PREGUNTAS CONDUCTORAS:

Tamaño: px
Comenzar la demostración a partir de la página:

Download "PREGUNTAS CONDUCTORAS:"

Transcripción

1 PREGUNTAS CONDUCTORAS: 1.- Qué y cuáles son las cargas accidentales? 2.- Qué papel tiene la Cimentación en un Sistema Estructural? 3.- A qué se le denomina bajada de cargas? 4.- Explica que son las losas en una y dos direcciones

2

3 CARGAS ACCIDENTALES Definición: Existen cargas que desde el punto de vista de su permanencia, no pueden ser clasificadas como vivas o muertas debido a que no son producidas por la acción de la gravedad, sino que se distinguen por no tener carácter permanente. A estas cargas las llamamos cargas accidentales.

4 Cargas vivas o cargas muertas. Cargas accidentales Se representan generalmente de manera vertical, hacia abajo. Estas cargas accidentales se colocan de manera que incidan horizontalmente en la estructura, como intentando provocar volteo.

5 CARGAS ACCIDENTALES DE ACUERDO AL CÓDIGO REGLAMENTARIO DEL ESTADO DE PUEBLA Artículo 973. ACCIONES ACCIDENTALES: Se consideran acciones accidentales las siguientes: I. SISMO: Las acciones dinámicas o sus equivalentes estáticas debidas a sismos, deberán considerarse en la forma que se especifica en la (sic) apartado relativo a Diseño por Sismo del presente Capítulo. II. VIENTO: Las acciones estáticas y dinámicas debidas al viento, se determinarán en la forma que se especifica en el apartado relativo a Diseño por Viento; III. OTRAS ACCIONES ACCIDENTALES: Estas serán explosiones, incendios y otras acciones que puedan ocurrir en casos extraordinarios. En general, no será necesario incluirlas en el diseño formal, sino únicamente tomar precauciones, en la estructuración y en los detalles constructivos, para evitar comportamiento.

6 CARGAS ACCIDENTALES: VIENTO -> Una estructura sometida a la acción del viento experimenta una fuerza de empuje en el lado donde actúa el viento y una succión por el lado contrario. -> Las cargas horizontales del viento se transmiten a la cimentación del edificio por medio de flexión, con uno de los lados del edificio soportando fuerzas de tensión y la otra fuerza de compresión, por lo que es necesario contemplar los refuerzos especiales para aumentar la resistencia a la flexión cerca de la base.

7 Cargas accidentales: viento Se basa en: La zona de construcción Como: -Ubicación de la estructura. -De su altura. -Del área expuesta y de la posición. El efecto del viento sobre una estructura depende de: -La densidad y velocidad del aire. -Del ángulo de incidencia del viento. -De la forma y de la rigidez de la estructura. - De la rugosidad de la superficie de la estructura. Se manifiesta como: Presiones y succiones En las NTC- Viento del RCDF-87 se especifica el cálculo de estas presiones de acuerdo a las características de la estructura.

8 CARGAS ACCIDENTALES: VIENTO En general ni se especifican normas de diseño para el efecto de huracanes o tornados, debido a que se considera incosteable el diseño contra estos efectos; sin embargo, se sabe que el detallado cuidadoso del refuerzo, y la unión de refuerzos en los sistemas de piso con muros mejora notablemente su comportamiento.

9 CARGAS ACCIDENTALES: SISMO Los sismos producen cargas sobre una estructura por medio de la interacción del movimiento del suelo y las características de respuesta de la estructura. Esas cargas resultan de la distorsión en la estructura causada por el movimiento del suelo y la resistencia lateral de ésta. Sus magnitudes dependen de la velocidad y tipo de aceleraciones del suelo, así como de la masa y rigidez de la estructura.

10 El objetivo del diseño sísmico de las estructuras: Lograr las tres características que rigen el buen comportamiento sísmico: Resistencia, rigidez y ductilidad.

11 Efectos de los sismos en las estructuras: Un latigazo generador de fuerzas de inercia Se calcula a partir de la expresión: F8= m(a) en donde: F8 = Fuerza sísmica m = masa de la construcción a = aceleración sísmica La inercia produce efectos mecánicos en las estructura: flexiones, cortantes, torsiones Interviene también la respuesta dinámica, la rigidez, amortiguamiento y ductilidad de la estructura. Es posible calcular el cortante V8 que actúa en la base de la construcción, por medio de: V8 = C8p En donde: V8= Cortante basal C8= a/g = coeficiente sísmico (adimensional) P = peso de la construcción

12 Amortiguamiento critico en los sismos En una estructura cuando, al separarla de su posición original, no oscila sino que regresa a la posición de equilibrio. Las estructuras suelen tener amortiguamientos del orden del 3 % al 10 % del critico. Depende de: Los materiales empleados en la construcción, de las conexiones y de los elementos no estructurales. Siendo menor el de las estructuras de acero soldadas y mayor el de las estructuras de concreto y mampostería.

13 DUCTILIDAD EN LOS SISMOS Ductilidad: Es la capacidad de la estructura para soportar grandes deformaciones inelásticas sin fallar ni reducir su capacidad de carga. Por ejemplo, un puente.

14 Capítulo III De los Criterios del Diseño Estructural ARTÍCULO Toda edificación debe contar con un sistema estructural que permita el flujo adecuado de las fuerzas que generan las distintas acciones de diseño, para que dichas fuerzas puedan ser transmitidas de manera continua y eficiente hasta la cimentación. Debe contar además con una cimentación que garantice la correcta transmisión de dichas fuerzas al subsuelo.

15

16 ARTÍCULO En el diseño de toda estructura deben tomarse en cuenta los efectos de las cargas muertas, de las cargas vivas, del sismo y del viento, cuando este último sea significativo. Las intensidades de estas acciones que deban considerarse en el diseño y la forma en que deben calcularse sus efectos se especifican en las Normas correspondientes. Cuando sean significativos, deben tomarse en cuenta los efectos producidos por otras acciones, como los empujes de tierras y líquidos, los cambios de temperatura, las contracciones de los materiales, los hundimientos de los apoyos y las solicitaciones originadas por el funcionamiento de maquinaria y equipo que no estén tomadas en cuenta en las cargas especificadas en las Normas correspondientes.

17

18 CAPÍTULO XII DE LAS PRUEBAS DE CARGA ARTÍCULO Será necesario comprobar la seguridad de una estructura por medio de pruebas de carga en los siguientes casos: I. En las obras provisionales o de recreación que puedan albergar a más de 100 personas II. Cuando no exista suficiente evidencia teórica o experimental para juzgar en forma confiable la seguridad de la estructura en cuestión III. Cuando la Delegación previa opinión de la Secretaría de Obras y Servicios lo determine conveniente en razón de duda en la calidad y resistencia de los materiales o en cuanto al proyecto estructural y a los procedimientos constructivos. La opinión de la Secretaría tendrá el carácter de vinculatorio.

19

20 ARTÍCULO Para realizar una prueba de carga mediante la cual se requiera verificar la seguridad de la estructura, se seleccionará la forma de aplicación de la carga de prueba y la zona de la estructura sobre la cual se aplicará, de acuerdo con las siguientes disposiciones: I. Cuando se trate de verificar la seguridad de elementos o conjuntos que se repiten, bastará seleccionar una fracción representativa de ellos, pero no menos de tres, distribuidas en distintas zonas de la estructura II. La intensidad de la carga de prueba deberá ser igual a 85% de la de diseño incluyendo los factores de carga que correspondan III. La zona en que se aplique será la que produzca los efectos más desfavorables, en los elementos o conjuntos seleccionados

21 IV. Previamente a la prueba se someterán a la aprobación de la Secretaría de Obras y Servicios, el procedimiento de carga y el tipo de datos que se recabarán en dicha prueba, tales como deflexiones, vibraciones y agrietamientos V. Para verificar la seguridad ante cargas permanentes, la carga de prueba se dejará actuando sobre la estructura no menos de 24 horas VI. Se considerará que la estructura ha fallado si ocurre una falla local o incremento local brusco de desplazamiento o de la curvatura de una sección. Además, si 24 horas después de quitar la sobrecarga la estructura no muestra una recuperación mínima de 75 % de su deflexión, se repetirá la prueba VII. La segunda prueba de carga no debe iniciarse antes de 72 horas de haberse terminado la primera

22

23 VIII. Se considerará que la estructura ha fallado si después de la segunda prueba la recuperación no alcanza, en 24 horas, el 75 % de las deflexiones debidas a dicha segunda prueba. IX. Si la estructura pasa la prueba de carga, pero como consecuencia de ello se observan daños tales como agrietamientos excesivos, debe repararse localmente y reforzarse. Podrá considerarse que los elementos horizontales han pasado la prueba de carga, aún si la recuperación de las flechas no alcanzaran en 75 %, siempre y cuando la flecha máxima no exceda de 2 mm + L 2 /(20,000h), donde L, es el claro libre del miembro que se ensaye y h su peralte total en las mismas unidades que L; en voladizos se tomará L como el doble del claro libre. X. En caso de que la prueba no sea satisfactoria, debe presentarse a la Delegación un estudio proponiendo las modificaciones pertinentes, el cual será objeto de opinión por parte de la Secretaría de Obras y Servicios. Una vez realizadas las modificaciones, se llevará a cabo una nueva prueba de carga

24 XI. Durante la ejecución de la prueba de carga, deben tomarse las medidas necesarias para proteger la seguridad de las personas. El procedimiento para realizar pruebas de carga de pilotes será el incluido en las Normas. XII. Cuando se requiera evaluar mediante pruebas de carga la seguridad de una edificación ante efectos sísmicos, deben diseñarse procedimientos de ensaye y criterios de evaluación que tomen en cuenta las características peculiares de la acción sísmica, como son la aplicación de efectos dinámicos y de repeticiones de carga alternadas. Estos procedimientos y criterios deben ser aprobados por la Secretaría de Obras y Servicios.

25

26 BAJADA DE CARGAS a)losas en una dirección. b)losas en dos direcciones.

27 BAJADA DE CARGAS Es el proceso de transmitir cargas, partiendo del elemento más simple, como es la losa hasta llegar a la cimentación, esto a través de las columnas.

28 PASOS PARA BAJADAS DE CARGAS IDENTIFICAR LAS LOSAS ANÁLISIS DE CARGAS OBTENCION DE ÁREAS BAJADA DE CARGAS

29 REGLA GENERAL: Como regla general, al hacer bajada de cargas debe pensarse en la manera como se apoya un elemento sobre otro; por ejemplo (ver la Fig. 1.1), las cargas existentes en un nivel se transmiten a través de la losa del techo hacia las vigas (o muros) que la soportan, luego, estas vigas al apoyar sobre las columnas, le transfieren su carga; posteriormente, las columnas transmiten la carga hacia sus elementos de apoyo que son las zapatas; finalmente, las cargas pasan a actuar sobre el suelo de cimentación. Fig. 1.1

30 Losas en una dirección

31 LOSAS Se denomina como losas a los elementos estructurales bidimensionales, en donde la tercera dimensión es pequeña comparada con las otras dos dimensiones básicas. Estas lozas actúan por flexión, ya que las cargas que actúan sobre estas son fundamentalmente perpendiculares al plano principal de las mismas. Se pueden distinguir varios tipos de losas; según el tipo de apoyo se pueden encontrar, Según la dirección de trabajo y según la distribución interior del hormigón.

32 LOSAS EN UNA DIRECCIÓN Son aquellas en que la carga se transmite en una dirección hacia los muros portantes; son generalmente losas rectangulares en las que un lado mide por lo menos 1.5 veces más que el otro. Estas losas se comportan como vigas anchas, las cuales se suelen diseñar tomando como referencia un metro de ancho.

33 Cuando las losas rectangulares se apoyan en dos extremos opuestos y carecen de apoyo en los otros dos bordes restantes, trabajan y se diseñan como losas unidireccionales.

34 Cuando la losa rectangular se apoya en sus cuatro lados (sobre vigas o sobre muros), y la relación largo/ancho es mayor o igual a dos, la losa trabaja fundamentalmente en la dirección mas corta, y se suele diseñar unidireccionalmente aunque se debe proveer un mínimo de armado en la dirección ortogonal (dirección larga), particularmente en la zona cercana a los apoyos, donde siempre se desarrollan momentos flectores negativos importantes (tracción en las fibras superiores). Los momentos positivos en la dirección larga son generalmente pequeños, pero también deben ser tomados en consideración.

35 Altura Mínima de Vigas o Losas en una Dirección Cuando no se Calculan Deflexiones Donde: Ln: claro libre en la dirección de trabajo de la losa, medido de cara interna a cara interna de los elementos que sustentan a la losa

36 EJEMPLO Diseñar la losa de entrepiso formada por tableros que actúan en una sola dirección, mostrada en la figura.

37 EJEMPLO Datos: f c = 200 kg/cm2 f*c = 0.8 f c = 160 kg/cm2 fy = 4200 kg/cm2 Carga total aplicada = W = 670 kg/m2 DEFLEXION Peralte total necesario por deflexión, según el ACI para losas macizas con un extremo continuo H = L/24 = 200/24 = 8.33 cm cm Peralte efectivo, considerando un recubrimiento de 2 cm: d= h r = = 7.0 cm

38 Haciendo análisis estructural del sistema como una viga continua de un metro de ancho, 4 m de largo, carga uniforme w = 670 kg/m y apoyada en tres puntos. Los resultados principales fueron los siguientes: Momentos positivos en ambos claros: M(+) = kg/m Momentos negativos a ambos lados de apoyo central: M(-) = 335 kg/m Cortantes a ambos lados de apoyo central: V= kg *DISEÑO POR FLEXION Armado por flexión, momentos negativos: As(-) = X 1.4 / 0.9 X X 0.89 X 7 = 1.99 cm2 Separaciones máximas de varilla: Por temperatura, P min = bd = x 100 x 7 = 1.4 cm2 Separación de varilla, considerando varilla # 3 (as = 0.71 cm2):

39 St = (as / As) (b) S = (0.71 / 1.4) (100) = 50 cm S= 3.5 h = 3.5 x 9.0 = 31.9 cm < 50 cm Separación de varilla negativa, considerando varilla #3 (as = 0.71 cm2) S(-) = [as/ As (-)] [b] S(-) = (0.71 / 1.99) (100) = 35 cm > 31.5 (rige 31.5 cm) * Armado por flexión, momentos positivos As(+) = Mu(+) / FRfyJd As(+) = ( x 1.4) / (0.9 x x 9.89 x 7)= 0.99 cm2 * Separación máxima de varilla positiva: S= (0.71 / 0.99) (100) S = 71 / 0.99 = 72 cm > 31.5 (rige esta ultima separación máxima y se aproxima a 30 cm)

40 *Revisión por cortante Vu = x 1.4 = 704 kg VR = 0.5 x 0.8 x 100 x 7 x 160 = kg > 704 kg (resiste el cortante) Croquis de armado

41 Losas en dos direcciones

42 LOSAS EN DOS DIRECCIONES Llamadas también losas cruzadas, donde la relación entre el lado mayor y el lado menor es menor que dos. Las cargas se transmiten en las dos direcciones hacia los apoyos.

43 Para determinar las cargas muertas y vivas que actúan sobre un elemento estructural, es necesario la obtención de las aéreas tributarias de los elementos estructurales. El procedimiento mas usual en losas apoyadas perimetralmente consiste en trazar por cada una de las esquinas que forman un tablero líneas a 45 grados y cada una de las cargas que actúa en el triangulo o trapecio se aplica sobre la viga que coincide con el lado correspondiente. Estos cálculos son los iníciales para obtener las cargas que actúan en cada tramo de viga y a partir de estos valores, calcular los momentos de empotramiento y reacciones, que a su vez servirán para analizar los marcos o vigas continuas.

44 Con esto entendemos la explicación anteriormente dada:

45 Bajo este estado límite, las fuerzas cortantes que generan las cargas que actúan en los triángulos y trapecios se transmiten directamente a las vigas en las que se sustentan los respectivos triángulos y trapecios.

46 EJEMPLO DE BAJADA DE CARGAS EN DOS DIRECCIONES Se da una losa de azotea (techo) y se pide ---> transmitir la carga hacia los bordes y en uno de ellos con la carga calculada, diseñar una viga de concreto reforzado, en cada extremo (esquina) hay columnas de 3m de alto. También diseñar las columnas.

47 Partes que integran la losa: NEGRO: impermeabilizante ROJO: enladrillado AMARILLO: entortado GRIS: concreto AZUL: yeso NARANJA: tirol

48 DETERMINACIÓN DE CARGAS UNITARIAS PESO VOLUMÉTRICO(KG/M3)<--POR--->ESPESOR(M)<-- IGUAL A-->W (KG/M2) IMPERMEABILIZANTE: 15KG/M3 POR 0.005M =0.075KG/M2 ENLADRILLADO: 1600KG/M3 POR 0.02M =32KG/M2 ENTORTADO: 1900KG/M3 POR 0.04M = 76KG/M2 CONCRETO: 2400KG/M3 POR 0.10M =240KG/M2 YESO: 1500KG/M3 POR 0.015M =22.5KG/M2 TIROL: 35KG/M3 POR 0.015M =0.525KG/M2 CARGA MUERTA::371.1KG/M2(suma de todos los resultados anteriores) SE CONSIDERA UNA CARGA VIVA DE: 170KG/M2(se propone de acuerdo a la construccion) CARGA ADICIONAL: 40KG/M2 CARGA TOTAL WT: 581.1KG/M2 (suma de )

49 LOS KG/M2 ES LA CARGA W(LO QUE PESA CADA METRO CUADRADO DE LA LOSA), LUEGO SE DEBERA CALCULAR LA CARGA QUE SE TRANSMITE HACIA LOS BORDES DE LOS TABLEROS ANALIZADOS, ESTE CALCULO TOMA EN CUENTA EL AREA TRIBUTARIA QUE LE CORRESPONDE A CADA BORDE DEL TABLERO, SE DIVIDE CADA TABLERO RECTANGULAR EN TRIANGULOS Y TRAPECIOS (TRIANGULOS EN LADOS CORTOS Y TRAPECIOS EN LADOS LARGOS).

50 Áreas tributaria-----tablero rectangular A1= LADO CORTO= 5m A2= LADO LARGO = 6m

51 El PESO EN KG DE LAS DISTINTAS AREAS TRIBUTARIAS SE CALCULA MULTIPLICANDO LA SUPERFICIE DE CADA UNA DE ELLAS POR EL PESO W EN KG/M2 DEL SISTEMA ( ES DECIR, EL NUMERO DE METROS CUADRADOS MULTIPLICADO POR LO QUE PESA CADA UNO DE ELLOS) DESPUÉS LO DIVIDES ENTRE LA LONGITUD DEL TRAMO ANALIZADO. ENTONCES PARA ESTE TABLERO : 1.- (AREA TRIANGULO)(CARGA W) /LADO CORTO 6.25X / 5 = KG/M 2.- (AREA TRAPECIO)(CARGA W) /LADOLARGO 8.75 X /6= KG/M 3.- (AREA TRIANGULO)(CARGA W) /LADO CORTO 6.25X / 5 = KG / M 4.- (AREA TRAPECIO)(CARGA W) /LADOLARGO 8.75 X /6= KG/M

52 y ahora si nos propusieran o encargaran diseñar la viga de concreto reforzado para la parte de abajo donde la carga es de y si en cada extremo hubiera columnas quedaría así la viga para empezar a diseñar:

53 Y queda una viga empotrada con carga distribuida de kg/m y ya con esto tienes para empezar a diseñar una viga de concreto reforzado que soporte este peso etc. no olvides revisar algún reglamento de construcción antes de diseñar la viga si estas en México el reglamento mas usado es el del distrito federal o si estas en otro país verifica alguno de tu localidad. Ahora para diseñar las columnas(acuerdate que hay columnas en los extremos) o simplemente saber cuanto peso soportan las columnas tienes que resolver la viga empotrada con carga distribuida y las reacciones que obtengas(ra y Rb) serán el peso que soportaran las columnas

54 Entonces resolviendo tenemos: Reacciones=Ra=Rb= WL / 2 = X6 / 2 Entonces Ra=Rb= kg

55 Encontramos las reacciones Ra=Rb= kg esas cargas son las que soportaran las columnas, con esta carga diseñamos(dimensionamos) las columnas(nota: TAMBIEN TOMAR EN CUENTA LOS MOMENTOS DE EMPOTRAMIENTO EN ESTE PASO PARA DISEÑO DE COLUMNAS,QUE LOS OBTIENESEN ESTE CASO CON LA SIGUIENTE FORMULA= WL²/12) no olvides revisar algún reglamento de construcción antes de diseñar las columnas, si estas en México el reglamento mas usado es el del distrito federal o si estas en otro país verifica alguno de tu localidad. Ya una ves diseñadas y que sepas bien las dimensiones de las columnas podrás también calcular el peso propio de las columnas este se lo sumas a los y entonces este peso lo mandaras a la cimentación.

56 CONCLUSIÓN Podemos decir que al momento de diseñar es de suma importancia tomar en cuenta factores de seguridad como lo marca el código reglamentario de cada zona en donde se construye. Ya que de esta forma se puede evitar desastres; para lograrlo, además de tomar en cuenta los factores del suelo con respecto a los sismos es importante diseñar las losas para que puedan tener una correcta bajada de cargas hacia la cimentación y contar con una estructura firme y segura.

57 BIBLIOGRAFÍA Libros: Diseño estructural de casas habitación AUTOR: Gallo Ortiz, Gabriel O. Espino Márquez, Luis I. Olvera Montes, Alfonso E Edit. Mac Graw-Hill, 1999

REVISION DE LA MEMORIA DE CALCULO, ANALISIS Y DISEÑO ESTRUCTURAL ARQ. ADRIAN GARCIA GONZALEZ C/SE-0223

REVISION DE LA MEMORIA DE CALCULO, ANALISIS Y DISEÑO ESTRUCTURAL ARQ. ADRIAN GARCIA GONZALEZ C/SE-0223 REVISION DE LA MEMORIA DE, ANALISIS Y DISEÑO ESTRUCTURAL ARQ. ADRIAN GARCIA GONZALEZ C/SE-0223 REVISION DE PLANOS ESTRUCTURALES 1.- ART. 53.- Manifestación de construcción tipo B y C d) Dos tantos del

Más detalles

Diseño de estructuras de Concreto Reforzado 1. Ejercicios resueltos del capítulo 03 del libro de Arthur Nilson.

Diseño de estructuras de Concreto Reforzado 1. Ejercicios resueltos del capítulo 03 del libro de Arthur Nilson. Diseño de estructuras de Concreto Reforzado 1. Ejercicios resueltos del capítulo 03 del libro de Arthur Nilson. 3.2 Una viga rectangular reforzada a tensión debe diseñarse para soportar una carga muerta

Más detalles

Jorge A. AVILA Investigador y Profesor Instituto de Ingeniería, UNAM División Estudios Posgrado de la Facultad Ingeniería (DEPFI), UNAM México, D.F.

Jorge A. AVILA Investigador y Profesor Instituto de Ingeniería, UNAM División Estudios Posgrado de la Facultad Ingeniería (DEPFI), UNAM México, D.F. RESPUESTA SÍSMICA INELÁSTICA DE DOS EDIFICIOS DE CONCRETO REFORZADO DISEÑADOS CON DIFERENTES FACTORES DE COMPORTAMIENTO SÍSMICO, SIN Y CON EFECTOS DE SOBRE-RESISTENCIAS Jorge A. AVILA Investigador y Profesor

Más detalles

CAPÍTULO 7. ADECUACIÓN DEL PROYECTO A RESULTADOS DEL ANÁLISIS NUMÉRICO. En este capítulo se evaluarán las características de los elementos

CAPÍTULO 7. ADECUACIÓN DEL PROYECTO A RESULTADOS DEL ANÁLISIS NUMÉRICO. En este capítulo se evaluarán las características de los elementos CAPÍTULO 7. ADECUACIÓN DEL PROYECTO A RESULTADOS DEL ANÁLISIS NUMÉRICO 7.1 Descripción En este capítulo se evaluarán las características de los elementos estructurales que componen al edificio y se diseñarán

Más detalles

Cátedra: Ing. José M. Canciani Estructuras I ACCIONES SOBRE LAS ESTRUCTURAS: CARGAS. PDF created with pdffactory trial version

Cátedra: Ing. José M. Canciani Estructuras I ACCIONES SOBRE LAS ESTRUCTURAS: CARGAS. PDF created with pdffactory trial version Cátedra: Ing. José M. Canciani Estructuras I ACCIONES SOBRE LAS ESTRUCTURAS: CARGAS Cargas: Fuerzas que resultan del peso de todos los materiales de construcción, del peso y actividad de sus ocupantes

Más detalles

EJEMPLOS DE DISEÑO. Las losas de entrepiso y azotea corresponden al sistema de vigueta y bovedilla.

EJEMPLOS DE DISEÑO. Las losas de entrepiso y azotea corresponden al sistema de vigueta y bovedilla. EJEMPLOS DE DISEÑO J. Álvaro Pérez Gómez Esta tema tiene como objetivo mostrar en varios ejemplos el diseño estructural completo de un muro de mampostería reforzado interiormente formado por piezas de

Más detalles

Aplicación del concreto de alta resistencia. Dr. Roberto Stark

Aplicación del concreto de alta resistencia. Dr. Roberto Stark Aplicación del concreto de alta resistencia Dr. Roberto Stark CONCRETO? USO DE CONCRETOS DE ALTA RESISTENCIA PROPIEDADES ESTRUCTURALES EDIFICIOS ALTOS Altura total en metros Altura en metros de los

Más detalles

TEMA 5: ACCIONES EN LA EDIFICACIÓN.

TEMA 5: ACCIONES EN LA EDIFICACIÓN. TEMA 5: ACCIONES EN LA EDIFICACIÓN. ESTRUCTURAS 1 ANTONIO DELGADO TRUJILLO ENRIQUE DE JUSTO MOSCARDÓ JAVIER LOZANO MOHEDANO MARÍA CONCEPCIÓN BASCÓN HURTADO Departamento de Mecánica de Medios Continuos,

Más detalles

A D ANTONE

A D ANTONE A D ANTONE ARQ. MARÍA A. [email protected] GENERAIDADES OSA: Elemento estructural superficial Cargas perpendiculares a su superficie Se deforma según una curvatura Se genera un estado de flexión

Más detalles

Ficha Técnica N 5 EJEMPLO NUMÉRICO DE APLICACIÓN DE UNA ESTRUCTURA REALIZADA CON LADRILLOS CERÁMICOS PORTANTES DE ACUERDO AL REGLAMENTO CIRSOC 501-E

Ficha Técnica N 5 EJEMPLO NUMÉRICO DE APLICACIÓN DE UNA ESTRUCTURA REALIZADA CON LADRILLOS CERÁMICOS PORTANTES DE ACUERDO AL REGLAMENTO CIRSOC 501-E Ficha Técnica N 5 EJEMPLO NUMÉRICO DE APLICACIÓN DE UNA ESTRUCTURA REALIZADA CON LADRILLOS CERÁMICOS PORTANTES DE ACUERDO AL REGLAMENTO CIRSOC 501-E CÁMARA INDUSTRIAL DE LA CÉRAMICA ROJA Marzo 2008 1-

Más detalles

CORRECCIONES DEL DISEÑO ESTRUCTURAL

CORRECCIONES DEL DISEÑO ESTRUCTURAL ESTUDIO DEFINITIVO DE ARQUITECTURA E INGENIERIA DEL PATIO SUR DEL CORREDOR SEGREGADO DE ALTA CAPACIDAD DE LIMA METROPOLITANA CORRECCIONES DEL DISEÑO ESTRUCTURAL 1 INTRODUCCIÓN El presente documento comprende

Más detalles

CFGS CONSTRUCCION METALICA MODULO 246 DISEÑO DE CONSTRUCCIONES METALICAS

CFGS CONSTRUCCION METALICA MODULO 246 DISEÑO DE CONSTRUCCIONES METALICAS CFGS CONSTRUCCION METALICA MODULO 246 DISEÑO DE CONSTRUCCIONES METALICAS U.T. 5.- FLEXION. 4.1.- Viga. Una viga es una barra recta sometida a fuerzas que actúan perpendicularmente a su eje longitudinal.

Más detalles

Carrera: Ingeniería Civil CIF 0513

Carrera: Ingeniería Civil CIF 0513 1.- DATOS DE LA ASIGNATURA Nombre de la asignatura: Carrera: Clave de la asignatura: Horas teoría-horas práctica-créditos: Diseño de Estructuras de Concreto Ingeniería Civil CIF 0513 2 4 8 2.- HISTORIA

Más detalles

CAPÍTULO IV: ANÁLISIS ESTRUCTURAL 4.1. Introducción al comportamiento de las estructuras Generalidades Concepto estructural Compo

CAPÍTULO IV: ANÁLISIS ESTRUCTURAL 4.1. Introducción al comportamiento de las estructuras Generalidades Concepto estructural Compo CAPITULO 0: ACCIONES EN LA EDIFICACIÓN 0.1. El contexto normativo Europeo. Programa de Eurocódigos. 0.2. Introducción al Eurocódigo 1. Acciones en estructuras. 0.3. Eurocódigo 1. Parte 1-1. Densidades

Más detalles

INFORME Y MEMORIA DE CÁLCULO REFORZAMIENTO PABELLÓN COMEDOR COOP. SERV. EDUC. ABRAHAM LINCOLN

INFORME Y MEMORIA DE CÁLCULO REFORZAMIENTO PABELLÓN COMEDOR COOP. SERV. EDUC. ABRAHAM LINCOLN INFORME Y MEMORIA DE CÁLCULO REFORZAMIENTO PABELLÓN COMEDOR COOP. SERV. EDUC. ABRAHAM LINCOLN Elaborado por: Cliente : TOP CONSULT INGENIERIA SAC COLEGIO ABRAHAM LINCOLN Lima, Junio de 2012 1. OBJETIVOS

Más detalles

PROYECTO ESTUDIOS Y DISEÑOS PROYECTO DE CONCESIÓN, AREA METROPOLITANA DE CÚCUTA Y NORTE DE SANTANDER. MEMORIAS DE CÁLCULO ESTRUCTURAL Versión 0

PROYECTO ESTUDIOS Y DISEÑOS PROYECTO DE CONCESIÓN, AREA METROPOLITANA DE CÚCUTA Y NORTE DE SANTANDER. MEMORIAS DE CÁLCULO ESTRUCTURAL Versión 0 TNM TECHNOLOGY AND MANAGEMENT LTD. MEMORIA DE CÁLCULO ESTRUCTURAL RAMPAS PUENTE PEATONAL 11 NOVIEMBRE Y MURO SENDERO PEATONAL CÚCUTA NORTE DE SANTANDER PROYECTO ESTUDIOS Y DISEÑOS PROYECTO DE CONCESIÓN,

Más detalles

Procedimientos Constructivos. Columnas y castillos. Alumno: Antonio Adrián Ramírez Rodríguez Matrícula:

Procedimientos Constructivos. Columnas y castillos. Alumno: Antonio Adrián Ramírez Rodríguez Matrícula: Procedimientos Constructivos Columnas y castillos Alumno: Antonio Adrián Ramírez Rodríguez Matrícula: 440002555 Columnas Elemento estuctural vertical empleado para sostener la carga de la edificación Columnas

Más detalles

Carrera : Arquitectura ARF Participantes Representante de las academias de Arquitectura de los Institutos Tecnológicos.

Carrera : Arquitectura ARF Participantes Representante de las academias de Arquitectura de los Institutos Tecnológicos. 1.- DATOS DE LA ASIGNATURA Nombre de la asignatura : Carrera : Clave de la asignatura : Horas teoría-horas práctica-créditos : Estructura de Concreto I Arquitectura ARF-0408 2-4-8 2.- HISTORIA DEL PROGRAMA.

Más detalles

CAPÍTULO 15. ZAPATAS Y CABEZALES DE PILOTES

CAPÍTULO 15. ZAPATAS Y CABEZALES DE PILOTES CAPÍTULO 15. ZAPATAS Y CABEZALES DE PILOTES 15.0. SIMBOLOGÍA A g A s d pilote f ce β γ s área total o bruta de la sección de hormigón, en mm 2. En una sección hueca A g es el área de hormigón solamente

Más detalles

DESCRIPCIÓN ESTRUCTURACIÓN DE LA OBRA.

DESCRIPCIÓN ESTRUCTURACIÓN DE LA OBRA. MEMORIA DE CALCULOS ESTRUCTURALES Proyecto: TIENDA LA CURACAO BLUEFIELDS, UBICADA LA CIUDAD DE BLUEFIELDS, REGION AUTONOMA DEL ATLANTICO SUR DE NICARAGUA DESCRIPCIÓN Diseño: Ing. Jimmy Vanegas. El proyecto

Más detalles

CAPÍTULO 6. CONDICIONES LOCALES DEL SUELO

CAPÍTULO 6. CONDICIONES LOCALES DEL SUELO CAPÍULO 6. CONDICIONES LOCALES DEL SUELO Las condiciones locales del manto de suelo sobre el que se emplaza la construcción, tienen considerable influencia sobre la respuesta sísmica de la misma. 6.1.

Más detalles

INGENIEROS FASE DE ESTRUCTURAS

INGENIEROS FASE DE ESTRUCTURAS FASE DE ESTRUCTURAS PLANO DE CIMENTACION Y COLUMNAS. PLANO DE ARMADO DE TECHO. PLANO DETALLES ESTRUCTURALES (COLUMNAS, CIMIENTOS, SOLERAS, VIGAS, CORTES DE MUROS) INGENIEROS CIMENTACION Y COLUMNAS Como

Más detalles

Objetivos docentes del Tema 9:

Objetivos docentes del Tema 9: Tema 9: Forjados y losas 1. Comportamiento mecánico. 2. Tipos de forjados: unidireccionales y bidireccionales. 3. Partes resistentes y elementos aligerantes. 4. Losas: comportamiento y tipos. 5. Apoyos

Más detalles

CURSOS DE CAPACITACION ETABS ANALISIS Y DISEÑO DE EDIFICACIONES

CURSOS DE CAPACITACION ETABS ANALISIS Y DISEÑO DE EDIFICACIONES CURSOS DE CAPACITACION ANALISIS Y DISEÑO DE EDIFICACIONES Curso Taller: - Análisis y Diseño de Edificaciones Curso Taller: ANALISIS Y DISEÑO DE EDIFICACIONES Presentación: En los últimos años, el uso de

Más detalles

C 6.1. ESTADOS LÍMITES PARA SOLICITACIONES DE FLEXIÓN Y DE CORTE

C 6.1. ESTADOS LÍMITES PARA SOLICITACIONES DE FLEXIÓN Y DE CORTE COMENTARIOS AL CAPÍTULO 6. BARRAS EN FLEXIÓN SIMPLE Para tener una respuesta simétrica de la sección en flexión simple y evitar efectos torsionales, se exige que cuando sean más de una las arras de los

Más detalles

Ejemplo 11b. Se pide: Datos: Cálculo de losas: Análisis de cargas. Cálculo de solicitaciones.

Ejemplo 11b. Se pide: Datos: Cálculo de losas: Análisis de cargas. Cálculo de solicitaciones. Ejemplo 11b. Se pide: Calcular el entrepiso del ejemplo anterior utilizando la simbología del Cirsoc 2005; el que se encuentra en vigencia. En el ejemplo anterior se resolvió el mismo entrepiso mediante

Más detalles

ESTRUCTURAS INTRODUCCIÓN

ESTRUCTURAS INTRODUCCIÓN INTRODUCCIÓN El término estructura puede definirse como armazón, distribución u orden de las diferentes partes de un conjunto. Puede referirse, por ejemplo, a las partes de un ser vivo, al modo en que

Más detalles

Como la densidad relativa es adimensional, tiene el mismo valor para todos los sistemas de unidades.

Como la densidad relativa es adimensional, tiene el mismo valor para todos los sistemas de unidades. LA DENSIDAD (D) de un material es la masa por unidad de volumen del material La densidad del agua es aproximadamente de 1000 DENSIDAD RELATIVA (Dr) de una sustancia es la razón de la densidad de una sustancia

Más detalles

ERRORES COMUNES EN EL DISEÑO Y CONSTRUCCION DE ESTRUCTURAS DE CONCRETO.

ERRORES COMUNES EN EL DISEÑO Y CONSTRUCCION DE ESTRUCTURAS DE CONCRETO. ERRORES COMUNES EN EL DISEÑO Y CONSTRUCCION DE ESTRUCTURAS DE CONCRETO. A.- ERRORES EN EL DISEÑO DE ESTRUCTURAS DE CONCRETO 1.- CONSIDERACIONES DE CARGAS: Los errores más comunes en el diseño estructural

Más detalles

USO DE CONCRETOS Y ACEROS DE ALTA RESISTENCIA DE ACUERDO CON LAS NUEVAS NTC

USO DE CONCRETOS Y ACEROS DE ALTA RESISTENCIA DE ACUERDO CON LAS NUEVAS NTC SIMPOSIO: CONCRETOS ESTRUCTURALES DE ALTO COMPORTAMIENTO Y LAS NUEVAS NTC-DF USO DE CONCRETOS Y ACEROS DE ALTA RESISTENCIA Carlos Javier Mendoza Escobedo CAMBIOS MAYORES f C por f c Tres niveles de ductilidad:

Más detalles

ESCUELA TECNICA SUPERIOR DE ING. DE CAMINOS, CANALES Y PUERTOS ASIGNATURA: PROCEDIMIENTOS ESPECIALES DE CIMENTACION PLAN 83/84/ 6ºCURSO / AÑO 10/11

ESCUELA TECNICA SUPERIOR DE ING. DE CAMINOS, CANALES Y PUERTOS ASIGNATURA: PROCEDIMIENTOS ESPECIALES DE CIMENTACION PLAN 83/84/ 6ºCURSO / AÑO 10/11 ESCUELA TECNICA SUPERIOR DE ING. DE CAMINOS, CANALES Y PUERTOS ASIGNATURA: PROCEDIMIENTOS ESPECIALES DE CIMENTACION PLAN 83/84/ 6ºCURSO / AÑO 10/11 EJERCICIO Nº 1 ZAPATAS: CARGAS DE HUNDIMIENTO Una zapata

Más detalles

Kobe Japón Sismo del 17 de enero de 1995

Kobe Japón Sismo del 17 de enero de 1995 Kobe Japón Sismo del 17 de enero de 1995 Introducción El sismo de la ciudad de Kobe en Osaka Japón fue por su característica en cuanto a magnitud, estimada en 7.2, muy cercano al de Loma Prieta en San

Más detalles

CIMENTACIONES EN LA NORMA REQUISITOS ESENCIALES PARA EDIFICIOS DE CONCRETO REFORZADO IPS-1 JORGE IGNACIO SEGURA FRANCO

CIMENTACIONES EN LA NORMA REQUISITOS ESENCIALES PARA EDIFICIOS DE CONCRETO REFORZADO IPS-1 JORGE IGNACIO SEGURA FRANCO CIMENTACIONES EN LA NORMA REQUISITOS ESENCIALES PARA EDIFICIOS DE CONCRETO REFORZADO IPS-1 JORGE IGNACIO SEGURA FRANCO Ingeniero Civil, Universidad Nacional de Colombia Profesor Emérito de la Universidad

Más detalles

VIGUETAS Y PRODUCTOS DE CONCRETO S.A. DE C.V.

VIGUETAS Y PRODUCTOS DE CONCRETO S.A. DE C.V. Candelero Prefabricado Reforzado y Moldeado TIPO DE PROYECTO CLAVE Candelero Prefabricado TIPO ACI-318 Cap. 18 Concreto reforzado. Zapata prefabricada cuyas dimensiones, espesores y armados, están en función

Más detalles

Ficha Técnica. utilizados en este Capítulo deben ser iguales o menores que 8,3 MPa

Ficha Técnica. utilizados en este Capítulo deben ser iguales o menores que 8,3 MPa 1. Requisitos generales La tracción o la compresión que solicita la barra de acero, se debe transmitir o desarrollar hacia cada lado de la sección considerada mediante una longitud de armadura embebida

Más detalles

Obra: Pista de patinaje sobre hielo

Obra: Pista de patinaje sobre hielo Obra: Pista de patinaje sobre hielo Cubierta colgante pesada que cubre una luz libre de 95 metros. Su estructura está conformada por cables colocados cada 2 metros con apoyos a distinta altura. Completan

Más detalles

ANEXO. Propuesta de reordenación de los Programas de Concreto Reforzado. CONCRETO REFORZADO I

ANEXO. Propuesta de reordenación de los Programas de Concreto Reforzado. CONCRETO REFORZADO I 1 ANEXO. Propuesta de reordenación de los Programas de Concreto Reforzado. CONCRETO REFORZADO I Prelaciones: Estructuras I y Materiales y Ensayos Horario: Se recomienda que cada clase sea de 2 horas académicas,

Más detalles

Motivación. Requisitos Esenciales para Edificaciones de Concreto Reforzado

Motivación. Requisitos Esenciales para Edificaciones de Concreto Reforzado Acuerdo de Cooperación Internacional Requisitos Esenciales para Edificaciones de Concreto Reforzado Ing. Augusto Espinosa Areas Ltda. Ingenieros Consultores INTRODUCCIÓN Por petición n especial de los

Más detalles

1.1 Estructuras isostáticas e hiperestáticas; cálculo de los diagramas de características en vigas, momento flector y esfuerzo de corte

1.1 Estructuras isostáticas e hiperestáticas; cálculo de los diagramas de características en vigas, momento flector y esfuerzo de corte Trabajo Práctico Cálculo de Vigas. 1 Introducción 1.1 Estructuras isostáticas e hiperestáticas; cálculo de los diagramas de características en vigas, momento flector y esfuerzo de corte Como se explicó

Más detalles

Asignatura: Horas: Total (horas): Obligatoria Teóricas 4.5 Semana 4.5 Optativa X Prácticas Semanas 72.0

Asignatura: Horas: Total (horas): Obligatoria Teóricas 4.5 Semana 4.5 Optativa X Prácticas Semanas 72.0 UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO FACULTAD DE INGENIERÍA PROGRAMA DE ESTUDIO PROYECTO ESTRUCTURAL PARA EDIFICACIONES DE CONCRETO Y MAMPOSTERÍA 2062 8 o 09 Asignatura Clave Semestre Créditos Ingeniería

Más detalles

Curvas esfuerzo-deformación para concreto confinado. Introducción

Curvas esfuerzo-deformación para concreto confinado. Introducción Curvas esfuerzo-deformación para concreto confinado PF-3921 Concreto Estructural Avanzado 3 setiembre 12 Posgrado en Ingeniería Civil 1 Introducción En el diseño sísmico de columnas de concreto reforzado

Más detalles

UNIVERSIDAD NACIONAL DE SAN CRISTOBAL DE HUAMANGA

UNIVERSIDAD NACIONAL DE SAN CRISTOBAL DE HUAMANGA UNIVERSIDAD NACIONAL DE SAN CRISTOBAL DE HUAMANGA ENCOFRADO Los diferentes elementos estructurales como columnas, muros, vigas, etc. requieren de moldes para obtener las formas y medidas que indiquen los

Más detalles

CAPÍTULO VIII DISEÑO DE LOSAS DE HORMIGÓN ARMADO

CAPÍTULO VIII DISEÑO DE LOSAS DE HORMIGÓN ARMADO CAPÍTULO VIII DISEÑO DE LOSAS DE HORMIGÓN ARMADO 8.1 INTRODUCCIÓN: Las losas son elementos estructurales bidimensionales, en los que la tercera dimensión es pequeña comparada con las otras dos dimensiones

Más detalles

Aisladores Sísmicos Péndulo de Fricción

Aisladores Sísmicos Péndulo de Fricción «Aisladores Sísmicos Péndulo de Fricción Apoyo de Péndulo Triple «1. Aisladores sísmicos para la protección de edificios, puentes y facilidades industriales Los Apoyos de Péndulo de Fricción son aisladores

Más detalles

CURSOS DE CAPACITACION SAP2000 ANALISIS Y DISEÑO INTEGRAL DE ESTRUCTURAS

CURSOS DE CAPACITACION SAP2000 ANALISIS Y DISEÑO INTEGRAL DE ESTRUCTURAS CURSOS DE CAPACITACION ANALISIS Y DISEÑO INTEGRAL DE ESTRUCTURAS Curso Taller: ANALISIS Y DISEÑO INTEGRAL DE ESTRUCTURAS Presentación: El es un programa de elementos finitos, con interfaz gráfico 3D orientado

Más detalles

Criterios de Estructuración de Edificios. Arq. Rodolfo J. García Glez. Seguridad Estructural en las Edificaciones Pachuca, Hgo.

Criterios de Estructuración de Edificios. Arq. Rodolfo J. García Glez. Seguridad Estructural en las Edificaciones Pachuca, Hgo. Criterios de Estructuración de Edificios Arq. Rodolfo J. García Glez. Seguridad Estructural en las Edificaciones Pachuca, Hgo. Enero 2014 Criterios de Estructuración de Edificios CONTENIDO 1. Introducción

Más detalles

FLEXION COMPUESTA RECTA. As=A s armadura simétrica As A s armadura asimétrica

FLEXION COMPUESTA RECTA. As=A s armadura simétrica As A s armadura asimétrica FLEXION COMPUESTA RECTA 1. Utilización de diagramas de interacción (ABACOS): As=A s armadura simétrica As A s armadura asimétrica 2. Expresiones para el cálculo directo de secciones rectangulares con As

Más detalles

GENERALIDADES Y DETALLES DE ARMADO.

GENERALIDADES Y DETALLES DE ARMADO. GENERALIDADES Y DETALLES DE ARMADO. Utilización de ganchos en el hormigón armado. El anclaje de las armaduras en las estructuras de hormigón armado, resultan de asegurar en los distintos elementos estructurales

Más detalles

Pontificia Universidad Católica del Ecuador

Pontificia Universidad Católica del Ecuador 1. DATOS INFORMATIVOS: FACULTAD DE INGENIERÍA ESCUELA DE INGENIERÍA CIVIL MATERIA O MÓDULO: Análisis y Diseño Sismorresistente de Estructuras CÓDIGO: IG070 CARRERA: INGENIERÍA CIVIL NIVEL: DECIMO No. CRÉDITOS:

Más detalles

CÁRCAMO DE BOMBEO Cárcamo de Bombeo.-

CÁRCAMO DE BOMBEO Cárcamo de Bombeo.- Guadalajara Jal. 1 de Octubre de 2003. Dr. Gualberto Limón Macías. P R E S E N T E En atención a la solicitud de AyMA, Ingeniería y Consultoría S.A. de C.V., se procedió al diseño estructural del Proyecto

Más detalles

Introducción a las Estructuras

Introducción a las Estructuras Introducción a las Estructuras Capítulo nueve: Pandeo DOS 6. Método omega. General. Este método simplificado utiliza un coeficiente de seguridad establecido en tablas y determina las cargas y tensiones

Más detalles

CONFERENCIA SOBRE MUROS DE CONTENCIÓN. ANTONIO BLANCO BLASCO

CONFERENCIA SOBRE MUROS DE CONTENCIÓN. ANTONIO BLANCO BLASCO CONFERENCIA SOBRE MUROS DE CONTENCIÓN. ANTONIO BLANCO BLASCO LOS MUROS DE CONTENCIÓN SON ELEMENTOS QUE SE USAN PARA CONTENER TIERRA, AGUA, GRANOS Y DIFERENTES MINERALES, CUANDO HAY DESNIVELES QUE CUBRIR.

Más detalles

Definición ARQ. JOSÉ LUIS GÓMEZ AMADOR

Definición ARQ. JOSÉ LUIS GÓMEZ AMADOR Columnas Definición Las columnas son elementos estructurales que sirven para transmitir las cargas de la estructura al cimiento. Las formas, los armados y las especificaciones de las columnas estarán en

Más detalles

MECANICA Y RESISTENCIA DE MATERIALES

MECANICA Y RESISTENCIA DE MATERIALES PLANIFICACION DE LA ASIGNATURA MECANICA Y RESISTENCIA DE MATERIALES Equipo Docente: Responsable: Ing. María Marcela Nieto Auxiliar: Ing. Ricardo Loréfice Ing. Manuel Martín Paz Colaboran: Ing. Alejandro

Más detalles

CAPÍTULO III EL ACERO ESTRUCTURAL EN EL HORMIGON ARMADO

CAPÍTULO III EL ACERO ESTRUCTURAL EN EL HORMIGON ARMADO CAPÍTULO III EL ACERO ESTRUCTURAL EN EL HORMIGON ARMADO 3.1 INTRODUCCION: El acero es una aleación basada en hierro, que contiene carbono y pequeñas cantidades de otros elementos químicos metálicos. Generalmente

Más detalles

Planteamiento del problema CAPÍTULO 3 PLANTEAMIENTO DEL PROBLEMA 3.1 INTRODUCCIÓN 3.2 SUPERESTRUCTURA FICTICIA

Planteamiento del problema CAPÍTULO 3 PLANTEAMIENTO DEL PROBLEMA 3.1 INTRODUCCIÓN 3.2 SUPERESTRUCTURA FICTICIA CAPÍTULO 3 PLANTEAMIENTO DEL PROBLEMA 3.1 INTRODUCCIÓN En este capítulo se define el problema principal mediante el cual será posible aplicar y desarrollar las diversas teorías y métodos de cálculo señalados

Más detalles

RESISTENCIA DE MATERIALES II.

RESISTENCIA DE MATERIALES II. UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO FACULTAD DE ESTUDIOS SUPERIORES ACATLÁN DIVISIÓN DE MATEMÁTICAS E INGENIERÍA LICENCIATURA EN INGENIERÍA CIVIL ACATLÁN PROGRAMA DE ASIGNATURA CLAVE: 1515 SEMESTRE:

Más detalles

Losas en dos direcciones. Introducción

Losas en dos direcciones. Introducción Losas en dos direcciones PF-3921 Concreto Estructural Avanzado Lección 4 Lunes 3 de setiembre 2012 Introducción 3 setiembre 12 Posgrado en Ingeniería Civil - UCR 2 Posgrado en Ingeniería Civil - UCR 1

Más detalles

ENTREPISOS BLANDOS. a) b)

ENTREPISOS BLANDOS. a) b) ENTREPISOS BLANDOS ENTREPISOS BLANDOS Los entrepisos blandos representan una grave deficiencia estructural. Aunque el nombre con que se les denomina sugiere escasez de rigidez, la presencia de un entrepiso

Más detalles

CAPÍTULO IX INTRODUCCIÓN AL DISEÑO DE CIMENTACIONES DE HORMIGÓN ARMADO

CAPÍTULO IX INTRODUCCIÓN AL DISEÑO DE CIMENTACIONES DE HORMIGÓN ARMADO CAPÍTULO IX INTRODUCCIÓN AL DISEÑO DE CIMENTACIONES DE HORMIGÓN ARMADO 9.1 INTRODUCCIÓN: La cimentación es la parte de la estructura ue permite la transmisión de las cargas ue actúan, hacia el suelo o

Más detalles

I. Objetivos. II. Introducción.

I. Objetivos. II. Introducción. Universidad de Sonora División de Ciencias Exactas y Naturales Departamento de Física Laboratorio de Mecánica II Práctica #: Dinámica rotacional: Cálculo del Momento de Inercia I. Objetivos. Medir el momento

Más detalles

UNIVERSIDAD LATINA DE COSTA RICA FACULTAD DE INGENIERIA LICENCIATURA EN INGENIERÍA CIVIL. Naturaleza del Curso: Teórico Créditos: 3 Código: IC-0901

UNIVERSIDAD LATINA DE COSTA RICA FACULTAD DE INGENIERIA LICENCIATURA EN INGENIERÍA CIVIL. Naturaleza del Curso: Teórico Créditos: 3 Código: IC-0901 ESTRUCTURAS DE CONCRETO II Naturaleza del Curso: Teórico Créditos: 3 Código: IC-0901 Requisitos: IC-0802 ESTRUCTURAS DE CONCRETO I Horas Teóricas: 3 hr semanales Sede: Campus Heredia I. DESCRIPCIÓN DEL

Más detalles

LAS ESTRUCTURAS DE LOS CENTROS EDUCATIVOS (COLEGIOS) DEL SIGLO XX EN EL PERÚ, DIVERSOS PROYECTOS DE REFORZAMIENTO Y EJEMPLOS DE ESTRUCTURACIÓN DE

LAS ESTRUCTURAS DE LOS CENTROS EDUCATIVOS (COLEGIOS) DEL SIGLO XX EN EL PERÚ, DIVERSOS PROYECTOS DE REFORZAMIENTO Y EJEMPLOS DE ESTRUCTURACIÓN DE LAS ESTRUCTURAS DE LOS CENTROS EDUCATIVOS (COLEGIOS) DEL SIGLO XX EN EL PERÚ, DIVERSOS PROYECTOS DE REFORZAMIENTO Y EJEMPLOS DE ESTRUCTURACIÓN DE EDIFICACIONES DE LA UNIVERSIDAD CATÓLICA DEL PERÚ OBJETIVOS

Más detalles

Que son Sistemas Estructurales?

Que son Sistemas Estructurales? Que son Sistemas Estructurales? Es el modelo físico que sirve de marco para los elementos estructurales, y que refleja un modo de trabajo. Objetivo de los Sistemas Estructurales? Conocer e identificar

Más detalles

Edificios Concreto Armado. Por:

Edificios Concreto Armado. Por: Diseño Sismo-Resistente de Edificios Concreto Armado Por: Ing. Luis B. Fargier-Gabaldón, MSc, PhD Contenido Introducción Naturaleza de los Terremotos Parámetros Importantes t en el Diseño Sismo-Resistente

Más detalles

ESTATICA Y RESISTENCIA DE MATERIALES (ING IND) T P Nº 7: SOLICITACIONES N, Q y M f

ESTATICA Y RESISTENCIA DE MATERIALES (ING IND) T P Nº 7: SOLICITACIONES N, Q y M f ESTATICA Y RESISTENCIA DE MATERIALES (ING IND) T P Nº 7: SOLICITACIONES N, Q y M f 1) Se utiliza una barra de acero de sección rectangular para transmitir cuatro cargas axiales, según se indica en la figura.

Más detalles

Ficha de Patología de la Edificación

Ficha de Patología de la Edificación 35 1.- GENERALIDADES INTRODUCCIÓN La solicitación flectora (momentos flectores M y o M z ) se produce por las fuerzas perpendiculares a algún eje contenido en la sección y que no lo corten y momentos localizados

Más detalles

Ing. Rafael Salinas Basualdo

Ing. Rafael Salinas Basualdo UNIVERSIDAD NACIONAL DE INGENIERIA FACULTAD DE INGENIERIA CIVIL Ingeniería Antisísmica Aspectos Básicos de Sismología Ing. Rafael Salinas Basualdo Mayores Sismos Catastróficos Recientes en el Mundo N Sismo

Más detalles

EVALUACIÓN DE CÓDIGO SÍSMICO Islas del Caribe (CARICOM) Evaluación llevada a cabo por Myron Chin

EVALUACIÓN DE CÓDIGO SÍSMICO Islas del Caribe (CARICOM) Evaluación llevada a cabo por Myron Chin EVALUACIÓN DE CÓDIGO SÍSMICO Islas del Caribe (CARICOM) Evaluación llevada a cabo por Myron Chin NOMBRE DEL Código Uniforme de Construcción del Caribe (CUBiC) DOCUMENTO: Parte 2 Sección 3 AÑO: 1985 COMENTARIOS

Más detalles

Las acciones se pueden clasificar según su naturaleza en los siguientes grupos: 9.2. Clasificación de las acciones por su variación en el tiempo

Las acciones se pueden clasificar según su naturaleza en los siguientes grupos: 9.2. Clasificación de las acciones por su variación en el tiempo CAPÍTULO III ACCIONES Artículo 9 Clasificación de las acciones Las acciones a considerar en el proyecto de una estructura o elemento estructural se pueden clasificar según los criterios siguientes: Clasificación

Más detalles

EVALUACIÓN DE CÓDIGO POR VIENTO (Original: ingles) COSTA RICA Evaluación llevada a cabo por Jorge Gutiérrez

EVALUACIÓN DE CÓDIGO POR VIENTO (Original: ingles) COSTA RICA Evaluación llevada a cabo por Jorge Gutiérrez EVALUACIÓN DE CÓDIGO POR VIENTO (Original: ingles) COSTA RICA Evaluación llevada a cabo por Jorge Gutiérrez NOMBRE DEL DOCUMENTO: Reglamento de Construcciones, Capítulo XX- Diseño de Estructuras de Construcción,

Más detalles

MEMORIA DESCRIPTIVA DE CÁLCULO. ESTRUCTURA.

MEMORIA DESCRIPTIVA DE CÁLCULO. ESTRUCTURA. 4..4 CALCULO DEL FORJADO BAJO CUBIERTA Del edificio en estudio con la disposición estructural desarrollada en proyecto, como se indica a continuación; se pretende resolver su estructura metálica como un

Más detalles

CONFERENCIA CIMENTACIONES EN ANTONIO BLANCO BLASCO

CONFERENCIA CIMENTACIONES EN ANTONIO BLANCO BLASCO CONFERENCIA CIMENTACIONES EN EDIFICACIONES ANTONIO BLANCO BLASCO LAS CIMENTACIONES SON ELEMENTOS ESTRUCTURALES QUE TIENEN COMO FUNCIÓN TRANSMITIR LAS CARGAS Y MOMENTOS DE UNA EDIFICACIÓN HACIA EL SUELO,

Más detalles

Equilibrio de fuerzas Σ F z = 0. Σ M y = 0 Σ M x = 0 Σ M z = 0. Equilibrio de momentos. Segunda ley de Newton (masa)

Equilibrio de fuerzas Σ F z = 0. Σ M y = 0 Σ M x = 0 Σ M z = 0. Equilibrio de momentos. Segunda ley de Newton (masa) Estática: leyes de Newton: equilibrio, masa, acción y reacción Primera ley de Newton (equilibrio) Un cuerpo permanece en reposo o en movimiento rectilíneo uniforme (M.R.U. = velocidad constante) si la

Más detalles

Refuerzo de vigas de hormigón mediante recrecido de hormigón armado en un ático de vivienda

Refuerzo de vigas de hormigón mediante recrecido de hormigón armado en un ático de vivienda Refuerzo de vigas de hormigón mediante recrecido de hormigón armado en un ático de vivienda Titulación: Grado de Ingeniería de Edificación Alumno: Veselina Sabinova Kenalieva Director: Inmaculada Tort

Más detalles

6.- APLICACIÓN DE FEMA-273 Y ANÁLISIS MODAL PUSHOVER.

6.- APLICACIÓN DE FEMA-273 Y ANÁLISIS MODAL PUSHOVER. 6.- APLICACIÓN DE FEMA-73 Y ANÁLISIS MODAL PUSHOVER. (Application of FEMA-73 and Analysis Modal Pushover) INTRODUCCIÓN.- A continuación se presenta una comparativa en el análisis estático no lineal Pushover,

Más detalles

DISEÑO DE UN PÓRTICO RÍGIDO RETICULAR A DOS AGUAS PARA LA CUBIERTA DE UN COMPLEJO DE CANCHAS DE TENIS

DISEÑO DE UN PÓRTICO RÍGIDO RETICULAR A DOS AGUAS PARA LA CUBIERTA DE UN COMPLEJO DE CANCHAS DE TENIS DISEÑO DE UN PÓRTICO RÍGIDO RETICULAR A DOS AGUAS PARA LA CUBIERTA DE UN COMPLEJO DE CANCHAS DE TENIS Carlos Fierro Izurieta 1, Alfredo Torres González 2 1 Ingeniero Mecánico 2000. 2 Director de Tesis.

Más detalles

Figura 1.1 Secciones laminadas y armadas (Argüelles, 2005)

Figura 1.1 Secciones laminadas y armadas (Argüelles, 2005) Introducción 1. INTRODUCCIÓN 1.1 Abolladura en vigas armadas En el diseño de puentes es muy habitual el uso de vigas armadas de gran esbeltez. Este tipo de vigas, formadas por elementos planos soldados,

Más detalles

Calcular el momento en el apoyo central, y dibujar los diagramas de esfuerzos. 6 m

Calcular el momento en el apoyo central, y dibujar los diagramas de esfuerzos. 6 m Elasticidad y Resistencia de Materiales Escuela Politécnica Superior de Jaén UNIVERSIDAD DE JAÉN Departamento de Ingeniería Mecánica y Minera Mecánica de Medios Continuos y Teoría de Estructuras Relación

Más detalles

DESCRIPCIÓN INTENSIDAD HORARIA SEMANAL Nombre: ESTRUCTURAS DE. Teóricas: CONCRETO ARMADO I

DESCRIPCIÓN INTENSIDAD HORARIA SEMANAL Nombre: ESTRUCTURAS DE. Teóricas: CONCRETO ARMADO I Página 1 de 6 1. IDENTIFICACIÓN DE LA ASIGNATURA DESCRIPCIÓN INTENSIDAD HORARIA SEMANAL Nombre: ESTRUCTURAS DE Teóricas: CONCRETO ARMADO I 4 Código: 6895 Laboratorio o práctica: 0 Créditos 3 Área: Ingeniería

Más detalles

E.T.S.I. Caminos, Canales y Puertos I.C.C.P. Universidad de Granada

E.T.S.I. Caminos, Canales y Puertos I.C.C.P. Universidad de Granada E.T.S.I. aminos, anales y Puertos I...P. Universidad de Granada ONVO. SEPTIEMBRE TEORÍA DE ESTRUTURAS 16 SEPTIEMBRE 2013 TEORÍA Tiempo: 1 hora. APELLIDOS: FIRMA: NOMBRE: DNI: La Teoría representa 1/3 de

Más detalles

APUNTES CURSO DE APEOS II

APUNTES CURSO DE APEOS II APUNTES CURSO DE APEOS II FORMADOR CÉSAR CANO ALMON Ingeniero de Edificación Barcelona, 15 de marzo de 2013 ÍNDICE CONTENIDO DEL CURSO 1. INTRODUCCIÓN 2. ANÁLISIS DEL MODELO DE CÁLCULO ESTRUCTURAL 3. COMPROBACIONES

Más detalles

CARGA AL VIENTO. Q'v = 9 kg 9.81 N/kg = N

CARGA AL VIENTO. Q'v = 9 kg 9.81 N/kg = N 1 CARGA AL VIENTO. La carga al viento o resistencia al viento nos indica el efecto que tiene el viento sobre la antena. El fabricante la expresa para una velocidad del viento de 120 km/h (130 km/h en la

Más detalles

Vigas Principales C1 C2 C3 doble T. Se adopta un entablonado y se verifica. Se adoptaron tablones de 12 x 1 de escuadria.

Vigas Principales C1 C2 C3 doble T. Se adopta un entablonado y se verifica. Se adoptaron tablones de 12 x 1 de escuadria. TALLER VERTICAL DE ESTRUCTURAS VILLAR FAREZ- LOZADA Ejemplo: Cálculo de entrepiso de madera. - 2013 - Nivel 1 El diseño adoptado responde a la necesidad de generar un entrepiso de madera de 3.50 m. por

Más detalles

PROYECTO ESTRUCTURAL DE UN EDIFICIO EN CONCRETO REFORZADO

PROYECTO ESTRUCTURAL DE UN EDIFICIO EN CONCRETO REFORZADO PROYECTO ESTRUCTURAL DE UN EDIFICIO EN CONCRETO REFORZADO TRABAJO RECEPCIONAL EN LA MODALIDAD DE MEMORIA QUE PARA OBTENER EL TÍTULO DE INGENIERO CIVIL PRESENTA LUDWIG ALEJANDRO CARRILLO DELFÍN DIRECTOR

Más detalles

Fuerza y movimiento. Definiciones. Carrocería no resistente a la torsión PGRT

Fuerza y movimiento. Definiciones. Carrocería no resistente a la torsión PGRT Definiciones Definiciones Es importe realizar correctamente la fijación de la carrocería, puesto que una fijación incorrecta puede producir daños en la carrocería, la fijación y el bastidor del chasis.

Más detalles

Localización calzada izquierda: abscisa: K Localización calzada derecha: abscisa: K Tipo de Puente: Viga compuesta. Luz: 99.

Localización calzada izquierda: abscisa: K Localización calzada derecha: abscisa: K Tipo de Puente: Viga compuesta. Luz: 99. PUENTE 1 Localización calzada izquierda: abscisa: K32+218.79 Localización calzada derecha: abscisa: K32+193.35 Tipo de Puente: Viga compuesta. Luz: 99.19 m Figura 1. Planta Puente 1. Figura 2. Sección

Más detalles

6. Estructuras para la Imagen Pemex

6. Estructuras para la Imagen Pemex 6. Estructuras para la Imagen Pemex 6.1. Presentación Este capítulo considera las estructuras, soportes y demás componentes utilizados para incorporar los elementos de la Imagen de la Franquicia Pemex

Más detalles

PROGRAMA INSTRUCCIONAL

PROGRAMA INSTRUCCIONAL UNIVERSIDAD FERMIN TORO VICE-RECTORADO ACADEMICO FACULTAD DE INGENIERIA ESCUELA DE COMPUTACION ESCUELA DE ELÉCTRICA ESCUELA DE TELECOMUNICACIONES PROGRAMA AL FUNDAMENTOS DE RESISTENCIA DE LOS MATERIALES

Más detalles

Centro de gravedad de un cuerpo bidimensional

Centro de gravedad de un cuerpo bidimensional Centro de gravedad de un cuerpo bidimensional Al sumar las fuerzas en la dirección z vertical y los momentos alrededor de los ejes horizontales y y x, Aumentando el número de elementos en que está dividida

Más detalles

.- ANEXO C .- CÁLCULOS JUSTIFICATIVOS

.- ANEXO C .- CÁLCULOS JUSTIFICATIVOS .- ANEXO C.- CÁLCULOS JUSTIFICATIVOS Hoja 43 de 104 C.1.- COMPETENCIA DEL TERRENO. ENSAYOS SPT Para suputar la competencia del terreno se han considerado todos los niveles geotécnicos establecidos excepto

Más detalles

DILATACIÓN PREGUNTAS PROBLEMAS

DILATACIÓN PREGUNTAS PROBLEMAS DILATACIÓN 1. Qué es la temperatura? PREGUNTAS PROBLEMAS 1. Dos barras idénticas de fierro (α = 12 x 10-6 /Cº) de 1m de longitud, fijas en uno de sus extremos se encuentran a una temperatura de 20ºC si

Más detalles

TRABAJO FINAL DE GRADO DISEÑO ESTRUCTURAL DE OBRAS DE HORMIGÓN ENTERRADAS

TRABAJO FINAL DE GRADO DISEÑO ESTRUCTURAL DE OBRAS DE HORMIGÓN ENTERRADAS UNIVERSIDAD POLITÉCNICA DE VALENCIA ESCUELA TÉCNICA SUPERIOR DE INGENIEROS DE CAMINOS, CANALES Y PUERTOS GRADO EN INGENIERÍA DE OBRAS PÚBLICAS ESPECIALIDAD: CONSTRUCCIONES CIVILES TRABAJO FINAL DE GRADO

Más detalles

CFGS CONSTRUCCION METALICA MODULO 246 DISEÑO DE CONSTRUCCIONES METALICAS

CFGS CONSTRUCCION METALICA MODULO 246 DISEÑO DE CONSTRUCCIONES METALICAS CFGS CONSTRUCCION METALICA MODULO 246 DISEÑO DE CONSTRUCCIONES METALICAS U.T. 4.- ESTATICA. 3.1.- Centro de gravedad de un cuerpo. Un cuerpo de masa M, se puede considerar compuesto por multitud de partículas

Más detalles

CAPITULO 9 DISEÑO DE CIMENTACION

CAPITULO 9 DISEÑO DE CIMENTACION 123 CAPITULO 9 DISEÑO DE CIMENTACION 9.1 ANALISIS Las cimentaciones son elementos que se encuentran en la base de las estructuras, se utilizan para transmitir las cargas de la estructura al suelo en que

Más detalles

Dinámica de una partícula. Leyes de Newton, fuerzas, representación vectorial

Dinámica de una partícula. Leyes de Newton, fuerzas, representación vectorial Dinámica de una partícula. Leyes de Newton, fuerzas, representación vectorial PRIMERA LEY DE NEWTON. Todo cuerpo continuará en su estado de reposo o de velocidad constante en línea recta, a menos que una

Más detalles

TRABAJO PRACTICO N 6 COLUMNAS ARMADAS

TRABAJO PRACTICO N 6 COLUMNAS ARMADAS TRABAJO PRACTICO N 6 COLUMNAS ARMADAS Ejercicio Nº 1: Definir los siguientes conceptos, indicando cuando sea posible, valores y simbología utilizada: 1. Eje fuerte. Eje débil. Eje libre. Eje material.

Más detalles

Pontificia Universidad Católica de Chile Facultad de Física. Estática

Pontificia Universidad Católica de Chile Facultad de Física. Estática Pontificia Universidad Católica de Chile Facultad de Física Estática La estática es una rama de la Mecánica Clásica que estudia los sistemas mecánicos que están en equilibrio debido a la acción de distintas

Más detalles

TEMA 3. BASES DEL DISEÑO MECÁNICO CON MATERIALES.

TEMA 3. BASES DEL DISEÑO MECÁNICO CON MATERIALES. Félix C. Gómez de León Antonio González Carpena TEMA 3. BASES DEL DISEÑO MECÁNICO CON MATERIALES. Curso de Resistencia de Materiales cálculo de estructuras. Clases de tensiones. Índice. Tensión simple

Más detalles

58.2 Clasificación de las cimentaciones de hormigón estructural

58.2 Clasificación de las cimentaciones de hormigón estructural Artículo 58º Elementos de cimentación 58.1 Generalidades Las disposiciones del presente Artículo son de aplicación directa en el caso de zapatas y encepados que cimentan soportes aislados o lineales, aunque

Más detalles