Lección 1: Flujo laminar incompresible unidireccional. x + 2 u. z z. Ecuación de Bernoulli generalizada (α = 1 flujo turbulento y α = 2 flujo laminar)

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Lección 1: Flujo laminar incompresible unidireccional. x + 2 u. z z. Ecuación de Bernoulli generalizada (α = 1 flujo turbulento y α = 2 flujo laminar)"

Transcripción

1 Formulario SF Este es el formulario generado específicamente para la realización de la parte de problemas de los exámenes de la asignatura Sistemas Fluidomecánicos. Las ecuaciones no incluídas aquí derivan de ecuaciones ya presentadas o ecuaciones básicas que deben ser conocidas. En cualquier caso y, si se considera oportuno por parte del profesor, podrían incluirse junto con el enunciado del problema algunas ecuaciones específicas necesarias para su resolución. El alumn@ deberá imprimir el formulario y llevarlo al examen sin ningún tipo de anotación externa. Las ecuaciones se han separado en las Unidades iácticas y las Lecciones que componen el programa de la asignatura. U : Flujo en conductos Lección : Flujo laminar incompresible unidireccional Ecuaciones de continuidad y cantidad de movimiento. Ésta última se ha simplificado asumiendo que los esfuerzos viscosos son proporcionales al tensor de deformación. La ecuación se encuentra referenciada al eje del movimiento del fluido movimiento unidireccional. Coodenadas cartesianas v = u i + v j + w k: t + x u + y v + z w = 0 [ u t + u u x + v u y + w u ] z = p x + µ Coodenadas cilíndricas v = v r e r + v θ e θ + v z e z : t + r r rv r + r θ v θ + z v z = 0 [ vz t + v v z r r + v ] θ v z r θ + v v z z = p + µ z z [ r [ ] u x + u y + u + f z mx r r v z + ] v z r r θ + v z + f z mz Ecuación de Bernoulli generalizada α = flujo turbulento y α = flujo laminar [ ] [ ] p p + αv + gz g h T = + αv + gz

2 Sistemas Fluidomecánicos 3 curso Grado en Ingeniería Mecánica Lección : Flujo turbulento. Conceptos básicos y movimiento en conductos Ecuación de arcy Weisbach h T = h f + h m = λ L v g + K v g = λ L + v K g Cálculo del coeficiente de fricción λ para flujo turbulento Tubo hidráulicamente liso Blasius λ = 0, 364 Re /4 Tubo hidráulicamente rugoso Von-Karman, otros ɛ 0,3 = log 0 +, 74 λ = 0, 6 λ ɛ Coolebrok-White, Swamee y Jain ɛ, 5 = log 0 + λ 3, 7 Re λ λ = 0, 5 [ ɛ ] log 0 3,7 + 5,74 Re 0,9 Lección 3: Flujo en canales Ecuaciones de Chézy y Manning velocidad y caudal 8 g v = rh s v = λ n r/3 h s/ = A n r/3 h s/ Área y velocidad crítica en canales b A c = 3 0 g v c = A c = gac b 0 Profundidad y velocidad crítica en canales rectangulares q h c = 3 v c = gh c g

3 3 U : TURBOMÁUINAS HIRÁULICAS Lección 4: Introducción a las máquinas hidráulicas Ecuaciones de conservación de la energía y energía mecánica ] s [ ] s Ẇ + = [h + v p + gz Ẇ Φ v = e + v + gz e Altura manométrica, altura neta, altura de pérdidas hidráulicas y altura útil [ ] s [ ] e P g H m = + v P + gz g H n = e + v + gz s Rendimientos en bombas y turbinas g H L = Φ v g H u = Ẇu η = g H m Ẇ eje = η h η v η o η h = H m H u η v = + f η o = Ẇi Ẇ eje η = Ẇ eje g H n = η h η v η o η h = H u H n η v = f Análisis dimensional y semejanza en bombas y turbinas g H m Ω = φ Ω 3 Ẇ Ω 3 = φ 5 Ω 3 M x Ω = φ 5 3 Ω 3 η = φ 4 Ω 3 η o = Ẇeje Ẇ i Ω = ϕ 4, α i g H n g Hn Ẇ Ω = ϕ g H n 3/ 4, α i g Hn M x 3 g H n = ϕ 4 Ω, α i g Hn Ω η = ϕ 4, α i g Hn

4 4 Sistemas Fluidomecánicos 3 curso Grado en Ingeniería Mecánica Velocidad específica y potencia específica Ω S = Ω g H m 3/4 ηmáx Bombas Ω S = Ω g H m ηmáx 3/4 Centrífugas 0, < Ω s <, 0 Semiaxiales, 3 < Ω s < 4, 0 Axiales 3, 0 < Ω s < 6, 0 W s = Ẇeje Ω g H n 5/4 ηmáx Ẇeje Turbinas W s = Ω g H n ηmáx 5/4 Acción Pelton 0, 0 < W s < 0, 3 Centrípetas Francis 0, 3 < W s <, 5 Axiales Kaplan, 3 < W s < 6, 0 Lección 5: Teoría General de Turbomáquinas Hidráulicas Ecuación de Euler signo positivo modo bomba y negativo modo turbina M x = ± [r v u r v u ] g H u = ± [u v u u v u ] [ v g H u = ± v + u u ] + w w Ecuación de Bernoulli en el movimiento relativo [ ] p p g H u = ± + v v ± g H Lr Grado de reacción σ R = ± p p g H u

5 5 Lección 6: Estudio particular de bombas centrífugas Efecto del número finito de álabes en bombas centrífugas; corrección por teoría bidimensional g H un = u v u u v u = g H u u v u v u = v u v u = χ u Corrección Stodola χ = ɛ π N sin β Factor ɛ de la corrección de Stodola β = 0 β = 30 β = 40 β = 60 β = 90 N= 4 a 8,0 0,90 0,75 0,60 0,55 N = 8 a 6,5,00 0,85 0,70 0,65 Corrección Pfleiderer χ = g H u N u N [ Ψ ] Ψ = 0, 55 0, , 6 sin β Coeficiente de disminución de trabajo µ = H u N H u Pérdidas hidráulicas; pérdidas por fricción y choque H f = C H ch = C n Alturas netas de succión disponible y requerida NPSH d = NPSH r = pe p v g pe p v g + v e g + v e g d r = p amb p v g = v e g + ɛw g z h Toe Parámetro de Thoma y Velocidad específica en aspiración σ = NPSH d H m S = Ω s σ 3/4

6 6 Sistemas Fluidomecánicos 3 curso Grado en Ingeniería Mecánica Lección 7: Estudio particular de bombas axiales Movimiento plano ideal sobre enrejado de álabes máquinas axiales. Las ecuaciones aquí presentadas hacen referencia a una cascada de álabes fijos sin pérdidas. Para una cascada de álabes móvil las ecuaciones se ven modificadas cambiando la velocidad relativa, w, por la absoluta, v. Circulación Γ = L v dl = π r N v u v u = t v u v u iferencia de presiones entre las secciones de entrada y salida p p = v u v u Fuerzas sobre los álabes F x = t p p = t v u v u v u + v u F u = t v m v u v u = Γ v m = Γ v u + v u v = v m e x + v u + v u e u tan α = v m v u + v u Coeficiente de sustentación C L = F v l = v u t v l Flujo real en turbomáquinas axiales diferencia de presiones y coeficientes de sustentación y arrastre p p = v u v u + ζ r v }{{} g H Lr vu C L = t l v C = ζ r sin α t l ζ r cos α

7 7 Lección 8: Estudio particular de turbinas de reacción Velocidad de sincronismo Ω = πf n pp 5. Cavitación turbinas de reacción. Balance de energía, altura de succión disponible y parámetro de Thoma en turbinas, σ t p amb p v g z = v s + ɛ w g H Ld NPSH d = p amb p v g z Altura máxima de aspiración σ t = NPSH d pamb p v = H n g z H n pamb p v σ ti = g z máx H n z máx = p amb p v g σ ti H n Las ecuaciones relativas al análisis de cascadas de álabes fijas o móviles turbinas Kaplan o hélice ya se han indicado en la Lección 7. Lección 9: Estudio particular de turbinas de acción Pérdidas hidráulicas en inyector, rodete y de salida H Liny = C v H n H Lr = w w g = ξ w g H Ls = v g w = ξ w

RESUMEN DEL PROGRAMA (parte de Hidráulica)

RESUMEN DEL PROGRAMA (parte de Hidráulica) Código de la asignatura: 68202, 60203 Nombre de la asignatura: Hidráulica y máquinas agrícolas Créditos: 6 (3 Hidráulica) Año académico: 2007-2008 Titulación: Ingeniero Técnico Agrícola (Hortofruticultura

Más detalles

TURBOMAQUINAS MOTORAS. Mg. Amancio R. Rojas Flores

TURBOMAQUINAS MOTORAS. Mg. Amancio R. Rojas Flores TURBOMAQUINAS MOTORAS Mg. Amancio R. Rojas Flores 1 RUEDAS HIDRÁULICAS.- Las ruedas hidráulicas son máquinas capaces de transformar la energía del agua, cinética o potencial, en energía mecánica de rotación.

Más detalles

Campo de velocidades se puede representar mediante una función potencial φ, escalar

Campo de velocidades se puede representar mediante una función potencial φ, escalar Flujo Potencial Campo de velocidades se puede representar mediante una función potencial φ, escalar Condición necesaria flujo irrotacional, V=0. Hipótesis: Flujo irrotacional, incompresible y permanente

Más detalles

Programa de la asignatura Curso: 2006 / 2007 INGENIERÍA FLUIDOMECÁNICA (3273)

Programa de la asignatura Curso: 2006 / 2007 INGENIERÍA FLUIDOMECÁNICA (3273) Programa de la asignatura Curso: 2006 / 2007 INGENIERÍA FLUIDOMECÁNICA (3273) PROFESORADO Profesor/es: FERNANDO AGUILAR ROMERO - correo-e: faguilar@ubu.es JOSÉ ANTONIO BARÓN AGUADO - correo-e: jbaron@ubu.es

Más detalles

Dinámica de Fluidos. Mecánica y Fluidos VERANO

Dinámica de Fluidos. Mecánica y Fluidos VERANO Dinámica de Fluidos Mecánica y Fluidos VERANO 1 Temas Tipos de Movimiento Ecuación de Continuidad Ecuación de Bernouilli Circulación de Fluidos Viscosos 2 TIPOS DE MOVIMIENTO Régimen Laminar: El flujo

Más detalles

REPÚBLICA DE CUBA MINISTERIO DE EDUCACIÓN DIRECCIÓN DE EDUCACIÓN TÉCNICA Y PROFESIONAL

REPÚBLICA DE CUBA MINISTERIO DE EDUCACIÓN DIRECCIÓN DE EDUCACIÓN TÉCNICA Y PROFESIONAL REPÚBLICA DE CUBA MINISTERIO DE EDUCACIÓN DIRECCIÓN DE EDUCACIÓN TÉCNICA Y PROFESIONAL CÓDIGO: ESPECIALIDAD: REFRIGERACIÓPROGRAMA: ELEMENTOS DE MECÁNICA DE LOS FLUIDOS. NIVEL MEDIO SUPERIOR TÉCNICO MEDIO.

Más detalles

CARRERA INGENIERIA MECANICA DISEÑO CURRICULAR: 1995 ASIGNATURA MECANICA DE LOS FLUIDOS PROGRAMA SINTÉTICO OBJETIVOS DE LA ASIGNATURA

CARRERA INGENIERIA MECANICA DISEÑO CURRICULAR: 1995 ASIGNATURA MECANICA DE LOS FLUIDOS PROGRAMA SINTÉTICO OBJETIVOS DE LA ASIGNATURA CARRERA INGENIERIA MECANICA DISEÑO CURRICULAR: 1995 ORDENANZA C.SUP`. Nº 741 DEPARTAMENTO MECANICA APROBACIÓN C A RES Nº De la CURRICULA ELECTIVA ANUAL 1er. CUATRIMESTRE 2do. CUATRIMESTRE NIVEL: CUARTO.

Más detalles

Prólogo RANALD V. GILES

Prólogo RANALD V. GILES Prólogo Este libro ha sido concebido con el principal propósito de complementar los textos ordinarios (de mecánica de los fluidos e hidráulica. Se basa en la convicción del autor de que el esclarecimiento

Más detalles

Estudio particular de turbinas de

Estudio particular de turbinas de Lección 4 Estudio particular de turbinas de acción 4.1 Introducción Las turbinas de acción son máquinas hidráulicas motoras en las que el intercambio de energía entre el rodete y el fluido se produce principalmente

Más detalles

INGENIERÍA FLUIDOMECÁNICA

INGENIERÍA FLUIDOMECÁNICA GUÍA DOCENTE 2013-2014 INGENIERÍA FLUIDOMECÁNICA Curso 2013/2014 1. Denominación de la asignatura: INGENIERÍA FLUIDOMECÁNICA Titulación GRADO EN INGENIERÍA DE ORGANIZACIÓN INDUSTRIAL Código 6214 2. Materia

Más detalles

Bombas y Ventiladores. Fundamentos teóricos y prácticos Cómo podemos aportar a la EE con estos equipos?

Bombas y Ventiladores. Fundamentos teóricos y prácticos Cómo podemos aportar a la EE con estos equipos? Bombas y Ventiladores Fundamentos teóricos y prácticos Cómo podemos aportar a la EE con estos equipos? Índice 1. Descripción. 2. Clasificación. 3. Curvas Características. 4. Pérdidas de Carga en Sistemas.

Más detalles

MECÁNICA DE LOS FLUIDOS

MECÁNICA DE LOS FLUIDOS Dinámica de los Fluidos MECÁNICA DE LOS FLUIDOS Ing. Rubén Marcano PRINCIPIO DE CONSERVACIÓN DE LA ENERGÍA la energía ni se crea ni se destruye solo se transforma, y es una propiedad ligada a la masa para

Más detalles

Mecánica de Fluidos. Docente: Ing. Alba V. Díaz Corrales

Mecánica de Fluidos. Docente: Ing. Alba V. Díaz Corrales Mecánica de Fluidos Docente: Ing. Alba V. Díaz Corrales Mecánica de Fluidos Contenido Fluidos incompresibles Ecuación de continuidad Ecuación de Bernoulli y aplicaciones Líneas de cargas piezométricas

Más detalles

1.1. Análisis Dimensional

1.1. Análisis Dimensional ,.. Análisis Dimensional... Introducción El análisis dimensional es un proceso mediante el cual se examinan las dimensiones de los fenómenos físicos y de las ecuaciones asociadas, para tener una nueva

Más detalles

Índice general. I Fundamentos 23. Índice general. Presentación. Prólogo. Nomenclatura

Índice general. I Fundamentos 23. Índice general. Presentación. Prólogo. Nomenclatura Índice general Índice general Presentación Prólogo Nomenclatura V X XIII XV 1 Introducción 1 1.1. Introducción a la ingeniería aeroespacial............. 1 1.2. Clasificación de las aeronaves...................

Más detalles

Reconocer y describir el comportamiento de los fluidos en función de sus propiedades. Resolver problemas relacionados con empuje y flotación.

Reconocer y describir el comportamiento de los fluidos en función de sus propiedades. Resolver problemas relacionados con empuje y flotación. 1. DATOS INFORMATIVOS: MATERIA: Mecánica de Fluidos CÓDIGO: 13267 CARRERA: Ingeniería Civil NIVEL: Cuarto No. CRÉDITOS: 3 CRÉDITOS TEORÍA: 3 SEMESTRE/AÑO ACADÉMICO: Primero 2011-2012 CRÉDITOS PRÁCTICA:

Más detalles

UNIVERSIDAD DE SANTIAGO DE CHILE FACULTAD DE INGENIERÍA Departamento de Ingeniería Mecánica Ingeniería Civil en Mecánica WJT/wjt

UNIVERSIDAD DE SANTIAGO DE CHILE FACULTAD DE INGENIERÍA Departamento de Ingeniería Mecánica Ingeniería Civil en Mecánica WJT/wjt INGENIERIA CIVIL EN MECANICA 15030 LABORATORIO GENERAL II NIVEL 11 GUIA DE LABORATORIO EXPERIENCIA C224 CURVAS CARACTERÍSTICA DE UNA TURBINA PELTON LABORATORIO DE TURBINA PELTON 1. OBJETIVO GENERAL Observar

Más detalles

MAQUINAS HIDRAULICAS: BOMBAS

MAQUINAS HIDRAULICAS: BOMBAS MAQUINAS HIDRAULICAS: BOMBAS UNA MAQUINA HIDRAULICA ES AQUELLA EN QUE EL FLUIDO QUE INTERCAMBIA ENERGIA CON LA MISMA NO MODIFICA SU DENSIDAD A SU PASO POR LA MAQUINA Y POR ENDE EN SU DISEÑO Y SU ESTUDIO

Más detalles

PROGRAMA CALENDARIO Y CONDICIONES DE LA ASIGNATURA HIDRAULICA BASICA Grupo 05

PROGRAMA CALENDARIO Y CONDICIONES DE LA ASIGNATURA HIDRAULICA BASICA Grupo 05 PROGRAMA CALENDARIO Y CONDICIONES DE LA ASIGNATURA HIDRAULICA BASICA 2015961 Grupo 05 4 créditos (192 horas) Asignatura NO habilitable Requisito MECÁNICA DE FLUIDOS Segundo semestre de 2010 Lunes 11:00

Más detalles

CENTRALES HIDRÁULICAS

CENTRALES HIDRÁULICAS ASIGNATURA DE GRADO: CENTRALES HIDRÁULICAS Curso 2014/2015 (Código:6801305-) 1.PRESENTACIÓN DE LA ASIGNATURA La asignatura Centrales Hidráulicas es una asignatura cuatrimestral de 5 créditos ECTS que se

Más detalles

Hidráulica de Conducciones (250220)

Hidráulica de Conducciones (250220) Hidráulica de Conducciones (250220) Información general Centro docente: ETSECCPB Departamentos: 751 - Departament d'enginyeria Civil i Ambiental Créditos: 9.0 ECTS Titulaciones: GRAU EN ENGINYERIA DE LA

Más detalles

Formulario PSU Parte común y optativa de Física

Formulario PSU Parte común y optativa de Física Formulario PSU Parte común y optativa de Física I) Ondas: Sonido y Luz Frecuencia ( f ) f = oscilaciones Vector/, Unidad de medida f 1/s = 1 Hz Periodo ( T ) T = oscilaciones f = 1 T T Segundo ( s ) Longitud

Más detalles

PROBLEMAS DE BOMBAS CENTRÍFUGAS

PROBLEMAS DE BOMBAS CENTRÍFUGAS PROBLEMAS DE BOMBAS CENTRÍFUGAS Pedro Fernández Díez 1.- Una bomba centrífua tiene un rodete de dimensiones: r 1 75 mm; r 00 mm ; β 1 50º ; β 40º La anchura del rodete a la entrada es, b 1 40 mm y a la

Más detalles

PROGRAMA DE ASIGNATURA

PROGRAMA DE ASIGNATURA I. IDENTIFICACION. ASIGNATURA CARRERA SEMESTRE CURRICULAR PROGRAMA DE ASIGNATURA HORAS SEMANALES (4,0,2) PRE REQUISITOS CRÉDITOS 4 MÁQUINAS Y MOTORES INGENIERÍA MECÁNICA Séptimo Semestre MECÁNICA DE FLUIDOS

Más detalles

LISTA DE SÍMBOLOS. Capítulo 2 EJEMPLOS Y TEORIA DE LAS VIBRACIONES PARAMÉTRICAS 2.1 Introducción T - Periodo Ω - Frecuencia a- parámetro b- parámetro

LISTA DE SÍMBOLOS. Capítulo 2 EJEMPLOS Y TEORIA DE LAS VIBRACIONES PARAMÉTRICAS 2.1 Introducción T - Periodo Ω - Frecuencia a- parámetro b- parámetro LISTA DE SÍMBOLOS Capítulo 2 EJEMPLOS Y TEORIA DE LAS VIBRACIONES PARAMÉTRICAS 2.1 Introducción T - Periodo Ω - Frecuencia a- parámetro b- parámetro 2.1.1 Rigidez Flexiva que Difiere en dos Ejes x- Desplazamiento

Más detalles

HIDRODINÁMICA. Profesor: Robinson Pino H.

HIDRODINÁMICA. Profesor: Robinson Pino H. HIDRODINÁMICA Profesor: Robinson Pino H. 1 CARACTERÍSTICAS DEL MOVIMIENTO DE LOS FLUIDOS Flujo laminar: Ocurre cuando las moléculas de un fluido en movimiento siguen trayectorias paralelas. Flujo turbulento:

Más detalles

MECANICA DE LOS FLUIDOS

MECANICA DE LOS FLUIDOS MECANICA DE LOS FLUIDOS 6 ANALISIS DIMENSIONAL Y SEMEJANZA HIDRAULICA Ing. Alejandro Mayori 6 ANALISIS DIMENSIONAL Y SEMEJANZA HIDRAULICA 6.1 Introducción - Teoría matemática y resultados experimentales

Más detalles

PROBLEMAS DE ONDAS. Función de onda, Autor: José Antonio Diego Vives. Documento bajo licencia Creative Commons (BY-SA)

PROBLEMAS DE ONDAS. Función de onda, Autor: José Antonio Diego Vives. Documento bajo licencia Creative Commons (BY-SA) PROBLEMAS DE ONDAS. Función de onda, energía. Autor: José Antonio Diego Vives Documento bajo licencia Creative Commons (BY-SA) Problema 1 Escribir la función de una onda armónica que avanza hacia x negativas,

Más detalles

MECÁNICA DE FLUIDOS APUNTES Grado en Ingeniería Industrial. 2º Curso

MECÁNICA DE FLUIDOS APUNTES Grado en Ingeniería Industrial. 2º Curso MECÁNICA DE FLUIDOS APUNTES Grado en Ingeniería Industrial. º Curso Alberro Eguilegor, Gorka Almandoz Berrondo, Jabier Jimenez Redal, Ruben Mongelos Oquiñena, Mª Belén Pellejero Salaberria, Idoya Departamento:

Más detalles

Anejo 1. Teoría de Airy. Solución lineal de la ecuación de ondas.

Anejo 1. Teoría de Airy. Solución lineal de la ecuación de ondas. Anejo 1. Teoría de Airy. Solución lineal de la ecuación de ondas. Introducción y ecuaciones que rigen la propagación del oleaje. La propagación de oleaje en un fluido es un proceso no lineal. Podemos tratar

Más detalles

Flujo en canales abiertos

Flujo en canales abiertos cnicas y algoritmos empleados en estudios hidrológicos e hidráulicos Montevideo - Agosto 010 PROGRAMA DE FORMACIÓN IBEROAMERICANO EN MATERIA DE AGUAS Flujo en canales abiertos Luis Teixeira Profesor Titular,

Más detalles

TÍTULO Guía técnica de selección de equipos de transporte de fluidos

TÍTULO Guía técnica de selección de equipos de transporte de fluidos TÍTULO Guía técnica de selección de equipos de transporte de fluidos AUTOR Esta publicación ha sido redactada por la Asociación Técnica Española de Climatización y Refrigeración (ATECYR) para el Instituto

Más detalles

PÉRDIDAS DE CARGA EN TUBERÍAS

PÉRDIDAS DE CARGA EN TUBERÍAS Prácticas de Laboratorio PÉRDIDAS DE CARGA EN TUBERÍAS 1. INTRODUCCIÓN TEÓRICA.. DESCRIPCIÓN DE LA INSTALACIÓN E INSTRUMENTACIÓN. 3. DEFINICIÓN DE OBJETIVOS Y TRABAJO A REALIZAR. 4. EXPOSICIÓN DE RESULTADOS.

Más detalles

DINÁMICA DE FLUIDOS (Septiembre 1999)

DINÁMICA DE FLUIDOS (Septiembre 1999) (Septiembre 1999) Teoría: 1.- Considérese un flujo plano. Dígase cómo se deformaría el cuadrado adjunto si: a) La vorticidad es nula b) No hay deformación pura. c) Voriticidad y deformación son ambas distintas

Más detalles

15.- Mencione como se puede distinguir el potencial hidroeléctrico mundial.

15.- Mencione como se puede distinguir el potencial hidroeléctrico mundial. 1.- Que es un tubo de aspiración en una turbina? Consiste en un conducto, normalmente acodado, que une a las turbinas de reacción con el canal de desagüe. y tiene como misión crear una succión a la salida

Más detalles

Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Cátedra de Mecánica de los Fluidos. Carrea de Ingeniería Civil

Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Cátedra de Mecánica de los Fluidos. Carrea de Ingeniería Civil Universidad Nacional de Córdoba Facultad de Ciencias Exactas Físicas y Naturales Cátedra de Mecánica de los Fluidos Carrea de Ingeniería Civil FLUJO COMPRESIBLE DR. ING. CARLOS MARCELO GARCÍA 2011 A modo

Más detalles

Cuarta Lección. Principios de la física aplicados al vuelo.

Cuarta Lección. Principios de la física aplicados al vuelo. Capítulo II. Termodinámica y Física de los Fluidos aplicadas a procesos naturales. Tema. El proceso de vuelo de las aves y de los ingenios alados. Cuarta Lección. Principios de la física aplicados al vuelo.

Más detalles

PÉRDIDAS DE CARGA. E.T.S. Ingenieros Industriales. Curso PRÁCTICAS DE MECÁNICA DE FLUIDOS ÍNDICE. Área de Mecánica de Fluidos

PÉRDIDAS DE CARGA. E.T.S. Ingenieros Industriales. Curso PRÁCTICAS DE MECÁNICA DE FLUIDOS ÍNDICE. Área de Mecánica de Fluidos Prácticas de Mecánica de Fluidos Pérdidas de Carga 1/10 UNIVERSIDAD DE OVIEDO E.T.S. Ingenieros Industriales 3 er curso Curso 004-005 PRÁCTICAS DE MECÁNICA DE FLUIDOS PÉRDIDAS DE CARGA ÍNDICE 1. Introducción

Más detalles

UNIVERSIDAD VERACRUZANA FACULTAD DE INGENIERÍA MECÁNICA Y ELÉCTRICA

UNIVERSIDAD VERACRUZANA FACULTAD DE INGENIERÍA MECÁNICA Y ELÉCTRICA UNIVERSIDAD VERACRUZANA FACULTAD DE INGENIERÍA MECÁNICA Y ELÉCTRICA MAQUINAS HIDRAULICAS BOMBAS Y TURBINAS MONOGRAFIA Que para obtener el título de: INGENIERO MECÁNICO ELECTRICISTA PRESENTA: HUMBERTO TORIO

Más detalles

Formatos para prácticas de laboratorio

Formatos para prácticas de laboratorio CARRERA PLAN DE ESTUDIO CLAVE DE UNIDAD DE APRENDIZAJE NOMBRE DE LA UNIDAD DE APRENDIZAJE ING. MECÁNICO 2009-2 12198 MECÁNICA DE FLUIDOS PRÁCTICA No. MF-04 LABORATORIO DE NOMBRE DE LA PRÁCTICA MECÁNICA

Más detalles

Introducción a las Ondas de Choque

Introducción a las Ondas de Choque Introducción a las Luis Moraga Centro de Física Experimental, Facultad de Ciencias, Universidad de Chile Curso de Pre- y Postgrado ONDAS DE CHOQUE, 2008 Asunto: Introducción La naturaleza de las ondas

Más detalles

Mecánica de Fluidos y Máquinas Hidráulicas

Mecánica de Fluidos y Máquinas Hidráulicas Mecánica de Fluidos y Máquinas Hidráulicas Tema 09. Máquinas Hidráulicas (1) Severiano F. Pérez Remesal Carlos Renedo Estébanez DPTO. DE INGENIERÍA ELÉCTRICA Y ENERGÉTICA Este tema se publica bajo Licencia:

Más detalles

CURSO DE HIDRÁULICA 2010

CURSO DE HIDRÁULICA 2010 CURSO DE HIDRÁULICA 2010 LECCIÓN 2. ECUACIÓN DE LA DINÁMICA EN FLUIDOS PERFECTOS (HIDRODINÁMICA). ECUACIÓN DE LA DINÁMICA PARA FLUIDOS REALES: ECUACIONES DE NAVIER-STOKES. CONCEPTO DE PENDIENTE HIDRÁULICA.

Más detalles

Mecánica de Fluidos. Análisis Diferencial

Mecánica de Fluidos. Análisis Diferencial Mecánica de Fluidos Análisis Diferencial Análisis Diferencial: Descripción y caracterización del flujo en función de la descripción de una partícula genérica del flujo. 1. Introducción 2. Movimiento de

Más detalles

MECÁNICA DE FLUIDOS. Datos Descriptivos TITULACIÓN:

MECÁNICA DE FLUIDOS. Datos Descriptivos TITULACIÓN: Guía de aprendizaje Información al estudiante MECÁNICA DE FLUIDOS Datos Descriptivos TITULACIÓN: CENTROS IMPLICADOS: GRADO EN INGENIERÍA EN TECNOLOGÍA MINERA E.T.S. DE INGENIEROS DE MINAS CICLO: Grado

Más detalles

XV.- TRANSMISIÓN DE CALOR POR CONVECCIÓN CORRELACIONES PARA LA CONVECCIÓN FORZADA

XV.- TRANSMISIÓN DE CALOR POR CONVECCIÓN CORRELACIONES PARA LA CONVECCIÓN FORZADA XV.- TRANSMISIÓN DE CALOR POR CONVECCIÓN CORRELACIONES PARA LA CONVECCIÓN FORZADA XV.1.- CORRELACIONES PARA LA CONVECCIÓN FORZADA EN PLACAS FLUJO LAMINAR SOBRE PLACA PLANA HORIZONTAL a) El número de Nusselt

Más detalles

Laboratorio de Mecánica de Fluidos I

Laboratorio de Mecánica de Fluidos I Laboratorio de Mecánica de Fluidos I Práctica # 3: Demostración del Teorema de Bernoulli Objetivo Demostrar el Teorema de Bernoulli y sus limitaciones. Determinar el coeficiente de descarga. En este experimento

Más detalles

CAPÍTULO 2. RESISTENCIAS PASIVAS

CAPÍTULO 2. RESISTENCIAS PASIVAS CAÍTULO 2. RESISTENCIAS ASIVAS 2.1. Introducción Son aquellas internas o externas a los elementos que constituyen un mecanismo, que de una forma u otra, se oponen al movimiento relativo de los mismos.

Más detalles

Máquinas hidráulicas. Calor y frío industrial. Equipos y generadores térmicos. Motores térmicos.

Máquinas hidráulicas. Calor y frío industrial. Equipos y generadores térmicos. Motores térmicos. ASIGNATURA: Ingeniería Térmica y de Fluidos Código: 141214006 Titulación: Ingeniero Industrial Curso: 4, 1C Profesor(es) responsable(s): - Ingeniería Térmica: José Hernández Grau, Juan Pedro Luna Abad

Más detalles

MECANICA DE FLUIDOS II

MECANICA DE FLUIDOS II UNIVERSIDAD CENTROCCIDENTAL LISANDRO ALVARADO DECANATO DE INGENIERIA CIVIL MECANICA DE FLUIDOS II CARÁCTER: Obligatoria PROGRAMA: Ingeniería Civil Sanitaria DEPARTAMENTO: : Ingeniería Hidráulica y CODIGO

Más detalles

Física para Ciencias: Principio de Arquímedes, Ecuaciones de Continuidad y Bernoulli.

Física para Ciencias: Principio de Arquímedes, Ecuaciones de Continuidad y Bernoulli. Física para Ciencias: Principio de Arquímedes, Ecuaciones de Continuidad y Bernoulli. Dictado por: Profesor Aldo Valcarce 1 er semestre 2014 Presión de un fluido Presión depende de la profundidad P = ρ

Más detalles

Flujo irrotacional ideal

Flujo irrotacional ideal Capítulo 5 Flujo irrotacional ideal A pesar de que las ecuaciones de conservación para un fluido newtoniano existen y que el sistema es cerrado (mismo número de ecuaciones que de incógnitas), su uso es

Más detalles

DE FLUJOS INTERNOS IMPORTANTES. = e Ley universal de Prandtl para la fricción en tuberías lisas Re 2300

DE FLUJOS INTERNOS IMPORTANTES. = e Ley universal de Prandtl para la fricción en tuberías lisas Re 2300 DE FLUJOS INTERNOS IMPORTANTES Tabla 9.5 (continuación) iii. Zona rugosa 70 = + 8.5 e f 1-2.0 Ley universal de Prandtl para la fricción en tuberías lisas Re 2300 = Para la zona rugosa y la zona de transición

Más detalles

MECÁNICA DE FLUIDOS 2º CURSO

MECÁNICA DE FLUIDOS 2º CURSO MECÁNICA DE FLUIDOS 2º CURSO GRADO EN INGENIERÍA ELÉCTRICA GRADO EN INGENIERÍA ELECTRÓNICA INDUSTRIAL Y AUTOMÁTICA GRADO EN INGENIERÍA QUÍMICA INDUSTRIAL GRADO EN INGENIERÍA MECÁNICA ASIGNATURA TRONCAL,

Más detalles

UNIVERSIDAD ALONSO DE OJEDA FACULTAD DE INGENIERÍA ESCUELA DE INDUSTRIAL ASIGNATURA: GENERACIÓN DE POTENCIA

UNIVERSIDAD ALONSO DE OJEDA FACULTAD DE INGENIERÍA ESCUELA DE INDUSTRIAL ASIGNATURA: GENERACIÓN DE POTENCIA UNIVERSIDAD ALONSO DE OJEDA FACULTAD DE INGENIERÍA ESCUELA DE INDUSTRIAL ASIGNATURA: GENERACIÓN DE POTENCIA INTRODUCCIÓN IMPORTANCIA DE LA GENERACIÓN DE POTENCIA ASPECTOS FUNDAMENTALES TIPOS DE PLANTAS

Más detalles

Curso de Hidrología e Hidráulica Aplicadas

Curso de Hidrología e Hidráulica Aplicadas BOMBAS GENERALIDADES. Definición: Convertidores de energía mecánica (procedente del motor que los arrastra) en energía hidráulica (fundamentalmente en forma de energía cinética y de presión). La energía

Más detalles

NPSH: INFLUENCIA DE LA ALTURA Y TEMPERATURA DEL AGUA EN LA ASPIRACION DE LAS BOMBAS

NPSH: INFLUENCIA DE LA ALTURA Y TEMPERATURA DEL AGUA EN LA ASPIRACION DE LAS BOMBAS NPSH: INFLUENCIA DE LA ALTURA Y TEMPERATURA DEL AGUA EN LA ASPIRACION DE LAS BOMBAS Se denomina NPSH (Net Positive Suction Head) o ANPA (Altura Neta Positiva de Aspiración) a la diferencia entre la presión

Más detalles

COMPROBACIÓN DE LA ECUACIÓN DE BERNOULLI

COMPROBACIÓN DE LA ECUACIÓN DE BERNOULLI Laboratorio de Física de Procesos Biológicos COMPROBACIÓN DE LA ECUACIÓN DE BERNOULLI Fecha: 13/1/006 1. Obetivo de la práctica Comprobación experimental de la ecuación de Bernoulli de la dinámica de fluidos

Más detalles

Física de fluidos

Física de fluidos Información del Plan Docente Año académico 2016/17 Centro académico Titulación 100 - Facultad de Ciencias 447 - Graduado en Física Créditos 5.0 Curso Periodo de impartición Clase de asignatura Primer Semestre

Más detalles

ASIGNATURAS CORRELATIVAS PRECEDENTES PROGRAMA DE LA ASIGNATURA

ASIGNATURAS CORRELATIVAS PRECEDENTES PROGRAMA DE LA ASIGNATURA CARRERA: INGENIERIA CIVIL (CICLO COMUN) DEPARTAMENTO DE: HIDRAULICA ASIGNATURA HIDRAULICA GENERAL (Código 18) APROBADO POR RESOLUCION Nº 198/99 C.D. AREA: CIENCIAS TECNOLOGICAS BASICAS CICLO: CARACTER

Más detalles

Mecánica de Fluidos y Máquinas Hidráulicas

Mecánica de Fluidos y Máquinas Hidráulicas Mecánica de Fluidos y Máquinas Hidráulicas Tema 09. Máquinas Hidráulicas (2) Severiano F. Pérez Remesal Carlos Renedo Estébanez DPTO. DE INGENIERÍA ELÉCTRICA Y ENERGÉTICA Este tema se publica bajo Licencia:

Más detalles

Cátedra de Ingeniería Rural Escuela Universitaria de Ingeniería Técnica Agrícola de Ciudad Real

Cátedra de Ingeniería Rural Escuela Universitaria de Ingeniería Técnica Agrícola de Ciudad Real Tema 7. Expresiones del actor de ricción 1. Introducción. Factor de ricción en régimen laminar 3. Subcapa laminar. Comportamiento hidrodinámico de tuberías 4. Experiencias de Nikuradse 5. Valor del coeiciente

Más detalles

Ejercicio 1. L=200 m L=800 m. (B) H B =34 mca. Ejercicio 2

Ejercicio 1. L=200 m L=800 m. (B) H B =34 mca. Ejercicio 2 Ejercicio 1 Se desea trasegar agua desde el depósito A al C utilizando para ello la bomba B. Las pérdidas de carga por fricción son del 5 por mil, y las pérdidas de carga localizadas en cada punto del

Más detalles

HIDRAULICA Y CIVIL S.A.S

HIDRAULICA Y CIVIL S.A.S I. MEMORIAS DE CÁLCULO Para el diseño de las instalaciones hidráulicas y sanitarias se adoptó el Reglamento Técnico del sector de Agua Potable y Saneamiento Básico Ambiental RAS, y la Norma Técnica Icontec

Más detalles

4. MAQUINARIA HIDRÁULICA

4. MAQUINARIA HIDRÁULICA 4. MAQUINARIA HIDRÁULICA Objetivos El alumno conocerá los principios del funcionamiento de las bombas hidráulicas, los diferentes tipos de Máquinas Hidráulicas existentes y aprenderá a identificar los

Más detalles

LABORATORIO #6 DEMOSTRACIÓN DEL TOREMA DE BERNOULLI LUIS CARLOS DE LA CRUZ TORRES GILDARDO DIAZ CARLOS ROJAS PRESENTADO EN LA CÁTEDRA:

LABORATORIO #6 DEMOSTRACIÓN DEL TOREMA DE BERNOULLI LUIS CARLOS DE LA CRUZ TORRES GILDARDO DIAZ CARLOS ROJAS PRESENTADO EN LA CÁTEDRA: LABORATORIO #6 DEMOSTRACIÓN DEL TOREMA DE BERNOULLI LUIS CARLOS DE LA CRUZ TORRES GILDARDO DIAZ CARLOS ROJAS PRESENTADO EN LA CÁTEDRA: LABORATORIO DE MECÁNICA DE FLUIDOS PRESENTADO A: ING. VLADIMIR QUIROZ

Más detalles

PRÁCTICO DE MÁQUINAS PARA FLUIDOS II

PRÁCTICO DE MÁQUINAS PARA FLUIDOS II 44) En la instalación de la figura la bomba gira a 1700rpm, entregando un caudal de agua a 20 o C de 0.5m 3 /s al tanque elevado. La cañería es de acero galvanizado, rígida y de 500mm de diámetro y cuenta

Más detalles

PROBLEMAS MÁQUINAS HIDRÁULICAS Y TÉRMICAS

PROBLEMAS MÁQUINAS HIDRÁULICAS Y TÉRMICAS PROBLEMAS MÁQUINAS HIDRÁULICAS Y TÉRMICAS Turbomáquinas térmicas Turbinas de vapor Problema 0 Una turbina de vapor trabaja siguiendo un ciclo Rankine, y funcional entre unas condiciones de admisión de

Más detalles

PROGRAMA INSTRUCCIONAL MÁQUINAS HIDRÁULICAS

PROGRAMA INSTRUCCIONAL MÁQUINAS HIDRÁULICAS UNIVERSIDAD FERMIN TORO VICE-RECTORADO ACADEMICO FACULTAD DE INGENIERIA ESCUELA DE MANTENIMIENTO MECANICO PROGRAMA AL MÁQUINAS HIDRÁULICAS CÓDIGO ASIGNADO SEMESTRE U.C DENSIDAD HORARIA SEMI H.T H.P/H.L

Más detalles

Glosario. Agregación geométrica: modificación de la longitud típica de los planos de escurrimiento con el aumento de escala.

Glosario. Agregación geométrica: modificación de la longitud típica de los planos de escurrimiento con el aumento de escala. G.1 Glosario Agregación ( up-scaling ): proceso de pasaje de descripciones de procesos (modelos) o variables de una escala menor a otra mayor (Blöshl et al., 1997). Agregación geométrica: modificación

Más detalles

XIII.- TRANSMISIÓN DE CALOR POR CONVECCIÓN, ANALOGÍAS Y ANÁLISIS DIMENSIONAL

XIII.- TRANSMISIÓN DE CALOR POR CONVECCIÓN, ANALOGÍAS Y ANÁLISIS DIMENSIONAL XIII.- TRANSMISIÓN DE CALOR POR CONVECCIÓN, ANALOGÍAS Y ANÁLISIS DIMENSIONAL XIII.1.- ANALOGÍA ENTRE LA TRANSMISIÓN DE CALOR Y LA CANTIDAD DE MOVI- MIENTO EN LUJO TURBULENTO CAPA LIMITE TÉRMICA SOBRE PLACA

Más detalles

Mecánica de Fluidos y Máquinas Hidráulicas

Mecánica de Fluidos y Máquinas Hidráulicas Mecánica de Fluidos y Máquinas Hidráulicas Tema 03. Cinemá-ca de Fluidos Severiano F. Pérez Remesal Carlos Renedo Estébanez DPTO. DE INGENIERÍA ELÉCTRICA Y ENERGÉTICA Este tema se publica bajo Licencia:

Más detalles

Cómo leer la curva característica de una bomba?

Cómo leer la curva característica de una bomba? Cómo leer la curva característica de una bomba? Este boletín trata sobre la lectura y la comprensión de las curvas de funcionamiento de una bomba centrífuga. Se consideran tres tipos de curvas: bomba autocebante

Más detalles

UNIVERSIDAD NACIONAL DE INGENIERIA FACULTAD DE INGENIERIA MECANICA DEPARTAMENTO ACADEMICO DE CIENCIAS DE INGENIERIA SILABO P.A.

UNIVERSIDAD NACIONAL DE INGENIERIA FACULTAD DE INGENIERIA MECANICA DEPARTAMENTO ACADEMICO DE CIENCIAS DE INGENIERIA SILABO P.A. UNIVERSIDAD NACIONAL DE INGENIERIA FACULTAD DE INGENIERIA MECANICA DEPARTAMENTO ACADEMICO DE CIENCIAS DE INGENIERIA SILABO P.A. 2010-I 1. INFORMACION GENERAL Nombre del curso : TURBOMAQUINAS I Código del

Más detalles

COMPROBACIÓN DE LA ECUACIÓN DE BERNOULLI

COMPROBACIÓN DE LA ECUACIÓN DE BERNOULLI Laboratorio de Física General (Fluidos) COMPROBACIÓN DE LA ECUACIÓN DE BERNOULLI Fecha: 0/10/013 1. Obetivo de la práctica Comprobación experimental de la ecuación de Bernoulli de la dinámica de fluidos

Más detalles

[1] Turbinas de acción: Turbinas de reacción:

[1] Turbinas de acción:  Turbinas de reacción: TESIS PUCP Esta obra ha sido publicada bajo la licencia Creative Commons Reconocimiento-No comercial-compartir bajo la misma licencia.5 Perú. Para ver una copia de dicha licencia, visite http://creativecommons.org/licenses/by-nc-sa/.5/pe/

Más detalles

Ingeniería en Alimentos Fenómenos de Transporte Ing. Mag. Myriam E. Villarreal

Ingeniería en Alimentos Fenómenos de Transporte Ing. Mag. Myriam E. Villarreal Ingeniería en Alimentos Ing. Mag. Myriam E. Villarreal 111 ENERGÍA DE TRANICIÓN (en moimiento de un sistema a otro) ALMACENADA (asociada con una masa) Escribiendo la 1º Ley de la Termodinámica en forma

Más detalles

TÉCNICAS DE ANÁLISIS PARA EL AHORRO DE ENERGÍA

TÉCNICAS DE ANÁLISIS PARA EL AHORRO DE ENERGÍA TÉCNICAS DE ANÁLISIS PARA EL AHORRO DE ENERGÍA 2ª Parte: Evaluación de Ahorros de Energía Acapulco, Gro./ Septiembre 29 del 2010 Ing. Ramón Rosas Moya 1 PROCESO DE TRANSFORMACIÓN DE LA ENERGÍA PARA EL

Más detalles

2 o Bachillerato. Conceptos básicos

2 o Bachillerato. Conceptos básicos Física 2 o Bachillerato Conceptos básicos Movimiento. Cambio de posición de un cuerpo respecto de un punto que se toma como referencia. Cinemática. Parte de la Física que estudia el movimiento de los cuerpos

Más detalles

HIDRÁULICA 1.- NOCIONES SOBRE HIDRÁULICA INDUSTRIAL

HIDRÁULICA 1.- NOCIONES SOBRE HIDRÁULICA INDUSTRIAL HIDRÁULICA 1.- NOCIONES SOBRE HIDRÁULICA INDUSTRIAL Sistemas hidráulicos Sistemas de transmisión de energía en los cuales el medio ese un fluido teóricamente incompresible. Funciones: Transformación de

Más detalles

INDICE. Anejo 8: Cálculos eléctricos 1

INDICE. Anejo 8: Cálculos eléctricos 1 INDICE 1.- Cálculo potencia motores 1.1.- Grupos auxiliares 1.2.- Grupos principales 2.- Tamaño de equipos de accionamiento 2.1.- Variadores de velocidad 2.2.- Arrancadores estáticos 3.- Máxima potencia

Más detalles

HIDRAULICA DE POTENCIA. Unidad 1. Bases físicas de la hidráulica

HIDRAULICA DE POTENCIA. Unidad 1. Bases físicas de la hidráulica HIDRAULICA DE POTENCIA Unidad 1. Bases físicas de la hidráulica Presión Este término se refiere a los efectos de una fuerza que actúa distribuida sobre una superficie. La fuerza causante de la presión

Más detalles

ECUACIONES DIMENSIONALES

ECUACIONES DIMENSIONALES ECUACIONES DIMENSIONALES 1. En la expresión x = k v n / a, x = distancia, v = velocidad, a = aceleración y k es una constante adimensional. Cuánto vale n para que la expresión sea dimensionalmente homogénea?

Más detalles

SENSORES DE FLUJO. Transducers for Biomedical Measurements: Principles and Applications, R.S.C. Cobbold, Ed. John Wiley & Sons

SENSORES DE FLUJO. Transducers for Biomedical Measurements: Principles and Applications, R.S.C. Cobbold, Ed. John Wiley & Sons SENSORES DE FLUJO Referencias bibliográficas Transducers for Biomedical Measurements: Principles and Applications, R.S.C. Cobbold, Ed. John Wiley & Sons Sensores y acondicionamiento de señal, R. Pallás

Más detalles

Turbinas de vapor. Introducción

Turbinas de vapor. Introducción Turbinas de vapor Introducción La turbina de vapor es una máquina de fluido en la que la energía de éste pasa al eje de la máquina saliendo el fluido de ésta con menor cantidad de energía. La energía mecánica

Más detalles

CURSO TALLER PROMOTORES DE AHORRO Y EFICIENCIA DE ENERGÍA ELÉCTRICA

CURSO TALLER PROMOTORES DE AHORRO Y EFICIENCIA DE ENERGÍA ELÉCTRICA PROGRAMA INTEGRAL DE ASISTENCIA TÉCNICA Y CAPACITACIÓN PARA LA FORMACIÓN DE ESPECIALISTAS EN AHORRO Y USO EFICIENTE DE ENERGÍA ELÉCTRICA DE GUATEMALA CURSO TALLER PROMOTORES DE AHORRO Y EFICIENCIA DE ENERGÍA

Más detalles

Problemas de Estática y Dinámica DINÁMICA DE FLUIDOS

Problemas de Estática y Dinámica DINÁMICA DE FLUIDOS Problemas de Estática y Dinámica DINÁMICA DE FLUIDOS (1 er Q.:prob pares, 2 ndo Q.:prob impares) 1. En el esquema adjunto las secciones de la tubería son 40 y 12 cm 2, y la velocidad del agua en la primera

Más detalles

MAT2715 VARIABLE COMPLEJA II Ayudantia 5 Rodrigo Vargas. g(z) e u(z) 1. u(z) a log z + b

MAT2715 VARIABLE COMPLEJA II Ayudantia 5 Rodrigo Vargas. g(z) e u(z) 1. u(z) a log z + b PONTIFICIA UNIVERSIDAD CATÓLICA DE CHILE FACULTAD DE MATEMÁTICAS MAT2715 VARIABLE COMPLEJA II Ayudantia 5 Rodrigo Vargas 1. Sea u : C R una función armónica positiva. Pruebe que u es constante. Solución:

Más detalles

PRÁCTICA: BANCO DE ENSAYO DE BOMBAS

PRÁCTICA: BANCO DE ENSAYO DE BOMBAS PRÁCTICA: BANCO DE ENSAYO DE BOMBAS htttp://www.uco.es/moodle Descripción del equipo y esquema de la instalación La instalación en la que se lleva a cabo esta práctica es un banco de ensayos preparado

Más detalles

GENERACIÓN HIDROELÉCTRICA. Romeli Barbosa Pool Miguel Piñeirua Menendez

GENERACIÓN HIDROELÉCTRICA. Romeli Barbosa Pool Miguel Piñeirua Menendez GENERACIÓN HIDROELÉCTRICA Romeli Barbosa Pool Miguel Piñeirua Menendez Introducción Como la mayor parte de las energías renovables, la energía extraída del agua para la generación de electricidad esta

Más detalles

MAQUINAS HIDRAULICAS TURBINA HIDRAULICA DE IMPULSO, TURBINA PELTON PRESENTA ING. JOSE LUIS MORALES REYES

MAQUINAS HIDRAULICAS TURBINA HIDRAULICA DE IMPULSO, TURBINA PELTON PRESENTA ING. JOSE LUIS MORALES REYES INSTITUTO TECNOLÓGICO SUPERIOR DE LOS REYES ESCUELA DE INGENIERÍA A ELECTROMECÁNICA MAQUINAS HIDRAULICAS TURBINA HIDRAULICA DE IMPULSO, TURBINA PELTON PRESENTA ING. JOSE LUIS MORALES REYES INDICE OBJETIVO

Más detalles

Estudio Experimental de la Ecuación de Bernoulli

Estudio Experimental de la Ecuación de Bernoulli Estudio Experimental de la Ecuación de Bernoulli Verónica Cecilia Delfosse, Alejandra Gural verococo4@hotmail.com, azul-a00@ciudad.com.ar Turno: Jueves 7.30hs. a.30hs Curso de física I Universidad de Gral.

Más detalles

Resistencia de Materiales 1A. Profesor Herbert Yépez Castillo

Resistencia de Materiales 1A. Profesor Herbert Yépez Castillo Resistencia de Materiales 1A Profesor Herbert Yépez Castillo 2014-2 2 Capítulo 5. Torsión 5.4 Ángulo 3 Un par es un momento que tiende a hacer girar respecto a su eje longitudinal. Su efecto es de interés

Más detalles

MÁQUINAS DE CORRIENTE CONTÍNUA. LA MÁQUINA LINEAL.

MÁQUINAS DE CORRIENTE CONTÍNUA. LA MÁQUINA LINEAL. MÁQUINAS DE CORRIENTE CONTÍNUA. LA MÁQUINA LINEAL. Fuerza sobre el conductor. r r r df = IΛ B dl F = I. B.L Tensión inducida en el conductor. dφ dφ e =, pero dados los sentidos normales se cumple que :

Más detalles

IV.- COMPRESORES AXIALES (TG)

IV.- COMPRESORES AXIALES (TG) IV.- COMPRESORES AXIALES (TG) IV.1.- INTRODUCCIÓN La misión de los álabes del rotor accionados por la turbina, es aumentar la velocidad del aire y la presión dinámica, pues dicho rotor recoge la energía

Más detalles

EL H. CONSEJO DIRECTIVO DE LA FACULTAD DE INGENIERIA (En su sesión ordinaria del 26 de Mayo de 2006) R E S U E L V E

EL H. CONSEJO DIRECTIVO DE LA FACULTAD DE INGENIERIA (En su sesión ordinaria del 26 de Mayo de 2006) R E S U E L V E Salta, 5 de Julio de 2.006 491/06 Expte. Nº 14.165/06 491/06 VISTO: La presentación efectuada por el Ing. Rafael Raúl López Díaz, Profesor a cargo de la asignatura Hidráulica General mediante la cual eleva

Más detalles

Fundamentos de los Aprovechamientos de la Energía Hidráulica y Marina

Fundamentos de los Aprovechamientos de la Energía Hidráulica y Marina MASTER EN ENERGÍAS RENOVABLES CURSO 2008-2010 Fundamentos de los Aprovechamientos de la Energía Hidráulica y Marina CURSO 08-09 RECURSOS PARA ESTUDIAR LIBRO DE TEXTO: Selección de temas de Hidráulica AULA

Más detalles

Ejercicio 3.1. Sea el campo de velocidades de un escurrimiento definido por : v = x 2 yē x + x 2 tē y (3.1)

Ejercicio 3.1. Sea el campo de velocidades de un escurrimiento definido por : v = x 2 yē x + x 2 tē y (3.1) Ejercicio 3.1. Sea el campo de velocidades de un escurrimiento definido por : Se pide: v = x yē x + x tē y (3.1) a. A qué tipo de formalismo corresponde este análisis del escurrimiento, lagrangeano o eulereano?

Más detalles

PROGRAMA DE CURSO DE INGRESO - ASIGNATURA FISICA

PROGRAMA DE CURSO DE INGRESO - ASIGNATURA FISICA PROGRAMA DE CURSO DE INGRESO - ASIGNATURA FISICA Unidades Programáticas 1. Magnitudes Físicas 2. Vectores 3. Cinemática Escalar 4. Dinámica 5. Mecánica de Fluidos 6. Termometría y Calorimetría. Desarrollo

Más detalles