INTERCAMBIO MECÁNICO (TRABAJO)

Tamaño: px
Comenzar la demostración a partir de la página:

Download "INTERCAMBIO MECÁNICO (TRABAJO)"

Transcripción

1 Colegio Santo Ángel de la guarda Física y Química 4º ESO Fernando Barroso Lorenzo INTERCAMBIO MECÁNICO (TRABAJO) 1. Un cuerpo de 1 kg de masa se encuentra a una altura de 2 m y posee una velocidad de 3 m/seg. Cuál es su energía potencial? 2. Un cuerpo de 1 kg de masa se encuentra a una altura de 1 metro y posee una velocidad de 4 m/seg. Cuál es su energía cinética? 3. Calcular la energía mecánica de los dos ejercicios anteriores. 4. Un cuerpo de 1 kg de masa se encuentra a una altura de 3 m y no posee velocidad. Calcular su energía potencial, cinética y mecánica. 5. Un cuerpo de 1 kg de masa se encuentra a ras del suelo (altura cero) y posee una velocidad de 5 m/seg. Calcular su energía potencial, cinética y mecánica. 6. Un cuerpo de 1 kg de masa se encuentra a 2 m de altura y posee una velocidad de 5 m/seg. Calcular su energía potencial, cinética y mecánica. 7. Repetir el problema anterior considerando que el cuerpo posee 2 kg de masa. Aumentó al doble la energía respecto del resultado del punto anterior? 8. Un cuerpo de 1kg de masa, se encuentra en reposo a una altura determinada. Alguien me dice que posee una energía potencial de 3 J. A qué altura se encuentra? Cuál es su energía cinética y su energía mecánica? 9. Un cuerpo de 1kg de masa posee una velocidad de 2 m/seg y está a una altura determinada (que no conozco). Si alguien me dice que posee una energía mecánica de 10 J a qué altura se encuentra? 10. Un cuerpo de 1kg de masa se encuentra al ras del suelo y posee una velocidad determinada. Alguien me informa que posee una energía mecánica de 2 J. Cuál es su velocidad? Cuál es su energía cinética? 11. Qué energía potencial tiene un cuerpo de masa 55 kg que se encuentra a una altura de 2,6 m? 12. Qué masa tiene un cuerpo que, cuando está a una altura de 9 m, tiene una energía potencial de 780 J? 13. A qué altura, expresada en metros, se encuentra un cuerpo de masa 92 kg si su energía potencial es de 350 J? 14. A qué altura, expresada en metros, se encuentra un cuerpo de masa 115 kg si su energía potencial es de 280J? 15. Qué energía cinética tiene un cuerpo de masa 135 kg si se desplaza a una velocidad de 4,17 m/s? 16. Qué velocidad, expresada en m/s, tiene un cuerpo de masa 45 kg, si su energía cinética es de 92 J? 17. Qué energía mecánica tiene una avioneta de masa 750 kg que vuela a una altura de 120 m a una velocidad de 58 m/s? 1

2 18. Un cuerpo de 2 kg de masa se lo deja caer desde una altura determinada, y 3 segundos después alcanza el suelo. Si se desprecia el rozamiento, calcular: a. La velocidad máxima alcanzada b. La altura desde donde se lo soltó c. La energía potencial, cinética y mecánica del cuerpo antes de soltarlo. d. La energía potencial, cinética y mecánica, cuando se encuentre a punto de chocar con el suelo (justo antes de chocar, pero con altura igual a cero). H =? e. Se conserva la energía mecánica? 19. Un cuerpo de 1 kg de masa se suelta por una rampa desde una altura de 1 m. Si se desprecia el rozamiento, es decir sabiendo que la energía mecánica se conserva, se pide: a. Calcular la energía potencial, cinética y mecánica en lo alto de la rampa. b. Calcular la energía potencial, cinética y mecánica que tendrá al llegar a la parte horizontal (a ras del suelo). Considerar que el sistema no posee rozamiento. 1m c. Calcular la velocidad que tendrá el cuerpo del punto cuando llegue a ras del suelo. 20. Se deja caer libremente un cuerpo de 16 kg de masa, desde una altura de 20 m. Indicar, expresándolas en J, las energías potencial, cinética y mecánica que el cuerpo adquiere cuando se halla a las siguientes alturas: a. 20 m b. 15 m c. 10 m d. 5 m e. 0 m 21. Se suelta un bola de 4kg de masa sobre la alto de la montaña rusa de la figura. Despreciando el rozamiento, calcular la velocidad en cada uno de los puntos señalados. A 6m C B 4m D 2 E 22. El siguiente gráfico indica como varían las energías en función del tiempo para un cuerpo, de 4 kg de masa, que está cayendo. Se pide : a. Indicar cuál curva representa la energía 6000 Caída de un cuerpo cinética y cuál la potencial 5000 b. Hallar la altura desde donde se lo soltó 4000 c. Hallar la velocidad máxima alcanzada d. Hallar la energía cinética a los 1.5 s 3000 e. A partir del gráfico, te podrías dar cuenta si el cuerpo cae en el vacío o en el agua? Justificar t ( s) 2

3 23. El siguiente gráfico indica como varían las energías en función de la altura para un cuerpo, que está cayendo sin rozamiento. a. Indicar cuál recta representa la Energía mecánica cuál la potencial y cuál la cinética b. Calcular desde qué altura se lo soltó c. Calcular la masa del cuerpo d. Calcular la velocidad máxima alcanzada e. Calcular cuánto demoró la caída Energía Alturas 24. Un péndulo de 5 kg de masa se suelta desde el punto A ubicado a una altura de 40 cm, como se indica en la figura. Si se desprecia el rozamiento, se pide: a. Calcular la velocidad máxima que alcanzada al pasar por el punto B b. Desde que altura se lo debería soltar para que pase por B con una velocidad de 1 m/s A 40 cm B 10 cm Respuestas 1) 20 J 2) 8 J 3) 24,5 J 18 J 4) 30 J 0 J 30 J 5) 12,5 J 0 J 12,5 J 6) 20 J 12,5 J 32,5 J 7) si, 65 J 8) 0,3 m 0 J 3 J 9) 0,8 m 10) 2 m/s 2 J 11) 1430 J 12) 8,66 kg 13) 0,38 m 14) 0,24 m 15) 1173,7 J 16) 2,02 m/s 17) J 18) a)v=30m/s b) H= 45m c) 900J; 0J; 900J d) 0J; 900J; 900J e) SI 19) a) 10 J 0 J 10 J b) 0 J 10 J 10 J c) 4,47 m/s 20) a) 20 m (Rta: Ep= 3200 J; Ec= 0 J; Em= b) 15 m (Rta: Ep= 2400 J; Ec= 800 J; Em= c) 10 m (Rta: Ep= 1600 J; Ec= 1600 J; Em= d) 5 m (Rta: Ep= 800 J; Ec= 2400 J; Em= e) 0 m (Rta: Ep= 0 J; Ec= 3200 J; Em= 3200 J) 21) v A =0 v B =10,95 m/s v C =6,32 m/s v D =8,94 m/s v E = v B =10,95 m/s 22) H= 125 m ; v= 50m/s; EC= 450 J; como la Em no varía podría suponerse que cae en el vacío 23) H= 8m; m= 625 kg; v= 12,6 m/s ; t= 1,26 s 24) V= 2,45 m/s ; HA = 15 cm 3

4 25. Desde el punto A de la figura se suelta un cuerpo. Calcular la altura que alcanza en la rampa de 53º. a. Si no hay rozamiento. b. Si hay rozamiento en todo el recorrido, siendo el coeficiente de rozamiento 0,1. Solución: a) 1 m.; b) 0,71 m. 26. Se lanza verticalmente hacia arriba una pelota de 300g de masa con una velocidad de 40 m/s. se pide: a. Energía mecánica en el punto más alto y más bajo b. Energía mecánica acuando ha recorrido 1/3 del trayecto. c. Si en el ascenso pierde 100 J por rozamiento con el aire, qué altura alcanzará la pelota? 27. Se deja caer un bloque por un plano inclinado tal y como indica la figura. Calcula por consideraciones energéticas: La velocidad del bloque en B. El trabajo de rozamiento. El espacio recorrido entre B y C y el espacio total. 28. Se dispara verticalmente hacia arriba una bala de 100 g con una velocidad de 54 km/h. Calcula: a. La altura máxima alcanzada (con cinemática y con energías). b. La altura a la que se encuentra cuando la velocidad es la mitad que la inicial. c. La velocidad que tiene cuando se encuentra a 10 m del suelo. d. La energía mecánica cuando ha ascendido 1 m. 29. Se lanza verticalmente hacia abajo, desde la azotea de un edificio de 40 m de altura, una piedra de 50 g, con una velocidad de 4 m/s. Calcular: a. La velocidad con que llega al suelo. b. La velocidad cuando ha descendido 10 m. c. La altura a la que se encuentra cuando la velocidad es el doble de la inicial. d. La energía cinética y la energía potencial al llegar al suelo. 30. Se lanza verticalmente hacia arriba un cuerpo de 500 g con una velocidad de 20 m/s. Calcula: a. La altura alcanzada por el móvil (con cinemática y con energías). b. La altura a que se encuentra cuando la velocidad es 1/5 de la inicial. c. La velocidad que tiene cuando la altura a que se encuentra es 1/5 de la máxima. SOLUCIÓN 20,4 m; 19,6 m; 17,9 m/s. 31. Se dispara verticalmente hacia abajo con una velocidad de 36 km/h un cuerpo de 60 g de masa, desde una altura de 50 m. Calcula: a. La velocidad con que llega al suelo (con cinemática y con energía). b. La velocidad que tiene cuando se encuentra a 20 m de altura. c. La altura a que se encuentra cuando la velocidad es 12 m/s. d. La energía mecánica cuando le falta 1 m para llegar al suelo. SOLUCIÓN 32,9 m/s; 26,2 m/s; 47,8 m; 32,4 J. 32. Se lanza verticalmente hacia arriba desde una altura de 8 m un objeto de 500 g con una velocidad de 25 m/s. Calcula: a. La energía cinética en el momento del lanzamiento b. La altura máxima, desde el suelo, alcanzada c. La velocidad cuando se encuentra a 3 metros del suelo d. La velocidad cuando llega al suelo. 4

5 INTERCAMBIO TÉRMICO (CALOR) 1. Calcula el calor necesario para fundir y calentar 50 g de hielo a 0 ºC hasta una temperatura de 59ºF.(C e (agua)= 4180 J/kgºC; Calor latente de fusión del hielo = 334,4 kj/kg) Sol: J 2. Calcula el calor necesario para calentar 50 g de agua a 5 ºC hasta una temperatura de 77 ºF. (C e (agua)= 4180 J/kgºC; ) Sol: 4180 J 3. Mezclamos 300 g de hielo a -6 ºC con 1,6 kg de agua a 45 ºC. Halla la temperatura final de la mezcla. (Ce(Hielo)= 2090 J/kgºC; L f = 334,4 kj/kg; Ce(agua)= 4180 J/kgºC) Sol: t= 24,7 C 4. Calcula la temperatura final obtenida cuando se mezclan 450 g de agua a 68 F con 700 g de agua a 323K. Sol: t= 38,3 C 5. Calcula la temperatura final que tendrá una mezcla obtenida mezclando 2,5 kg de agua a 77 F con 60 g de agua a 348 K. 6. Una masa de 100g de agua (C e (agua)=1cal/g C) se halla inicialmente a 30 C. Si se le adicionan 200 cal, hallar la temperatura final de la masa. 7. Dos cuerpos de masas M y 2M con temperaturas respectivas 2T o y T o se colocan en contacto. Hallar la temperatura de equilibrio si ambos tienen el mismo calor específico c. 8. Para elevar la temperatura de una pieza de hierro de 20 kg desde 10 ºC a 90 ºC hay que suministrar una energía de 720 kj. Calcular el calor específico del hierro. Sol: 450 J/kg K 9. Hallar la cantidad de calor necesario para elevar la temperatura de 100 g de cobre desde 10 ºC a 100 ºC. Suponiendo que a 100 g de aluminio a 10 ºC se le suministre la cantidad de calor del apartado a); deducir que cuerpo, cobre o aluminio, estará más caliente. C e (cobre)=0,093 cal/g ºC y C e (aluminio)= 0,217 cal/gºc. SOL: a) 837 calorías, b) el cobre 10. Una herradura de hierro de 1,5 Kg inicialmente a 600 ºC se sumerge en una cubeta que contiene 20 Kg de agua a 25 ºC. Cuál es la temperatura final? SOL: 29,6 ºC 11. En un vaso térmicamente aislado se colocan 2 Kg de agua a 45º C con 400 g de hielo a -20º C. Hallar la temperatura final de la mezcla al establecerse el equilibrio. 12. Se deben obtener 150 Kg de agua a una temperatura de 30º C y se disponen de 100 Kg de agua a 15º C. Indicar la temperatura que deben tener los 50Kg restantes si no hay pérdida de calor. 13. Calcular la temperatura final de una mezcla de 10 y 80 litros de agua cuyas temperaturas respectivas son, inicialmente, 70 0 y 20 0 C. Dato: Ce agua = 1,0 cal/g.grado 14. Un calorímetro contiene 250 g de agua a 200 C. Se introduce en él un cilindro de cobre de 100 g a100 0 de temperatura. Hállese la temperatura final suponiendo que no hay pérdidas de calor al medio ambiente. Dato: Ce Cu = 0,092 cal/g.grado 15. Una pieza de fundición que pesa 50 kg se saca de un horno donde su temperatura es de C y se introduce en un tanque que contiene 400 kg de aceite a la temperatura de 25 0 C. La temperatura final se establece en 38 0 C y C e (aceite)=0,5 kcal/kg.grado. Cuál es el calor específico de la fundición? 16. En un calorímetro se ponen 380 g de alcohol; el conjunto está a una temperatura de 8 0 C. Se introduce en el alcohol un trozo de cobre de 122 g a la temperatura de 50 0 C. La temperatura de equilibrio es de 10 0 C. Calcular el calor específico del alcohol. Dato: Ce Cu = 0,092 cal/g.grado 17. A un trozo de 250 g a 20 ºC de cierto material se le suministran 3,5 kj subiendo su temperatura hasta 56ºC. Calcula el calor específico de dicho material. (Solución: 389 J/kg K) 5

6 18. Qué cantidad de calor absorberán 200 ml de etanol cuando su temperatura aumenta de 25 ºC a 70 ºC, sabiendo que C e (etanol)=2450 J/kg K y su densidad es 810 kg/m 3? (Solución: 2, J) 19. Qué temperatura tendrá inicialmente una pieza de aluminio de 100 g si se le suministran 36 kj, y su temperatura llega hasta los 450 ºC.? (Solución: 50 ºC) 20. Una pesa de hierro de 2 kg se enfría desde 900 ºC hasta 50 ºC al colocarla en agua cuya temperatura inicial era 15 ºC. Qué masa de agua se utilizó? (Solución: 5,35 kg) 21. En un calorímetro con 500 ml de agua a 18 ºC ponemos 150 g de acero inoxidable a 150 ºC. Calcula la temperatura del equilibrio térmico. (Solución: 22,7 ºC) 22. Qué cantidad de calor se intercambia cuando: a. Transformamos 750 ml de agua líquida a 20 ºC en vapor de agua a 150 ºC. b. Transformamos 100 g de vapor de agua a 120 ºC en hielo a 15 ºC. Solución: a) Se han absorbido 2, J b) se han cedido 3, J 23. Una sustancia se encuentra a 20 ºC. Calcula el calor necesario para fundir ½ kg de dicha sustancia. Datos: C e (sólido) = 600 J/kg K ; L F = 47 kj/kg. T Fusión = 144 ºC (Solución: 60,7 kj) 24. Cuánto calor se necesita para fundir un bloque de plomo de 250 g que se encuentra a una temperatura inicial de 20 ºC? Datos: C e (Pb) = 130 J/kg K. T fusión (Pb) = 327 ºC; L F (Pb) = 23,0 Kj/kg. (Solución: 15,73 kj) 25. Calcula la masa de vapor de agua a 100 ºC que debemos añadir a 100 l de agua líquida a 17 ºC para conseguir una temperatura de equilibrio de 40 ºC. (Solución: 3,83 kg) 26. Determina la temperatura de equilibrio que se alcanza al mezclar 2 kg de agua a 20 ºC con 5 kg de agua a 80 ºC. Dato: (C e (agua) = 4,18 KJ/kg K. (Solución: 62,9 ºC) 27. En un calorímetro que contiene 300 g de agua a 70 ºC se introducen 600 g de etanol a 20 ºC. Halla la temperatura del conjunto cuando se alcanza el equilibrio térmico. Datos: (C e (agua) = 4,18 kj/kg K; C e (etanol) = 2,42 kj/kg K). (Solución: 43,17 ºC) 28. Se añade un cubito de hielo de 5 g a 20ºC en un vaso con 200 g de agua a 30 ºC. Calcula la temperatura final del agua líquida resultante. Datos: C e (hielo) = 2,09 kj/kg K; C e (agua líquida) = 4,18 kj/kg K; L F (hielo) = 333,5 kj/kg. (Solución: 27,1 ºC) 29. Sobre una masa de 24 kg de etanol a 10 ºC realizamos un trabajo mecánico con un agitador. Si el trabajo se transforma íntegramente en calor, calcula cuánto trabajo debemos realizar para aumentar la temperatura del etanol a 75 ºC. Datos: C e (etanol) = 2424 J/kg K. (Solución: J) 30. Un calentador doméstico eleva la temperatura de 5 kg de agua desde 20 ºC a 80 ºC en 10 min. Cuántos julios proporciona el calentador en cada minuto si se supone que sólo el 80% del calor que suministra es aprovechado realmente? (Solución: J) 31. Un proyectil de un metal cuyo calor específico es 150 J/kg K choca contra un muro a la velocidad de 500 m/s. Cuál será la elevación de temperatura del proyectil si toda su energía cinética se transforma en calor y el 60 % de éste lo recibe el proyectil. (Solución: 500 K) 6

IES RIBERA DE CASTILLA ENERGÍA MECÁNICA Y TRABAJO

IES RIBERA DE CASTILLA ENERGÍA MECÁNICA Y TRABAJO UNIDAD 6 ENERGÍA MECÁNICA Y TRABAJO La energía y sus propiedades. Formas de manifestarse. Conservación de la energía. Transferencias de energía: trabajo y calor. Fuentes de energía. Renovables. No renovables.

Más detalles

PROBLEMAS RESUELTOS EQUILIBRIO TERMICO. Para cualquier inquietud o consulta escribir a: quintere@hotmail.com quintere@gmail.com quintere2006@yahoo.

PROBLEMAS RESUELTOS EQUILIBRIO TERMICO. Para cualquier inquietud o consulta escribir a: quintere@hotmail.com quintere@gmail.com quintere2006@yahoo. PROBLEMAS RESUELTOS EQUILIBRIO TERMICO Para cualquier inquietud o consulta escribir a: quintere@hotmail.com quintere@gmail.com quintere2006@yahoo.com Erving Quintero Gil Ing. Electromecánico Bucaramanga

Más detalles

1. Indica cuáles son las condiciones que han de cumplirse para que el trabajo sea distinto de cero.

1. Indica cuáles son las condiciones que han de cumplirse para que el trabajo sea distinto de cero. A) Trabajo mecánico 1. Indica cuáles son las condiciones que han de cumplirse para que el trabajo sea distinto de cero. 2. Rellena en tu cuaderno las celdas sombreadas de esta tabla realizando los cálculos

Más detalles

TRABAJO Y ENERGÍA. a) Calcule el trabajo en cada tramo. b) Calcule el trabajo total.

TRABAJO Y ENERGÍA. a) Calcule el trabajo en cada tramo. b) Calcule el trabajo total. TRABAJO Y ENERGÍA 1.-/ Un bloque de 20 kg de masa se desplaza sin rozamiento 14 m sobre una superficie horizontal cuando se aplica una fuerza, F, de 250 N. Se pide calcular el trabajo en los siguientes

Más detalles

TRABAJO. ENERGÍA. PRINCIPIO DE CONSERVACIÓN

TRABAJO. ENERGÍA. PRINCIPIO DE CONSERVACIÓN TRABAJO. ENERGÍA. PRINCIPIO DE CONSERVACIÓN Un coche de 50 kg (con el conductor incluido) que funciona con gasolina está situado en una carretera horizontal, arranca y acelerando uniformemente, alcanza

Más detalles

10.- Qué se entiende por sistema material? Un insecto podría ser un sistema material? De qué tipo?

10.- Qué se entiende por sistema material? Un insecto podría ser un sistema material? De qué tipo? Tema 4. Energía. 1 TEMA 4. LA ENERGÍA. 1. LA ENERGÍA. 8.- Relaciona mediante flechas las dos columnas. 2. LOS SISTEMAS MATERIALES Y LA ENERGÍA. 10.- Qué se entiende por sistema material? Un insecto podría

Más detalles

EJERCICIOS DE TRABAJO, POTENCIA Y ENERGÍA. CONSERVACIÓN DE LA ENERGÍA MECÁNICA. 4º E.S.O.

EJERCICIOS DE TRABAJO, POTENCIA Y ENERGÍA. CONSERVACIÓN DE LA ENERGÍA MECÁNICA. 4º E.S.O. EJERCICIOS DE TRABAJO, POTENCIA Y ENERGÍA. CONSERVACIÓN DE LA ENERGÍA MECÁNICA. 4º La finalidad de este trabajo implica tres pasos: a) Leer el enunciado e intentar resolver el problema sin mirar la solución.

Más detalles

TRABAJO Y ENERGÍA - EJERCICIOS

TRABAJO Y ENERGÍA - EJERCICIOS TRABAJO Y ENERGÍA - EJERCICIOS Hallar la energía potencial gravitatoria adquirida por un alpinista de 80 kg que escala una montaña de.00 metros de altura. Epg mgh 0,5 kg 9,8 m / s 0,8 m 3,9 J Su energía

Más detalles

Problemas de Física 1 o Bachillerato

Problemas de Física 1 o Bachillerato Problemas de Física o Bachillerato Principio de conservación de la energía mecánica. Desde una altura h dejamos caer un cuerpo. Hallar en qué punto de su recorrido se cumple E c = 4 E p 2. Desde la parte

Más detalles

Tema 7 : Trabajo, Energía y Calor

Tema 7 : Trabajo, Energía y Calor Tema 7 : Trabajo, Energía y Calor Esquema de trabajo: 7. Trabajo. Concepto. Unidad de medida. 8. Energía. Concepto 9. Energía Cinética 10. Energía Potencial Gravitatoria 11. Ley de Conservación de la Energía

Más detalles

Ing. Gerardo Sarmiento CALOR Y TEMPERATURA

Ing. Gerardo Sarmiento CALOR Y TEMPERATURA Ing. Gerardo Sarmiento CALOR Y TEMPERATURA Como se mide y transporta el calor La cantidad de calor (Q) se expresa en las mismas unidades que la energía y el trabajo, es decir, en Joule. Otra unidad es

Más detalles

E t = C e. m. (T f T i ) = 1. 3,5 (T f -20) =5 Kcal

E t = C e. m. (T f T i ) = 1. 3,5 (T f -20) =5 Kcal EJERCICIOS TEMA 1: LA ENERGÍA Y SU TRANSFORMACIÓN Ejercicio 1: Calcula la energía, en KWh, que ha consumido una máquina que tiene 40 CV y ha estado funcionando durante 3 horas. Hay que pasar la potencia

Más detalles

5ª GUIA DE EJERCICIOS 2º SEMESTRE 2010

5ª GUIA DE EJERCICIOS 2º SEMESTRE 2010 UNIVRSI HIL - FULT INIS - PRTMNTO FISI 5ª GUI JRIIOS 2º SMSTR 2010 NRGÍ 1.- María y José juegan deslizándose por un tobogán de superficie lisa. Usan para ello un deslizador de masa despreciable. mbos parten

Más detalles

PROBLEMAS RESUELTOS. a) Qué ventajas tendría si se desplazase al trabajo en bicicleta en lugar de hacerlo andando?

PROBLEMAS RESUELTOS. a) Qué ventajas tendría si se desplazase al trabajo en bicicleta en lugar de hacerlo andando? PROBLEMAS RESUELTOS Una persona, de 34 años de edad y 76 kilos de peso, trabaja en una ciudad en la que hay un desnivel de 29 metros entre su casa y su lugar de trabajo, al que acude andando dos veces

Más detalles

3. Una pelota se lanza desde el suelo hacia arriba. En un segundo llega hasta una altura de 25 m. Cuál será la máxima altura alcanzada?

3. Una pelota se lanza desde el suelo hacia arriba. En un segundo llega hasta una altura de 25 m. Cuál será la máxima altura alcanzada? Problemas de Cinemática 1 o Bachillerato Caída libre y tiro horizontal 1. Desde un puente se tira hacia arriba una piedra con una velocidad inicial de 6 m/s. Calcula: a) Hasta qué altura se eleva la piedra;

Más detalles

PROBLEMAS DE DINÁMICA. 1. Calcula la fuerza que habrá que realizar para frenar, hasta detener en 10 segundos un trineo que se mueve a 50 km/h.

PROBLEMAS DE DINÁMICA. 1. Calcula la fuerza que habrá que realizar para frenar, hasta detener en 10 segundos un trineo que se mueve a 50 km/h. PROBLEMAS DE DINÁMICA 1. Calcula la fuerza que habrá que realizar para frenar, hasta detener en 10 segundos un trineo que se mueve a 50 km/h. 2. Un vehículo de 800 kg se mueve en un tramo recto y horizontal

Más detalles

1. El vector de posición de una partícula viene dado por la expresión: r = 3t 2 i 3t j.

1. El vector de posición de una partícula viene dado por la expresión: r = 3t 2 i 3t j. 1 1. El vector de posición de una partícula viene dado por la expresión: r = 3t 2 i 3t j. a) Halla la posición de la partícula para t = 3 s. b) Halla la distancia al origen para t = 3 s. 2. La velocidad

Más detalles

ENERGÍA (II) FUERZAS CONSERVATIVAS

ENERGÍA (II) FUERZAS CONSERVATIVAS NRGÍA (II) URZAS CONSRVATIVAS IS La Magdalena. Avilés. Asturias Cuando elevamos un cuerpo una altura h, la fuerza realiza trabajo positivo (comunica energía cinética al cuerpo). No podríamos aplicar la

Más detalles

Nombre:..Curso:.. GUIA DE TRABAJO Y POTENCIA MECANICA. Un niño traslada una caja desde el punto A al punto B recorriendo 4 m (fig.

Nombre:..Curso:.. GUIA DE TRABAJO Y POTENCIA MECANICA. Un niño traslada una caja desde el punto A al punto B recorriendo 4 m (fig. Nombre:..Curso:.. GUIA DE TRABAJO Y POTENCIA MECANICA Trabajo realizado por una fuerza. Un niño traslada una caja desde el punto A al punto B recorriendo 4 m (fig. N 1), fig N 1 Desde el punto de vista

Más detalles

COLECCIÓN DE PROBLEMAS DE FÍSICA ELEMENTAL

COLECCIÓN DE PROBLEMAS DE FÍSICA ELEMENTAL 1 COLECCIÓN DE PROBLEMAS DE FÍSICA ELEMENTAL Los problemas que se plantean a continuación corresponden a problemas seleccionados para hacer un repaso general previo a un examen libre paracompletar la enseñanza

Más detalles

Conservación de la Energía Mecánica NOMBRE: CURSO:

Conservación de la Energía Mecánica NOMBRE: CURSO: NOMBRE: CURSO: La ley de conservación de la energía mecánica nos dice que la energía de un sistema aislado de influencias externas se mantiene siempre constante, lo que ocurre es una simple transformación

Más detalles

14º Un elevador de 2000 kg de masa, sube con una aceleración de 1 m/s 2. Cuál es la tensión del cable que lo soporta? Sol: 22000 N

14º Un elevador de 2000 kg de masa, sube con una aceleración de 1 m/s 2. Cuál es la tensión del cable que lo soporta? Sol: 22000 N Ejercicios de dinámica, fuerzas (4º de ESO/ 1º Bachillerato): 1º Calcular la masa de un cuerpo que al recibir una fuerza de 0 N adquiere una aceleración de 5 m/s. Sol: 4 kg. º Calcular la masa de un cuerpo

Más detalles

2 )d = 5 kg x (9,8 m/s 2 + ( ) 2

2 )d = 5 kg x (9,8 m/s 2 + ( ) 2 Solucionario TRABAJO, ENERGIA Y POTENCIA MECANICA 1.- Calcular el trabajo realizado al elevar un cuerpo de 5 kg hasta una altura de 2 m en 3 s. Expresar el resultado en Joule y en erg. Voy a proponer dos

Más detalles

TRABAJO Y POTENCIA. LA ENERGÍA

TRABAJO Y POTENCIA. LA ENERGÍA Tema 5 TRABAJO Y POTENCIA. LA ENERGÍA 1 - CONCEPTO DE TRABAJO Generalmente suele asociarse la idea del trabajo con la del esfuerzo. En ciertos casos es verdad, como cuando una persona arrastra un objeto,

Más detalles

CUESTIONARIOS FÍSICA 4º ESO

CUESTIONARIOS FÍSICA 4º ESO DPTO FÍSICA QUÍMICA. IES POLITÉCNICO CARTAGENA CUESTIONARIOS FÍSICA 4º ESO UNIDAD 5 Trabajo, potencia y energía Mª Teresa Gómez Ruiz 2010 HTTP://WWW. POLITECNICOCARTAGENA. COM/ ÍNDICE Página PRIMER CUESTIONARIO.

Más detalles

EJERCICIOS RESUELTOS 1º DE BACHILLERATO (Hnos. Machado): EJERCICIOS DE REFUERZO 1º EVALUACIÓN (Cinemática) Por Álvaro Téllez Róbalo

EJERCICIOS RESUELTOS 1º DE BACHILLERATO (Hnos. Machado): EJERCICIOS DE REFUERZO 1º EVALUACIÓN (Cinemática) Por Álvaro Téllez Róbalo EJERCICIOS RESUELTOS 1º DE BACHILLERATO (Hnos. Machado): EJERCICIOS DE REFUERZO 1º EVALUACIÓN (Cinemática) Por Álvaro Téllez Róbalo 1. El vector posición de un punto, en función del tiempo, viene dado

Más detalles

Energía mecánica y Caída Libre y lanzamiento vertical hacia arriba

Energía mecánica y Caída Libre y lanzamiento vertical hacia arriba Soluciones Energía mecánica y Caída Libre y lanzamiento vertical hacia arriba Si no se dice otra cosa, no debe considerarse el efecto del roce con el aire. 1.- Un objeto de masa m cae libremente de cierta

Más detalles

PROBLEMAS RESUELTOS TEMA: 3

PROBLEMAS RESUELTOS TEMA: 3 PROBLEMAS RESUELTOS TEMA: 3 1. Una partícula de 3 kg se desplaza con una velocidad de cuando se encuentra en. Esta partícula se encuentra sometida a una fuerza que varia con la posición del modo indicado

Más detalles

INSTITUTO NACIONAL Dpto. de Física Prof: Aldo Scapini G.

INSTITUTO NACIONAL Dpto. de Física Prof: Aldo Scapini G. GUÍA DE ENERGÍA Nombre:...Curso:... En la presente guía estudiaremos el concepto de Energía Mecánica, pero antes nos referiremos al concepto de energía, el cuál desempeña un papel de primera magnitud tanto

Más detalles

CALOR. Q = c m (Tf - Ti) (1) Q será positivo si la temperatura final es mayor que la inicial (Tf > Ti) y negativo en el caso contrario (Tf < Ti).

CALOR. Q = c m (Tf - Ti) (1) Q será positivo si la temperatura final es mayor que la inicial (Tf > Ti) y negativo en el caso contrario (Tf < Ti). 1. CANTIDADES DE CALOR CALOR Aun cuando no sea posible determinar el contenido total de energía calorífica de un cuerpo, puede medirse la cantidad que se toma o se cede al ponerlo en contacto con otro

Más detalles

ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL INSTITUTO DE CIENCIAS FÍSICAS DEBER # 3 TRABAJO Y ENERGÍA

ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL INSTITUTO DE CIENCIAS FÍSICAS DEBER # 3 TRABAJO Y ENERGÍA ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL INSTITUTO DE CIENCIAS FÍSICAS DEBER # 3 TRABAJO Y ENERGÍA 1.- El bloque mostrado se encuentra afectado por fuerzas que le permiten desplazarse desde A hasta B.

Más detalles

= 3600s Ec 1 =Ec 2. 36Km/h. 1000 m 1h RELACIÓN DE PROBLEMAS. ENERGÍAS 360J

= 3600s Ec 1 =Ec 2. 36Km/h. 1000 m 1h RELACIÓN DE PROBLEMAS. ENERGÍAS 360J RELACIÓN DE PROBLEMAS. ENERGÍAS 1. Un objeto de 50 Kg se halla a 10 m de altura sobre la azotea de un edificio, cuya altura, respecto al suelo, es 50 m. Qué energía potencial gravitatoria posee dicho objeto?

Más detalles

2. Qué sucede con la energía cinética de una bola que se mueve horizontalmente cuando:

2. Qué sucede con la energía cinética de una bola que se mueve horizontalmente cuando: PONTIFICIA UNIERSIA CATOLICA MARE Y MAESTA EPARTAMENTO E CIENCIAS BASICAS. INTROUCCION A LA FISICA Prof. Remigia Cabrera Unidad I. TRABAJO Y ENERGIA 1. emuestre que la energía cinética en el movimiento

Más detalles

2. Dado el campo de fuerzas F x, Solución: W = 6 J

2. Dado el campo de fuerzas F x, Solución: W = 6 J UNIVERSIDD DE OVIEDO Escuela Politécnica de Ingeniería de Gijón Curso 013-4 1. Dos objetos, uno con masa doble que el otro, cuelgan de los extremos de la cuerda de una polea fija de masa despreciable y

Más detalles

TERMOMETRÌA Y CALORIMETRÌA

TERMOMETRÌA Y CALORIMETRÌA TERMOMETRÌA Y CALORIMETRÌA Termómetros Basados en alguna propiedad física de un sistema que cambia con la temperatura: Volumen de un líquido Longitud de un sólido Presión de un gas a volumen constante

Más detalles

EJERCICIOS PROPUESTOS. Qué transferencias de energía se producen cuando el viento incide sobre las velas de un barco?

EJERCICIOS PROPUESTOS. Qué transferencias de energía se producen cuando el viento incide sobre las velas de un barco? 8 ENERGÍA Y TRABAJO EJERCICIOS PROPUESTOS 8.1 Qué transferencias de energía se producen cuando el viento incide sobre las velas de un barco? Parte de la energía cinética del viento se transfiere a las

Más detalles

(b) v constante, por lo que la bola posee una aceleración normal hacia el centro de curvatura.

(b) v constante, por lo que la bola posee una aceleración normal hacia el centro de curvatura. Cuestiones 1. Una bola pequeña rueda en el interior de un recipiente cónico de eje vertical y semiángulo α en el vértice A qué altura h sobre el vértice se encontrará la bolita en órbita estable con una

Más detalles

Ejercicios Trabajo y Energía R. Tovar. Sección 01 Física 11. Semestre B-2004

Ejercicios Trabajo y Energía R. Tovar. Sección 01 Física 11. Semestre B-2004 Ejercicios Trabajo y Energía R. Tovar. Sección 01 Física 11. Semestre B-2004 1.- Un astronauta de 710 [N] flotando en el mar es rescatado desde un helicóptero que se encuentra a 15 [m] sobre el agua, por

Más detalles

Examen de Física-1, 1 Ingeniería Química Examen final. Septiembre de 2012 Problemas (Dos puntos por problema).

Examen de Física-1, 1 Ingeniería Química Examen final. Septiembre de 2012 Problemas (Dos puntos por problema). Examen de Física-1, 1 Ingeniería Química Examen final. Septiembre de 01 Problemas (Dos puntos por problema). Problema 1 (Primer parcial): Suponga que trabaja para una gran compañía de transporte y que

Más detalles

Guía 7 4 de mayo 2006

Guía 7 4 de mayo 2006 Física I GONZALO GUTÍERREZ FRANCISCA GUZMÁN GIANINA MENESES Universidad de Chile, Facultad de Ciencias, Departamento de Física, Santiago, Chile Guía 7 4 de mayo 2006 Conservación de la energía mecánica

Más detalles

Elementos de Física - Aplicaciones ENERGÍA. Taller Vertical 3 de Matemática y Física Aplicadas MASSUCCO ARRARÁS MARAÑON DI LEO

Elementos de Física - Aplicaciones ENERGÍA. Taller Vertical 3 de Matemática y Física Aplicadas MASSUCCO ARRARÁS MARAÑON DI LEO Elementos de Física - Aplicaciones ENERGÍA Taller Vertical 3 de Matemática y Física Aplicadas MASSUCCO ARRARÁS MARAÑON DI LEO Energía La energía es una magnitud física que está asociada a la capacidad

Más detalles

TRABAJO Y ENERGÍA: CHOQUES

TRABAJO Y ENERGÍA: CHOQUES . TRABAJO Y ENERGÍA: CHOQUES Una bola de acero que cae verticalmente rebota en una placa ríida que forma un ánulo con la horizontal. Calcular para que la bola sala con una velocidad horizontal después

Más detalles

IES Menéndez Tolosa Física y Química - 4º ESO Trabajo y energía - Energías cinética y potencial con soluciones

IES Menéndez Tolosa Física y Química - 4º ESO Trabajo y energía - Energías cinética y potencial con soluciones IES Menéndez Tolosa Física y Química - 4º ESO Trabajo y energía - Energías cinética y potencial con soluciones Define la unidad de energía en el sistema internacional (S.I.). Escribe otras unidades de

Más detalles

masa. A qué altura llegará si no hay pérdidas por rozamiento?

masa. A qué altura llegará si no hay pérdidas por rozamiento? Expresa con tus propias palabras la definición de trabajo e indica un ejemplo en el que la aplicación de una fuerza no realice trabajo. Explica brevemente la relación existente entre energía y trabajo.

Más detalles

EJEMPLOS DE CUESTIONES DE EVALUACIÓN

EJEMPLOS DE CUESTIONES DE EVALUACIÓN EJEMPLOS DE CUESTIONES DE EVALUACIÓN 1. EL MOVIMIENTO Dirección en Internet: http://www.iesaguilarycano.com/dpto/fyq/cine4/index.htm a 1. Determine el desplazamiento total en cada uno de los casos siguientes

Más detalles

PRUEBA ACCESO A CICLOS FORMATIVOS DE GRADO SUPERIOR OPCIÓN B y C, FÍSICA

PRUEBA ACCESO A CICLOS FORMATIVOS DE GRADO SUPERIOR OPCIÓN B y C, FÍSICA PRUEBA ACCESO A CICLOS FORMATIVOS DE GRADO SUPERIOR OPCIÓN B y C, FÍSICA DATOS DEL ASPIRANTE Apellidos: CALIFICACIÓN PRUEBA Nombre: D.N.I. o Pasaporte: Fecha de nacimiento: / / Instrucciones: Lee atentamente

Más detalles

1. Calcula la energía cinética de un vehículo de 1000 kg que circula a 100 km/h. Resultado: E C = 385.802,47 J

1. Calcula la energía cinética de un vehículo de 1000 kg que circula a 100 km/h. Resultado: E C = 385.802,47 J 1.- CONCEPTOS BÁSICOS 1. Calcula la energía cinética de un vehículo de 1000 kg que circula a 100 km/h. Resultado: E C = 385.802,47 J 2. Calcula la energía potencial de una masa de 500 kg colgada a 10 m

Más detalles

Curso de Preparación Universitaria: Física Guía de Problemas N o 6: Trabajo y Energía Cinética

Curso de Preparación Universitaria: Física Guía de Problemas N o 6: Trabajo y Energía Cinética Curso de Preparación Universitaria: Física Guía de Problemas N o 6: Trabajo y Energía Cinética Problema 1: Sobre un cuerpo que se desplaza 20 m está aplicada una fuerza constante, cuya intensidad es de

Más detalles

TRABAJO Y ENERGÍA. W = F d [Joule] W = F d cos α. Donde F y d son los módulos de la fuerza y el desplazamiento, y α es el ángulo que forman F y d.

TRABAJO Y ENERGÍA. W = F d [Joule] W = F d cos α. Donde F y d son los módulos de la fuerza y el desplazamiento, y α es el ángulo que forman F y d. C U R S O: FÍSICA COMÚN MATERIAL: FC-09 TRABAJO Y ENERGÍA La energía desempeña un papel muy importante en el mundo actual, por lo cual se justifica que la conozcamos mejor. Iniciamos nuestro estudio presentando

Más detalles

Problemas resueltos. Problema 1. Problema 2. Problema 3. Problema 4. Solución. Solución. Solución.

Problemas resueltos. Problema 1. Problema 2. Problema 3. Problema 4. Solución. Solución. Solución. Problemas resueltos Problema 1. Con una llave inglesa de 25 cm de longitud, un operario aplica una fuerza de 50 N. En esa situación, cuál es el momento de torsión aplicado para apretar una tuerca? Problema

Más detalles

frenado?. fuerza F = xi - yj desde el punto (0,0) al

frenado?. fuerza F = xi - yj desde el punto (0,0) al 1. Calcular el trabajo realizado por la fuerza F = xi + yj + + zk al desplazarse a lo largo de la curva r = cos ti + sen tj + 3tk desde el punto A(1,0,0) al punto B(0,1,3π/2), puntos que corresponden a

Más detalles

ALGUNOS EJERCICIOS RESUELTOS DE TRABAJO Y ENERGÍA (BOLETÍN DEL TEMA 1)

ALGUNOS EJERCICIOS RESUELTOS DE TRABAJO Y ENERGÍA (BOLETÍN DEL TEMA 1) I..S. l-ándalus. Dpto de ísica y Química. ísica º Bachillerato LGUS JRCICIS RSULTS D TRBJ Y RGÍ (BLTÍ DL TM ). Un bloque de 5 kg desliza con velocidad constante por una superficie horizontal mientras se

Más detalles

ced Au Au Au f Cu Cu Cu f

ced Au Au Au f Cu Cu Cu f Probleas calorietria Ejeplo 1.- 100 g de una aleación de oro y cobre, a la teperatura de 75.5ºC se introducen en un caloríetro con 502 g de agua a 25ºC, la teperatura del equilibrio es de 25.5ºC. Calcular

Más detalles

Trabajo y energía: ejercicios resueltos

Trabajo y energía: ejercicios resueltos Trabajo y energía: ejercicios resueltos 1) Un hombre debe mover 15 metros una caja de 20Kg realizando una fuerza de 40N. Calcula el trabajo que realiza si: a) Empuja la caja desde atrás. b) Tira de la

Más detalles

FÍSICA Y QUÍMICA 1º Bachillerato Ejercicios: Energía y trabajo (II)

FÍSICA Y QUÍMICA 1º Bachillerato Ejercicios: Energía y trabajo (II) 1(7) Ejercicio nº 1 Se desea trasladar 40 m por una superficie horizontal un cuerpo de 12 kg tirando con una fuerza de 40 que forma un ángulo de 60º con la horizontal. Si el coeficiente de rozamiento vale

Más detalles

CINEMÁTICA I FYQ 1º BAC CC.

CINEMÁTICA I FYQ 1º BAC CC. www.matyfyq.com Página 1 de 5 Pregunta 1: La posición de una partícula en el plano viene dada por la ecuación vectorial: r(t) = (t 2 4) i + (t + 2) j En unidades del SI calcula: a) La posición de la partícula

Más detalles

Experimento 7 MOMENTO LINEAL. Objetivos. Teoría. Figura 1 Dos carritos sufren una colisión parcialmente inelástica

Experimento 7 MOMENTO LINEAL. Objetivos. Teoría. Figura 1 Dos carritos sufren una colisión parcialmente inelástica Experimento 7 MOMENTO LINEAL Objetivos 1. Verificar el principio de conservación del momento lineal en colisiones inelásticas, y 2. Comprobar que la energía cinética no se conserva en colisiones inelásticas

Más detalles

PRÁCTICA 5. CALORIMETRÍA

PRÁCTICA 5. CALORIMETRÍA PRÁCTICA 5. CALORIMETRÍA INTRODUCCIÓN Al mezclar dos cantidades de líquidos a distinta temperatura se genera una transferencia de energía en forma de calor desde el más caliente al más frío. Dicho tránsito

Más detalles

La energía. Transferencia de energía:

La energía. Transferencia de energía: 4 trabajo A-PDF Manual Split Demo. Purchase from www.a-pdf.com to remove the watermark La energía. Transferencia de energía: y calor Un satélite de comunicaciones gira con velocidad constante atraído por

Más detalles

LÍNEAS DEL DIAGRAMA DE MOLLIER

LÍNEAS DEL DIAGRAMA DE MOLLIER DIAGRAMA DE MOLLIER El refrigerante cambia de estado a lo largo del ciclo frigorífico como hemos visto en el capítulo anterior. Representaremos sobre el diagrama de p-h las distintas transformaciones que

Más detalles

1erg = 10^-7 J, y la libra- pie (lb pie), donde 1lb pie = 1.355 J.

1erg = 10^-7 J, y la libra- pie (lb pie), donde 1lb pie = 1.355 J. El TRABAJO efectuado por una fuerza F se define de la siguiente manera. Como se muestra en la figura, una fuerza F actúa sobre un cuerpo. Este presenta un desplazamiento vectorial s. La componente de F

Más detalles

14. ENTALPÍA DE FUSIÓN DEL HIELO

14. ENTALPÍA DE FUSIÓN DEL HIELO 14. ENTALPÍA DE FUSIÓN DEL HIELO OBJETIVO Determinar la entalpía de fusión del hielo, H f, utilizando el método de las mezclas. Previamente, ha de determinarse el equivalente en agua del calorímetro, K,

Más detalles

TRABAJO Y ENERGIA MECANICA

TRABAJO Y ENERGIA MECANICA TRABAJO Y ENERGIA MECANICA 1. Si una persona saca de un pozo una cubeta de 20 [kg] y realiza 6.000 [J] de trabajo, cuál es la profundidad del pozo? (30,6 [m]) 2. Una gota de lluvia (3,35x10-5 [kg] apx.)

Más detalles

F Podemos imaginarnos ejemplos en que ocurra esto: donde es el ángulo formado por la fuerza. y el desplazamiento.

F Podemos imaginarnos ejemplos en que ocurra esto: donde es el ángulo formado por la fuerza. y el desplazamiento. 1-TRABAJO: En el lenguaje ordinario, al emplear el término trabajo nos referimos a todo aquello que supone un esfuerzo ya sea físico o mental y que, por tanto, produce cansancio. Sin embargo, el concepto

Más detalles

EJERCICIOS PROPUESTOS. Qué le sucede al movimiento térmico de las partículas de un cuerpo cuando aumenta su temperatura?

EJERCICIOS PROPUESTOS. Qué le sucede al movimiento térmico de las partículas de un cuerpo cuando aumenta su temperatura? 9 ENERGÍA Y CALOR EJERCICIOS PROPUESTOS 9.1 Qué le sucede al movimiento térmico de las partículas de un cuerpo cuando aumenta su temperatura? Al aumentar la temperatura, se mueven con mayor velocidad y

Más detalles

Guía para el examen de 4ª y 6ª oportunidad de FÍsica1

Guía para el examen de 4ª y 6ª oportunidad de FÍsica1 4a 4a 6a Guía para el examen de 4ª y 6ª oportunidad de FÍsica1 Capitulo 1 Introducción a la Física a) Clasificación y aplicaciones b) Sistemas de unidades Capitulo 2 Movimiento en una dimensión a) Conceptos

Más detalles

ESPECIALIDADES : GUIA DE PROBLEMAS N 3

ESPECIALIDADES : GUIA DE PROBLEMAS N 3 ASIGNATURA : ESPECIALIDADES : Ing. CIVIL Ing. MECANICA Ing. ELECTROMECANICA Ing. ELECTRICA GUIA DE PROBLEMAS N 3 2015 1 GUIA DE PROBLEMAS N 3 PROBLEMA Nº1 Un carro de carga que tiene una masa de 12Mg es

Más detalles

EJERCICIO PARTE ESPECÍFICA OPCIÓN B DIBUJO TÉCNICO Duración: 1h 15

EJERCICIO PARTE ESPECÍFICA OPCIÓN B DIBUJO TÉCNICO Duración: 1h 15 Personas Adultas PARTE ESPECÍFICA: DIBUJO TÉCNICO OPCIÓN B DATOS DEL ASPIRANTE CALIFICACIÓN Apellidos:. Nombre:.... EJERCICIO PARTE ESPECÍFICA OPCIÓN B DIBUJO TÉCNICO Duración: 1h 15 EJERCICIO 1. CIRCUNFERENCIAS

Más detalles

CONTENIDOS MÍNIMOS FÍSICA 4º ESO. - Fórmulas del movimiento rectilíneo uniformemente acelerado y de la caída libre.

CONTENIDOS MÍNIMOS FÍSICA 4º ESO. - Fórmulas del movimiento rectilíneo uniformemente acelerado y de la caída libre. CONTENIDOS MÍNIMOS FÍSICA 4º ESO TEMA 1: EL MOVIMIENTO Y SU DESCRIPCIÓN - Definición de movimiento. 2. Magnitudes para describir un movimiento. - Fórmulas de los movimientos rectilíneo y circular. TEMA

Más detalles

Calibración del termómetro

Calibración del termómetro Calibración del termómetro RESUMEN En esta práctica construimos un instrumento el cual fuera capaz de relacionar la temperatura con la distancia, es decir, diseñamos un termómetro de alcohol, agua y gas

Más detalles

TRABAJO ENERGÍA CONSERVACIÓN DE ENERGÍA MECÁNICA

TRABAJO ENERGÍA CONSERVACIÓN DE ENERGÍA MECÁNICA TRABAJO ENERGÍA CONSERVACIÓN DE ENERGÍA MECÁNICA 1. La figura muestra una bola de 100 g. sujeta a un resorte sin estiramiento, de longitud L 0 = 19 cm y constante K desconocida. Si la bola se suelta en

Más detalles

PROBLEMAS M.A.S. Y ONDAS

PROBLEMAS M.A.S. Y ONDAS PROBLEMAS M.A.S. Y ONDAS 1) Una masa de 50 g unida a un resorte realiza, en el eje X, un M.A.S. descrito por la ecuación, expresada en unidades del SI. Establece su posición inicial y estudia el sentido

Más detalles

Ejercicios de cinemática

Ejercicios de cinemática Ejercicios de cinemática 1.- Un ciclista recorre 32,4 km. en una hora. Calcula su rapidez media en m/s. (9 m/s) 2.- La distancia entre dos pueblos es de 12 km. Un ciclista viaja de uno a otro a una rapidez

Más detalles

Tema 3. Trabajo y Energía

Tema 3. Trabajo y Energía Tema 3. Trabajo y Energía CONTENIDOS Energía, trabajo y potencia. Unidades SI (conceptos y cálculos) Teorema del trabajo y la energía. Energía cinética (conceptos y cálculos) Fuerzas conservativas. Energía

Más detalles

Universidad Autónoma de Nuevo León Preparatoria 8. Requisitos para presentar en 3ª, 5ª y/o 6ª Oportunidad Semestre: Agosto - Diciembre 2015

Universidad Autónoma de Nuevo León Preparatoria 8. Requisitos para presentar en 3ª, 5ª y/o 6ª Oportunidad Semestre: Agosto - Diciembre 2015 Universidad Autónoma de Nuevo León Preparatoria 8 Requisitos para presentar en 3ª, 5ª y/o 6ª Oportunidad Semestre: Agosto - Diciembre 2015 Materia: Coordinador: Temas Selectos de Física M.A. Martín Ramírez

Más detalles

Pregunta Señala tu respuesta 1 A B C D E 2 A B C D E 3 A B C D E 4 A B C D E 5 A B C D E 6 A B C D E 7 A B C D E Tiempo = 90 minutos

Pregunta Señala tu respuesta 1 A B C D E 2 A B C D E 3 A B C D E 4 A B C D E 5 A B C D E 6 A B C D E 7 A B C D E Tiempo = 90 minutos XVI OLIMPIADA DE LA FÍSICA- FASE LOCAL- Enero 2005 UNIVERSIDAD DE CASTILLA-LA MANCHA PUNTUACIÓN Apellidos Nombre DNI Centro Población Provincia Fecha Teléfono e-mail Las siete primeras preguntas no es

Más detalles

MEDIDA DEL CALOR ESPECÍFICO

MEDIDA DEL CALOR ESPECÍFICO Laboratorio de Física General Primer Curso (Termodinámica) MEDIDA DEL CALOR ESPECÍFICO Fecha: 07/02/05 1. Objetivo de la práctica Familiarizarse con las medidas calorimétricas mediante la medida del calor

Más detalles

PROBLEMAS Física 2º Bachillerato CAMPO GRAVITATORIO

PROBLEMAS Física 2º Bachillerato CAMPO GRAVITATORIO PROBLEMAS Física 2º Bachillerato CAMPO GRAVITATORIO 1) Si la velocidad de una partícula es constante Puede variar su momento angular con el tiempo? S: Si, si varía el valor del vector de posición. 2) Una

Más detalles

E G m g h r CONCEPTO DE ENERGÍA - CINÉTICA - POTENCIAL - MECÁNICA

E G m g h r CONCEPTO DE ENERGÍA - CINÉTICA - POTENCIAL - MECÁNICA Por energía entendemos la capacidad que posee un cuerpo para poder producir cambios en sí mismo o en otros cuerpos. Es una propiedad que asociamos a los cuerpos para poder explicar estos cambios. Ec 1

Más detalles

El balance de energía. Aplicaciones de la primera ley de la termodinámica. Ejercicios.

El balance de energía. Aplicaciones de la primera ley de la termodinámica. Ejercicios. TERMODINÁMICA (0068) PROFR. RIGEL GÁMEZ LEAL El balance de energía. Aplicaciones de la primera ley de la termodinámica. Ejercicios. 1. Suponga una máquina térmica que opera con el ciclo reversible de Carnot

Más detalles

TEMA 7: TRABAJO Y ENERGÍA.

TEMA 7: TRABAJO Y ENERGÍA. Física y Química 4 ESO TRABAJO Y ENERGÍA Pág. 1 TEMA 7: TRABAJO Y ENERGÍA. DEFINICIÓN DE ENERGÍA La energía no es algo tangible. Es un concepto físico, una abstracción creada por la mente humana que ha

Más detalles

Problema 1: Cinemática

Problema 1: Cinemática 7 ma OMF 0 de septiembre de 203 Problema : Cinemática Pregunta : La velocidad de A al chocar con B podemos calcularla mediante conservación de la energía. Como toda la energía potencial se transforma en

Más detalles

Las ecuaciones que nos dan la posición (x) de la partícula en función del tiempo son las siguientes: ( )

Las ecuaciones que nos dan la posición (x) de la partícula en función del tiempo son las siguientes: ( ) DESARROLLO DE LA PARTE TEÓRICA DE LA UNIDAD DIDÁCTICA. 1. Cinemática del movimiento armónico simple. Dinámica del movimiento armónico simple 3. Energía del movimiento armónico simple 4. Aplicaciones: resorte

Más detalles

El trabajo W efectuado por un agente que ejerce una fuerza constante es igual al producto punto entre la fuerza F y el desplazamiento d

El trabajo W efectuado por un agente que ejerce una fuerza constante es igual al producto punto entre la fuerza F y el desplazamiento d El trabajo W efectuado por un agente que ejerce una fuerza constante es igual al producto punto entre la fuerza F y el desplazamiento d W F d Fd cos Si la fuerza se expresa en newton (N) y el desplazamiento

Más detalles

ORIENTACIONES PARA LA MATERIA DE FÍSICA Convocatoria 2010

ORIENTACIONES PARA LA MATERIA DE FÍSICA Convocatoria 2010 ORIENTACIONES PARA LA MATERIA DE FÍSICA Convocatoria 2010 Prueba de Acceso para Mayores de 25 años Para que un adulto mayor de 25 años pueda incorporarse plenamente en los estudios superiores de la Física

Más detalles

ENERGÍA Y MOVIMIENTO. Energía mecánica Energía y temperatura Ondas

ENERGÍA Y MOVIMIENTO. Energía mecánica Energía y temperatura Ondas Energía y temperatura Ondas ENERGÍA Y MOVIMIENTO Física y Química 4º ESO: guía interactiva para la resolución de ejercicios I.E.S. Élaios Departamento de Física y Química EJERCICIO 1 De las situaciones

Más detalles

Capítulo 2 Energía 1

Capítulo 2 Energía 1 Capítulo 2 Energía 1 Trabajo El trabajo realizado por una fuerza constante sobre una partícula que se mueve en línea recta es: W = F L = F L cos θ siendo L el vector desplazamiento y θ el ángulo entre

Más detalles

Determinación del calor latente de fusión del hielo

Determinación del calor latente de fusión del hielo Determinación del calor latente de usión del hielo Apellidos, nombre Atarés Huerta, Lorena (loathue@tal.upv.es) Departamento Centro Departamento de Tecnología de Alimentos ETSIAMN (Universidad Politécnica

Más detalles

LANZAMIENTOS VERTICALES soluciones

LANZAMIENTOS VERTICALES soluciones LANZAMIENTOS VERTICALES soluciones 1.- Desde un puente se lanza una piedra con una velocidad inicial de 10 m/s y tarda 2 s en llegar al agua. Calcular la velocidad que lleva la piedra en el momento de

Más detalles

FISICA Y QUÍMICA 4º ESO 1.- TRABAJO MECÁNICO.

FISICA Y QUÍMICA 4º ESO 1.- TRABAJO MECÁNICO. 1.- TRABAJO MECÁNICO. Si a alguien que sostiene un objeto sin moverse le preguntas si hace trabajo, probablemente te responderá que sí. Sin embargo, desde el punto de vista de la Física, no realiza trabajo;

Más detalles

Colegio : Liceo Miguel de Cervantes y Saavedra Dpto. Física (3 ero Medio) Profesor: Héctor Palma A.

Colegio : Liceo Miguel de Cervantes y Saavedra Dpto. Física (3 ero Medio) Profesor: Héctor Palma A. Tópico Generativo: La presión en vasos comunicantes. Aprendizajes Esperados: 1.-Aplicar la definir conceptual de presión y aplicarla a vasos comunicante. 2.- Caracterizar la presión en función de la fuerza

Más detalles

Determinación del equivalente eléctrico del calor

Determinación del equivalente eléctrico del calor Determinación del equivalente eléctrico del calor Julieta Romani Paula Quiroga María G. Larreguy y María Paz Frigerio julietaromani@hotmail.com comquir@ciudad.com.ar merigl@yahoo.com.ar mapaz@vlb.com.ar

Más detalles

La masa es la magnitud física que mide la inercia de los cuerpos: N

La masa es la magnitud física que mide la inercia de los cuerpos: N Pág. 1 16 Las siguientes frases, son verdaderas o falsas? a) Si el primer niño de una fila de niños que corren a la misma velocidad lanza una pelota verticalmente hacia arriba, al caer la recogerá alguno

Más detalles

Mecánica I, 2009. Trabajo efectuado por una fuerza constante. Trabajo hecho por una fuerza variable

Mecánica I, 2009. Trabajo efectuado por una fuerza constante. Trabajo hecho por una fuerza variable Departamento de Física Facultad de Ciencias Universidad de Chile Profesor: Gonzalo Gutiérrez Ayudantes: Uta Naether Felipe González Mecánica I, 2009 Guía 5: Trabajo y Energía Jueves 7 Mayo Tarea: Problemas

Más detalles

Problemas de Complementos de Matemáticas. Curso 01/02

Problemas de Complementos de Matemáticas. Curso 01/02 Problemas de Complementos de Matemáticas. Curso /2.- Resolver las E.D.O. lineales de primer orden siguientes y los problemas de condiciones x + 3x/t = 6t 2 x + 3x = 3t 2 e 3t t 4 x + 2t 3 x = tx + (tx

Más detalles

PROBLEMAS RESUELTOS TRABAJO Y ENERGIA CUARTA, QUINTA Y SEXTA EDICION SERWAY. Raymond A. Serway

PROBLEMAS RESUELTOS TRABAJO Y ENERGIA CUARTA, QUINTA Y SEXTA EDICION SERWAY. Raymond A. Serway PROBLEMAS RESUELTOS TRABAJO Y ENERGIA CAPITULO 7 FISICA I CUARTA, QUINTA Y SEXTA EDICION SERWAY Raymond A. Serway Sección 7.1 Trabajo hecho por una fuerza constante Sección 7. El producto escalar de dos

Más detalles

GUIA DE PROBLEMAS. 3) La velocidad de un auto en función del tiempo, sobre un tramo recto de una carretera, está dada por

GUIA DE PROBLEMAS. 3) La velocidad de un auto en función del tiempo, sobre un tramo recto de una carretera, está dada por Unidad : Cinemática de la partícula GUIA DE PROBLEMAS 1)-Un automóvil acelera en forma uniforme desde el reposo hasta 60 km/h en 8 s. Hallar su aceleración y desplazamiento durante ese tiempo. a = 0,59

Más detalles

EJERCICIOS DE ENERGÍA CALORÍFICA ( CALOR ) 4º E.S.O.

EJERCICIOS DE ENERGÍA CALORÍFICA ( CALOR ) 4º E.S.O. EJERCICIOS DE ENERGÍA CALORÍFICA ( CALOR ) 4º La finalidad de esta colección de ejercicios resueltos consiste en que sepáis resolver las diferentes situaciones que se nos plantea en el problema. Para ello

Más detalles

Observa el diagrama del centro y determina cual de los siguientes corresponde a un diagrama v-t para ese movimiento

Observa el diagrama del centro y determina cual de los siguientes corresponde a un diagrama v-t para ese movimiento De las gráficas. Indica aquellas que presentan movimiento rectilíneo uniforme así como las que pertenecen al movimiento rectilíneo uniformemente acelerado Observa el diagrama del centro y determina cual

Más detalles

TRABAJO Y ENERGÍA. Campos de fuerzas

TRABAJO Y ENERGÍA. Campos de fuerzas TRABAJO Y ENERGÍA 1. Campos de fuerzas. Fuerzas dependientes de la posición. 2. Trabajo. Potencia. 3. La energía cinética: Teorema de la energía cinética. 4. Campos conservativos de fuerzas. Energía potencial.

Más detalles