las tuberías se necesita una bomba, estas habitualmente funciona a base de electricidad

Más detalles

Contenido. Introducción Tipos de bombas verticales Aplicaciones típicas Componentes Rangos de operación Zonas de operación en curva de desempeño

Contenido. Introducción Tipos de bombas verticales Aplicaciones típicas Componentes Rangos de operación Zonas de operación en curva de desempeño Contenido México Introducción Tipos de bombas verticales Aplicaciones típicas Componentes Rangos de operación Zonas de operación en curva de desempeño México TIPOS DE BOMBAS VERTICALES Tipo Turbina Impulsor

Más detalles

Centro de Investigación n en Energía, UNAM

Centro de Investigación n en Energía, UNAM Universidad Nacional Autónoma de México Centro de Investigación en Energía Centro de Investigación n en Energía, UNAM CURSO-TALLER SISTEMAS FOTOVOLTAICOS Bombeo Fotovoltaico: Términos hidráulicos y Tecnología

Más detalles

UNIVERSIDAD TECNOLÓGICA NACIONAL FACULTAD REGIONAL ROSARIO. Integración IV. Trabajo práctico Nº 8: Diseño y simulación de sistemas de bombeo con HYSYS

UNIVERSIDAD TECNOLÓGICA NACIONAL FACULTAD REGIONAL ROSARIO. Integración IV. Trabajo práctico Nº 8: Diseño y simulación de sistemas de bombeo con HYSYS UNIVERSIDAD TECNOLÓGICA NACIONAL FACULTAD REGIONAL ROSARIO Integración IV Trabajo práctico Nº 8: Diseño y simulación de sistemas de bombeo con HYSYS 1. Sistemas de bombeo Bomba centrífuga La operación

Más detalles

NORMA TÉCNICA DE ACUEDUCTO Y ALCANTARILLADO NDI-ME-AA-002 CRITERIOS PARA SELECCIÓN DE BOMBAS CENTRÍFUGAS, SUMERGIBLES, TORNILLO

NORMA TÉCNICA DE ACUEDUCTO Y ALCANTARILLADO NDI-ME-AA-002 CRITERIOS PARA SELECCIÓN DE BOMBAS CENTRÍFUGAS, SUMERGIBLES, TORNILLO NORMA TÉCNICA DE ACUEDUCTO Y ALCANTARILLADO CRITERIOS PARA SELECCIÓN DE BOMBAS CENTRÍFUGAS, SUMERGIBLES, Código Estado VIGENTE Versión 1.0 14/12/2012 Fuente GUENA EMCALI EICE ESP DISEÑO Tipo de Documento

Más detalles

Una bomba es una turbo máquina generadora para líquidos incompresibles. Las bombas aumentan la energía del fluido al realizar trabajo sobre él.

Una bomba es una turbo máquina generadora para líquidos incompresibles. Las bombas aumentan la energía del fluido al realizar trabajo sobre él. MECANICA DE LOS FLUIDOS Capítulo 10 TURBOMAQUINARIA Tabla de contenidos: Bombas: componentes, tipos Altura de una bomba Curvas características de una bomba Leyes de semejanza Conceptos de unidad homóloga

Más detalles

Tipos de bombas Las bombas hidráulicas se clasifican en dos tipos:

Tipos de bombas Las bombas hidráulicas se clasifican en dos tipos: CAPITULO I 1. BOMBAS HIDRÁULICAS Las bombas son los elementos destinados a elevar un fluido desde un nivel determinado a otro más alto, o bien, a convertir la energía mecánica en hidráulica. Según el tipo

Más detalles

Análisis de represa hidroeléctrica a escala

Análisis de represa hidroeléctrica a escala Análisis de represa hidroeléctrica a escala Resumen ejecutivo Se analiza mediante las herramientas básicas de la mecánica de fluidos el funcionamiento de una represa hidroeléctrica a pequeña escala. Se

Más detalles

Importancia de las Bombas Hidráulicas

Importancia de las Bombas Hidráulicas BOMBAS HIDRÁULICAS Importancia de las Bombas Hidráulicas Para muchas necesidades de la vida diaria tanto en la vida doméstica como en la industria, es preciso impulsar sustancias a través de conductos,

Más detalles

APROVECHAMIENTOS HIDRÁULICOS

APROVECHAMIENTOS HIDRÁULICOS APROECHAMIENTOS HIDRÁULICOS 9 CAPÍTULO I APROECHAMIENTOS HIDRÁULICOS PROBLEMAS SOBRE TURBINAS FRANCIS, KAPLAN Y PELTON 4. DIMENSIONES DE LAS TURBINAS FRANCIS En un aprovechamiento hidráulico, los datos

Más detalles

Curvas de isoeficiencia. Líneas NPSH R. Cabezal de la bomba para diferentes diámetros de impulsor. Líneas de

Curvas de isoeficiencia. Líneas NPSH R. Cabezal de la bomba para diferentes diámetros de impulsor. Líneas de Ejercicio resuelto. Bombas centrifugas Se necesita bombear 40 m 3 de agua a 220 F y 2,246 Psig en 3 horas, del depósito A al B, donde la altura desde la superficie del agua hasta la línea central de la

Más detalles

4. MAQUINARIA HIDRÁULICA

4. MAQUINARIA HIDRÁULICA 4. MAQUINARIA HIDRÁULICA Objetivos El alumno conocerá los principios del funcionamiento de las bombas hidráulicas, los diferentes tipos de Máquinas Hidráulicas existentes y aprenderá a identificar los

Más detalles

Mecánica de Fluidos. Docente: Ing. Alba V. Díaz Corrales

Mecánica de Fluidos. Docente: Ing. Alba V. Díaz Corrales Mecánica de Fluidos Docente: Ing. Alba V. Díaz Corrales Mecánica de Fluidos Contenido Fluidos incompresibles Ecuación de continuidad Ecuación de Bernoulli y aplicaciones Líneas de cargas piezométricas

Más detalles

Solución: 1º) H m = 28,8 m 2º) W = W K V. 30 m. 2 m D. Bomba K C. 3 m 3 m

Solución: 1º) H m = 28,8 m 2º) W = W K V. 30 m. 2 m D. Bomba K C. 3 m 3 m 89. Una bomba centrífuga se utiliza para elevar agua, según el esquema representado en la figura. Teniendo en cuenta los datos indicados en la figura: 1º) Calcular la altura manométrica de la bomba y la

Más detalles

UNIVERSIDAD DE CORDOBA ESCUELA UNIVERSITARIA POLITECNICA DE BELMEZ PROGRAMA DE LA ASIGNATURA TECNOLOGIA MECANICA Y MAQUINAS

UNIVERSIDAD DE CORDOBA ESCUELA UNIVERSITARIA POLITECNICA DE BELMEZ PROGRAMA DE LA ASIGNATURA TECNOLOGIA MECANICA Y MAQUINAS UNIVERSIDAD DE CORDOBA ESCUELA UNIVERSITARIA POLITECNICA DE BELMEZ PROGRAMA DE LA ASIGNATURA TECNOLOGIA MECANICA Y MAQUINAS CURSO 2007-2008 Profesorado: Créditos: Evaluación: Tomás Chica Cuevas 9 Créditos

Más detalles

INGENIERIA CIVIL ASIGNATURA: HIDRÁULICA GENERAL GUÍA DE PRÁCTICA DE LABORATORIO Nº 1 AÑO 2010

INGENIERIA CIVIL ASIGNATURA: HIDRÁULICA GENERAL GUÍA DE PRÁCTICA DE LABORATORIO Nº 1 AÑO 2010 AÑO 010 OBJETIVOS DE LA PRÁCTICA DE LABORATORIO 1. Visualización de escurrimientos en tuberías en general.. Aplicación del Teorema de Bernoulli a través de la medición de sus variables. 3. Medición de

Más detalles

Banco de Ensayos de Bombas Centrífugas

Banco de Ensayos de Bombas Centrífugas Banco de Ensayos de Bombas Centrífugas 1.- Objetivos. Determinación de las curvas características de una bomba radial. Conocer y manejar el instrumental del laboratorio..- Fundamento teórico. El impulso

Más detalles

NPSH: INFLUENCIA DE LA ALTURA Y TEMPERATURA DEL AGUA EN LA ASPIRACION DE LAS BOMBAS

NPSH: INFLUENCIA DE LA ALTURA Y TEMPERATURA DEL AGUA EN LA ASPIRACION DE LAS BOMBAS NPSH: INFLUENCIA DE LA ALTURA Y TEMPERATURA DEL AGUA EN LA ASPIRACION DE LAS BOMBAS Se denomina NPSH (Net Positive Suction Head) o ANPA (Altura Neta Positiva de Aspiración) a la diferencia entre la presión

Más detalles

OPERACIONES BÁSICAS I EJERCICIOS DE FLUJO DE FLUIDOS

OPERACIONES BÁSICAS I EJERCICIOS DE FLUJO DE FLUIDOS OPERACIONES BÁSICAS I EJERCICIOS DE FLUJO DE FLUIDOS 1. Por una tubería de 0.15 m de diámetro interno circula un aceite petrolífero de densidad 0.855 g/cm 3 a 20 ºC, a razón de 1.4 L/s. Se ha determinado

Más detalles

2.- Para qué se utilizan los compresores de desplazamiento positivo? Se utiliza cuando se requiere mucho volumen de aire a baja presión.

2.- Para qué se utilizan los compresores de desplazamiento positivo? Se utiliza cuando se requiere mucho volumen de aire a baja presión. 1.- Qué son los compresores? Es una máquina de fluido que está construida para aumentar la presión y desplazar cierto tipo de fluidos llamados compresibles, tales como gases y vapores. 2.- Para qué se

Más detalles

COMPRESORES. 1) Tipos de Compresores 2) Partes Básicas de un Compresor 3) Mantenimiento de un Compresor 4) Cuestionario para los Alumnos

COMPRESORES. 1) Tipos de Compresores 2) Partes Básicas de un Compresor 3) Mantenimiento de un Compresor 4) Cuestionario para los Alumnos COMPRESORES 1) Tipos de Compresores 2) Partes Básicas de un Compresor 3) Mantenimiento de un Compresor 4) Cuestionario para los Alumnos 1 Definición: Un compresor es una máquina que eleva la presión de

Más detalles

HIDRAULICA DE POTENCIA. Unidad 1. Bases físicas de la hidráulica

HIDRAULICA DE POTENCIA. Unidad 1. Bases físicas de la hidráulica HIDRAULICA DE POTENCIA Unidad 1. Bases físicas de la hidráulica Presión Este término se refiere a los efectos de una fuerza que actúa distribuida sobre una superficie. La fuerza causante de la presión

Más detalles

Campo cilindrada cm³/vuelta 6,6 11,1 16,6 22,2 Campo caudal (a vueltas/min y con presión = 3.5 bar) Velocidad de rotación min max 1800

Campo cilindrada cm³/vuelta 6,6 11,1 16,6 22,2 Campo caudal (a vueltas/min y con presión = 3.5 bar) Velocidad de rotación min max 1800 14 110/211 SD PVE BOMBAS DE PALETAS DE CILINDRADA VARIABLE CON REGULADOR DE PRESION DIRECTO PRINCIPIO DE FUNCIONAMIENTO Las bombas PVE son bombas de paletas de cilindrada variable con regulador de presión

Más detalles

Mecánica de los fluidos

Mecánica de los fluidos Instituto Universitario de Tecnología Dr. Federico Rivero Palacio Departamento de Procesos Químicos Segundo año Mecánica de los fluidos BOMBAS CENTRIFUGAS Septiembre 008 INDICE TEMA 5 BOMBAS CENTRIFUGAS

Más detalles

Cap. 6.- Ciclos de turbinas de gas.

Cap. 6.- Ciclos de turbinas de gas. Cap. 6.- Ciclos de turbinas de gas. Cuestiones de autoevaluación Escuela Politécnica Superior Profesores: Pedro A. Rodríguez Aumente, catedrático de Máquinas y Motores Térmicos Antonio Lecuona Neumann,

Más detalles

5.1 Primera ley de la termodinámica

5.1 Primera ley de la termodinámica 55 Capítulo 5 Energía En este capítulo se verán los aspectos energéticos asociados al flujo de un fluido cualquiera. Para ésto se introduce, en una primera etapa, la primera ley de la termodinámica que

Más detalles

Formatos para prácticas de laboratorio

Formatos para prácticas de laboratorio CARRERA PLAN DE ESTUDIO CLAVE DE UNIDAD DE APRENDIZAJE NOMBRE DE LA UNIDAD DE APRENDIZAJE ING. MECÁNICO 2009-2 12198 MECÁNICA DE FLUIDOS PRÁCTICA No. MF-04 LABORATORIO DE NOMBRE DE LA PRÁCTICA MECÁNICA

Más detalles

Laboratorio de Mecánica de Fluidos I

Laboratorio de Mecánica de Fluidos I Laboratorio de Mecánica de Fluidos I Práctica # 3: Demostración del Teorema de Bernoulli Objetivo Demostrar el Teorema de Bernoulli y sus limitaciones. Determinar el coeficiente de descarga. En este experimento

Más detalles

Prof. Nathaly Moreno Salas Ing. Victor Trejo TURBOMÁQUINAS TÉRMICAS CT-3412

Prof. Nathaly Moreno Salas Ing. Victor Trejo TURBOMÁQUINAS TÉRMICAS CT-3412 8. TRBINAS AXIALES Prof. Natal Moreno Salas Ing. Victor Trejo TRBOMÁQINAS TÉRMIAS T-4 ontenido Trabajo en una etapa de expansión Factor de arga Factor de Flujo Grado de Reacción Triángulo nitario Rendimiento

Más detalles

Turbinas Hidráulicas. Turbomáquinas Hidráulicas CT Prof. Jesús De Andrade Prof. Miguel Asuaje

Turbinas Hidráulicas. Turbomáquinas Hidráulicas CT Prof. Jesús De Andrade Prof. Miguel Asuaje Turbinas Hidráulicas Turbomáquinas Hidráulicas CT-3411 Prof. Jesús De Andrade Prof. Miguel Asuaje Descripción, Clasificación, Dimensionamiento y Curvas Características Características Generales Turbina

Más detalles

Módulo 1: Mecánica Sólido rígido. Rotación (II)

Módulo 1: Mecánica Sólido rígido. Rotación (II) Módulo 1: Mecánica Sólido rígido. Rotación (II) 1 Segunda ley de Newton en la rotación Se puede hacer girar un disco por ejemplo aplicando un par de fuerzas. Pero es necesario tener en cuenta el punto

Más detalles

Máquinas y Equipos Térmicos Tema III

Máquinas y Equipos Térmicos Tema III Máquinas y Equipos Térmicos Tema III CHIMENEAS Y VENTILADORES 1 Las chimeneas de ladrillo tienen propensión a tener fugas, debido a la falta de adherencia de los materiales, así cómo también grietas ocasionadas

Más detalles

ASPECTOS AVANZADOS EN MECÁNICA DE FLUIDOS SOLUCIONES EXACTAS

ASPECTOS AVANZADOS EN MECÁNICA DE FLUIDOS SOLUCIONES EXACTAS Problema 1 Un fluido de propiedades constantes (densidad ρ, viscosidad µ, conductividad térmica k y calor específico c) se encuentra confinado entre dos paredes horizontales infinitas separadas una distancia

Más detalles

UNIVERSIDAD DEL ZULIA FACULTAD DE INGENIERÍA ESCUELA DE INGENIERÍA QUÍMICA DEPARTAMENTO DE INGENIERÍA QUÍMICA BÁSICA UNITARIAS I

UNIVERSIDAD DEL ZULIA FACULTAD DE INGENIERÍA ESCUELA DE INGENIERÍA QUÍMICA DEPARTAMENTO DE INGENIERÍA QUÍMICA BÁSICA UNITARIAS I UNIVERSIDAD DEL ZULIA FACULTAD DE INGENIERÍA ESCUELA DE INGENIERÍA QUÍMICA DEPARTAMENTO DE INGENIERÍA QUÍMICA BÁSICA LABORATORIO DE OPERACIONES UNITARIAS I PÉRDIDAS DE CARGA POR FRICCIÓN Profesora: Marianela

Más detalles

atorio de Operaciones Unitarias I

atorio de Operaciones Unitarias I Labora atorio de Operaciones Unitarias I 1 República Bolivariana de Venezuela Ministerio del Poder Popular para la Educación Superior Instituto Universitario de Tecnología Alonso Gamero Laboratorio de

Más detalles

GENERALIDADES SOBRE LAS MAQUINAS HIDRAULICAS

GENERALIDADES SOBRE LAS MAQUINAS HIDRAULICAS GENERALIDADES SOBRE LAS MAQUINAS HIDRAULICAS CRONOGRAMA DEL DESARROLLO DE CLASES SEMANA 1 Introducción. Reseña histórica SEMANA 2 1. Nociones fundamentales Liquido perfecto Flujo permanente. Régimen uniforme

Más detalles

INGENIERIA DE EJECUCIÓN EN MECANICA PROGRAMA PROSECUCION DE ESTUDIOS VESPERTINO GUIA DE LABORATORIO

INGENIERIA DE EJECUCIÓN EN MECANICA PROGRAMA PROSECUCION DE ESTUDIOS VESPERTINO GUIA DE LABORATORIO INGENIERIA DE EJECUCIÓN EN MECANICA PROGRAMA PROSECUCION DE ESTUDIOS VESPERTINO GUIA DE LABORATORIO ASIGNATURA 9562 EQUIPOS E INSTALACIONES TÉRMICAS E HIDRAULICAS TOPICO II NIVEL 05 EXPERIENCIA E-952 TURBINA

Más detalles

UNIDAD 5 Turbinas radiales. Turbomáquinas hidráulicas: bombas y turbinas hidráulicas

UNIDAD 5 Turbinas radiales. Turbomáquinas hidráulicas: bombas y turbinas hidráulicas UNIDAD 5 Turbinas radiales. Turbomáquinas hidráulicas: bombas y turbinas hidráulicas 1. Turbina radial 1.1 General La turbina radial es físicamente muy similar al compresor centrífugo. La Figura 5.1 muestra

Más detalles

Solución de Examen Final Física I

Solución de Examen Final Física I Solución de Examen Final Física I Temario A Departamento de Física Escuela de Ciencias Facultad de Ingeniería Universidad de San Carlos de Guatemala 28 de mayo de 2013 Un disco estacionario se encuentra

Más detalles

ÍNDICE. Introducción Intercambiabilidad Tipo 1L Intercambiabilidad Tipo 2L Intercambiabilidad Tipo 3L... 6

ÍNDICE. Introducción Intercambiabilidad Tipo 1L Intercambiabilidad Tipo 2L Intercambiabilidad Tipo 3L... 6 Introducción...... 3 Intercambiabilidad Tipo 1L....... 4 Intercambiabilidad Tipo 2L....... 5 Intercambiabilidad Tipo 3L.... 6 Tipos de Cubierta Durcomex.... 7 Opciones de Impulsores. 9 Características....

Más detalles

Se supone que el cálculo hidráulico de la instalación ha sido previamente realizado, por no constituir éste el objetivo del presente artículo.

Se supone que el cálculo hidráulico de la instalación ha sido previamente realizado, por no constituir éste el objetivo del presente artículo. CONCEPTO DE ALTURA MANOMÉTRICA DE LA BOMBA Y POTENCIA A SUMINISTRAR 1.- GENERALIDADES El presente artículo tiene como objetivo central el de continuar brindando aplicaciones de uso práctico de la Expresión

Más detalles

ENERGÍA EÓLICA E HIDRÁULICA

ENERGÍA EÓLICA E HIDRÁULICA ENERGÍA EÓLICA E HIDRÁULICA Lección 4: Diseño de rotores eólicos Damián Crespí Llorens Máquinas y Motores Térmicos Ingeniería Mecánica y Energía 1 Índice 4.1.Introducción 4.1.Objetivo 4.2. Resumen de conceptos

Más detalles

Tutoría orientada hacia estudiantes de Ing. Civil.

Tutoría orientada hacia estudiantes de Ing. Civil. Tutoría orientada hacia estudiantes de Ing. Civil. Características del programa Maneja sistemas de cualquier tamaño Calcula la pérdida de cabeza de carga debido a la fricción utilizando distintas ecuaciones.

Más detalles

ESTUDIOS COMPLEMENTARIOS PARA EL DETALLE DE INGENIERÍAS DE LA LÍNEA ROLDÓS OFELIA

ESTUDIOS COMPLEMENTARIOS PARA EL DETALLE DE INGENIERÍAS DE LA LÍNEA ROLDÓS OFELIA ESTUDIOS COMPLEMENTARIOS PARA EL DETALLE DE INGENIERÍAS DE LA LÍNEA ROLDÓS OFELIA PRODUCTO 2 CAPÍTULO L.1: INFORME SISTEMA CONTRA INCENDIOS RESPONSABLES: NOMBRE(S) CÉDULA(S) FIRMA(S) ELABORADO POR Ing.

Más detalles

UNIVERSIDAD NACIONAL DE INGENIERIA FACULTAD DE INGENIERIA MECANICA DEPARTAMENTO ACADEMICO DE CIENCIAS DE INGENIERIA SILABO P.A.

UNIVERSIDAD NACIONAL DE INGENIERIA FACULTAD DE INGENIERIA MECANICA DEPARTAMENTO ACADEMICO DE CIENCIAS DE INGENIERIA SILABO P.A. UNIVERSIDAD NACIONAL DE INGENIERIA FACULTAD DE INGENIERIA MECANICA DEPARTAMENTO ACADEMICO DE CIENCIAS DE INGENIERIA SILABO P.A. 2011-II 1. INFORMACION GENERAL Nombre del curso : TURBOMAQUINAS I Código

Más detalles

MM02 - KIT DE MONTAJE: COMPRESOR DE ÉMBOLO (pag. N - 3) MM05 - MONTAJE Y MANTENIMIENTO: BOMBA DE DIAFRAGMA (pag. N - 9)

MM02 - KIT DE MONTAJE: COMPRESOR DE ÉMBOLO (pag. N - 3) MM05 - MONTAJE Y MANTENIMIENTO: BOMBA DE DIAFRAGMA (pag. N - 9) MM01 - KIT DE MONTAJE: GRIFO DE BOLA Y VÁLVULA DE CIERRE (pag. N - 1) MM02 - KIT DE MONTAJE: COMPRESOR DE ÉMBOLO (pag. N - 3) MM03 - MONTAJE Y MANTENIMIENTO: BOMBA CENTRÍFUGA MULTIETAPA (pag. N - 5) MM04

Más detalles

CÁLCULO PARA EVITAR LA CAVITACIÓN EN UN SISTEMA DE BOMBEO MEDIANTE EL USO DE NPSH A Y NPSH R. José Francisco Castillo González

CÁLCULO PARA EVITAR LA CAVITACIÓN EN UN SISTEMA DE BOMBEO MEDIANTE EL USO DE NPSH A Y NPSH R. José Francisco Castillo González CÁLCULO PARA EVITAR LA CAVITACIÓN EN UN SISTEMA DE BOMBEO MEDIANTE EL USO DE NPSH A Y NPSH R José Francisco Castillo González Agosto 2013 RESUMEN Al momento de diseñar un sistema que bombea un líquido

Más detalles

Aplicaciones: Características:

Aplicaciones: Características: Características Aplicaciones: n Suministro de agua doméstico n Aumento de Presión n Riego n Fuentes n Bombeo de efluentes sépticos n Distribución de agua Características: Toda la construcción en inoxidable:

Más detalles

REPÚBLICA DE CUBA MINISTERIO DE EDUCACIÓN DIRECCIÓN DE EDUCACIÓN TÉCNICA Y PROFESIONAL

REPÚBLICA DE CUBA MINISTERIO DE EDUCACIÓN DIRECCIÓN DE EDUCACIÓN TÉCNICA Y PROFESIONAL REPÚBLICA DE CUBA MINISTERIO DE EDUCACIÓN DIRECCIÓN DE EDUCACIÓN TÉCNICA Y PROFESIONAL CÓDIGO: ESPECIALIDAD: REFRIGERACIÓPROGRAMA: ELEMENTOS DE MECÁNICA DE LOS FLUIDOS. NIVEL MEDIO SUPERIOR TÉCNICO MEDIO.

Más detalles

S E R V I C I O S Y P R O D U C T O S I N D U S T R I A L E S. Confiabilidad en Bombas y Sellos Mecánicos.

S E R V I C I O S Y P R O D U C T O S I N D U S T R I A L E S. Confiabilidad en Bombas y Sellos Mecánicos. S E R V I C I O S Y P R O D U C T O S I N D U S T R I A L E S. Confiabilidad en Bombas y Sellos Mecánicos. Confiabilidad. Qué es Confiabilidad? Qué es Confiabilidad? Menor Tiempo Muerto? Mayor Tiempo Medio

Más detalles

XIII.- TEOREMA DEL IMPULSO pfernandezdiez.es

XIII.- TEOREMA DEL IMPULSO pfernandezdiez.es XIII.- TEOREMA DEL IMPULSO XIII.1.- REACCIÓN DE UN FLUIDO EN MOVIMIENTO SOBRE UN CANAL GUÍA El cálculo de la fuerza ejercida por un fluido en movimiento sobre el canal que forman los álabes de una bomba

Más detalles

EQUIPOS ELECTROMECANICOS. Mg. Amancio Rojas Flores

EQUIPOS ELECTROMECANICOS. Mg. Amancio Rojas Flores EQUIPOS ELECTROMECANICOS Mg. Amancio Rojas Flores I. CASA DE MAQUINAS En un aprovechamiento hidroeléctrico, la casa de máquinas tiene como misión proteger el equipo electro-hidráulico que convierte la

Más detalles

Capítulo 10. Efectos de superficie. Sistema respiratorio

Capítulo 10. Efectos de superficie. Sistema respiratorio Capítulo 10 Efectos de superficie. Sistema respiratorio 1 Tensión superficial El coeficiente de tensión superficial γ es la fuerza por unidad de longitud que hay que realizar para aumentar una superficie:

Más detalles

CAPITULO 5 BOMBAS CENTRIFUGAS

CAPITULO 5 BOMBAS CENTRIFUGAS CAPITULO 5 BOMBAS CENTRIFUGAS Una bomba centrífuga es uno de los tipos más simples de equipo en cualquier planta del proceso. Su propósito es convertir energía de un primer elemento (un motor eléctrico

Más detalles

Balance de energía en un diafragma

Balance de energía en un diafragma Balance de energía en un diafragma Objetivos de la práctica! Estudiar el perfil de presiones que se produce a lo largo de una tubería en la que se encuentra instalado un diafragma.! Determinar el coeficiente

Más detalles

TÉCNICAS DE ANÁLISIS PARA EL AHORRO DE ENERGÍA

TÉCNICAS DE ANÁLISIS PARA EL AHORRO DE ENERGÍA TÉCNICAS DE ANÁLISIS PARA EL AHORRO DE ENERGÍA 2ª Parte: Evaluación de Ahorros de Energía Acapulco, Gro./ Septiembre 29 del 2010 Ing. Ramón Rosas Moya 1 PROCESO DE TRANSFORMACIÓN DE LA ENERGÍA PARA EL

Más detalles

PROPIEDADES DE LOS FLUIDOS

PROPIEDADES DE LOS FLUIDOS UNIDAD I PROPIEDADES DE LOS FLUIDOS 1 VISCOSIDAD La viscosidad de un fluido mide su resistencia a fluir, como resultado de la interacción y cohesión de sus moléculas. Fuente: Mecanica de Fluidos e Hidraulica,

Más detalles

TURBOMÁQUINAS TÉRMICAS CT-3412

TURBOMÁQUINAS TÉRMICAS CT-3412 Universidad Simón Bolívar Departamento de Conversión y Transporte de Energía Turbomáquinas Térmicas. CT-3412 TURBOMÁQUINAS TÉRMICAS CT-3412 Libro de Ejercicios Prof. Miguel Alejandro Asuaje Tovar, Dr Marzo

Más detalles

PRÁCTICA 2: MEDIDORES DE FLUJO

PRÁCTICA 2: MEDIDORES DE FLUJO Universidad Nacional Experimental Francisco De Miranda Área De Tecnología Programa De Ingeniería Química Departamento de Energética Laboratorio de Operaciones Unitarias I PRÁCTICA 2: MEDIDORES DE FLUJO

Más detalles

Equipos impulsores de fluidos compresibles

Equipos impulsores de fluidos compresibles Equipos impulsores de fluidos compresibles INTRODUCCIÓN VENTILADORES VENTILADORES EN LA AGROINDUSTRIA EJEMPLOS ECUACION Y CALCULOS BASICOS CURVAS CARACTERISTICAS 1 INTRODUCCION Los fluidos se mueven a

Más detalles

Capítulo I Introducción a Turbomaquinas. FAC. DE ING. MECÁNICA UMSNH Sergio Galván Ph.D.

Capítulo I Introducción a Turbomaquinas. FAC. DE ING. MECÁNICA UMSNH Sergio Galván Ph.D. Capítulo I Introducción a Turbomaquinas FAC. DE ING. MECÁNICA UMSNH Sergio Galván Ph.D. Temario Definición Clasificación General Aplicaciones La palabra turbo maquina es derivada de la palabra latina Turbo,

Más detalles

Discrete Automation and Motion, Drives & Control Drive ABB para bombeo solar ACS355 + N827 Guía de selección de equipos

Discrete Automation and Motion, Drives & Control Drive ABB para bombeo solar ACS355 + N827 Guía de selección de equipos Discrete Automation and Motion, Drives & Control Drive ABB para bombeo solar ACS355 + N827 Guía de selección de equipos 06 de noviembre de 2014 Slide 1 Drive ABB para bombeo solar, ACS355 Contenido Conceptos

Más detalles

APLICACIONES DEL AIRE COMPRIMIDO

APLICACIONES DEL AIRE COMPRIMIDO RESEÑA HISTORICA APLICACIONES DEL AIRE COMPRIMIDO VIDEOS INTRODUCTORIOS VEHICULO QUE FUNCIONA CON AIRE COMPRIMIDO Ciencia que trata y estudia los movimientos y procesos del aire; la palabra neumática

Más detalles

Estimación de la viscosidad de un líquido

Estimación de la viscosidad de un líquido Estimación de la viscosidad de un líquido Objetivos de la práctica! Estudiar la variación de la altura de un líquido viscoso con el tiempo en el interior de un tanque que descarga a través de un tubo.!

Más detalles

Ejercicio 1. L=200 m L=800 m. (B) H B =34 mca. Ejercicio 2

Ejercicio 1. L=200 m L=800 m. (B) H B =34 mca. Ejercicio 2 Ejercicio 1 Se desea trasegar agua desde el depósito A al C utilizando para ello la bomba B. Las pérdidas de carga por fricción son del 5 por mil, y las pérdidas de carga localizadas en cada punto del

Más detalles

CATALOGO GENERAL DE EYECTORES? EYVA P RESION V VACI O

CATALOGO GENERAL DE EYECTORES? EYVA P RESION V VACI O CATALOGO GENERAL DE EYECTORES? EYVA P RESION V VACI O EL EYECTOR El eyector es una bomba estática, sin partes mecánicas en movimiento, caracterizado por: - seguridad de funcionamiento - fiabilidad de funcionamiento

Más detalles

Física: Rotación de un Cuerpo Rígido

Física: Rotación de un Cuerpo Rígido Física: Rotación de un Cuerpo Rígido Dictado por: Profesor Aldo Valcarce 2 do semestre 2014 Objetivo En esta sección dejaremos de considerar a los objetos como partículas puntuales. En vez, hablaremos

Más detalles

Tema 2 FUNDAMENTOS FÍSICOS DEL ORDEÑO MECÁNICO.

Tema 2 FUNDAMENTOS FÍSICOS DEL ORDEÑO MECÁNICO. . Tema 2 FUNDAMENTOS FÍSICOS DEL ORDEÑO MECÁNICO. Mecanismo de extracción de la leche La máquina de ordeño extrae la leche de las vacas de forma similar a como lo hacen las crías, es decir, mediante una

Más detalles

SERIE TX. T0.6X, T1X, T2X, T3.5X, T6X, T7.5X, T10X, T13X, T21X, T29X, T33X y T41X BOMBAS MULTIETAPAS VERTICALES

SERIE TX. T0.6X, T1X, T2X, T3.5X, T6X, T7.5X, T10X, T13X, T21X, T29X, T33X y T41X BOMBAS MULTIETAPAS VERTICALES SERIE TX T.6X, TX, T2X, T3.5X, T6X, T7.5X, TX, T3X, T2X, T29X, T33X y TX BOMBAS MULTIETAPAS VERTICALES FICHA TÉCNICA Tel.(8)8-8- y 2 SERIE TX T.6X, TX, T2X, T3.5X, T6X, T7.5X, TX, T3X, T2X, T29X, T33X

Más detalles

PRÁCTICA 1: MEDIDORES DE FLUJO

PRÁCTICA 1: MEDIDORES DE FLUJO 1 Universidad Nacional Experimental Francisco De Miranda Área De Tecnología Programa De Ingeniería Química Departamento de Energética Laboratorio de Operaciones Unitarias I PRÁCTICA 1: MEDIDORES DE FLUJO

Más detalles

SERIE TX. T0.6X, T1X, T2X, T3.5X, T6X, T7.5X, T10X, T13X, T21X, T29X, T33X y T41X BOMBAS MULTIETAPAS VERTICALES

SERIE TX. T0.6X, T1X, T2X, T3.5X, T6X, T7.5X, T10X, T13X, T21X, T29X, T33X y T41X BOMBAS MULTIETAPAS VERTICALES SERIE TX T.6X, TX, TX, T.5X, T6X, T7.5X, TX, TX, TX, T9X, TX y T4X BOMBAS MULTIETAPAS VERTICALES FICHA TÉCNICA Tel.(8)8-84- y SERIE TX T.6X, TX, TX, T.5X, T6X, T7.5X, TX, TX, TX, T9X, TX y T4X ESPECIFICACIONES

Más detalles

BOMBAS HIDRAULICAS. Prof. Ing. Cesar Sanabria FACULTAD DE INGENIERIA UNA

BOMBAS HIDRAULICAS. Prof. Ing. Cesar Sanabria FACULTAD DE INGENIERIA UNA BOMBAS HIDRAULICAS Prof. Ing. Cesar Sanabria CLASIFICACIÓN GENERAL DE LAS MÁQUINAS HIDRÁULICAS 1- Máquinas Hidráulicas Generatrices 2- Máquinas Hidráulicas Motrices 3- Máquinas Hidráulicas Mixtas 1- MÁQUINAS

Más detalles

Academia Local de Física. Ing. Rafael A. Sánchez Rodríguez

Academia Local de Física. Ing. Rafael A. Sánchez Rodríguez 1 2 3 4 5 6 7 8 9 10 Preguntas de repaso 1) 10.1. Explique por medio de diagramas por qué se dirige hacia el centro la aceleración de un cuerpo que se mueve en círculos a rapidez constante. 2) 10.2. Un

Más detalles

( ) ( ) El vector de posición del punto genérico que representa el movimiento S vendrá dado por:

( ) ( ) El vector de posición del punto genérico que representa el movimiento S vendrá dado por: x y K M n K M n cos n sen n m n r t α + cos n t ( K M n ) α m n r t α + sen n t ( K M n ) α Llamando: A B K M n K M n Se tiene: x A cos n t α + B cos n t α y A sen n t α + B sen n t α El vector de posición

Más detalles

UNIVERSIDAD NACIONAL FEDERICO VILLARREAL FACULTAD DE INGENIERIA ELECTRÓNICA E INFORMÁTICA ESCUELA PROFESIONAL DE INGENIERÍA DE MECATRONICA SÍLABO

UNIVERSIDAD NACIONAL FEDERICO VILLARREAL FACULTAD DE INGENIERIA ELECTRÓNICA E INFORMÁTICA ESCUELA PROFESIONAL DE INGENIERÍA DE MECATRONICA SÍLABO UNIVERSIDAD NACIONAL FEDERICO VILLARREAL FACULTAD DE INGENIERIA ELECTRÓNICA E INFORMÁTICA ESCUELA PROFESIONAL DE INGENIERÍA DE MECATRONICA SÍLABO ASIGNATURA: MAQUINAS HIDRAULICAS CÓDIGO: 8C0041 I. DATOS

Más detalles

RESUMEN DEL PROGRAMA (parte de Hidráulica)

RESUMEN DEL PROGRAMA (parte de Hidráulica) Código de la asignatura: 68202, 60203 Nombre de la asignatura: Hidráulica y máquinas agrícolas Créditos: 6 (3 Hidráulica) Año académico: 2007-2008 Titulación: Ingeniero Técnico Agrícola (Hortofruticultura

Más detalles

BOMBAS DE PROCESO ANSI

BOMBAS DE PROCESO ANSI DURCOMEX 1 BOMBAS DE PROCESO ANSI DURCOMEX BOMBAS DE PROCESO ANSI INTRODUCCIÓN Durcomex fabrica bombas centrifugas horizontales que por su calidad, eficiencia, y servicio, han satisfecho al mercado mxicano

Más detalles

Bombas Mediana Presión. WDM Water Systems

Bombas Mediana Presión. WDM Water Systems Bombas Mediana Presión WDM Water Systems WDM Somos una multinacional que desde 1961 fabrica Bombas para Agua y Sistemas de Bombeo con tecnología, calidad y respaldo técnico de orden mundial, ofreciendo

Más detalles

CAPITULO VII BOMBEO HIDRÁULICO TIPO JET (A CHORRO)

CAPITULO VII BOMBEO HIDRÁULICO TIPO JET (A CHORRO) GENERALIDADES. CAPITULO VII BOMBEO HIDRÁULICO TIPO JET (A CHORRO) El bombeo hidráulico tipo jet es un sistema artificial de producción especial, a diferencia del tipo pistón, no ocupa partes móviles y

Más detalles

Mecánica de Fluidos y Máquinas Hidráulicas

Mecánica de Fluidos y Máquinas Hidráulicas Mecánica de Fluidos y Máquinas Hidráulicas Tema 07. Golpe de Ariete y Cavitación Severiano F. Pérez Remesal Carlos Renedo Estébanez DPTO. DE INGENIERÍA ELÉCTRICA Y ENERGÉTICA Este tema se publica bajo

Más detalles

[Escribir texto] CIRCUITO DE FLUIDOS, SUSPENSIÓN Y DIRECCIÓN SOLUCIONARIO TEMA 1. HIDRÁULICA Y NEUMÁTICA

[Escribir texto] CIRCUITO DE FLUIDOS, SUSPENSIÓN Y DIRECCIÓN SOLUCIONARIO TEMA 1. HIDRÁULICA Y NEUMÁTICA SOLUCIONARIO TEMA 1. HIDRÁULICA Y NEUMÁTICA Cuestiones 1- El Newton es una unidad de: a) Aceleración b) Peso c) Fuerza d) Masa 2- Se llama momento a: a) El producto de una fuerza por su distancia de aplicación

Más detalles

Cálculo del vaso de expansión de una instalación solar térmica

Cálculo del vaso de expansión de una instalación solar térmica Cálculo del vaso de expansión de una instalación solar térmica El dispositivo de expansión cerrado del circuito solar deberá estar dimensionado de tal forma que, incluso después de una interrupción del

Más detalles

TEMAS DE INGENIERIA PARA MOLINEROS DE ARROZ AERODINAMICA MARZO

TEMAS DE INGENIERIA PARA MOLINEROS DE ARROZ AERODINAMICA MARZO TEMAS DE INGENIERIA PARA MOLINEROS DE ARROZ AERODINAMICA MARZO 8 2007 RECONOCIMIENTO Parte del material que se presenta a continuación se ha tomado del curso de molinería de trigo de la Escuela Latinoamericana

Más detalles

MECANICA DE LOS FLUIDOS

MECANICA DE LOS FLUIDOS TP 1 PROPIEDADES REOLÓGICAS 1) Determinación de la viscosidad con viscosímetro Rotovisco Objetivo: determinar la viscosidad de distintos tipos de fluidos Material a utilizar: Viscosímetro Rotovisco con

Más detalles

FISICOQUÍMICA Y BIOFÍSICA UNLA

FISICOQUÍMICA Y BIOFÍSICA UNLA FISICOQUÍMICA Y BIOFÍSICA UNLA 1º CUATRIMESTRE Profesor: Ing. Juan Montesano. Instructor: Ing. Diego García. PRÁCTICA 5 Primer Principio Sistemas Abiertos PRÁCTICA 5: Primer Principio Sistemas abiertos.

Más detalles

OPERACIONES UNITARIAS 1 PROF. PEDRO VARGAS UNEFM DPTO. ENERGÉTICA

OPERACIONES UNITARIAS 1 PROF. PEDRO VARGAS UNEFM DPTO. ENERGÉTICA OERACIONES UNITARIAS 1 ROF. EDRO VARGAS UNEFM DTO. ENERGÉTICA Disponible en: www.operaciones1.wordpress.com BOMBAS CENTRÍFUGAS 1. Introducción Las bombas son dispositivos utilizados para movilizar líquidos

Más detalles

I. Objetivos. II. Introducción.

I. Objetivos. II. Introducción. Universidad de Sonora División de Ciencias Exactas y Naturales Departamento de Física Laboratorio de Mecánica II Práctica #: Dinámica rotacional: Cálculo del Momento de Inercia I. Objetivos. Medir el momento

Más detalles

CURSO TALLER PROMOTORES DE AHORRO Y EFICIENCIA DE ENERGÍA ELÉCTRICA

CURSO TALLER PROMOTORES DE AHORRO Y EFICIENCIA DE ENERGÍA ELÉCTRICA PROGRAMA INTEGRAL DE ASISTENCIA TÉCNICA Y CAPACITACIÓN PARA LA FORMACIÓN DE ESPECIALISTAS EN AHORRO Y USO EFICIENTE DE ENERGÍA ELÉCTRICA DE GUATEMALA CURSO TALLER PROMOTORES DE AHORRO Y EFICIENCIA DE ENERGÍA

Más detalles

SALVADOR ESCODA S.A. Rosselló,

SALVADOR ESCODA S.A. Rosselló, SALVADOR ESCODA S.A. Rosselló, 40-4 Tel. 9 446 7 80 Fax 9 6 90 0805 BARCELONA 4 BOMBAS CIRCULADORAS PARA INSTALACIONES DOMÉSTICAS Cuerpo único formado por la parte hidráulica de fundición. Caja motor de

Más detalles

ANDRITZ Bomba multietapa de carcasa partida axialmente

ANDRITZ Bomba multietapa de carcasa partida axialmente ANDRITZ Bomba multietapa de carcasa partida axialmente www.andritz.com/pumps Competencia hidráulica con tradición ANDRITZ construyó la primera bomba centrífuga hace más de 130 años atrás.el progreso sistemático

Más detalles