1. Polinomio característico

Tamaño: px
Comenzar la demostración a partir de la página:

Download "1. Polinomio característico"

Transcripción

1 Métodos Numéricos Tema 7: Valores y vectores propios Practica Prof: Francisco Palacios EPSEM-UPC Curso 2006/2007 Versión. Contenido Polinomio característco. Cálculo de valores propios con solve y fsolve. Cálculo de valores propios con el comando eigenvals. Comando eigenvects. Diagonalización. Programa para método de la potencia. Programa para método de la potencia. Parada por error estimado sobre el valor propio. Mètodo de la potencia inversa. Mètodo de la potencia desplazada. > restart;. Polinomio característico Cálculo "manual" del polinomio caracterísco. p(t)=det(a-t*i). Warning, new definition for norm Warning, new definition for trace > a:=matrix(3,3,[,2,,0,,2,,3,2]); Construimos la matriz unitaria de orden 3. > id3:=diag(,,); 0 0 id3 := > b:=evalm(a-t*id3); t 2 b := 0 t t > p:=det(b); p := + 2 t + 4 t 2 t 3 Cálculo directo del polinomio característico usando charpoly. > p:=charpoly(a,t); p := 2 t 4 t 2 + t 3 + p y p pueden ser distintos en un cambio de signo, Maple calcula el polinomio característico de una matriz de orden n como p(t)=(-)^n det(a-ti). 2. Cálculo de vaps con solve y fsolve C alculamos las raíces del polinomio característico con solve. > vaps:=solve(p); vaps % / % / % / % + / I 3 6 % / 3 44 :=,, 3 % / % / % / I 3 6 % / % / 3 % := I 407 > evalf(vaps); , Page I, I

2 En la evaluació float aparecen partes complejas "residuales". Es preferible usar fsolve si sabemos que los valores propios son reales. > vaps:=fsolve(p); vaps :=, , Comando eigenvals El comando eigenvals proporciona directamente los valores propios. > a:=matrix(3,3,[,2,,0,,2,,3,2]); > vaps:=eigenvals(a); vaps % / % / % / % + / I 3 6 % / 3 44 :=,, 3 % / % / % / I 3 6 % / % / 3 % := I 407 > evalf(vaps); , , Si usamos una matriz "float", se obtienen valores aproximados para los valores propios. > af:=evalf(evalm(a)); > vaps:=eigenvals(af); 4. Comando eigenvects vaps := , , El comando eigenvects proporciona los valores propios, multipliciad y vectores propios asociados. > a:=matrix(3,3,[,2,,0,,2,,3,2]); af:=evalf(evalm(a)); > veps:=eigenvects(af); veps := [ ,, {[ , , ]} ], [ ,, { [ , , ]} ], [ ,, { [ , , ]} ] Podemos acceder al contenido de la estructura compleja veps usando ínices. veps[,3] es el tercer elemento del primer objeto en veps. > veps[,3]; {[ , , ]} > veps[,3,]; [ , , ] Construcción de una matriz que tiene en columnas los vectores propios. > v:=veps[,3,]; v := [ , , ] > v2:=veps[2,3,]; v2 := [ , , ] > v3:=veps[3,3,]; v3 := [ Page, , ]

3 > v:=transpose(matrix([v,v2,v3])); 5. Diagonalización v := Si las columnas de V son una base de vectores propios de la matriz A, entonces el producto D=inv(V) A V es una matriz diagonal. > d:=evalm(inverse(v)&*a&*v); d := Observa que hay elementos residuales que no son exactamente cero. el sugiente programa sirve para filtrar los elementos casi nulos. > filt0:=x->if abs(x)<0^(-6) then 0 else x fi; filt0 := proc( x) option operator, arrow; if abs( x ) < / then 0 else x fi end Aplicamos el programa a la matriz usando el comando map > df:=map(filt0,d); df := 6. Progama para método de la potencia El método de la potencia permite determinar el valor propio de módulo máximo y un vector propio asociado. a:=matrix(3,3,[,2,,0,,2,,3,2]); x0:=[,,];# vector inicial n:=3; for i from 0 to n do `********** iteración`,i+,`**********`; y.(i+):=evalf(evalm(a&*x.i)); ny:=norm(y.(i+), infinity); for j from to vectdim(x0) do if abs(y.(i+)[j])=ny then cdom:=y.(i+)[j];break;fi; c.(i+):=cdom; x.(i+):=evalm(y.(i+)/c.(i+)); x0 := [,, ] n := 3 ********** iteración,, ********** y := [ 4., 3., 6. ] ny := 6. c := 6. x := [ , , ********** iteración, 2, ********** y2 := [ , , ] ny := c2 := x2 := [ , , ********** iteración, 3, ********** y3 := [ , , ] ny := := c Page 3

4 x3 := [ , , ] ********** iteración, 4, ********** y4 := [ , , ] ny := c4 := x4 := [ , , 7. Programa con parada por error estimado sobre el valor propio a:=matrix(3,3,[,2,,0,,2,,3,2]); x0:=[,,]; t:=3; n:=4; c0:=0^(0); for i from 0 to n do `********** iteración`,i+,`**********`; y.(i+):=evalf(evalm(a&*x.i)); ny:=norm(y.(i+), infinity); for j from to vectdim(x0) do if abs(y.(i+)[j])=ny then cdom:=y.(i+)[j];break;fi; c.(i+):=cdom; x.(i+):=evalm(y.(i+)/c.(i+)); er.(i+):=c.(i+)-c.i; if abs(er.(i+))<0.5*0^(-t) then print(`*** precisión alcazada ***`);break; fi; x0 := [,, ] t := 3 n := 4 c0 := ********** iteración,, ********** y := [ 4., 3., 6. ] ny := 6. c := 6. x := [ , , er := ********** iteración, 2, ********** y2 := [ , , ] ny := c2 := x2 := [ , , er2 := ********** iteración, 3, ********** y3 := [ , , ] ny := c3 := x3 := [ , , ] er3 := ********** iteración, 4, ********** y4 := [ , , ] Page 4

5 > af:=evalf(evalm(a)); eigenvals(af); 8. Método de la potencia inversa ny := c4 := x4 := [ , , er4 := ********** iteración, 5, ********** y5 := [ , , ] ny := c5 := x5 := [ , , er5 := ********** iteración, 6, ********** y6 := [ , , ] ny := c6 := x6 := [ , , er6 := ********** iteración, 7, ********** y7 := [ , , ] ny := c7 := x7 := [ , , er7 := *** precisión alcazada *** , , Calcula el valor propio de módulo mínimo. a:=matrix(3,3,[,2,,0,,2,,3,2]); af:=evalf(evalm(a)); a:=inverse(af); x0:=[,2,]; t:=3; n:=24; c0:=0^(0); for i from 0 to n do `********** iteración`,i+,`**********`; y.(i+):=evalf(evalm(a&*x.i)); ny:=norm(y.(i+), infinity); for j from to vectdim(x0) do if abs(y.(i+)[j])=ny then cdom:=y.(i+)[j];break;fi; c.(i+):=cdom; x.(i+):=evalm(y.(i+)/c.(i+)); er.(i+):=c.(i+)-c.i; if abs(er.(i+))<0.5*0^(-t) then print(`*** precisión alcazada ***`); vapdom_a:=c.(i+); break; fi; vap_min:=/vapdom_a; Page 5

6 a := x0 := [, 2, ] t := 3 n := 24 c0 := ********** iteración,, ********** y := [ , , ] ny := c := x := [ , , ] er := ********** iteración, 2, ********** y2 := [ , 0, ] ny := c2 := x2 := [ , 0, ] er2 := ********** iteración, 3, ********** y3 := [ , , ] ny := c3 := x3 := [ , , ] er3 := ********** iteración, 4, ********** y4 := [ , , ] ny := c4 := x4 := [ , , ] er4 := ********** iteración, 5, ********** y5 := [ , , ] ny := c5 := x5 := [ , , ] er5 := ********** iteración, 6, ********** y6 := [ , , ] ny := c6 := x6 := [ , , ] er6 := ********** iteración, 7, ********** y7 := [ , , ] ny := := c Page 6

7 > eigenvals(af); 9. Método de la potencia desplazada x7 := [ , , ] er7 := ********** iteración, 8, ********** y8 := [ , , ] ny := c8 := x8 := [ , , ] er8 := ********** iteración, 9, ********** y9 := [ , , ] ny := c9 := x9 := [ , , ] er9 := ********** iteración, 0, ********** y0 := [ , , ] ny := c0 := x0 := [ , , ] er0 := ********** iteración,, ********** y := [ , , ] ny := c := x := [ , , ] er := ********** iteración, 2, ********** y2 := [ , , ] ny := c2 := x2 := [ , , ] er2 := ********** iteración, 3, ********** y3 := [ , , ] ny := c3 := x3 := [ , , ] er3 := ********** iteración, 4, ********** y4 := [ , , ] ny := c4 := x4 := [ , , ] er4 := *** precisión alcazada *** vap_min := , , Calcula un valor propio próximo a un valor dado. Page 7

8 a:=matrix(3,3,[,2,,0,,2,,3,2]); af:=evalf(evalm(a)); vapest:=-0.5;# Estimacion del valor propio id3:=diag(,,); b:=evalm(af-vapest*id3); b:=inverse(b); x0:=[,2,]; t:=3; n:=4; c0:=0^(0); for i from 0 to n do `********** iteración`,i+,`**********`; y.(i+):=evalf(evalm(b&*x.i)); ny:=norm(y.(i+), infinity); for j from to vectdim(x0) do if abs(y.(i+)[j])=ny then cdom:=y.(i+)[j];break;fi; c.(i+):=cdom; x.(i+):=evalm(y.(i+)/c.(i+)); er.(i+):=c.(i+)-c.i; if abs(er.(i+))<0.5*0^(-t) then print(`*** precisión alcazada ***`); vap_dom_desp:=c.(i+); break; fi; vap:=/c.(i+)+vapest; b := b := vapest := x0 := [, 2, ] t := 3 n := 4 c0 := ********** iteración,, ********** y := [ , , ] ny := c := x := [ , , ] er := ********** iteración, 2, ********** y2 := [ , , ] ny := c2 := x2 := [ , , ] er2 := ********** iteración, 3, ********** y3 := [ Page, , ]

9 > eigenvals(af); > ny := c3 := x3 := [ , , ] er3 := ********** iteración, 4, ********** y4 := [ , , ] ny := c4 := x4 := [ , , ] er4 := ********** iteración, 5, ********** y5 := [ , , ] ny := c5 := x5 := [ , , ] er5 := ********** iteración, 6, ********** y6 := [ , , ] ny := c6 := x6 := [ , , ] er6 := ********** iteración, 7, ********** y7 := [ , , ] ny := c7 := x7 := [ , , ] er7 := ********** iteración, 8, ********** y8 := [ , , ] ny := c8 := x8 := [ , , ] er8 := ********** iteración, 9, ********** y9 := [ , , ] ny := c9 := x9 := [ , , ] er9 := *** precisión alcazada *** vap := , , Page 9

E.T.S. Minas: Métodos Matemáticos. Valores y vectores propios Francisco Palacios EUPM-UPC Curso 2005/06

E.T.S. Minas: Métodos Matemáticos. Valores y vectores propios Francisco Palacios EUPM-UPC Curso 2005/06 E.T.S. Minas: Métodos Matemáticos Práctica Tema 5 Valores y vectores propios Francisco Palacios EUPM-UPC Curso 2005/06 Contenido.. Polinomio característico 2. Cálculo de valores propios con el comando

Más detalles

Métodos Numéricos: Guía de estudio Tema 7 Valores y vectores propios

Métodos Numéricos: Guía de estudio Tema 7 Valores y vectores propios Métodos Numéricos: Guía de estudio Tema 7 Valores y vectores propios Francisco Palacios Escuela Politécnica Superior de Ingeniería de Manresa Universidad Politécnica de Cataluña Abril 2009, versión 1.1

Más detalles

Ejercicio 1 Dada la matriz A = 1. Calcula los valores propios. 2. Determina una base de vectores propios. 3. Diagonaliza la matriz.

Ejercicio 1 Dada la matriz A = 1. Calcula los valores propios. 2. Determina una base de vectores propios. 3. Diagonaliza la matriz. Métodos Numéricos: soluciones Tema 7: Valores y vectores propios Francisco Palacios Escuela Politécnica Superior de Ingeniería de Manresa Universidad Politécnica de Cataluña Mayo 8 Versión. Ejercicio Dada

Más detalles

E.T.S. Minas: Métodos Matemáticos Resumen y ejemplos Tema 5: Valores y vectores propios

E.T.S. Minas: Métodos Matemáticos Resumen y ejemplos Tema 5: Valores y vectores propios E.T.S. Minas: Métodos Matemáticos Resumen y ejemplos Tema 5: Valores y vectores propios Francisco Palacios Escuela Politécnica Superior de Ingeniería de Manresa Universidad Politécnica de Cataluña Curso

Más detalles

Tema 5: Resolución aproximada de ecuaciones

Tema 5: Resolución aproximada de ecuaciones Métodos Numéricos: Solución de los ejercicios Tema 5: Resolución aproximada de ecuaciones Francisco Palacios Escuela Politécnica Superior de Ingeniería de Manresa Universidad Politécnica de Cataluña Abril

Más detalles

E.T.S. Minas: Métodos Matemáticos Soluciones Tema 3: Resolución aproximada de ecuaciones

E.T.S. Minas: Métodos Matemáticos Soluciones Tema 3: Resolución aproximada de ecuaciones E.T.S. Minas: Métodos Matemáticos Soluciones Tema 3: Resolución aproximada de ecuaciones Francisco Palacios Escuela Politécnica Superior de Ingeniería de Manresa Universidad Politécnica de Cataluña Octubre

Más detalles

E.T.S. Minas: Métodos Matemáticos Soluciones Tema 3 Resolución aproximada de ecuaciones

E.T.S. Minas: Métodos Matemáticos Soluciones Tema 3 Resolución aproximada de ecuaciones E.T.S. Minas: Métodos Matemáticos Soluciones Tema 3 Resolución aproximada de ecuaciones Francisco Palacios Escuela Politécnica Superior de Ingeniería de Manresa Universidad Politécnica de Cataluña Curso

Más detalles

ETS Minas: Métodos matemáticos Guía de estudio Tema 4 Métodos iterativos para sistemas de ecuaciones

ETS Minas: Métodos matemáticos Guía de estudio Tema 4 Métodos iterativos para sistemas de ecuaciones ETS Minas: Métodos matemáticos Guía de estudio Tema 4 Métodos iterativos para sistemas de ecuaciones Francisco Palacios Escuela Politécnica Superior de Ingeniería de Manresa Universidad Politécnica de

Más detalles

Métodos Numéricos: Ejercicios Tema 5: Resolución aproximada de ecuaciones

Métodos Numéricos: Ejercicios Tema 5: Resolución aproximada de ecuaciones Métodos Numéricos: Ejercicios Tema 5: Resolución aproximada de ecuaciones Francisco Palacios Escuela Politécnica Superior de Ingeniería de Manresa Universidad Politécnica de Cataluña Abril 2008, versión

Más detalles

COMANDOS BÁSICOS DE ÁLGEBRA LINEAL EN MAPLE

COMANDOS BÁSICOS DE ÁLGEBRA LINEAL EN MAPLE COMANDOS BÁSICOS DE ÁLGEBRA LINEAL EN MAPLE Prof. Carlos Conde LázaroL Prof. Arturo Hidalgo LópezL Prof. Alfredo López L Benito Marzo, 2007 Manipulación de de expresiones algebraicas Se usan los comandos:

Más detalles

Métodos Numéricos: Ejercicios resueltos

Métodos Numéricos: Ejercicios resueltos Métodos Numéricos: Ejercicios resueltos Tema 6: Resolución aproximada de sistemas de ecuaciones lineales Francisco Palacios Escuela Politécnica Superior de Ingeniería de Manresa Universidad Politécnica

Más detalles

E.T.S. Minas: Métodos Matemáticos Soluciones Tema 4 Métodos iterativos para sistemas de ecuaciones

E.T.S. Minas: Métodos Matemáticos Soluciones Tema 4 Métodos iterativos para sistemas de ecuaciones ETS Minas: Métodos Matemáticos Soluciones Tema Métodos iterativos para sistemas de ecuaciones Francisco Palacios Escuela Politécnica Superior de Ingeniería de Manresa Universidad Politécnica de Cataluña

Más detalles

1.2 Valores y vectores propios. Método de las potencias y Rayleigh.

1.2 Valores y vectores propios. Método de las potencias y Rayleigh. 20 Prelininares. 1.2 Valores y vectores propios. Método de las potencias y Rayleigh. 1.2.1 Cálculo del Polinomio Caracterstico: ALGORITMO DE SOURIAU. ENTRADA: la matriz A 1 = A, p 1 = traza(a 1 ), n =

Más detalles

RAFAEL RAMÍREZ ROS. = 128 e iπ/3, = ei5π/6. 2. Los resultados expresados en forma cartesiana (es decir, en forma binomial) son: i = ± 2/2 + i

RAFAEL RAMÍREZ ROS. = 128 e iπ/3, = ei5π/6. 2. Los resultados expresados en forma cartesiana (es decir, en forma binomial) son: i = ± 2/2 + i SOLUCIONES DE ÁLGEBRA LINEAL VERSIÓN 3 7/9/ RAFAEL RAMÍREZ ROS Índice Complejos Polinomios Espacios Vectoriales 3 3 Matrices 6 4 Aplicaciones Lineales 8 5 Determinantes 6 Diagonalización 3 7 Jordan 6 Complejos

Más detalles

Valores y vectores propios. Laboratorio de Matemáticas

Valores y vectores propios. Laboratorio de Matemáticas Valores y vectores propios Laboratorio de Matemáticas Conceptos básicos v vector propio asociado al valor propio λ Av = λ v Polinomio característico de la matriz A p(λ) = det(a- λ I) Ecuación característica

Más detalles

Laboratorio N 10, Operaciones diferenciales. Gradiente, divergencia y rotacional. Introducción.

Laboratorio N 10, Operaciones diferenciales. Gradiente, divergencia y rotacional. Introducción. Universidad Diego Portales Facultad de Ingeniería. Instituto de Ciencias Básicas Asignatura: Cálculo III Laboratorio N 10, Operaciones diferenciales. Gradiente, divergencia y rotacional. Introducción.

Más detalles

TEMA III: DIAGONALIZACIÓN.

TEMA III: DIAGONALIZACIÓN. TEMA III: DIAGONALIZACIÓN. OBJETIVOS: Generales: 1. Captar el motivo que justifica el problema de la diagonalización de endomorfismos. 2. Resolver y aplicar dicho problema cuando sea posible. Específicos:

Más detalles

Operaciones con Matrices y vectores

Operaciones con Matrices y vectores Practica: Métodos iterativos para sistemas Operaciones con Matrices y vectores Definición de matriz Definición de vector Matriz por vector > a:=matrix(3,3,[,,3,,,,3,,]); > v:=[,,]; > w=evalm(a&*v); Inversa

Más detalles

Práctica 8 Resolución de ecuaciones y sistemas de ecuaciones con Mathematica

Práctica 8 Resolución de ecuaciones y sistemas de ecuaciones con Mathematica Práctica 8 Resolución de ecuaciones y sistemas de ecuaciones con Mathematica Resolver una ecuación o un sistema de ecuaciones es un problema que se presenta con mucha frecuencia en matemáticas. En esta

Más detalles

6.6. Diagonalización de matrices simétricas o hermitianas. Ejemplo de una diagonalización de una matriz simétrica

6.6. Diagonalización de matrices simétricas o hermitianas. Ejemplo de una diagonalización de una matriz simétrica 6.6 Diagonalización de matrices simétricas o hermitianas Ejemplo de una diagonalización de una matriz simétrica Matrices hermitianas Los autovalores de las matrices reales simétricas o complejas hermitianas

Más detalles

Eigenvalores y eigenvectores. Método de la potencia

Eigenvalores y eigenvectores. Método de la potencia Clase No. 12: MAT 251 Eigenvalores y eigenvectores. Método de la potencia Dr. Alonso Ramírez Manzanares CIMAT A.C. e-mail: alram@ cimat.mx web: http://www.cimat.mx/ alram/met_num/ Dr. Joaquín Peña Acevedo

Más detalles

a n1 a n2 a nn x n a ij x i x j = [x] t B A+At ) t = At +(A t ) t = At +A x j x i = s ij x i x j + s ji x j x i 2 x i x j + a ij + a ji

a n1 a n2 a nn x n a ij x i x j = [x] t B A+At ) t = At +(A t ) t = At +A x j x i = s ij x i x j + s ji x j x i 2 x i x j + a ij + a ji 16 Fundamentos de Matemáticas : Álgebra Lineal Capítulo 1 Formas cuadráticas Aunque, pueda parecernos que vamos a estudiar un nuevo concepto, un caso particular de las formas cudráticas ya ha sido estudiado,

Más detalles

Curso Hoja 1. Análisis de errores

Curso Hoja 1. Análisis de errores Hoja 1. Análisis de errores 1 Teniendo en cuenta que MATLAB trabaja en doble precisión, calcular el número máquina inmediatamente anterior a 1 y comprobar que dista 2 53 de 1. 2 Calcular 1 2 52, 1 2 53,

Más detalles

Tema 1: Conceptos generales del Análisis Numérico

Tema 1: Conceptos generales del Análisis Numérico Tema 1: Conceptos generales del Análisis Numérico Asignatura: Cálculo Numérico I 1er. curso Grado en Matemáticas Anna Doubova Dpto. EDAN, Universidad de Sevilla 5 de febrero de 2018 A. Doubova (Dpto. EDAN)

Más detalles

Capítulo V. Valores y vectores propios. Diagonalización de operadores lineales.

Capítulo V. Valores y vectores propios. Diagonalización de operadores lineales. Capítulo V Valores y vectores propios. Diagonalización de operadores lineales. Hemos visto que la aplicaciones lineales de en están definidas a través de una expresión de la forma ; pero esta fórmula puede

Más detalles

Operaciones con matrices

Operaciones con matrices Lección B Operaciones con matrices B.1. Introducción y operaciones de matrices numéricas Comenzamos limpiando nuestra área de trabajo clear, clc, echo off, A=[1 2 3;4 0 3;9 3 2] A = 1 2 3 4 0 3 9 3 2 es

Más detalles

Matemáticas 2.º Bachillerato. Matemáticas 2.º Bachillerato. Matemáticas 2.º Bachillerato. Ejemplo:

Matemáticas 2.º Bachillerato. Matemáticas 2.º Bachillerato. Matemáticas 2.º Bachillerato. Ejemplo: Mapa conceptual Determinante de segundo orden Dada una matriz cuadrada de segundo orden: a a 11 12 A = a a 21 22 se llama determinante de A al número real: det (A)= A = a11 a 12 = a a a a a21 a22 11 22

Más detalles

Diagonalización de matrices, Semejanza.

Diagonalización de matrices, Semejanza. diagonalizacion.nb 1 Diagonalización de matrices, Semejanza. Practica 8, 28 de abril de 2004 En esta práctica aprenderemos/repasaremos los comandos: Eigenvalues[ matriz ] Calcula los autovalores de una

Más detalles

Contenido. 1 Definiciones y propiedades. 2. Método de la potencia. 3. Método de la potencia inversa. 4. Método de la potencia inversa desplazada

Contenido. 1 Definiciones y propiedades. 2. Método de la potencia. 3. Método de la potencia inversa. 4. Método de la potencia inversa desplazada ETS Minas: Métodos Matemáticos Resumen y ejemplos Tema 5: Valores y vectores propios Francisco Palacios Escuela Politécnica Superior de Ingeniería de Manresa Universidad Politécnica de Cataluña Octubre

Más detalles

(a) (0.5 puntos) Compruebe que esta ecuación tiene exactamente una solución en el intervalo

(a) (0.5 puntos) Compruebe que esta ecuación tiene exactamente una solución en el intervalo UNIVERSIDAD DIEGO PORTALES. FACULTAD DE INGENIERÍA. INSTITUTO DE CIENCIAS BÁSICAS. Cálculo Numérico, Control 1. Semestre Otoño 007 Problema 1. Se desea encontrar una raíz de la función f(x) = cos (x) x.

Más detalles

Diagonalización de matrices, Semejanza.

Diagonalización de matrices, Semejanza. para cada i de 1 a n. Cuando se encuentra un número real l y un vector no nulo x que verifican la relpractica6.nb 1 Diagonalización de matrices, Semejanza. Introducción Si A es una matriz real cuadrada

Más detalles

Cálculo Numérico. Curso Ejercicios: Preliminares I

Cálculo Numérico. Curso Ejercicios: Preliminares I Cálculo Numérico. Curso 07-08. Ejercicios: Preliminares I 1. (a) Compruebe que la inversa de una matriz, L, triangular inferior de orden n puede calcularse como sigue: Para j = 1,,..., n e i = j, j + 1,...,

Más detalles

3. Métodos de resolución

3. Métodos de resolución 1 3. Métodos de resolución Ecuaciones algebraicas lineales Ecuaciones algebraicas no lineales Métodos para una variable Métodos para multivariable 2 Ecuaciones Algebraicas Lineales No lineales Interval

Más detalles

Guía de uso de DERIVE. 2) Botones de acceso rápido Al colocar el cursor sobre el botón aparece un recuadro con su función

Guía de uso de DERIVE. 2) Botones de acceso rápido Al colocar el cursor sobre el botón aparece un recuadro con su función Sobre la pantalla principal de DERIVE distinguimos: 1) La barra del menú 2) Botones de acceso rápido Al colocar el cursor sobre el botón aparece un recuadro con su función UNIDAD DOCENTE DE MATEMÁTICAS

Más detalles

EXAMEN PARCIAL DE METODOS NUMERICOS (MB536)

EXAMEN PARCIAL DE METODOS NUMERICOS (MB536) UNIVERSIDAD NACIONAL DE INGENIERIA P.A. - FACULTAD DE INGENIERIA MECANICA // EXAMEN PARCIAL DE METODOS NUMERICOS (MB536) DURACION: MINUTOS SOLO SE PERMITE EL USO DE UNA HOJA DE FORMULARIO ESCRIBA CLARAMENTE

Más detalles

MATE 4031: Álgebra Lineal [ 4 + 6i 4i (a) Encuentre el polinomio característico de cada una de ellas.

MATE 4031: Álgebra Lineal [ 4 + 6i 4i (a) Encuentre el polinomio característico de cada una de ellas. Solución Asignación 9. Universidad de Puerto Rico, Río Piedras Facultad de Ciencias Naturales Departamento de Matemáticas San Juan, Puerto Rico MATE 43: Álgebra Lineal. Considere las siguientes matrices

Más detalles

Práctica 2ª : OPERADORES LÓGICOS Y RELACIONALES. CICLOS Y ESTRUCTURAS DE CONTROL. MÉTODOS DE RESOLUCIÓN DE UNA ECUACIÓN NO LINEAL.

Práctica 2ª : OPERADORES LÓGICOS Y RELACIONALES. CICLOS Y ESTRUCTURAS DE CONTROL. MÉTODOS DE RESOLUCIÓN DE UNA ECUACIÓN NO LINEAL. practica2sr.nb 1 Apellidos y Nombre: Práctica 2ª : OPERADORES LÓGICOS Y RELACIONALES. CICLOS Y ESTRUCTURAS DE CONTROL. MÉTODOS DE RESOLUCIÓN DE UNA ECUACIÓN NO LINEAL. Operadores lógicos y relacionales

Más detalles

Práctica IV: Métodos de Newton-Raphson y de la secante, para encontrar las raíces de una función.

Práctica IV: Métodos de Newton-Raphson y de la secante, para encontrar las raíces de una función. Práctica IV: Métodos de Newton-Raphson y de la secante, para encontrar las raíces de una función. Se suele llamar método de Newton-Raphson al método de Newton cuando se utiliza para calcular los ceros

Más detalles

Tema 5: Diagonalización de matrices: Apéndice

Tema 5: Diagonalización de matrices: Apéndice Tema : Diagonalización de matrices: Apéndice Más aplicaciones de la diagonalización. Diagonalización de matrices simétricas reales Tiene especial interés la diagonalización de matrices simétricas. Supongamos

Más detalles

Cursada Segundo Cuatrimestre 2012 Guía de Trabajos Prácticos Nro. 1

Cursada Segundo Cuatrimestre 2012 Guía de Trabajos Prácticos Nro. 1 Temas: Ambiente de trabajo MATLAB. Creación de matrices y vectores. Matrices pre-definidas. Operador dos puntos. Operaciones con matrices y vectores. Direccionamiento de elementos de matrices y vectores.

Más detalles

1 Método de la bisección. 1.1 Teorema de Bolzano Teorema 1.1 (Bolzano) Contenido

1 Método de la bisección. 1.1 Teorema de Bolzano Teorema 1.1 (Bolzano) Contenido E.T.S. Minas: Métodos Matemáticos Resumen y ejemplos Tema 3: Solución aproximada de ecuaciones Francisco Palacios Escuela Politécnica Superior de Ingeniería de Manresa Universidad Politécnica de Cataluña

Más detalles

Universidad Sergio Arboleda Álgebra Lineal 1 (201610) Ejercicios

Universidad Sergio Arboleda Álgebra Lineal 1 (201610) Ejercicios Álgebra Lineal 1 (2161) Prof: Otaivin Martínez Mármol (1) Encuentre el polinomio característico Calcule los valores y vectores propios de las siguientes matrices (a) [ ] 7 5 1 8 (b) [ ] 1 1 (c) 2 1 1 2

Más detalles

CURSO DE METODOS NUMERICOS Año Académico Curso Tercero de Matemáticas EXAMEN FINAL FEBRERO

CURSO DE METODOS NUMERICOS Año Académico Curso Tercero de Matemáticas EXAMEN FINAL FEBRERO Año Académico 2000-2001 Curso Tercero de Matemáticas EXAMEN FINAL FEBRERO 1. Dá el enunciado y demuestra el teorema de convergencia del método del punto fijo. (2 puntos) 2. Resuelve el siguiente sistema

Más detalles

3. Algoritmos de puntos interiores para. Programación Lineal Introducción CO-5411 (S08) 23/02/

3. Algoritmos de puntos interiores para. Programación Lineal Introducción CO-5411 (S08) 23/02/ CO-5411 S08) 23/02/2008 35 3. Algoritmos de puntos interiores para Programación Lineal 3.1. Introducción A nales de la década de los años 40, George B. Dantzig diseña el algoritmo Simplex y da comienzo

Más detalles

Introducción al Cálculo Simbólico a través de Maple

Introducción al Cálculo Simbólico a través de Maple 1 Introducción al Cálculo Simbólico a través de Maple Introducción A manera de introducción, podemos decir que los lenguajes computacionales de cálculo simbólico son aquellos que permiten la representación

Más detalles

MÉTODOS NUMÉRICOS - ALGUNAS INSTRUCCIONES EN DERIVE

MÉTODOS NUMÉRICOS - ALGUNAS INSTRUCCIONES EN DERIVE MÉTODOS NUMÉRICOS - ALGUNAS INSTRUCCIONES EN DERIVE Las siguientes instrucciones corresponden, en su mayoría, a funciones definidas por el profesor Julio C. Morales, como complemento a las utilidades del

Más detalles

Menor, cofactor y comatriz

Menor, cofactor y comatriz Menor, cofactor y comatriz Sea A una matriz cuadrada de orden n. Al quitarle la línea i y la columna j se obtiene una submatriz de orden n-1, que se denota habitualmente A i,j. Por ejemplo, con n = 4,

Más detalles

El método de la potencia para el cálculo del autovalor dominante de una matriz se basa en el siguiente teorema.

El método de la potencia para el cálculo del autovalor dominante de una matriz se basa en el siguiente teorema. Práctica 8 Cálculo de autovalores 8.1. Método de la potencia El método de la potencia para el cálculo del autovalor dominante de una matriz se basa en el siguiente teorema. Teorema 8.1.1 (M. de la potencia]

Más detalles

Ecuaciones lineales en una variable. Prof. Anneliesse Sánchez Adaptada por Caroline Rodriguez Departamento de Matemáticas UPR - Arecibo

Ecuaciones lineales en una variable. Prof. Anneliesse Sánchez Adaptada por Caroline Rodriguez Departamento de Matemáticas UPR - Arecibo Ecuaciones lineales en una variable Prof. Anneliesse Sánchez Adaptada por Caroline Rodriguez Departamento de Matemáticas UPR - Arecibo Qué es una ecuación? Una ecuación es una oración que expresa la igualdad

Más detalles

VALORES Y VECTORES PROPIOS

VALORES Y VECTORES PROPIOS VALORES Y VECTORES PROPIOS En diversos campos de la ingeniería y las matemáticas surge el problema de calcular los valores escalares λ y los vectores x 0 tales que para la matriz cuadrada A se cumple Ax

Más detalles

a n1 a n2 a nn Es decir, una forma cuadrática es un polinomio homogéneo de grado 2 y n variables.

a n1 a n2 a nn Es decir, una forma cuadrática es un polinomio homogéneo de grado 2 y n variables. Capítulo 7 Formas cuadráticas. Aunque, pueda parecernos que vamos a estudiar un nuevo concepto, un caso particular de las formas cudráticas ya ha sido estudiado, pues el cuadrado de la norma de un vector

Más detalles

Instituto Tecnológico de Lázaro Cárdenas Ingeniería Electrónica. Programa en MATLAB

Instituto Tecnológico de Lázaro Cárdenas Ingeniería Electrónica. Programa en MATLAB Instituto Tecnológico de Lázaro Cárdenas Ingeniería Electrónica Programa en MATLAB Asignatura: Análisis Numérico Docente: M.C. Julio César Gallo Sanchez Alumno: José Armando Lara Ramos 4 o Semestre Febrero

Más detalles

Módulo. = Asignación = = Comp. de igualdad!= Com. de desigualdad <= Comp. menor o igual >= Comp. mayor o igual AND lógico OR lógica.

Módulo. = Asignación = = Comp. de igualdad!= Com. de desigualdad <= Comp. menor o igual >= Comp. mayor o igual AND lógico OR lógica. EQUIVALENCIAS BÁSICAS ENTRE PASCAL Y C A continuación se presentan algunas equivalencias básicas entre estos lenguajes de programación : Operadores en lenguaje C: Operador Descripción % Módulo = Asignación

Más detalles

a ij x i x j = [x] t B A+At ) t = At +(A t ) t = At +A x i x j + a ij + a ji x j x i = s ij x i x j + s ji x j x i 2

a ij x i x j = [x] t B A+At ) t = At +(A t ) t = At +A x i x j + a ij + a ji x j x i = s ij x i x j + s ji x j x i 2 68 Matemáticas I : Álgebra Lineal Tema 7 Formas cuadráticas Aunque, pueda parecernos que vamos a estudiar un nuevo concepto, un caso particular de las formas cudráticas ya ha sido estudiado, pues el cuadrado

Más detalles

(3 p.) 3) Se considera la superficie z = z(x, y) definida implícitamente por la ecuación. 3x 2 z x 2 y 2 + 2z 3 3yz = 15.

(3 p.) 3) Se considera la superficie z = z(x, y) definida implícitamente por la ecuación. 3x 2 z x 2 y 2 + 2z 3 3yz = 15. Universidade de Vigo Departamento de Matemática Aplicada II E.T.S.I. Minas Cálculo I Curso 2012/2013 21 de junio de 2013 4 p.) 1) Se considera la función fx) = x 4 e 1 x 2. a) Calcular los intervalos de

Más detalles

Práctica 0: Introducción a Matlab. Matlab es un acrónimo: MATrix LABoratory

Práctica 0: Introducción a Matlab. Matlab es un acrónimo: MATrix LABoratory Práctica 0: Introducción a Matlab Matlab es un acrónimo: MATrix LABoratory Práctica 0: Introducción a Matlab Matlab es un acrónimo: MATrix LABoratory La ventana de Matlab muestra un escritorio dividido

Más detalles

DIAGONALIZACIÓN DE MATRICES

DIAGONALIZACIÓN DE MATRICES Tema 2 DIAGONALIZACIÓN DE MATRICES 2.1. Introducción El álgebra matricial proporciona herramientas elementales para simplificar y resolver problemas donde intervienen un número elevado de datos. El siguiente

Más detalles

Subrutinas en Fortran 95 para la resolución de ecuaciones de una variable

Subrutinas en Fortran 95 para la resolución de ecuaciones de una variable Subrutinas en Fortran 95 para la resolución de ecuaciones de una variable Pablo Santamaría v0.1 (Junio 2009) 1. Introducción En general, las raíces de una ecuación no lineal f(x) = 0 no pueden ser obtenidas

Más detalles

Resolución de ecuaciones no lineales

Resolución de ecuaciones no lineales Resolución de ecuaciones no lineales Contenidos Raíz de una ecuación Método de bisección El método de Newton-Raphson Método de la secante Orden de convergencia Comandos Matlab Ejemplo: una bola que flota

Más detalles

Introducción al MATLAB

Introducción al MATLAB Introducción al MATLAB Dr. Luis Javier Morales Mendoza FIEC Universidad Veracruzana Poza Rica - Tuxpan Índice 1. Introducción al Matlab 2. Operaciones Aritméticas 3. Vectores y Matrices 4. Funciones Matemáticas

Más detalles

y Matrices cuadradas.

y Matrices cuadradas. de Endomorfismos y Matrices cuadradas.. Problemas resueltos. Tema :. Problemas Resueltos 1 PROBLEMAS RESUELTOS 1. Sea f 0 End(ú 3 ) / f ( x, y, z ) = ( 2x - 2y + 3z, x + y + z, x + 3y - z) Estudiar si

Más detalles

Capítulo 1: Diagonalización de matrices

Capítulo 1: Diagonalización de matrices Capítulo : Diagonalización de matrices Matrices y determinantes Definición Una matriz es un arreglo rectangular de números reales a a a m a A a a m a n a n a nm La matriz es de orden n m si consta de n

Más detalles

a) (0,5 puntos) Calcula la matriz escalonada reducida de A. Cuál es el rango de A?

a) (0,5 puntos) Calcula la matriz escalonada reducida de A. Cuál es el rango de A? Asignatura: ÁLGEBRA LINEAL Fecha del examen: de Enero de 6 Fecha publicación notas: 9 de Enero de 6 Fecha revisión examen: de Enero de 6 Duración del examen: horas y minutos APELLIDOS: NOMBRE: Titulación:.

Más detalles

Cálculo de autovalores

Cálculo de autovalores Cálculo de autovalores Damián Ginestar Peiró Departamento de Matemática Aplicada Universidad Politécnica de Valencia Curso 2011-2012 (UPV) Cálculo de autovalores Curso 2011-2012 1 / 28 Índice 1 Preliminares

Más detalles

Algebra Lineal: Diagonalización de una Matriz Cuadrada. Departamento de Matemáticas. Intro. Diagonalizable

Algebra Lineal: Diagonalización de una Matriz Cuadrada. Departamento de Matemáticas. Intro. Diagonalizable una Matriz Algebra una Matriz una Matriz ducción En esta lectura veremos uno los temas más importantes l Álgebra Lineal que tiene aplicaciones fundamentales en Ingeniería. Éste es el tema la diagonalización

Más detalles

2. Sistemas de ecuaciones lineales

2. Sistemas de ecuaciones lineales 2 Sistemas de ecuaciones lineales 2 Ejercicios resueltos Ejercicio 2 Estudiar el número de condición de Frobenius de la matriz a b A a + ε b Solución: El determinante de A es A ab + ba + ε b ε Si b 0 y

Más detalles

Teoría Tema 8 Propiedades de los determinantes

Teoría Tema 8 Propiedades de los determinantes página 1/6 Teoría Tema 8 Propiedades de los determinantes Índice de contenido Propiedades...2 página 2/6 Propiedades 1. El determinante de una matriz coincide con el determinante de su traspuesta. A=A

Más detalles

Métodos Numéricos: Guía de estudio Tema 5: Solución aproximada de ecuaciones

Métodos Numéricos: Guía de estudio Tema 5: Solución aproximada de ecuaciones Métodos Numéricos: Guía de estudio Tema 5: Solución aproximada de ecuaciones Francisco Palacios Escuela Politécnica Superior de Ingeniería de Manresa Universidad Politécnica de Cataluña Abril 2009, versión

Más detalles

Ma3002. Matemáticas Avanzadas para Ingeniería: Potencias y Raíces de Números Complejos. Departamento de Matemáticas. Introducción.

Ma3002. Matemáticas Avanzadas para Ingeniería: Potencias y Raíces de Números Complejos. Departamento de Matemáticas. Introducción. Raíces Raíces Ma3002 Raíces Raíces Las potencias y las enteras números complejos son muy fáciles calcular cuando el número complejo está en la forma polar. Primeramente, veremos la forma polar un número

Más detalles

Solución numérica de sistemas de ecuaciones diferenciales.

Solución numérica de sistemas de ecuaciones diferenciales. 1 Solución numérica de sistemas de ecuaciones diferenciales. Formulación de ecuaciones de estado. La formulación de las ecuaciones de una red eléctrica en términos de las variables de estado permite encontrar

Más detalles