CAPÍTULO 2. RESISTENCIAS PASIVAS
|
|
|
- Silvia Mora Márquez
- hace 9 años
- Vistas:
Transcripción
1 CAÍTULO 2. RESISTENCIAS ASIVAS 2.1. Introducción Son aquellas internas o externas a los elementos que constituyen un mecanismo, que de una forma u otra, se oponen al movimiento relativo de los mismos. Aparecen como consecuencia de los esfuerzos que se desarrollan en el contacto entre dichos elementos, y dan lugar al concepto de rendimiento en las máquinas. F UTILES UTILES + R + ASIVAS = F RESISTENTES MOTRIZ = MOTRIZ η UTILES = = 1 MOTRIZ RESISTENTES MOTRIZ - Clases de resistencias 1. Del medio ambiente. (Fluido) Las máquinas se mueven dentro de un medio fluido, normalmente aire, lo que implica resistencias a vencer. Tienen gran importancia en aviones, automóviles, barcos, ventiladores, etc. 2. Internas estructurales. (Deformación) Las fuerzas aplicadas producen deformaciones dentro de los miembros de las máquinas y, al no ser estos perfectamente elásticos, parte de esta energía se pierde. Esto ocurre por ejemplo en las transmisiones por correas, cables, etc. 3. De contacto en un par de elementos. (Rozamiento) En las máquinas suelen ser las más importantes, por lo que las anteriores a menudo no se tienen en cuenta. Se dividen en - Resistencia el deslizamiento. - Resistencia a la rodadura. - Rozamiento de pivotamiento. 1
2 - Resistencias pasivas en el contacto de dos sólidos Debido a la deformación que se produce en el contacto entre dos sólidos, la zona de contacto es una superficie, normalmente de área muy pequeña. El sistema de fuerzas en esta zona se reduce a una resultante R y a un par resultante φ, los cuales pueden descomponerse en una dirección normal y otra tangencial. R: resultante de las fuerzas en el contacto. N: reacción normal. T: resistencia al deslizamiento. φ: par resultante. φ n : Momento de resistencia al pivotamiento. φ t : Momento de resistencia a la rodadura. 2
3 2.2 Resistencia al deslizamiento Consideremos un cuerpo apoyado sobre una superficie horizontal y sometido a la acción de una fuerza vertical y una horizontal de tracción F, como se muestra en la figura. En este caso podremos distinguir dos situaciones diferentes a) En el equilibrio Cuando el cuerpo no se mueve, la fuerza tractora F es igual a la resistencia al deslizamiento T, hasta alcanzar un valor máximo que viene dado por T = µ µ = coeficiente de rozamiento, que depende N * De la naturaleza de las superficies. * Del estado de las mismas. * De la disposición relativa de las superficies. Además, µ es INDEENDIENTE de la carga normal y del área de contacto. F T tgϕ = = = µ N ϕ = ángulo de rozamiento. Esta relación es constante para los mismos cuerpos en contacto al variar. 3
4 or lo tanto, en este caso el rozamiento T NO ES CONTANTE, sino que depende de la fuerza aplicada sobre el cuerpo, hasta llegar al límite expresado en la igualdad anterior. b) En el movimiento Una vez iniciado el movimiento, el valor de T disminuye, siendo ahora T = µ el cual es constante durante el movimiento del cuerpo (siempre que se mantenga el estado de cargas). or lo tanto se tiene un valor menor de resistencia al deslizamiento µ < µ 0 como se puede observar en la siguiente curva N T Equilibrio estático Deslizamiento m o N mn F El trabajo elemental de rozamiento será y la potencia perdida por rozamiento d = F ds = µ N ds = F v = µ N v 4
5 Esta potencia se traduce en el desgaste y calentamiento de las superficies rozantes, produciendo el primero desajuste en las piezas de las máquinas y ambas un sensible consumo de energía. Esta figura muestra el denominado cono de rozamiento, que es el cono cuyo eje tiene la dirección de N y cuyo semiángulo en el vértice es ϕ. 5
6 2.3 Resistencia a la rodadura Cuando sobre un cilindro se aplica una fuerza F pequeña, a una distancia AB, se observa que el cilindro no sólo no desliza sino que TAMOCO RUEDA, lo que indica la existencia de un MOMENTO DE RESISTENCIA A LA RODADURA, que se opone al movimiento y cuyo calor es φ =δ N d = coeficiente de resistencia a la rodadura * Suele expresarse en mm. * Deriva de que el contacto, en realidad, es superficial. N d 6
7 Luego para tener en cuenta la resistencia a la rodadura basta trasladar la reacción normal paralelamente a si misma en la dirección adecuada para dar un par φ que se oponga a la rodadura. Factores de los que depende d * Naturaleza de los cuerpos y propiedades elásticas. * Forma, posición y dimensiones de las superficies. * Estado de las superficies, rugosidad. * Valor de los esfuerzos aplicados, presión normal y esfuerzos tangenciales. * Velocidad del movimiento. * Temperatura. El trabajo de resistencia a la rodadura será d y si d y N son constantes, se cumple r = φ r dθ = d N dθ r = d N dθ = d N θ siendo? el ángulo girado. La potencia consumida en rodadura es donde? es la velocidad angular = φ ω = d N ω r 7
8 2.4 Resistencia de pivotamiento Un cuerpo no gira en torno a un eje hasta que no se sobrepasa un cierto par de valor finito φ p, que se produce como consecuencia del rozamiento en el deslizamiento de las superficies de contacto. luego En el caso más general la zona de contacto es una elipse. La resistencia al deslizamiento elemental es es el par de resistencia al pivotamiento. dt = µ dn d φ = 2 r dt = 2r µ φ = 2r dt = 2µ σ σ dn rdn La teoría de Hertz sobre deformación de cuerpos elásticos sometidos a compresión determina la distribución de esfuerzos en la zona de contacto, llegando a la ecuación siguiente φ = µ l N donde l es la longitud de la elipse de contacto. 8
9 ( ρ, ρ, E E ) = N φ = µ N 3 N f, µ µ p = coeficiente de resistencia al pivotamiento de dimensiones lineales, como en la rodadura Este valor µ p depende µ = ( ρ, ρ, E, ) µ N f E2 - De la naturaleza y estado de las superficies a través de µ. - De los radios de curvatura de las superficies de contacto ρ 1 y ρ 2. - De los coeficientes de elasticidad de los materiales E 1 y E 2. - De la raíz cúbica de la carga normal N. - También el valor de µ p es mayor en el arranque. El trabajo elemental de resistencia al pivotamiento será d = φ dθ = µ N dθ mientras que la potencia consumida en pivotamiento es N = φ ω = µ N ω 9
Guia N 6 - Primer cuatrimestre de 2007 Sólidos rígidos planos. Energía potencial y mecánica.
æ Mecánica CLásica Guia N 6 - Primer cuatrimestre de 2007 Sólidos rígidos planos. Energía potencial y mecánica. Problema 1: Dos barras delgadas uniformes de longitudes iguales, l=0.5 m, una de 4 kg y la
Equilibrio y cinemática de sólidos y barras (2)
Equilibrio y cinemática de sólidos y barras (2) Fuerzas aiales distribuidas y sección variable Índice Ejercicios de recapitulación Fuerzas aiales distribuidas Equilibrio Deformación Ejemplos Barras de
Equilibrio de fuerzas Σ F z = 0. Σ M y = 0 Σ M x = 0 Σ M z = 0. Equilibrio de momentos. Segunda ley de Newton (masa)
Estática: leyes de Newton: equilibrio, masa, acción y reacción Primera ley de Newton (equilibrio) Un cuerpo permanece en reposo o en movimiento rectilíneo uniforme (M.R.U. = velocidad constante) si la
Resistencia de Materiales 1A. Profesor Herbert Yépez Castillo
Resistencia de Materiales 1A Profesor Herbert Yépez Castillo 2015-1 2 Capítulo 5. Torsión 5.4 Ángulo 3 Un par es un momento que tiende a hacer girar respecto a su eje longitudinal. Su efecto es de interés
Resistencia de Materiales 1A. Profesor Herbert Yépez Castillo
Resistencia de Materiales 1A Profesor Herbert Yépez Castillo 2014-2 2 Capítulo 5. Torsión 5.4 Ángulo 3 Un par es un momento que tiende a hacer girar respecto a su eje longitudinal. Su efecto es de interés
UNIDAD I. EL MUNDO EN QUE VIVIMOS
ÍNDICE UNIDAD I. EL MUNDO EN QUE VIVIMOS Capítulo 1. Estructura de la materia 3 1-1. La materia, 3. 1-2. Los elementos químicos, 3. 1-3. Atomos, 5. 1-4. Isótopos, 7. 1-5. Moléculas, 8. 1-6. Partículas
Trabajo Práctico de Aula N 7 Dinámica de un cuerpo rígido
Trabajo Práctico de Aula N 7 Dinámica de un cuerpo rígido 1) Un bloque de 2000 kg está suspendido en el aire por un cable de acero que pasa por una polea y acaba en un torno motorizado. El bloque asciende
UNIVERSIDAD NACIONAL DE EDUCACIÓN A DISTANCIA
UNIVERSIDAD NACIONAL DE EDUCACIÓN A DISTANCIA NOMBRE... APELLIDOS... CALLE... POBLACIÓN... PROVINCIA... C. P.... SISTEMAS MECÁNICOS E.T.S. de Ingenieros Industriales PRUEBA DE EVALUACIÓN A DISTANCIA /
T P Nº 10 - DEFORMACIONES DE ELEMENTOS FLEXADOS
T P Nº 10 - DEFORMACIONES DE ELEMENTOS FLEXADOS 1- Analice la deformada de cada uno de los casos presentados en la figura inferior. Responda a las siguientes consignas: a) Cuál es la parte de la viga (superior
Serie de ejercicios de Cinemática y Dinámica TRASLACIÓN Y ROTACIÓN PURAS
Serie de ejercicios de inemática y Dinámica TRSLIÓN Y ROTIÓN PURS 1. La camioneta que se representa en la figura viaja originalmente a 9 km/h y, frenando uniformemente, emplea 6 m en detenerse. Diga qué
Formulario PSU Parte común y optativa de Física
Formulario PSU Parte común y optativa de Física I) Ondas: Sonido y Luz Frecuencia ( f ) f = oscilaciones Vector/, Unidad de medida f 1/s = 1 Hz Periodo ( T ) T = oscilaciones f = 1 T T Segundo ( s ) Longitud
Dirección. E.I.I. Valladolid / José A. López p 1
Dirección E.I.I. Valladolid / José A. López p 1 Dirección Introducción y propiedades Ángulos de rueda Mecanismos de mando - Recirculación de bolas - Piñón - cremallera El mecanismo de accionamiento - Relación
Examen de TEORIA DE MAQUINAS Junio 07 Nombre...
Examen de TEORIA DE MAQUINAS Junio 07 Nombre... La figura muestra un mecanismo biela-manivela. La manivela posee masa m y longitud L, la biela masa 3 m y longitud 3 L, y el bloque masa 2m. En la posición
Cinemática: parte de la Física que estudia el movimiento de los cuerpos.
CINEMÁTICA Cinemática: parte de la Física que estudia el movimiento de los cuerpos. Movimiento: cambio de posición de un cuerpo respecto de un punto de referencia que se supone fijo. Objetivo del estudio
Tablas de Engranajes
Diseño de Máquinas Tablas de Engranajes Madrid, Curso 2.005-2.006 . No se que cojones pasa con el cambio de hoja Índice general 1. Engranajes Cilíndricos Rectos 5 1. Resistencia a la Flexión............................
Práctico 2: Mecánica lagrangeana
Mecánica Anaĺıtica Curso 2016 Práctico 2: Mecánica lagrangeana 1. La polea y la cuerda de la figura son ideales y los bloques deslizan sin roce. Obtenga las aceleraciones de los bloques a partir de las
LISTA DE SÍMBOLOS. Capítulo 2 EJEMPLOS Y TEORIA DE LAS VIBRACIONES PARAMÉTRICAS 2.1 Introducción T - Periodo Ω - Frecuencia a- parámetro b- parámetro
LISTA DE SÍMBOLOS Capítulo 2 EJEMPLOS Y TEORIA DE LAS VIBRACIONES PARAMÉTRICAS 2.1 Introducción T - Periodo Ω - Frecuencia a- parámetro b- parámetro 2.1.1 Rigidez Flexiva que Difiere en dos Ejes x- Desplazamiento
SEGUNDO TALLER DE REPASO
SEGUNDO TALLER DE REPASO ASIGNATURA: BIOFÍSICA TEMA: DINÁMICA 1. Una fuerza le proporciona a una masa de 4.5kg, una aceleración de 2.4 m/s 2. Calcular la magnitud de dicha fuerza en Newton y dinas. Respuestas:
CENTRIFUGACIÓN. Fundamentos. Teoría de la centrifugación
CENTRIFUGACIÓN Fundamentos. Teoría de la centrifugación Fuerzas intervinientes Tipos de centrífugas Tubular De discos Filtración centrífuga 1 SEDIMENTACIÓN Se basa en la diferencia de densidades entre
Trabajo Práctico n 2. Robotización de un Puente Grúa. Presentación. Restricciones. Curso 2011
Trabajo Práctico n 2 Robotización de un Puente Grúa Presentación Este problema consiste en desarrollar un sistema de control automático que permita robotizar la operación de un puente grúa para la carga
Resumen de Física. Cinemática. Juan C. Moreno-Marín, Antonio Hernandez Escuela Politécnica - Universidad de Alicante
Resumen de Física Cinemática, Antonio Hernandez D.F.I.S.T.S. La Mecánica se ocupa de las relaciones entre los movimientos de los sistemas materiales y las causas que los producen. Se divide en tres partes:
FÍSICA Y QUÍMICA 1º Bachillerato Ejercicios: Cinemática
1(7) Ejercicio nº 1 Los vectores de posición de un móvil en dos instantes son Calcula el vector desplazamiento y el espacio recorrido. R1 = -i + 10j y R2 = 2i + 4 j Ejercicio nº 2 Un móvil, que tiene un
INDUCCIÓN ELECTROMAGNÉTICA
INDUCCIÓN ELECTROMAGNÉTICA 1. Inducción electromagnética. 2. Leyes. 3. Transformadores. 4. Magnitudes de la corriente eléctrica. 5. Síntesis electromagnética. Física 2º bachillerato Inducción electromagnética
Objetos en equilibrio - Ejemplo
Objetos en equilibrio - Ejemplo Una escalera de 5 m que pesa 60 N está apoyada sobre una pared sin roce. El extremo de la escalera que apoya en el piso está a 3 m de la pared, ver figura. Cuál es el mínimo
Examen de TEORIA DE MAQUINAS Diciembre 99 Nombre...
Examen de TEORIA DE MAQUINAS Diciembre 99 Nombre... La figura muestra una leva de disco con seguidor de traslación, radial, de rodillo. La leva es un círculo de radio R=20 mm, articulado al elemento fijo
Magnitudes y Unidades. Cálculo Vectorial.
Magnitudes y Unidades. Cálculo Vectorial. 1. Se tiene las expresiones siguientes, x es posición en el eje X, en m, v la velocidad en m/s y t el tiempo transcurrido, en s. Cuáles son las dimensiones y unidades
TEMA 3.- CINEMÁTICA Y DINÁMICA DEL MOTOR
TEMA.- CINEMÁTICA Y DINÁMICA DEL MOTOR 5 ..- Calcular la oblicuidad de la biela en grados, el deslizamiento, la aceleración, la velocidad instantánea y media del pistón para una posición angular de la
GUIA Nº5: Cuerpo Rígido
GUIA Nº5: Cuerpo Rígido Problema 1. La figura muestra una placa que para el instante representado se mueve de manera que la aceleración del punto C es de 5 cm/seg2 respecto de un sistema de referencia
Andrés García Rodríguez. I.E.S. Enrique Nieto Tecnología Industrial II
1 2 a) El módulo de Young es la relación constante entre las tensiones unitarias (σ) en la zona de proporcionalidad y los alargamientos unitarios (ε): E = σ ε La tensión unitaria (σ) se define como el
1. Para α = 75º, determinar la magnitud de la fuerza F y el ángulo β para que exista equilibrio estático.
1. Para α = 75º, determinar la magnitud de la fuerza F y el ángulo β para que exista equilibrio estático. 2. El bloque A, cuyo peso es de 90N, se sostiene en la posición mostrada. Determinar el peso del
FISICA I HOJA 4 ESCUELA POLITÉCNICA DE INGENIERÍA DE MINAS Y ENERGIA 4. ESTÁTICA FORMULARIO
4. ESTÁTIC FORMULRIO 4.1) La viga de la figura, que pesa 1.000 kg. y tiene 8 m de larga, hace de carril aéreo. Sobre ella desliza un colgador en el que colocamos 2.000 kg. de carga. Calcular la tensión
Ejercicios de Física. Dinámica. J. C. Moreno Marín y S. Heredia Avalos, DFISTS Escuela Politécnica Superior Universidad de Alicante
Ejercicios de Física Dinámica, . Un bloque de 5 kg está sostenido por una cuerda y se tira de él hacia arriba con una aceleración de m/ s. a) Cuál es la tensión de la cuerda? b) Una vez que el bloque se
CÁTEDRA DE FÍSICA I OSCILACIONES - PROBLEMAS RESUELTOS
CÁTEDRA DE FÍSICA I Ing. Civil, Ing. Electromecánica, Ing. Eléctrica, Ing. Mecánica OSCILACIONES - PROBLEMAS RESUELTOS PROBLEMA Nº 1 Un cuerpo oscila con movimiento armónico simple a lo largo del eje x.
Momento angular o cinético
Momento angular o cinético Definición de momento angular o cinético Consideremos una partícula de masa m, con un vector de posición r y que se mueve con una cantidad de movimiento p = mv z L p O r y x
TRANSFERENCIA DE CALOR
Conducción Convección Radiación TRANSFERENCIA DE CALOR Ing. Rubén Marcano Temperatura es una propiedad que depende del nivel de interacción molecular. Específicamente la temperatura es un reflejo del nivel
Guía para oportunidades extraordinarias de Física 2
Guía para oportunidades extraordinarias de Física 2 Capitulo 1 Vectores a) Introducción b) Cantidades vectoriales c) Métodos analíticos Capitulo 2 Dinámica a) Fuerza b) Leyes de Newton sobre el movimiento
CONTESTAR: 1 ó 2; 3 ó 4; 6 ó 7; 8 ó 9 ó 10; 5 ó 11
NOMBRE APELLIDOS FÍSICA y QUÍMICA 1º DE BACHILLERATO NA 1DA GLOBAL 1ª EVALUACIÓN 015-16 CONTESTAR: 1 ó ; 3 ó 4; 6 ó 7; 8 ó 9 ó 10; 5 ó 11 1- Sobre un cuerpo cuya masa es m = 5,0 kg, actúan una fuerza hacia
2.004 MODELISMO, DINÁMICA Y CONTROL II Primavera Boletín de problemas 3
2.004 MODELISMO, DINÁMICA Y CONTROL II Primavera 2003 Boletín de problemas 3 Problema 1 Las dos masas a la derecha del dibujo están ligeramente separadas e inicialmente en reposo. La masa de la izquierda
2 o Bachillerato. Conceptos básicos
Física 2 o Bachillerato Conceptos básicos Movimiento. Cambio de posición de un cuerpo respecto de un punto que se toma como referencia. Cinemática. Parte de la Física que estudia el movimiento de los cuerpos
Ejercicios y Problemas de Fatiga
UNIVERSIDAD SIMON BOLIVAR División de Física y Matemáticas Departamento de Mecánica MC2143-Mecánica de Materiales III Ejercicios y Problemas de Fatiga Problema No. 1 En la Fig. 1a se muestra el esquema
Cuarta Lección. Principios de la física aplicados al vuelo.
Capítulo II. Termodinámica y Física de los Fluidos aplicadas a procesos naturales. Tema. El proceso de vuelo de las aves y de los ingenios alados. Cuarta Lección. Principios de la física aplicados al vuelo.
FISICA I HOJA 8 ESCUELA POLITÉCNICA DE INGENIERÍA DE MINAS Y ENERGIA 8. ELASTICIDAD FORMULARIO
8. ELASTICIDAD FORMULARIO Tmf de carga? 8.1) Que diámetro mínimo debe tener un cable de acero para poder aguantar 1 Resistencia a la rotura E R = 7,85x10 8 N.m -2 8.2) Desde un barco se lanzó una pesa
4.5. Si el peso del bloque de la figura 4.19(a) es de 80 N, Cuáles son las tensiones en las cuerdas A y B?
SERIE DE PROBLEMAS No.2 Sección 4.5 Diagramas de cuerpo libre. 4.1. Dibuje un diagrama de cuerpo libre correspondiente a las situaciones ilustradas en la figura 4.19(a) y (b): Descubra un punto donde actúen
Problemas propuestos: Estatica condiciones de equilibrio,centro de gravedad
Problemas propuestos: Estatica condiciones de equilibrio,centro de gravedad Curso Fisica I 1. Una barra de masa M y de largo L se equilibra como se indica en la figura 1. No hay roce. Determine el ángulo
Universidad Central Del Este UCE Facultad de Ciencias de la Salud Escuela de Bioanálisis
Universidad Central Del Este UCE Facultad de Ciencias de la Salud Escuela de Bioanálisis Programa de la asignatura: (FIS-012) Física 102 Total de Créditos: 4 Teoría: 3 Practica: 2 Prerrequisitos: FIS-011
Unidad II - Ondas. 2 Ondas. 2.1 Vibración. Te has preguntado: o Cómo escuchamos? o Cómo llega la señal de televisión o de radio a nuestra casa?
Unidad II Ondas Unidad II - Ondas 2 Ondas Te has preguntado: o Cómo escuchamos? o Cómo llega la señal de televisión o de radio a nuestra casa? o Cómo es posible que nos comuniquemos por celular? o Cómo
CONSIDERACIONES GENERALES SOBRE ESTÁTICA
CONSIDERACIONES GENERALES SOBRE ESTÁTICA Índice 1. CONCEPTOS ÚTILES 2 1.1. Configuración geométrica de un sistema....................... 2 1.2. Ligaduras....................................... 2 1.3. Coordenadas
7. PÉNDULO DE TORSIÓN
7. PÉNDULO DE TORSÓN OBJETVO El objetivo de la práctica es comprobar la dependencia del momento de inercia de un objeto respecto a la distancia al centro de rotación y realizar la medición del momento
GEOLOGIA y GEOTECNIA GEOLOGIA Y GEOTECNIA. τ xy = σ xy σ ij = σ ji BIBLIOGRAFIA. Fundamentos de Ingeniería geotécnica. Braja Das. Cap.
GEOLOGIA Y GEOTECNIA 6 TEORÍA DE RESISTENCA AL CORTE DE SUELOS BIBLIOGRAIA undamentos de Ingeniería geotécnica. Braja Das. Ca. 7 Mecánica de Suelos. EJ. Badillo. Tomo I, Ca XI y XII. Ing. Silvia Angelone
TALLER DE OSCILACIONES Y ONDAS
TALLER DE OSCILACIONES Y ONDAS Departamento De Fı sica y Geologı a, Universidad De Pamplona DOCENTE: Fı sico Amando Delgado. TEMAS: Todos los desarrollados el primer corte. 1. Determinar la frecuencia
Ondas sonoras. FIS Griselda Garcia - 1er. Semestre / 23
Ondas sonoras Las ondas sonoras son ondas mecánicas longitudinales las partículas se mueven a lo largo de la línea de propagación. La propagación de una onda sonora provoca desviaciones de la densidad
CFGS CONSTRUCCION METALICA MODULO 246 DISEÑO DE CONSTRUCCIONES METALICAS
CFGS CONSTRUCCION METALICA MODULO 246 DISEÑO DE CONSTRUCCIONES METALICAS U.T. 5.- FLEXION. 4.1.- Viga. Una viga es una barra recta sometida a fuerzas que actúan perpendicularmente a su eje longitudinal.
Física: Torque y Momento de Torsión
Física: Torque y Momento de Torsión Dictado por: Profesor Aldo Valcarce 2 do semestre 2014 Relación entre cantidades angulares y traslacionales. En un cuerpo que rota alrededor de un origen O, el punto
Capítulo 3. TRACCIÓN Y COMPRESIÓN SIMPLE
Roberto Imaz Gutiérrez. Este capítulo se publica bajo Licencia Creative Commons BY NC SA 3.0 Capítulo 3. TRACCIÓN Y COMPRESIÓN SIMPLE 3.1 BARRA PRISMÁTICA SOMETIDA A UN ESFUERZO NORMAL CONSTANTE Consideremos
QUÉ ES LA TEMPERATURA?
1 QUÉ ES LA TEMPERATURA? Nosotros experimentamos la temperatura todos los días. Cuando estamos en verano, generalmente decimos Hace calor! y en invierno Hace mucho frío!. Los términos que frecuentemente
Engranajes Cónicos no rectos Indice de Temas
Engranajes Cónicos no rectos Indice de Temas 1. Introducción: 1 2. Engranajes cónicos de dientes inclinados u oblicuos: 1 3. Engranajes cónicos de dentado curvo o en arco de círculo: 2 4. Engranajes cónicos
F Ext. De acuerdo a la forma como interactúen los cuerpos, en forma directa o debido a campos las fuerzas se pueden clasificar en dos tipos
Preguntas y problemas propuestos de aplicación de las leyes de Newton 2015-II 1 Leyes de Newton, impulso, la fuerza de gravedad (peso), fuerza elástica, fuerzas disipativas. Leyes de newton o principios
VANESA PEÑA PAOLA PUCHIGAY 901
VANESA PEÑA PAOLA PUCHIGAY 901 Por magnitud física entendemos cualquier propiedad de los cuerpos que se puede medir o cuantificar. Medir una magnitud física consiste en asignarle a esa magnitud un numero
Corriente, Resistencia y Fuerza Electromotriz
Corriente Corriente, Resistencia y Fuerza Electromotriz La unidad de corriente en MKS es:1 Ampere(A)=1 C s La dirección de la corriente es la dirección de movimiento de las cargas positivas Corriente Eléctrica
CIENCIA DE MATERIALES
CIENCIA DE MATERIALES PROPIEDADES MECANICAS DE LOS MATERIALES Ing. M.Sc. José Manuel Ramírez Q. Propiedades Mecánicas Tenacidad Dureza Medida de la cantidad de energía que un material puede absorber antes
Elementos Uniaxiales Sometidos a Carga Axial Pura
Elementos Uniaiales Sometidos a Carga ial ura Definición: La Tensión representa la intensidad de las fuerzas internas por unidad de área en diferentes puntos de una sección del sólido aislada (Fig. 1a).
UNIVERSIDAD POLITÉCNICA DE EL SALVADOR ESCUELA DE FORMACIÓN BÁSICA. FÍSICA II PRÁCTICA 26 PENDULO SIMPLE
UNIVERSIDAD POLITÉCNICA DE EL SALVADOR ESCUELA DE FORMACIÓN BÁSICA. FÍSICA II PRÁCTICA 26 PENDULO SIMPLE OBJETIVOS DEL APRENDIZAJE: ESTUDIAR LAS OSCILACIONES DEL PÉNDULO Y DETERMINAR LAS SIMPLIFICACIONES
1. El movimiento circular uniforme (MCU)
FUNDACIÓN INSTITUTO A DISTANCIA EDUARDO CABALLERO CALDERON Espacio Académico: Física Docente: Mónica Bibiana Velasco Borda [email protected] CICLO: VI INICADORES DE LOGRO MOVIMIENTO CIRCULAR
ROTACIÓN. Datos: v, ω y x. Calcular: n. Solución:
1. Una bola de béisbol se lanza a 88 mi/h y con una velocidad de giro de 1.500 rev/min. Si la distancia entre el punto de lanzamiento y el receptor es de 61 pies, estimar las revoluciones completadas por
1RA PRÁCTICA CALIFICADA (CINEMÁTICA DE UNA PARTÍCULA Y CUERPO RÍGIDO)
1RA PRÁCTICA CALIFICADA (CINEMÁTICA DE UNA PARTÍCULA Y CUERPO RÍGIDO) DINÁMICA (IC 244) ALUMNOS : CARITAS BARRIENTOS, Ronald ROBLES ROCHA, Hamilton TORRES PÉREZ, Walter A. TORO VELARDE, William DOCENTE
Y SISTEMASEleELE ELEMENTOS DE MÁQUINAS Y SISTEMAS
Y SISTEMASEleELE ELEMENTOS DE MÁQUINAS Y SISTEMAS 1 Mecanismos y sistemas mecánicos Mecanismo Conjunto de elementos conectados entre sí por medio de articulaciones móviles cuya misión es: transformar una
Docente: Angel Arrieta Jiménez
CINEMÁTICA DE UNA PARTÍCULA EN DOS DIMENSIONES EJERCICIOS DE MOVIMIENTO CIRCULAR 1. En el ciclo de centrifugado de una maquina lavadora, el tubo de 0.3m de radio gira a una tasa constante de 630 r.p.m.
PRESTACIONES EN VEHÍCULOS
LABORATORIO DE TECNOLOGÍAS IV 3º ingeniería Técnica Industrial Mecánica PRESTACIONES EN VEHÍCULOS UNIVERSIDAD CARLOS III DE MADRID DEPARTAMENTO DE INGENIERÍA MECÁNICA LEGANÉS 04 1 INDICE DEL CURSO 1.-
AUTOMOCIÓN MOTORES TÉRMICOS Y SUS SISTEMAS AUXILIARES RELACIÓN DE COMPRESIÓN CILINDRADA
RELACIÓN DE COMPRESIÓN PARÁMETROS CARACTERÍSTICOS...01...02 RELACIÓN DE COMPRESIÓN...05 RELACIÓN CARRERA / DIÁMETRO...06 MOTORES CUADRADOS...06 MOTORES SUPERCUADRADOS O DE CARRERA CORTA...07 VENTAJAS DE
MOVIMIENTO CIRCULAR - MCU - MCUV MOVIMIENTO CIRCULAR - MCU - MCUV
FISICA PREUNIERSITARIA MOIMIENTO CIRCULAR - MCU - MCU MOIMIENTO CIRCULAR - MCU - MCU CONCEPTO Es el movimiento de trayectoria circular en donde el valor de la velocidad del móvil se mantiene constante
Resistencia de los Materiales
Resistencia de los Materiales Clase 4: Torsión y Transmisión de Potencia Dr.Ing. Luis Pérez Pozo [email protected] Pontificia Universidad Católica de Valparaíso Escuela de Ingeniería Industrial Primer
Ángulo de rozamiento interno y cohesión de un suelo. rozamiento. Estudiando el equilibrio en la dirección del plano de deslizamiento:
Ángulo de rozamiento interno y cohesión de un suelo. Ángulo de rozamiento interno. Deslizamiento de un cuerpo sobre un plano inclinado. A Sin rozamiento rozamiento Ø Rozamiento muebles Ø P (peso cuerpo)
ECUACIONES DIMENSIONALES
ECUACIONES DIMENSIONALES 1. En la expresión x = k v n / a, x = distancia, v = velocidad, a = aceleración y k es una constante adimensional. Cuánto vale n para que la expresión sea dimensionalmente homogénea?
Anejo 1. Teoría de Airy. Solución lineal de la ecuación de ondas.
Anejo 1. Teoría de Airy. Solución lineal de la ecuación de ondas. Introducción y ecuaciones que rigen la propagación del oleaje. La propagación de oleaje en un fluido es un proceso no lineal. Podemos tratar
III. comprende la utilidad práctica de las leyes del movimiento de Isaac Newton. Leyes de Newton
ASIGNATURA: GRADO: BLOQUE SABERES DECLARATIVOS PROPÓSITOS Física I Tercer Semestre de Bachillerato III. comprende la utilidad práctica de las leyes del movimiento de Isaac Newton. Define las tres leyes
HIDRÁULICA 1.- NOCIONES SOBRE HIDRÁULICA INDUSTRIAL
HIDRÁULICA 1.- NOCIONES SOBRE HIDRÁULICA INDUSTRIAL Sistemas hidráulicos Sistemas de transmisión de energía en los cuales el medio ese un fluido teóricamente incompresible. Funciones: Transformación de
Ejercicios de Física. Cinemática. Juan C. Moreno-Marín, Antonio Hernandez Escuela Politécnica - Universidad de Alicante
Ejercicios de Física Cinemática, Antonio Hernandez D.F.I.S.T.S. Cinemática Movimiento rectilíneo 1. Un ciclista marcha por una región donde hay muchas subidas y bajadas. En las cuestas arriba lleva una
EJERCICIOS PAU FÍSICA ANDALUCÍA Autor: Fernando J. Nora Costa-Ribeiro Más ejercicios y soluciones en fisicaymat.wordpress.com
DINÁMICA Y ENERGÍA 1- Un bloque de 5 kg se encuentra inicialmente en reposo en la parte superior de un plano inclinado de 10 m de longitud, que presenta un coeficiente de rozamiento µ=0,2 (ignore la diferencia
MECÁNICA II CURSO 2004/05
1.1.- Movimientos de un sólido rígido. (rotación alrededor de ejes fijos) 1.1.1 El conjunto representado se compone de dos varillas y una placa rectangular BCDE soldadas entre sí. El conjunto gira alrededor
UNIDAD 5 Turbinas radiales. Turbomáquinas hidráulicas: bombas y turbinas hidráulicas
UNIDAD 5 Turbinas radiales. Turbomáquinas hidráulicas: bombas y turbinas hidráulicas 1. Turbina radial 1.1 General La turbina radial es físicamente muy similar al compresor centrífugo. La Figura 5.1 muestra
1. Cuánto tiempo tiene el deportivo para rebasar al sedán sin estamparse con el camión?
Examen ordinario B RESUELTO I. Un sedán va en la carretera a 80 km/h, a 50 m detrás de él, y a la misma velocidad, hay un deportivo con intenciones de rebasarlo, Sin embargo, el conductor del deportivo
FRICCIÓN ENTRE SÓLIDOS
PRÁCTICA DE LABORATORIO I-07 FRICCIÓN ENTRE SÓLIDOS OBJETIVO Estudiar el coeficiente de fricción estática para objetos de diferentes materiales y entre cuerpos del mismo material pero con diferentes pesos
10. Proceso de corte. Contenido: 1. Geometría de corte 2. Rozamiento en el corte 3. Temperatura en el mecanizado
10. Proceso de corte Contenido: 1. Geometría de corte 2. Rozamiento en el corte 3. Temperatura en el mecanizado Conformado por arranque de viruta Conformado por arranque de viruta: la herramienta presiona
Problemas de Física 1º Bachillerato 2011
Un móvil describe un movimiento rectilíneo. En la figura, se representa su velocidad en función del tiempo. Sabiendo que en el instante, parte del origen a. Dibuja una gráfica de la aceleración en función
APUNTES DE FÍSICA I Profesor: José Fernando Pinto Parra UNIDAD 6 EQUILIBRIO DEL CUERPO RÍGIDO
APUNTES DE FÍSICA I Profesor: José Fernando Pinto Parra UNIDAD 6 EQUILIBRIO DEL CUERPO RÍGIDO Cuerpo rígido Como ya se ha señalado, un cuerpo rígido, es aquel que no se deforman cuando es sometido a fuerzas
Equilibrio y Movimiento de los objetos
Fundamentos para programación y robótica Módulo 3: Fundamentos de mecánica Capítulo 2: Equilibrio y Movimiento de los objetos. Objetivos: o Conocer del equilibrio de los objetos o Conocer del movimiento
OBJETO DEL ENSAYO DE TRACCION
OBJETO DEL ENSAYO DE TRACCION UN CUERPO SE ENCUENTRA SOMETIDO A TRACCION SIMPLE CUANDO SOBRE SUS SECCIONES TRANSVERSALES SE LE APLICAN CARGAS NORMALES UNIFORMEMENTE REPARTIDAS Y DE MODO DE TENDER A PRODUCIR
Fundamentos de los Motores Eléctricos
1 B = Φ A 2 Fuerza sobre un conductor eléctrico. Fuerza proporcional a: Densidad de flujo magnético. Corriente eléctrica que circula por el conductor. Seno del ángulo que forman los campos B e I. Fuerza
Campo de velocidades se puede representar mediante una función potencial φ, escalar
Flujo Potencial Campo de velocidades se puede representar mediante una función potencial φ, escalar Condición necesaria flujo irrotacional, V=0. Hipótesis: Flujo irrotacional, incompresible y permanente
Fundamentos de equipos
10/6/08 Fundamentos de equipos 70 50 Tractor = Topadora 120 Cargador frontal 50 300 (Scoop) 200 Camiones 0 1500 Traílla 800 Cintas transportadoras Límites cambian en función de los costos y condiciones.
UNIVERSIDAD NACIONAL DE SAN CRISTÓBAL DE HUAMANGA FACULTAD DE INGENIERIA DE MINAS, GEOLOGÍA Y CIVIL
UNIVERSIDAD NACIONAL DE SAN CRISTÓBAL DE HUAMANGA FACULTAD DE INGENIERIA DE MINAS, GEOLOGÍA Y CIVIL ESCUELA DE FORMACION PROFESIONAL DE INGENIERIA CIVIL DO TRABAJO SEMESTRAL SOLUCION DE EJERCICIOS PROPUESTOS
Javier Junquera. Movimiento de rotación
Javier Junquera Movimiento de rotación Bibliografía Física, Volumen 1, 3 edición Raymod A. Serway y John W. Jewett, Jr. Ed. Thomson ISBN: 84-9732-168-5 Capítulo 10 Física, Volumen 1 R. P. Feynman, R. B.
Cinemática. Marco A. Merma Jara Versión:
Cinemática Marco A. Merma Jara http://mjfisica.net Versión: 08.2013 Contenido Cinemática Movimiento Unidimensional Movimiento Unidimensional con aceleración constante Movimiento Bidimensional Movimiento
QUÉ SON LOS MECANISMOS?
QUÉ SON LOS MECANISMOS? Son elementos destinados a trasmitir y transformar fuerzas y movimientos desde un elemento motriz (motor) aun elemento receptor. Permiten realizar determinados trabajos con mayor
COJINETES. Ing. Gerardo Márquez, MSc
Universidad del Táchira Departamento de Ingeniería Mecánica Núcleo de Diseño Mecánico Dibujo de Elementos de Máquina COJINETES Ing. Gerardo Márquez, MSc COJINETES La función de un cojinete es soportar
Bombas y Ventiladores. Fundamentos teóricos y prácticos Cómo podemos aportar a la EE con estos equipos?
Bombas y Ventiladores Fundamentos teóricos y prácticos Cómo podemos aportar a la EE con estos equipos? Índice 1. Descripción. 2. Clasificación. 3. Curvas Características. 4. Pérdidas de Carga en Sistemas.
CONCEPTO DE CINEMÁTICA: es el estudio del movimiento sin atender a las causas que lo producen
CINEMÁTICA CONCEPTO DE CINEMÁTICA: es el estudio del movimiento sin atender a las causas que lo producen CONCEPTO DE MOVIMIENTO: el movimiento es el cambio de posición, de un cuerpo, con el tiempo (este
INDICE 1.- CÁLCULO DE CHIMENEA DE EVACUACIÓN DE HUMOS SEGÚN LA NORMA EN DATOS DE PARTIDA... 2
INDICE 1.- CÁLCULO DE CHIMENEA DE EVACUACIÓN DE HUMOS SEGÚN LA NORMA EN 13384-1.... 2 1.1.- DATOS DE PARTIDA.... 2 1.2.- CAUDAL DE LOS PRODUCTOS DE COMBUSTIÓN.... 2 1.3.- DENSIDAD MEDIA DE LOS HUMOS...
7. MECANISMOS DE ENDURECIMIENTO
7. MECANISMOS DE ENDURECIMIENTO Materiales I 13/14 INDICE Endurecimiento Mecanismos de endurecimiento Endurecimiento por reducción del tamaño de grano Endurecimiento por solución sólida Endurecimiento
