6.6. Diagonalización de matrices simétricas o hermitianas. Ejemplo de una diagonalización de una matriz simétrica

Tamaño: px
Comenzar la demostración a partir de la página:

Download "6.6. Diagonalización de matrices simétricas o hermitianas. Ejemplo de una diagonalización de una matriz simétrica"

Transcripción

1 6.6 Diagonalización de matrices simétricas o hermitianas Ejemplo de una diagonalización de una matriz simétrica Matrices hermitianas Los autovalores de las matrices reales simétricas o complejas hermitianas son reales Existe una fórmula que nos permite calcular el autovalor correspondiente a cualquier vector propio de una matriz. Si x un vector propio de una matriz A real o compleja, entonces la fórmula x Ax = x λ x = λ x, x = λ x implica que el autovalor de x es: λ = x Ax x. Esta fórmula tiene una consecuencia especial si A es una matriz hermitiana. Se llama matriz hermitiana a toda matriz A real o compleja que es igual a su traspuesta conjugada: A = A. Definición de matriz hermitiana Esta propiedad es equivalente a A = A T y en el caso de que A sea real simplemente significa que A es igual a su traspuesta, es decir, que es simétrica: las matrices hermitianas reales son exactamente las matrices reales simétricas. Supongamos que A es una matriz hermitiana. Entonces A = A T y con un simple cálculo se comprueba que el numerador en es necesariamente real porque su conjugado es él mismo: x Ax = x A x = x T A T x = x T A T x T A = A T por ser hermitiana. un número, como matriz, es simétrica. = x T A T T x T T = x Ax. De esto se deduce que λ es un número real y por tanto llegamos a la siguiente conclusión: TEOREMA 6.6. Para cualquier matriz compleja hermitiana o real simétrica de tamaño n n sus n autovalores son reales. Matrices ortogonalmente diagonalizables Se dice que una matriz real A es ortogonalmente diagonalizable si existe una diagonalización A = QDQ donde la matriz Q de autovectores es una matriz ortogonal, es decir Q = Q T. Esto es lo mismo que decir que A admite un sistema ortonormal de vectores propios. Versión de de diciembre de 06, :05 h.

2 Toda matriz real ortogonalmente diagonalizable es simétrica porque Si A = QDQ T entonces A T = QDQ T T = Q T T D T Q T = QDQ T = A. La situación análoga en el caso complejo y que engloba a la anterior del caso real es la de una matriz unitariamente diagonalizable. Una matriz compleja tiene esta propiedad si admite una diagonalización A = UDU en la que U es una matriz unitaria, es decir que cumple U = U. Un razonamiento similar al anterior demuestra que toda matriz unitariamente diagonalizable es hermitiana. Supongamos que A es una matriz hermitiana y que x es un vector propio de A con autovalor λ y x es otro vector propio con autovalor λ, es decir: Ax = λ x, x = 0 Ax = λ x, x = 0. Entonces si el producto escalar de x y x se multiplica por λ el resultado es el mismo que si se multiplica por λ : λ x, x = λ x, x = Ax, x = x Ax = x A x = Ax x = x, Ax = x, λ x = λ x, x = λ x, x. donde hemos tenido en cuenta que λ = λ porque los autovalores de una matriz hermitiana son reales. En consecuencia, si λ = λ entonces x, x = 0, es decir: Para cualquier matriz hermitiana, los vectores propios correspondientes a autovalores diferentes son ortogonales. Y también: Para cualquier matriz hermitiana, los espacios propios correspondientes a autovalores diferentes son ortogonales: Si λ = λ, entonces E λ E λ. En particular esto es cierto para cualquier matriz hermitiana real, es decir para cualquier matriz real simétrica. Corolario: Para toda matriz A hermitiana n n que sea diagonalizable existe una base ortogonal de C n formada por vectores propios de A. Y, en particular, Para toda matriz A real simétrica n n que sea diagonalizable existe una base ortogonal de R n formada por vectores propios de A. Si existe una base ortogonal de R n o de C n en el caso no real formada por vectores propios de A, podemos normalizar cada vector de esa base y obtener una base ortonormal. Entonces, la matriz de diagonalización correspondiente es una matriz en la que el producto escalar de dos columnas cualesquiera es cero si son distintas y si son la misma. Esto significa que en esa diagonalización de A, A = UD U U verifica U U = I lo que en el caso real significa: U T U = I. Toda matriz que cumpla esta propiedad se llama una matriz unitaria evidentemente, las matrices unitarias reales son lo mismo que las matrices ortogonales que ya encontramos en el tema anterior.

3 Toda matriz que admita una diagonalización mediante una matriz unitaria se dice que es unitariamente diagonalizable. Así, el corolario anterior es equivalente a decir que toda matriz hermitiana diagonalizable es unitariamente diagonalizable. Y en el caso de las matrices reales: toda matriz real simétrica diagonalizable es ortogonalmente diagonalizable. El teorema de Schur Los resultados anteriores los hemos demostrado con razonamientos muy sencillos y observaciones muy simples. En realidad se puede demostrar mucho más con algo más de esfuerzo: lo verdaderamente sorprendente de las matrices hermitianas/reales simétricas es que en los anteriores resultados y, en particular, en los del último párrafo sobra la hipótesis de que la matriz sea diagonalizable, pues toda matriz hermitiana es diagonalizable y toda matriz real simétrica es diagonalizable. Esto es consecuencia de un teorema conocido como teorema de Schur según el cual absolutamente todas las matrices cuadradas admiten una factorización de Schur. DEFINICIÓN 6.6. Una factorización de Schur de una matriz A es una factorización de la forma: factorización de Schur donde U es una matriz unitaria y R es una matriz triangular superior. A = UR U 3 TEOREMA 6.6. Teorema de Schur Toda matriz cuadrada admite una factorización de Schur. Si A es una matriz real, una factorización real de Schur de A es una factorización de Schur en la que la matriz U también es real y por tanto es una matriz ortogonal. El teorema de Schur para matrices reales dice: factorización real de Schur TEOREMA Teorema de Schur para matrices reales Para que una matriz real admita una factorización real de Schur es condición necesaria y suficiente que todos sus autovalores sean reales. Más abajo se indican las ideas principales en que se basa la demostración de este teorema, pero antes de eso vamos a establecer la siguiente consecuencia importante: Corolario: Toda matriz real simétrica es diagonalizable. Para demostrarlo, supongamos que A es una matriz real simétrica. Según vimos antes pág.?? todos los autovalores de A son reales y por tanto, según el teorema de Schur, A admite una factorización real de Schur: A = UR U. Entonces R = U T A U y R T = U T A U T = U T A T U T T = U T A U = R luego R es simétrica y triangular, lo que implica que es diagonal y la factorización de Schur de A es realmente una diagonalización ortogonal de A. 3

4 En la demostración del teorema de Schur se usa el siguiente cálculo de matrices por bloques: Ejercicio: Si a R, v R n y A, B, C son tres matrices n n, con C inversible, se cumple: 0 a v T C 0 a v T =. 4 0 A 0 B 0 C 0 ABC Demostración del teorema de Schur para matrices reales Que la condición todos los autovalores de A son reales es necesaria es evidente porque la factorización 3 implica que A y R tienen los mismos autovalores y por tanto los autovalores de A son reales por ser los elementos diagonales de R que es real por ser producto de matrices reales: R = U T A U. La parte más interesante consiste en demostrar que la condición de autovalores reales es también suficiente: Supongamos que A es una matriz real n n con n autovalores reales. Sea λ un autovalor de A y sea u un autovector unitario del autovalor λ o sea que Au = λ. Sean ahora u,..., u n otros vectores unitarios ortogonales a u y tales que {u, u,..., u n } es una base ortonormal de R n. Entonces la matriz U = [u u... u n ] cuyas columnas son los vectores de esta base es una matriz cuadrada ortogonal: U T U = I y U = U T. Consideremos ahora la matriz U A U. Su primera columna es el producto de la matriz U A multiplicada por la primera columna de U, es decir U Au = U λ u = λ U u = λ e donde e es la primera columna de la matriz identidad. Vemos entonces que U A U es de la forma U A U = λ v T y por tanto λ v T A = U U donde A es una matriz n n. El resto de la demostración es simplemente ver que los autovalores de A son los restantes autovalores de A, λ,..., λ n, y por tanto A también admite una factorización análoga a la de A; entonces por la propiedad 4 tenemos que A es: v T λ v T 0 A A = U λ λ v T 0 U U U 0 = U λ v T U 0 U U U y continuando de esta manera se llega a una factorización de Schur de A. Sólo falta una cuestión: Por qué los autovalores de A son los restantes autovalores de A? Una forma sencilla de ver esto consiste en observar que los autovalores de A son los mismos que los autovalores de U A U, los cuales son las raices del polinomio λ v T det 0 λ λ v T λ = det = λ 0 I n λi λ deta λi n, n de aquí que los autovalores de A son λ junto con los autovalores de A. Caracterización de matrices ortogonalmente/unitariamente diagonalizables Del teorema de Schur hemos deducido que las matrices reales simétricas son diagonalizables, lo cual, junto con los resultados anteriores, nos permite llegar al siguiente TEOREMA Caracterización de las matrices reales ortogonalmente diagonalizables Las matrices reales ortogonalmente diagonalizables son precisamente las matrices reales simétricas. 4

5 El caso de las matrices complejas es un poco diferente porque de una diagonalización unitaria no se deduce que la matriz sea hermitiana. Se deduce solamente que la matriz es normal y además es fácil establecer el siguiente TEOREMA Caracterización de las matrices unitariamente diagonalizables Las matrices unitariamente diagonalizables son precisamente las matrices normales. Qué es una matriz normal?. Es aquella que conmuta con su conjugada traspuesta: AA = A A lo que en el caso real significa: AA T = A T A. Definición de matriz normal. Esta propiedad es justamente la propiedad que, si la posee una matriz triangular, implica que es diagonal. En otras palabras: El conjunto de las matrices diagonales es la intersección del conjunto de las matrices normales y el conjunto de las matrices triangulares. Veamos el porqué de esto antes de demostrar el teorema de caracterización: Toda matriz triangular y normal es una matriz diagonal. Demostración: Esta es una típica demostración por el método del descenso. Veremos que toda matriz A que sea triangular y normal es de la forma a 0 A = 5 donde A es también triangular y normal. Se deduce entonces por descenso que A es diagonal. Para ver que A es de la forma indicada basta comparar el elemento en posición, de AA con el de A A. Sean a,..., a n los elementos de la primera fila de A, que supondremos triangular superior. El primer elemento de AA es a + + a n, mientras que el de A A es simplemente a porque los elementos de la primera fila de A son a, 0,..., 0 y los de la primera columna de A son a, 0,..., 0. Igualando, a + + a n = a deducimos que a + + a n = 0, lo cual implica a = 0,..., a n = 0 y por tanto A es de la forma 5, donde evidentemente A es triangular del mismo tipo que A. Pero además, A es una matriz normal porque al serlo A, tenemos: AA a 0 a 0 a = 0 A = 0 A, y por otro lado: A a 0 A = 0 A a 0 a = 0 0 A A, así que el ser A normal implica que también A lo es. Demostración del teorema de caracterización La demostración del teorema de caracterización de matrices unitariamente diagonalizables tiene dos partes: En la primera parte se demuestra que toda matriz unitariamente diagonalizable es normal y en la segunda se demuestra que toda matriz normal es unitariamente diagonalizable. 5

6 Primera parte: Toda matriz unitariamente diagonalizable es normal. Para demostrar esto supongamos que A es unitariamente diagonalizable; entonces su conjugada traspuesta es A = UDU = U D U = UD U y la demostración de que A es una matriz normal es un simple cálculo que sólo usa la conmutatividad de las matrices diagonales y que U es la inversa de U. A A = UD U UDU = UD DU = UDD U = UDU UD U = AA. Segunda parte: Toda matriz normal es unitariamente diagonalizable. En esta parte es donde usamos la propiedad de que toda matriz triangular y normal es diagonal. La clave es demostrar que la matriz R de la factorización de Schur de una matriz normal también es normal con lo cual, al ser triangular y normal, es diagonal. Esto es de nuevo un simple cálculo: Si A es una matriz normal y A = URU es su factorización de Schur, entonces R = U AU, R = U A U y R R = U A U U AU = U A AU = U AA U = U AU U A U = RR En consecuencia, R es diagonal y la factorización de Schur de una matriz normal es en realidad una diagonalización ortogonal. Con esto queda demostrado el teorema de caracterización. Ejercicio: Demostrar que la matriz A = 0 0 es normal y hallar una diagonalización unitaria de ella. Admite una diagonalización ortogonal? Solución: A = i i i 0 0 i i i. A No tiene diagonalización ortogonal porque no es simétrica. 6

Ortogonalidad y Valores Singulares

Ortogonalidad y Valores Singulares Apuntes de Álgebra Lineal Capítulo 6 Ortogonalidad y Valores Singulares En este último tema de esta asignatura vamos a estudiar aquellas propiedades de los espacios vectoriales y de las matrices que dependen

Más detalles

6.8. Descomposición mediante valores singulares. v 2 =

6.8. Descomposición mediante valores singulares. v 2 = 68 Descomposición mediante valores singulares Los valores singulares de una matriz m n Supongamos que A es una matriz real cualquiera Los autovalores de A T A tienen la siguiente propiedad A T Ax = λx

Más detalles

Diagonalización. Tema Valores y vectores propios Planteamiento del problema Valores y vectores propios

Diagonalización. Tema Valores y vectores propios Planteamiento del problema Valores y vectores propios 61 Matemáticas I : Álgebra Lineal Tema 6 Diagonalización 61 Valores y vectores propios 611 Planteamiento del problema Problema general de diagonalización Dado un operador lineal f sobre un espacio vectorial

Más detalles

Podemos pues formular los dos problemas anteriores en términos de matrices.

Podemos pues formular los dos problemas anteriores en términos de matrices. Tema 5 Diagonalización 51 Introducción Valores y vectores propios 511 Planteamiento del problema Problema general de diagonalización Dado un operador lineal f sobre un espacio vectorial V de dimensión

Más detalles

AUTOVALORES Y AUTOVECTORES

AUTOVALORES Y AUTOVECTORES 12 de Julio de 2011 AUTOVALORES Y AUTOVECTORES (Clase 01) Departamento de Matemática Aplicada Facultad de Ingeniería Universidad Central de Venezuela 1 Puntos a tratar 1. Valores y vectores propios 2.

Más detalles

AP = A p 1 p 2 p n = Ap 1 Ap 2. λ 1 p 21 λ 2 p 22 λ n p 2n. .. = λ 1 p 1 λ 2 p 2

AP = A p 1 p 2 p n = Ap 1 Ap 2. λ 1 p 21 λ 2 p 22 λ n p 2n. .. = λ 1 p 1 λ 2 p 2 Capítulo 6 Diagonalización 6 Valores y vectores propios 6 Planteamiento del problema Problema general de diagonalización Dado un operador lineal f sobre un espacio vectorial V, nos planteamos el problema

Más detalles

Tema 2. Aplicaciones lineales. Diagonalización de endomorfismos.

Tema 2. Aplicaciones lineales. Diagonalización de endomorfismos. Tema 2. Aplicaciones lineales. Diagonalización de endomorfismos. Álgebra Lineal Escuela Politécnica Superior Universidad de Málaga Emilio Muñoz-Velasco (Basado en los apuntes de Jesús Medina e Inmaculada

Más detalles

Solución de problemas I 1

Solución de problemas I 1 Universidad Autónoma de Madrid Álgebra II. Físicas. Curso 5 6 Solución de problemas I Álgebra II Curso 5-6. Proyecciones en el producto escalar estándar Ejercicio 7.7. (a) Dada la ecuación x + y z, dar

Más detalles

c-inversa o inversa generalizada de Rao

c-inversa o inversa generalizada de Rao c-inversa o inversa generalizada de Rao Definición.- Sea A m n. Se dice que una matriz A c de orden n m es una c-inversa o inversa generalizada en el sentido de Rao si y sólo si se verifica AA c A = A.

Más detalles

a n1 a n2 a nn Es decir, una forma cuadrática es un polinomio homogéneo de grado 2 y n variables.

a n1 a n2 a nn Es decir, una forma cuadrática es un polinomio homogéneo de grado 2 y n variables. Capítulo 7 Formas cuadráticas. Aunque, pueda parecernos que vamos a estudiar un nuevo concepto, un caso particular de las formas cudráticas ya ha sido estudiado, pues el cuadrado de la norma de un vector

Más detalles

a ij x i x j = [x] t B A+At ) t = At +(A t ) t = At +A x i x j + a ij + a ji x j x i = s ij x i x j + s ji x j x i 2

a ij x i x j = [x] t B A+At ) t = At +(A t ) t = At +A x i x j + a ij + a ji x j x i = s ij x i x j + s ji x j x i 2 68 Matemáticas I : Álgebra Lineal Tema 7 Formas cuadráticas Aunque, pueda parecernos que vamos a estudiar un nuevo concepto, un caso particular de las formas cudráticas ya ha sido estudiado, pues el cuadrado

Más detalles

3.7. Determinantes. Definición. El determinante de una matriz cuadrada es la suma equilibrada de todos esos posibles Definición de determinante.

3.7. Determinantes. Definición. El determinante de una matriz cuadrada es la suma equilibrada de todos esos posibles Definición de determinante. 37 Determinantes 11 Definición de determinante Para calcular el determinante de una matriz cuadrada de orden n tenemos que saber elegir n elementos de la matriz de forma que tomemos solo un elemento de

Más detalles

Tema 2: Diagonalización

Tema 2: Diagonalización TEORÍA DE ÁLGEBRA II: Tema 2. DIPLOMATURA DE ESTADÍSTICA 1 Tema 2: Diagonalización 1 Introducción Sea f : R n R n lineal. Dada una base B de R n podemos asociar a f la matriz A 1 = [f, B] M n. Si C es

Más detalles

RESUMEN DEL TEMA 7 VALORES Y VECTORES PROPIOS

RESUMEN DEL TEMA 7 VALORES Y VECTORES PROPIOS RESUMEN DEL TEMA 7 VALORES Y VECTORES PROPIOS 1. Determinantes El determinante de una matriz cuadrada n n A = a 21 a 22 a 2n a n1 a n2 a nn es un número real, y se representa por: A = a 21 a 22 a 2n a

Más detalles

Clase 7 Herramientas de Álgebra Lineal

Clase 7 Herramientas de Álgebra Lineal Clase 7 Herramientas de Álgebra Lineal 1 Formas cuadráticas La descomposición en valores singulares 3 Normas de matrices 4 Ejercicios Dada una matriz M R n n, la función escalar x T Mx, donde x R n, es

Más detalles

Descomposición en valores singulares Notas para los cursos 21 y 22 (J.L. Mancilla Aguilar)

Descomposición en valores singulares Notas para los cursos 21 y 22 (J.L. Mancilla Aguilar) Valores Singulares Descomposición en valores singulares Notas para los cursos y (JL Mancilla Aguilar) Tanto los valores singulares como la descomposición en valores singulares de una matriz son conceptos

Más detalles

Tema 5: Diagonalización de matrices: Apéndice

Tema 5: Diagonalización de matrices: Apéndice Tema : Diagonalización de matrices: Apéndice Más aplicaciones de la diagonalización. Diagonalización de matrices simétricas reales Tiene especial interés la diagonalización de matrices simétricas. Supongamos

Más detalles

a n1 a n2 a nn x n a ij x i x j = [x] t B A+At ) t = At +(A t ) t = At +A x j x i = s ij x i x j + s ji x j x i 2 x i x j + a ij + a ji

a n1 a n2 a nn x n a ij x i x j = [x] t B A+At ) t = At +(A t ) t = At +A x j x i = s ij x i x j + s ji x j x i 2 x i x j + a ij + a ji 16 Fundamentos de Matemáticas : Álgebra Lineal Capítulo 1 Formas cuadráticas Aunque, pueda parecernos que vamos a estudiar un nuevo concepto, un caso particular de las formas cudráticas ya ha sido estudiado,

Más detalles

Águeda Mata y Miguel Reyes, Dpto. de Matemática Aplicada, FI-UPM 1. Se llama producto escalar sobre un espacio vectorial real V a cualquier aplicación

Águeda Mata y Miguel Reyes, Dpto. de Matemática Aplicada, FI-UPM 1. Se llama producto escalar sobre un espacio vectorial real V a cualquier aplicación Águeda Mata y Miguel Reyes, Dpto. de Matemática Aplicada, FI-UPM 1 6 Espacios euclídeos 6.1 Producto escalar. Espacio euclídeo Se llama producto escalar sobre un espacio vectorial real V a cualquier aplicación

Más detalles

6.5.7 Orientación de un espacio vectorial eucĺıdeo Producto vectorial Diagonalización de formas bilineales simétricas...

6.5.7 Orientación de un espacio vectorial eucĺıdeo Producto vectorial Diagonalización de formas bilineales simétricas... Contents 6 Formas Bilineales y Producto Escalar 3 6.1 Formas bilineales............................... 3 6.1.1 Matriz de una forma bilineal....................... 4 6.1. Formas bilineales simétricas.......................

Más detalles

Capítulo 1: Diagonalización de matrices

Capítulo 1: Diagonalización de matrices Capítulo : Diagonalización de matrices Matrices y determinantes Definición Una matriz es un arreglo rectangular de números reales a a a m a A a a m a n a n a nm La matriz es de orden n m si consta de n

Más detalles

2.1 Introducción. Propiedades.

2.1 Introducción. Propiedades. 19 2 MATRICES II: DETERMINANTES En este segundo capítulo de matrices, aprenderemos a utilizar una herramienta muy importante como son los determinantes Gracias a ellos, podremos calcular la inversa de

Más detalles

Determinantes. Reducción de matrices. Caso diagonalizable

Determinantes. Reducción de matrices. Caso diagonalizable Tema 4 Determinantes Reducción de matrices Caso diagonalizable En este tema consideraremos matrices cuadradas y, para ellas, introduciremos el concepto de autovalor de una matriz Veremos también cómo algunas

Más detalles

6.7. Clasificación de formas cuadráticas

6.7. Clasificación de formas cuadráticas 6.7 Clasificación de s s 1.1. Definición de s s en R n El concepto básico que sirve para definir una es el de polinomio homogéneo de segundo grado en varias variables. En toda esta sección sobreentenderemos

Más detalles

Álgebra Lineal - Grado de Estadística. Examen final 26 de junio de 2013 APELLIDOS, NOMBRE:

Álgebra Lineal - Grado de Estadística. Examen final 26 de junio de 2013 APELLIDOS, NOMBRE: Álgebra Lineal - Grado de Estadística Examen final de junio de APELLIDOS, NOMBRE: DNI: Firma Primer parcial Ejercicio ( Sea A una matriz simétrica definida positiva de orden n y v R n Pruebe que la matriz

Más detalles

ÁLGEBRA LINEAL I Algunas soluciones a la Práctica 3

ÁLGEBRA LINEAL I Algunas soluciones a la Práctica 3 ÁLGEBRA LINEAL I Algunas soluciones a la Práctica 3 Matrices y determinantes (Curso 2011 2012) 2. Sea A una matriz diagonal n n y supongamos que todos los elementos de su diagonal son distintos entre sí.

Más detalles

Vectores y Valores Propios

Vectores y Valores Propios Capítulo 11 Vectores y Valores Propios Las ideas de vector y valor propio constituyen conceptos centrales del álgebra lineal y resultan una valiosa herramienta en la solución de numerosos problemas de

Más detalles

UNIVERSIDAD SIMON BOLIVAR MA1116 abril-julio de 2009 Departamento de Matemáticas Puras y Aplicadas. Ejercicios sugeridos para :

UNIVERSIDAD SIMON BOLIVAR MA1116 abril-julio de 2009 Departamento de Matemáticas Puras y Aplicadas. Ejercicios sugeridos para : IX / 9 UNIVERSIDAD SIMON BOLIVAR MA6 abril-julio de 9 Ejercicios sugeridos para : los temas de las clases del 3 de junio y de julio de 9. Temas : Autovalores y autovectores. Matrices similares; diagonalización.

Más detalles

Sesión 18: Diagonalización (I) Método práctico para diagonalizar una matriz cuadrada A M nxn K

Sesión 18: Diagonalización (I) Método práctico para diagonalizar una matriz cuadrada A M nxn K Sesión 8: Diagonalización (I) Método práctico para diagonalizar una matriz cuadrada A M nxn K ) Calculamos los valores propios de A y sus multiplicidades algebraicas con: d A λ = det A λi nxn = Si d A

Más detalles

2 Polinomio característico de una matriz

2 Polinomio característico de una matriz Lección 4: Teoría de Operadores 1 Semejanza Sean A, B M n,n. Se dice A es semejante con B cuando existe una matriz regular P GL n de suerte que B = P 1 AP. Si A es semejante con B, entonces B es semejante

Más detalles

ÁLGEBRA Ejercicios no resueltos de la Práctica 3

ÁLGEBRA Ejercicios no resueltos de la Práctica 3 ÁLGEBRA Ejercicios no resueltos de la Práctica 3 Matrices y determinantes (Curso 2007 2008) 15. Encontrar la (única) respuesta correcta, de entre las indicadas, a las siguientes cuestiones: (b) En una

Más detalles

Tema 1. 1 Álgebra lineal. Aurea Grané Departamento de Estadística Universidad Carlos III de Madrid. 1.1 Vectores de R n. 1. Vectores. 2.

Tema 1. 1 Álgebra lineal. Aurea Grané Departamento de Estadística Universidad Carlos III de Madrid. 1.1 Vectores de R n. 1. Vectores. 2. Aurea Grané. Máster en Estadística. Universidade Pedagógica. 1 Aurea Grané. Máster en Estadística. Universidade Pedagógica. 2 Tema 1 Álgebra lineal 1. Vectores 2. Matrices 1 Álgebra lineal Aurea Grané

Más detalles

Cálculo de autovalores

Cálculo de autovalores Cálculo de autovalores Damián Ginestar Peiró Departamento de Matemática Aplicada Universidad Politécnica de Valencia Curso 2011-2012 (UPV) Cálculo de autovalores Curso 2011-2012 1 / 28 Índice 1 Preliminares

Más detalles

TEMA III: DIAGONALIZACIÓN.

TEMA III: DIAGONALIZACIÓN. TEMA III: DIAGONALIZACIÓN. OBJETIVOS: Generales: 1. Captar el motivo que justifica el problema de la diagonalización de endomorfismos. 2. Resolver y aplicar dicho problema cuando sea posible. Específicos:

Más detalles

Matrices y Sistemas de Ecuaciones lineales

Matrices y Sistemas de Ecuaciones lineales Matrices y Sistemas de Ecuaciones lineales Llamaremos M m n (K) al conjunto de las matrices A = (a ij ) (i = 1, 2,..., m; j = 1, 2,..., n) donde los elementos a ij pertenecen a un cuerpo K. Las matrices,

Más detalles

Tema 6: Diagonalización de matrices

Tema 6: Diagonalización de matrices Tema 6: Diagonalización de matrices La intención en este tema es, dada una matriz cuadrada, ver si existe otra matriz semejante a ella que sea diagonal. Recordemos del Tema 4 que dos matrices cuadradas

Más detalles

3.1. Operaciones con matrices. (Suma, resta, producto y traspuesta)

3.1. Operaciones con matrices. (Suma, resta, producto y traspuesta) Operaciones con matrices Suma, resta, producto y traspuesta Suma, resta y multiplicación por escalares Las matrices de un tamaño fijo m n se pueden sumar entre sí y esta operación de sumar se puede definir

Más detalles

Diagonalización de matrices

Diagonalización de matrices 7 Diagonalización de matrices 7.1. Matrices diagonalizables Existen diversos procesos en los que el estado en cada uno de sus pasos se puede representar por un determinado vector y en los que, además,

Más detalles

dia G o n a l i z a c i ó n

dia G o n a l i z a c i ó n Unidad elementos característicos dia G o n a l i z a c i ó n Objetivos: Al inalizar la unidad, el alumno: Encontrará los valores y los vectores característicos de una matriz. Utilizará los elementos característicos

Más detalles

Curso Departamento de Matemática Aplicada a las Tecnologías de la Información y las Comunicaciones

Curso Departamento de Matemática Aplicada a las Tecnologías de la Información y las Comunicaciones Tema 5. ÁLGEBRA Diagonalización. Curso 217-218 José Juan Carreño Carreño Departamento de Matemática Aplicada a las Tecnologías de la Información y las Comunicaciones Escuela Técnica Superior de Ingeniería

Más detalles

PROBLEMAS DE ÁLGEBRA LINEAL INGENIERÍA DE TELECOMUNICACIONES - E.T.S.I.T. CURSO 2005/06

PROBLEMAS DE ÁLGEBRA LINEAL INGENIERÍA DE TELECOMUNICACIONES - E.T.S.I.T. CURSO 2005/06 PROBLEMAS DE ÁLGEBRA LINEAL INGENIERÍA DE TELECOMUNICACIONES - E.T.S.I.T. CURSO 200/06 1. Utilizar el método de eliminación de Gauss para resolver el sistema de ecuaciones lineales siguiente: 2 x 1 2 x

Más detalles

Geometría afín y proyectiva, 2016 SEMANA 4

Geometría afín y proyectiva, 2016 SEMANA 4 Geometría afín y proyectiva, 2016 SEMANA 4 Sonia L. Rueda ETS Arquitectura. UPM September 30, 2016 Geometría afín y proyectiva 1. Álgebra Lineal 2. Geometría afín y eucĺıdea 3. Cónicas y cuádricas Álgebra

Más detalles

Tema I. Capítulo 5. Equivalencia, congruencia y semejanza de matrices.

Tema I. Capítulo 5. Equivalencia, congruencia y semejanza de matrices. 5 Equivalencia, congruencia y semejanza de matrices 1 Equivalencia de matrices por filas 11 Definición y propiedades Definición 11 Dos matrices A, B M m n se dicen equivalentes por filas o equivalentes

Más detalles

Tema 5: Espacios Eucĺıdeos.

Tema 5: Espacios Eucĺıdeos. Espacios Euclídeos 1 Tema 5: Espacios Eucĺıdeos. 1. Producto escalar. Espacios eucĺıdeos. Definición. Sea E un R-espacio vectorial y sea f : E E R una forma bilineal simétrica. Se dice que f es un producto

Más detalles

2.5 Ejercicios... 59

2.5 Ejercicios... 59 Índice General 1 Espacios vectoriales 1 1.1 Espacios vectoriales y subespacios......................... 1 1.1.1 Preliminares................................. 1 1.1.2 Espacios vectoriales.............................

Más detalles

Capítulo V. Valores y vectores propios. Diagonalización de operadores lineales.

Capítulo V. Valores y vectores propios. Diagonalización de operadores lineales. Capítulo V Valores y vectores propios. Diagonalización de operadores lineales. Hemos visto que la aplicaciones lineales de en están definidas a través de una expresión de la forma ; pero esta fórmula puede

Más detalles

Práctica 5. Autovalores y autovectores. Diagonalización de matrices y de transformaciones lineales.

Práctica 5. Autovalores y autovectores. Diagonalización de matrices y de transformaciones lineales. Práctica 5 Autovalores y autovectores Diagonalización de matrices y de transformaciones lineales Nota: salvo indicación particular, se considera que todas las matrices pertenecen a C n n 1 Encuentre los

Más detalles

Soluciones a los ejercicios del examen final C =. 1 0

Soluciones a los ejercicios del examen final C =. 1 0 Universidade de Vigo Departamento de Matemática Aplicada II E T S E de Minas Álgebra Lineal Curso 205/6 de enero de 206 Soluciones a los ejercicios del examen final Se considera el subespacio U {X M 2

Más detalles

Álgebra Lineal. Tema 11. El Teorema Espectral en R. Grado en Ingeniería Informática Doble Grado en Ingeniería Informática y Administración de Empresas

Álgebra Lineal. Tema 11. El Teorema Espectral en R. Grado en Ingeniería Informática Doble Grado en Ingeniería Informática y Administración de Empresas Álgebra Lineal Tema. El Teorema Espectral en R Grado en Ingeniería Informática Doble Grado en Ingeniería Informática y Administración de Empresas AUTORES: J. S ALAS, A. T ORRENTE Y E.J.S. V ILLASEÑOR Índice

Más detalles

Valores y Vectores Propios

Valores y Vectores Propios Valores y Vectores Propios Iván Huerta Facultad de Matemáticas Pontificia Universidad Católica de Chile ihuerta@mat.puc.cl Segundo Semestre, 1999 Definición Valores y Vectores Propios Valores y Vectores

Más detalles

DIAGONALIZACIÓN DE MATRICES CUADRADAS

DIAGONALIZACIÓN DE MATRICES CUADRADAS DIAGONALIZACIÓN DE MATRICES CUADRADAS.- Considerar los vectores u = (, -, ) y v = (, -, ) de : a) Escribir, si es posible, los vectores (, 7, -4) y (, -5, 4) como combinación lineal de u y v. b) Para qué

Más detalles

VALORES Y VECTORES PROPIOS

VALORES Y VECTORES PROPIOS VALORES Y VECTORES PROPIOS En diversos campos de la ingeniería y las matemáticas surge el problema de calcular los valores escalares λ y los vectores x 0 tales que para la matriz cuadrada A se cumple Ax

Más detalles

Métodos Estadísticos Multivariados

Métodos Estadísticos Multivariados Métodos Estadísticos Multivariados Victor Muñiz ITESM Victor Muñiz (ITESM) Métodos Estadísticos Multivariados Agosto-Diciembre 2011 1 / 34 Álgebra matricial y vectores aleatorios Una matriz es un arreglo

Más detalles

Álgebra Lineal y Geometría I. Prueba 3. Grupo A. 12 de marzo de (

Álgebra Lineal y Geometría I. Prueba 3. Grupo A. 12 de marzo de ( Álgebra Lineal y Geometría I. Prueba 3. Grupo A. 2 de marzo de 208. Apellidos: Nombre: DNI: Ejercicio.-(4 puntos) Se considera la matriz siguiente: A = 2 0 3 0 2. Calcule W = null(a 2I), W 2 = null(a 4I)

Más detalles

ÁLGEBRA LINEAL. EXAMEN EXTRAORDINARIO 2 de julio de 2012 Duración del examen: 3 horas Fecha publicación notas: 11 de julio

ÁLGEBRA LINEAL. EXAMEN EXTRAORDINARIO 2 de julio de 2012 Duración del examen: 3 horas Fecha publicación notas: 11 de julio ÁLGEBRA LINEAL EXAMEN EXTRAORDINARIO 2 de julio de 22 Duración del examen: 3 horas Fecha publicación notas: de julio Fecha revisión examen: 3 de julio Apellidos: Nombre: Grupo: Titulación: ESCRIBA EL APELLIDO

Más detalles

APÉNDICE A. Algebra matricial

APÉNDICE A. Algebra matricial APÉNDICE A Algebra matricial El estudio de la econometría requiere cierta familiaridad con el álgebra matricial. La teoría de matrices simplifica la descripción, desarrollo y aplicación de los métodos

Más detalles

1. DIAGONALIZACIÓN Y FORMAS CANÓNICAS

1. DIAGONALIZACIÓN Y FORMAS CANÓNICAS 1 1. DIAGONALIZACIÓN Y FORMAS CANÓNICAS Sea f : V V un endomorfismo de V, f End(V, con V un K-espacio vectorial de dimensión n, y sean B = {e 1,..., e n } B = {e 1,..., e n} bases de V. La matriz de f

Más detalles

ALGEBRA LINEAL Segundo Semestre. Parte II

ALGEBRA LINEAL Segundo Semestre. Parte II 1 Universidad Nacional de La Plata Facultad de Ciencias Astronómicas y Geofísicas ALGEBRA LINEAL 2015 Segundo Semestre Parte II 2 1. Valores y Vectores propios. Diagonalización.Forma de Jordan. 1.1. Polinomios

Más detalles

Diagonalización de matrices

Diagonalización de matrices Diagonalización de matrices María Muñoz Guillermo maria.mg@upct.es U.P.C.T. Matemáticas I M. Muñoz (U.P.C.T.) Diagonalización de matrices Matemáticas I 1 / 22 Valores y vectores propios de una matriz Definición

Más detalles

5. Autovalores y autovectores

5. Autovalores y autovectores 172 Autovalores y autovectores Al ser x 0 = y = P 1 x 0yportanto,λ es un autovalor de A. Recíprocamente, si λ es un autovalor de A existe un vector x 0talque A x = λx y por tanto, 5. Autovalores y autovectores

Más detalles

A cada matriz n-cuadrada A = (ai j ) se le asigna un escalar particular denominado determinante de A, denotado por det (A), A o

A cada matriz n-cuadrada A = (ai j ) se le asigna un escalar particular denominado determinante de A, denotado por det (A), A o DETERMINANTES A cada matriz n-cuadrada A = (ai j ) se le asigna un escalar particular denominado determinante de A, denotado por det (A), A o Una tabla ordenada n ð n de escalares situada entre dos líneas

Más detalles

Álgebra II(61.08, 81.02) Segundo cuatrimestre 2017 Práctica 4. Autovalores y autovectores de matrices. Diagonalización.

Álgebra II(61.08, 81.02) Segundo cuatrimestre 2017 Práctica 4. Autovalores y autovectores de matrices. Diagonalización. Álgebra II(6108, 8102) Segundo cuatrimestre 2017 Práctica 4 Autovalores y autovectores de matrices Diagonalización Nota: salvo indicación particular, se considera que todas las matrices pertenecen a C

Más detalles

Transformaciones lineales autoadjuntas (hermíticas)

Transformaciones lineales autoadjuntas (hermíticas) Transformaciones lineales autoadjuntas (hermíticas) Objetivos. Estudiar propiedades elementales de transformaciones lineales autoadjuntas. Demostrar que para toda transformación lineal autoadjunta en un

Más detalles

Universidad Sergio Arboleda Álgebra Lineal 1 (201610) Ejercicios

Universidad Sergio Arboleda Álgebra Lineal 1 (201610) Ejercicios Álgebra Lineal 1 (2161) Prof: Otaivin Martínez Mármol (1) Encuentre el polinomio característico Calcule los valores y vectores propios de las siguientes matrices (a) [ ] 7 5 1 8 (b) [ ] 1 1 (c) 2 1 1 2

Más detalles

Matrices y Sistemas Lineales

Matrices y Sistemas Lineales Matrices y Sistemas Lineales Natalia Boal María Luisa Sein-Echaluce Universidad de Zaragoza Matrices sobre IR ó C. Definición Dado un conjunto K (IR ó C) y dos conjuntos finitos de índices I = {,, m} J

Más detalles

5.1. Concepto de diagonalización y ejemplo de aplicación. Supongamos que queremos calcular una potencia elevada de una matriz cuadrada, por ejemplo,

5.1. Concepto de diagonalización y ejemplo de aplicación. Supongamos que queremos calcular una potencia elevada de una matriz cuadrada, por ejemplo, Apuntes de Álgebra Lineal Capítulo 5 Diagonalización 51 Concepto de diagonalización y ejemplo de aplicación Supongamos que queremos calcular una potencia elevada de una matriz cuadrada, por ejemplo, calcular

Más detalles

Estadística III Repaso de Algebra Lineal

Estadística III Repaso de Algebra Lineal Repaso de Algebra Lineal Vectores Un vector columna de dimensión n 1 es una serie de números dispuestos como sigue: x 1 x 2 x =. x n Un vector fila de dimensión 1 p es una serie de números dispuestos como

Más detalles

Diagonalización de Endomorfismos

Diagonalización de Endomorfismos Tema 5 Diagonalización de Endomorfismos 5.1 Introducción En este tema estudiaremos la diagonalización de endomorfismos. La idea central de este proceso es determinar, para una aplicación lineal f : E E,

Más detalles

Álgebra Lineal - Grado de Estadística. Examen final 27 de junio de 2014 APELLIDOS, NOMBRE:

Álgebra Lineal - Grado de Estadística. Examen final 27 de junio de 2014 APELLIDOS, NOMBRE: Álgebra Lineal - Grado de Estadística Examen final 7 de junio de 4 APELLIDOS, NOMBRE: DNI: irma Primer parcial Ejercicio Consideremos matrices A m m, B, C n n, Pruebe que bajo la hipótesis de que las inversas

Más detalles

Espacios Euclídeos. Natalia Boal María Luisa Sein-Echaluce Universidad de Zaragoza

Espacios Euclídeos. Natalia Boal María Luisa Sein-Echaluce Universidad de Zaragoza Espacios Euclídeos Natalia Boal María Luisa Sein-Echaluce Universidad de Zaragoza A lo largo de todo el capítulo consideraremos que V un espacio vectorial real de dimensión finita. 1 Producto escalar Definición.

Más detalles

Diagonalización de una Matriz

Diagonalización de una Matriz Diagonalización de una Matriz Departamento de Matemáticas, CCIR/ITESM 9 de febrero de 2011 Índice 19.1.Introducción............................................... 1 19.2.Matriz diagonalizable..........................................

Más detalles

Tema 5: Diagonalización de matrices

Tema 5: Diagonalización de matrices Tema : Diagonalización de matrices La intención en este tema es, dada una matriz cuadrada, ver si existe otra matriz semejante a ella que sea diagonal. Recordemos del Tema 4 que dos matrices cuadradas

Más detalles

Grado en Edificación MATERIAL DOCENTE: PRESENTACIÓN DEL TEMA III. Ana Isabel Garralda Guillem y Manuel Ruiz Galán

Grado en Edificación MATERIAL DOCENTE: PRESENTACIÓN DEL TEMA III. Ana Isabel Garralda Guillem y Manuel Ruiz Galán MATEMÁTICAS TICAS I Grado en Edificación MATERIAL DOCENTE: PRESENTACIÓN DEL TEMA III Ana Isabel Garralda Guillem y Manuel Ruiz Galán Tema. Diagonalización de matrices.1. Diagonalización de matrices por

Más detalles

Espacios vectoriales reales.

Espacios vectoriales reales. Tema 3 Espacios vectoriales reales. 3.1 Espacios vectoriales. Definición 3.1 Un espacio vectorial real V es un conjunto de elementos denominados vectores, junto con dos operaciones, una que recibe el nombre

Más detalles

Algunos Tipos de matrices. Matrices. Algunos Tipos de matrices. Algunos Tipos de matrices

Algunos Tipos de matrices. Matrices. Algunos Tipos de matrices. Algunos Tipos de matrices Matrices Una matriz de orden m n es un conjunto ordenado de m n números reales dispuestos en m filas y n columnas de la forma: A = a 11 a 12 a 1j a 1n a 21 a 22 a 2j a 2n a i1 a i2 a ij a in a m1 a m2

Más detalles

Producto Escalar. AMD Grado en Ingeniería Informática. AMD Grado en Ingeniería Informática (UM) Producto Escalar 1 / 31

Producto Escalar. AMD Grado en Ingeniería Informática. AMD Grado en Ingeniería Informática (UM) Producto Escalar 1 / 31 Producto Escalar AMD Grado en Ingeniería Informática AMD Grado en Ingeniería Informática (UM) Producto Escalar 1 / 31 Objetivos Al finalizar este tema tendrás que: Saber usar el producto escalar. Calcular

Más detalles

ÁLGEBRA LINEAL I Algunas soluciones a la Práctica 3

ÁLGEBRA LINEAL I Algunas soluciones a la Práctica 3 ÁLGEBRA LINEAL I Algunas soluciones a la Práctica 3 Matrices y determinantes (Curso 202 203) 6 Sea X una matriz cuadrada de tamaño n n y elementos reales Sea k un número par Probar que si X k = Id, entonces

Más detalles

Valores singulares. Producto escalar y ortogonalidad. Proposición. Curso < x, y >= si F = C. Si x C n x i=1

Valores singulares. Producto escalar y ortogonalidad. Proposición. Curso < x, y >= si F = C. Si x C n x i=1 Valores singulares Curso 2017-18 1 Producto escalar y ortogonalidad < x, y >= n y i x i = y T x si F = R, n y i x i = y x Si x C n x x = n x i 2 = x 2 2. si F = C Si x, y C n x y = y x, pero si x, y R

Más detalles

ÁLGEBRA LINEAL I Algunas soluciones a la Práctica 3

ÁLGEBRA LINEAL I Algunas soluciones a la Práctica 3 ÁLGEBRA LINEAL I Algunas soluciones a la Práctica 3 Matrices y determinantes (Curso 010 011). Sea A una matriz diagonal n n y supongamos que todos los elementos de su diagonal son distintos entre sí. Demostrar

Más detalles

2.7 Aplicaciones del Teorema de Jordan

2.7 Aplicaciones del Teorema de Jordan 26 Álgebra lineal 27 Aplicaciones del Teorema de Jordan En esta sección seguimos suponiendo que K C Endomorfismos y matrices nilpotentes Definición Decimos que una matriz A M n (C es nilpotente si existe

Más detalles

Matrices. Operaciones con matrices.

Matrices. Operaciones con matrices. Matrices. Operaciones con matrices. Ejercicio. Dadas las matrices ( ) ( ) 4 A = B = ( ) C = D = 4 5 ( ) 4 E = F = seleccione las que se pueden sumar y súmelas. Ejercicio. Dadas las matrices ( ) ( ) A =

Más detalles

Descomposición en forma canónica de Jordan (Segunda versión)

Descomposición en forma canónica de Jordan (Segunda versión) Descomposición en forma canónica de Jordan (Segunda versión) Francisco J. Bravo S. 1 de septiembre de 211 En esta guía se presentan los resultados necesarios para poder construir la forma de Jordan sin

Más detalles

TEMA V. Pues bien, a estas caracterizaciones de los sistemas de ecuaciones lineales se las llamó matrices. En el caso del sistema considerado tenemos:

TEMA V. Pues bien, a estas caracterizaciones de los sistemas de ecuaciones lineales se las llamó matrices. En el caso del sistema considerado tenemos: TEMA V 1. MATRICES Y SISTEMAS DE ECUACIONES LINEALES. Sea el siguiente sistema de ecuaciones lineales: Realmente quien determina la naturaleza y las soluciones del sistema, no son las incógnitas: x, y,

Más detalles

MAT1202: Algebra Lineal GUIA N 6 Otoño 2002 Valores y Vectores Propios

MAT1202: Algebra Lineal GUIA N 6 Otoño 2002 Valores y Vectores Propios Pontificia Universidad Católica de Chile Facultad de Matemáticas MAT1202: Algebra Lineal GUIA N 6 Otoño 2002 Valores y Vectores Propios 1. Determine los valores y vectores propios de 0 3 A + I = 1 3 A

Más detalles

Tema 1: Espacios vectoriales

Tema 1: Espacios vectoriales PROBLEMAS DE MATEMÁTICAS Parte I: Álgebra Primero de Químicas FACULTAD DE CIENCIAS QUÍMICAS Departamento de Matemáticas Universidad de Castilla-La Mancha Tema 1: Espacios vectoriales 1 Determina si cada

Más detalles

Tema 6: Autovalores y autovectores

Tema 6: Autovalores y autovectores Tema 6: Autovalores y autovectores Curso 216/217 Ruzica Jevtic Universidad San Pablo CEU Madrid Referencias Lay D. Linear algebra and its applications (3rd ed). Chapter 5. 2 Autovalores y autovectores

Más detalles

L(a, b, c, d) = (a + c, 2a 2b + 2c + d, a c, 4a 4b + 4c + 2d).

L(a, b, c, d) = (a + c, 2a 2b + 2c + d, a c, 4a 4b + 4c + 2d). Universidade de Vigo Departamento de Matemática Aplicada II E.T.S.I. Minas Álgebra Convocatoria de enero de 1 18 de enero de 1 (5 p. 1 Para cada α R se considera el siguiente subespacio de R 4 : U α =

Más detalles

Diagonalización de matrices. Kepler C k

Diagonalización de matrices. Kepler C k Kepler C k 24 Índice. Problema de diagonalización 3.. Semejanza de matrices................................. 3.2. Valores propios y vectores propios........................... 3.3. Matrices y valores propios...............................

Más detalles

1. ESPACIO EUCLÍDEO. ISOMETRÍAS

1. ESPACIO EUCLÍDEO. ISOMETRÍAS 1 1. ESPACIO EUCLÍDEO. ISOMETRÍAS Muchos de los fenómenos que se investigan en la geometría utilizan nociones como las de longitud de un vector y ángulo entre vectores. Para introducir estos dos conceptos

Más detalles

1. Determina cuáles de los siguientes conjuntos son subespacios vectoriales. Para aquellos que lo sean, halla una base.

1. Determina cuáles de los siguientes conjuntos son subespacios vectoriales. Para aquellos que lo sean, halla una base. EJERCICIOS PROPUESTOS 1. Espacios vectoriales. Sistemas de ecuaciones. 1. Determina cuáles de los siguientes conjuntos son subespacios vectoriales. Para aquellos que lo sean, halla una base. (a) S = {

Más detalles

Tema 3: Forma canónica de Jordan de una matriz.

Tema 3: Forma canónica de Jordan de una matriz. Forma canónica de Jordan de una matriz 1 Tema 3: Forma canónica de Jordan de una matriz. 1. Planteamiento del problema. Matrices semejantes. Matrices triangularizables. El problema que nos planteamos en

Más detalles

1 Isometrías vectoriales.

1 Isometrías vectoriales. Eugenia Rosado ETSM Curso 9-. Isometrías vectoriales. Sea E un espacio vectorial euclídeo. De nición Una aplicación f : E! E se dice transformación ortogonal o isometría vectorial si conserva el producto

Más detalles

9. Teoremas espectrales

9. Teoremas espectrales 9 Teoremas espectrales Lema de Schur Ejercicio 9 En los siguientes casos, use el lema de Schur para descomponer, sobre C, la matriz A como producto A = U TU de modo que T sea triangular superior y U unitaria:

Más detalles

Tema 3.1. Espacio eucĺıdeo. Diagonalización ortogonal

Tema 3.1. Espacio eucĺıdeo. Diagonalización ortogonal Tema 3.1. Espacio eucĺıdeo. Diagonalización ortogonal Definición 1. Sea V un espacio vectorial sobre un cuerpo K. Llamamos forma bilineal a toda aplicación f : V V K ( x, y) f( x, y) que verifica: 1. f(

Más detalles