Tema 5: Espacios Eucĺıdeos.

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Tema 5: Espacios Eucĺıdeos."

Transcripción

1 Espacios Euclídeos 1 Tema 5: Espacios Eucĺıdeos. 1. Producto escalar. Espacios eucĺıdeos. Definición. Sea E un R-espacio vectorial y sea f : E E R una forma bilineal simétrica. Se dice que f es un producto escalar de E si f es definida positiva y no degenerada. En este caso, se dice que E es un espacio euclídeo con producto escalar f. Normalmente, cuando E es un espacio euclídeo al producto escalar de los vectores v 1 y v 2 se le denota por (v 1, v 2 ). Definición. Sea (E, (, )) un espacio euclídeo con producto escalar (, ) y v E. Se llama norma de v a v = (v, v). Existe una forma sencilla de caracterizar los productos escalares: Proposición 1.1. Sea E un R-espacio vectorial y f : E E R una forma bilineal simétrica. Entonces, f es producto escalar si y sólo si la signatura de f es (n, 0). Las propiedades más interesantes de los espacios euclídeos son: (1) En un espacio euclídeo E el único vector de norma 0 (y, por tanto, el único vector isótropo) es el vector 0 E. (2) Dado un vector v 0 E de un espacio euclídeo E con producto escalar f sabemos que se puede expresar E =< v > < v >. Entonces, cualquier vector w E se expresará como λv + u, donde u < v >, siendo λ = f(v, w)/ v 2. A λ = f(v, w)/ v 2 se le conoce como proyección ortogonal de w sobre v. También tenemos dos desigualdades que relacionan el producto escalar y la norma en un espacio euclídeo: Proposición 1.2. Desigualdad de Cauchy-Schwarz. Sea E un espacio euclídeo con producto escalar (, ) y norma. Entonces, se verifica (u, v) u v, u, v E.

2 2 Ampliación de Algebra Lineal Proposición 1.3. Desigualdad de Minkowski. producto escalar (, ) y norma. Entonces, se verifica Sea E un espacio euclídeo con u + w u + w u, w E. Por último, introducimos el concepto de ángulo entre dos vectores u, v E, donde E es un espacio euclídeo con producto escalar (, ) que es el arco α [0, π] cuyo coseno es (u,v) u v. Es fácil demostrar Proposición 1.4. Ley del coseno. Sea E un espacio euclídeo con producto escalar (, ) y norma. Entonces, siendo α el ángulo entre u y v. u v = u + v 2 u v cosα, u, v E, 2. Bases ortonormales. En un espacio euclídeo E con producto escalar (, ), sabemos por el tema anterior que existen bases ortogonales. Además, cuando tomemos una base ortogonal de E, la matriz asociada al producto escalar (, ) es una matriz diagonal con entrada mayores que 0 en la diagonal principal, por ser la signatura de un producto escalar (n, 0), donde n es la dimensión del espacio vectorial E. Si cada vector de la base ortogonal es dividido por su norma, resulta que la matriz asociada respecto de esta nueva base ortogonal es la matriz identidad. Debido a la sencillez de esta matriz asociada, nos interesa trabajar con este tipo de bases ortogonales, que son las conocidas como bases ortonormales, esto es Definición. Sea E un espacio euclídeo con producto escalar (, ). Una base B = {v 1,..., v n } del espacio euclídeo E se dice que es base ortonormal si todos sus vectores son de norma 1 y son ortogonales dos a dos, esto es, (v i, v i ) = 1 i {1,..., n} y (v i, v j ) = 0 i, j {1,..., n}, i j Observamos que el ser base ortonormal esa íntimamente ligado al producto escalar con el que se trabaja. De hecho, si tenemos un mismo espacio E dotado con dos productos escalares una base puede ser ortonormal para un producto escalar y no para el otro.

3 Espacios Euclídeos 3 Como ya se ha comentado, si tenemos una base ortogonal de un espacio euclídeo E es fácil crear a partir de ella una base ortonormal. Para construir una base ortogonal, podemos utilizar la técnica dada en el tema anterior que empleaba vectores no isótropos. Además, en los espacios euclídeos disponemos de otra técnica: es la que se da en el proceso de ortogonalización de Gram-Schmidt: permite obtener bases ortonormales, empleando las propiedades del producto escalar y partiendo de una base arbitraria de E. Este método es más sencillo que el método de obtención de bases ortogonales visto en el tema anterior para una forma bilineal simétrica, lo que justifica su demostración. Teorema 2.1. Método de ortogonalización de Gram-Schmidt. Sea (E, (, )) un espacio euclídeo y B = {v 1,..., v n } una base de E. Entonces, existe una base B ortogonal cuyo primer elemento es v 1 y tal que M B,B es triangular. El esquema de la demostración del teorema anterior es el siguiente: 1. Se toma u 1 = v Se toma u 2 = v 2 + α 2,1 u 1, eligiendo α 2,1 de forma que 0 = (u 1, u 2 ). 3. En general se define u i = v i + α i,1 u 1 + α i,2 u α i,i 1 u i 1, tomando α i,j de forma que (u i, u j ) = 0 para j = 1,..., i 1. Se tiene que, α i,j = (v i,u j ) (u j,u j ), para j = 1,..., i 1. A partir de la base ortogonal que nos da el proceso de ortogonalización de Gram- Schmidt se puede construir una base ortonormal dividiendo cada vector por su norma. Según se observa en la demostración del resultado anterior, podemos elegir cuál va a ser el primer vector de la nueva base ortogonal: es el que tomemos como primer vector en la base de partida. 3. Matrices ortogonales. Definición. Una matriz simétrica A Mat n n (R) es una matriz ortogonal si AA t es I n. Es fácil demostrar que Proposición 3.1. Sea A Mat n n (R) una matriz ortogonal. Entonces, A es inversible y su determinante es +1. Tenemos una propiedad que nos indica como es la matriz de cambio de base entre dos bases ortonormales:

4 4 Ampliación de Algebra Lineal Teorema 3.2. Sea E un espacio euclídeo de dimensión n, B = {u 1,..., u n } una base ortonormal y B = {u 1,..., u n} una base. Entonces, B es ortonormal si y sólo si M B,B es ortogonal. 4. Isometrías. Definición. Sea (E, (, )) un espacio euclídeo y g : E E una aplicación lineal. Se dice que g es una isometría si para cualquier vector v E se cumple v = g(v). Esto es, las isometrías de un espacio euclídeo son aquellas endormofismos del él en sí mismo que conservan la norma. Tenemos las siguientes caracterizaciones equivalentes del concepto de isometría: Teorema 4.1. Sea (E, (, )) un espacio euclídeo y g : E E una aplicación lineal. Entonces, g es isometría si y sólo si (g(v), g(v )) = (v, v ) para cualesquiera vectores v, v de E. Teorema 4.2. Sea (E, (, )) un espacio euclídeo, B = {u 1,..., u n } una base ortonormal de E y g : E E una aplicación lineal. Entonces, g es isometría si y sólo B = {g(u 1 ),..., g(u n )} es una base ortonormal de E. Del teorema anterior es fácil deducir que las isometrías son aplicaciones biyectivas. Teorema 4.3. Sea (E, (, )) un espacio euclídeo, B = {u 1,..., u n } una base ortonormal de E y g : E E una aplicación lineal. Entonces, g es isometría si y sólo la matriz asociada a g respecto de B es ortogonal. Como observación al teorema anterior indicamos que si g es una isometría y la base con la que se trabaja no es ortonormal, entonces no podemos asegurar que la matriz asociada a g sea ortogonal.

5 Espacios Euclídeos 5 5. Endomorfismos autoadjuntos. Teorema espectral. Definición. Sea (E, (, )) un espacio euclídeo y g : E E una aplicación lineal. Se dice que g es un endomorfismo autoadjunto si para cualesquiera vectores v, v de E se verifica (v, g(v )) = (g(v), v ). Teorema 5.1. Sea (E, (, )) un espacio euclídeo, B = {u 1,..., u n } una base ortonormal de E y g : E E una aplicación lineal. Entonces, g es un endomorfismo autoadjunto si y sólo si la matriz asociada a g respecto de una base ortonormal B es una matriz simétrica. Los endomorfismos autoadjuntos nos servirán para demostrar que toda matriz simétrica real es diagonalizable con una matriz de paso P ortogonal. Para probarlo se demostrarán varios lemas. Lema 5.2. Sea A Mat n n (R) una matriz simétrica. Entonces, su polinomio característico χ A (x) se escinde sobre R. Como consecuencia del lema anterior deducimos que todos los valores propios de una maatriz simétrica son reales. Además, como los endomorfismos autoadjuntos tienen al menos una matriz simétrica como matriz asociada se deduce que tienen todos sus valores propios reales. Lema 5.3. Sea (E, (, )) un espacio euclídeo, g : E E un endomorfismo autoadjunto y U un subespacio g-invariante no nulo. Entonces, U contiene vectores propios de g. Lema 5.4. Sea (E, (, )) un espacio euclídeo, g : E E un endomorfismo autoadjunto y U un subespacio g-invariante. Entonces, U es g-invariante. Lema 5.5. Sea (E, (, )) un espacio euclídeo, g : E E un endomorfismo autoadjunto y λ 1, λ 2 R dos valores propios distintos de g. Entonces, V (λ 1 ) y V (λ 2 ) son subespacios ortogonales. Recordar que V (λ) es el subespacio fundamental asociado al valor propio λ. Teniendo estos lemas en cuenta, es fácil demostrar: Teorema 5.6. Teorema espectral para un endomorfismo autoadjunto. Sea (E, (, )) un espacio euclídeo, g : E E un endomorfismo autoadjunto. Entonces, existe una base ortonormal de E formada por vectores propios de g.

6 6 Ampliación de Algebra Lineal La demostración de este teorema es una demostración constructiva, esto es, se da un método que permite localizar una base ortonormal de E formada por vectores propios de g. Como corolario de este teorema se deduce Corolario 5.7. Sea A Mat n n (R) una matriz simétrica. Entonces, A es diagonalizable con forma diagonal D y existe una matriz P ortogonal que es matriz de paso entre A y D. Observación. Según el corolario anterior, si A es una matriz simétrica real, entonces existe D forma diagonal de A y P ortogonal tal que A = P DP 1. Pero al ser P ortogonal P 1 = P t, luego A = P DP 1 = P DP t A y D son congruentes. Pero si A y D son congruentes la signatura de A y la signatura de D coinciden. Además, al ser D la forma diagonal de A, sabemos que en la diagonal principal de D aparecen los valores propios reales de A, tantas veces como indique su multiplicidad. Así que podemos dar otro método para buscar la signatura de una matriz simétrica real A: 1. Localizar el polinomio característico de A. 2. Localizar las raíces, junto con su multiplicidad, del polinomio característico de A. 3. Contar los valores propios mayores que 0 (contando multiplicidades) y menores que 0. Estos dos números serán los que nos den la signatura de A.

Ejercicios Resueltos Tema 5

Ejercicios Resueltos Tema 5 Ejercicios Resueltos Tema 5 Ejercicio 1 Estudiar si la forma bilineal f : R n R n R definida por k f ((x 1,..., x n ), (y 1,..., y n )) = x i y i, siendo 1 k < n, es un producto escalar de R n i=1 Solución.

Más detalles

1. ESPACIO EUCLÍDEO. ISOMETRÍAS

1. ESPACIO EUCLÍDEO. ISOMETRÍAS 1 1. ESPACIO EUCLÍDEO. ISOMETRÍAS Muchos de los fenómenos que se investigan en la geometría utilizan nociones como las de longitud de un vector y ángulo entre vectores. Para introducir estos dos conceptos

Más detalles

Águeda Mata y Miguel Reyes, Dpto. de Matemática Aplicada, FI-UPM 1. Se llama producto escalar sobre un espacio vectorial real V a cualquier aplicación

Águeda Mata y Miguel Reyes, Dpto. de Matemática Aplicada, FI-UPM 1. Se llama producto escalar sobre un espacio vectorial real V a cualquier aplicación Águeda Mata y Miguel Reyes, Dpto. de Matemática Aplicada, FI-UPM 1 6 Espacios euclídeos 6.1 Producto escalar. Espacio euclídeo Se llama producto escalar sobre un espacio vectorial real V a cualquier aplicación

Más detalles

Tema 4: Formas bilineales.

Tema 4: Formas bilineales. Formas bilineales 1 Tema 4: Formas bilineales. 1. Concepto de forma bilineal. Definición. Sea V un K-espacio vectorial y f : V V K una aplicación. Se dice que f es una forma bilineal si f verifica las

Más detalles

ALGEBRA LINEAL Y GEOMETRÍA. REPASO DE ÁLGEBRA LINEAL-2: CAMBIOS DE BASE GRADO DE MATEMÁTICAS. CURSO

ALGEBRA LINEAL Y GEOMETRÍA. REPASO DE ÁLGEBRA LINEAL-2: CAMBIOS DE BASE GRADO DE MATEMÁTICAS. CURSO ALGEBRA LINEAL Y GEOMETRÍA. REPASO DE ÁLGEBRA LINEAL-2: CAMBIOS DE BASE GRADO DE MATEMÁTICAS. CURSO 2012-2013 José García-Cuerva Universidad Autónoma de Madrid 11 de febrero de 2013 JOSÉ GARCÍA-CUERVA

Más detalles

Ejercicios Resueltos Tema 4

Ejercicios Resueltos Tema 4 Ejercicio 1 Estudiar si la aplicación f : R 2 R 2 R definida por f ((x 1, x 2 ), (y 1, y 2 )) = x 1 y 1 3x 1 x 2 es una forma bilineal. Solución. No es forma bilineal ya que y f (α(x 1, x 2 ) + β(x 1,

Más detalles

Espacios Euclídeos. Natalia Boal María Luisa Sein-Echaluce Universidad de Zaragoza

Espacios Euclídeos. Natalia Boal María Luisa Sein-Echaluce Universidad de Zaragoza Espacios Euclídeos Natalia Boal María Luisa Sein-Echaluce Universidad de Zaragoza A lo largo de todo el capítulo consideraremos que V un espacio vectorial real de dimensión finita. 1 Producto escalar Definición.

Más detalles

Tema 3.1. Espacio eucĺıdeo. Diagonalización ortogonal

Tema 3.1. Espacio eucĺıdeo. Diagonalización ortogonal Tema 3.1. Espacio eucĺıdeo. Diagonalización ortogonal Definición 1. Sea V un espacio vectorial sobre un cuerpo K. Llamamos forma bilineal a toda aplicación f : V V K ( x, y) f( x, y) que verifica: 1. f(

Más detalles

1. Relación de ejercicios: Espacio Euclídeo

1. Relación de ejercicios: Espacio Euclídeo 1. Relación de ejercicios: Espacio Euclídeo Ejercicio 1.1 Dado un tensor métrico g sobre V (R) y un subespacio vectorial U < V se define la restricción de g a U como la aplicación restringida g U U U U

Más detalles

L(a, b, c, d) = (a + c, 2a 2b + 2c + d, a c, 4a 4b + 4c + 2d).

L(a, b, c, d) = (a + c, 2a 2b + 2c + d, a c, 4a 4b + 4c + 2d). Universidade de Vigo Departamento de Matemática Aplicada II E.T.S.I. Minas Álgebra Convocatoria de enero de 1 18 de enero de 1 (5 p. 1 Para cada α R se considera el siguiente subespacio de R 4 : U α =

Más detalles

x, y = x 0 y 0 + x 1 y 1 + x 2 y 2 + x 3 y 3. Es fácil ver que verifica 1. Es simétrica. x, y = y, x para todo x, y R 4.

x, y = x 0 y 0 + x 1 y 1 + x 2 y 2 + x 3 y 3. Es fácil ver que verifica 1. Es simétrica. x, y = y, x para todo x, y R 4. 1 Tema 2. Sección 1. Espacio vectorial de Minkowski. Manuel Gutiérrez. Departamento de Álgebra, Geometría y Topología. Universidad de Málaga. 29071-Málaga. Spain. Abril de 2010. En este capítulo se recordará

Más detalles

4.2 Producto escalar.

4.2 Producto escalar. Producto escalar. 147 Este resultado tiene su recíproco, es decir, cualquier matriz cuadrada A define la forma bilineal b(x, y) =x T Ay Si b es simétrica, la matriz A es simétrica. Si b es definida positiva,

Más detalles

Tema 3: Forma canónica de Jordan de una matriz.

Tema 3: Forma canónica de Jordan de una matriz. Forma canónica de Jordan de una matriz 1 Tema 3: Forma canónica de Jordan de una matriz. 1. Planteamiento del problema. Matrices semejantes. Matrices triangularizables. El problema que nos planteamos en

Más detalles

ÁLGEBRA LINEAL II Práctica

ÁLGEBRA LINEAL II Práctica ÁLGEBRA LINEAL II Práctica 2.1-2.2 Espacios Euclídeos. Ortogonalidad (Curso 2011 2012) 1. Se considera un espacio euclídeo de dimensión 3, y en él una base {ē 1, ē 2, ē 3 } tal que el módulo de ē 1 y el

Más detalles

Espacios vectoriales con producto escalar

Espacios vectoriales con producto escalar 147 Fundamentos de Matemáticas : Álgebra Lineal Capítulo 10 Espacios vectoriales con producto escalar 10.1 Producto escalar. Norma. Distancia Definición 71.- Un producto escalar o producto interior en

Más detalles

ESPACIO VECTORIAL EUCLÍDEO

ESPACIO VECTORIAL EUCLÍDEO ESPACIO VECTORIAL EUCLÍDEO PRODUCTO ESCALAR Sea V un espacio vectorial sobre C. Una aplicación que asocia un número complejo < u, v > a cada pareja de vectores u y v en V, se dice que es un producto escalar

Más detalles

TEMA III: DIAGONALIZACIÓN.

TEMA III: DIAGONALIZACIÓN. TEMA III: DIAGONALIZACIÓN. OBJETIVOS: Generales: 1. Captar el motivo que justifica el problema de la diagonalización de endomorfismos. 2. Resolver y aplicar dicho problema cuando sea posible. Específicos:

Más detalles

ALGEBRA LINEAL Segundo Semestre. Parte II

ALGEBRA LINEAL Segundo Semestre. Parte II 1 Universidad Nacional de La Plata Facultad de Ciencias Astronómicas y Geofísicas ALGEBRA LINEAL 2015 Segundo Semestre Parte II 2 1. Valores y Vectores propios. Diagonalización.Forma de Jordan. 1.1. Polinomios

Más detalles

Producto Escalar. AMD Grado en Ingeniería Informática. AMD Grado en Ingeniería Informática (UM) Producto Escalar 1 / 31

Producto Escalar. AMD Grado en Ingeniería Informática. AMD Grado en Ingeniería Informática (UM) Producto Escalar 1 / 31 Producto Escalar AMD Grado en Ingeniería Informática AMD Grado en Ingeniería Informática (UM) Producto Escalar 1 / 31 Objetivos Al finalizar este tema tendrás que: Saber usar el producto escalar. Calcular

Más detalles

FACULTAD DE CIENCIAS QUÍMICAS Departamento de Matemáticas

FACULTAD DE CIENCIAS QUÍMICAS Departamento de Matemáticas EXÁMENES DE MATEMÁTICAS Álgebra Primero de Ingeniería Química FACULTAD DE CIENCIAS QUÍMICAS Departamento de Matemáticas Universidad de Castilla-La Mancha 5 de julio de 99. Dada la aplicación lineal: T

Más detalles

ALGEBRA LINEAL - Práctica N 8 - Segundo cuatrimestre de 2017 Espacios vectoriales con producto interno

ALGEBRA LINEAL - Práctica N 8 - Segundo cuatrimestre de 2017 Espacios vectoriales con producto interno Departamento de Matemática - Facultad de Ciencias Exactas y Naturales - UBA ALGEBRA LINEAL - Práctica N 8 - Segundo cuatrimestre de 07 Espacios vectoriales con producto interno En esta práctica, todos

Más detalles

6.5.7 Orientación de un espacio vectorial eucĺıdeo Producto vectorial Diagonalización de formas bilineales simétricas...

6.5.7 Orientación de un espacio vectorial eucĺıdeo Producto vectorial Diagonalización de formas bilineales simétricas... Contents 6 Formas Bilineales y Producto Escalar 3 6.1 Formas bilineales............................... 3 6.1.1 Matriz de una forma bilineal....................... 4 6.1. Formas bilineales simétricas.......................

Más detalles

Tema 1: Nociones básicas del Álgebra Lineal.

Tema 1: Nociones básicas del Álgebra Lineal. Nociones básicas del Álgebra Lineal 1 Tema 1: Nociones básicas del Álgebra Lineal 1 Conceptos fundamentales sobre espacios vectoriales y bases Definición Sea (K + ) un cuerpo y (V +) un grupo abeliano

Más detalles

7 Aplicaciones ortogonales

7 Aplicaciones ortogonales Águeda Mata y Miguel Reyes, Dpto. de Matemática Aplicada, FI-UPM 1 7 Aplicaciones ortogonales 7.1 Aplicación ortogonal Se llama aplicación ortogonal a un endomorfismo f : V V sobre un espacio vectorial

Más detalles

Tema 2: Diagonalización

Tema 2: Diagonalización TEORÍA DE ÁLGEBRA II: Tema 2. DIPLOMATURA DE ESTADÍSTICA 1 Tema 2: Diagonalización 1 Introducción Sea f : R n R n lineal. Dada una base B de R n podemos asociar a f la matriz A 1 = [f, B] M n. Si C es

Más detalles

Álgebra Lineal. Tema 11. El Teorema Espectral en R. Grado en Ingeniería Informática Doble Grado en Ingeniería Informática y Administración de Empresas

Álgebra Lineal. Tema 11. El Teorema Espectral en R. Grado en Ingeniería Informática Doble Grado en Ingeniería Informática y Administración de Empresas Álgebra Lineal Tema. El Teorema Espectral en R Grado en Ingeniería Informática Doble Grado en Ingeniería Informática y Administración de Empresas AUTORES: J. S ALAS, A. T ORRENTE Y E.J.S. V ILLASEÑOR Índice

Más detalles

Problemas y Ejercicios Resueltos. Tema 6: Diagonalizacion.

Problemas y Ejercicios Resueltos. Tema 6: Diagonalizacion. Problemas y Ejercicios Resueltos. Tema 6: Diagonalizacion. Ejercicios 1.- Sea f End V. Demostrar que la suma de subespacios f-invariantes es f-invariante. Solución. Sean U, W dos subespacios f-invariantes

Más detalles

Espacios vectoriales con producto interno

Espacios vectoriales con producto interno Espacios vectoriales con producto interno Problemas teóricos En todos los problemas relacionados con el caso complejo se supone que el producto interno es lineal con respecto al segundo argumento. Definición

Más detalles

1. ESPACIOS DE HILBERT Y OPERADORES

1. ESPACIOS DE HILBERT Y OPERADORES 1. ESPACIOS DE HILBERT Y OPERADORES 1. DEFINICIÓN, PROPIEDADES Y EJEMPLOS Definición. Sea H un espacio vectorial sobre el cuerpo C de los números complejos, un producto escalar sobre H es una aplicación

Más detalles

3. Transformaciones ortogonales. En todo el capítulo trabajaremos sobre un espacio vectorial euclídeo U.

3. Transformaciones ortogonales. En todo el capítulo trabajaremos sobre un espacio vectorial euclídeo U. 3 Transformaciones ortogonales En todo el capítulo trabajaremos sobre un espacio vectorial euclídeo U 1 Definición Definición 11 Una transformación ortogonal f de un espacio eculídeo U es un endomorfismo

Más detalles

Espacio vectorial euclídeo

Espacio vectorial euclídeo Espacio vectorial euclídeo Juan Medina Molina 13 de diciembre de 2004 Introducción En este tema estudiaremos espacios vectoriales reales a los que hemos añadido una nueva operación, el producto escalar,

Más detalles

a ij x i x j = [x] t B A+At ) t = At +(A t ) t = At +A x i x j + a ij + a ji x j x i = s ij x i x j + s ji x j x i 2

a ij x i x j = [x] t B A+At ) t = At +(A t ) t = At +A x i x j + a ij + a ji x j x i = s ij x i x j + s ji x j x i 2 68 Matemáticas I : Álgebra Lineal Tema 7 Formas cuadráticas Aunque, pueda parecernos que vamos a estudiar un nuevo concepto, un caso particular de las formas cudráticas ya ha sido estudiado, pues el cuadrado

Más detalles

Segundo Parcial de Geometría y Álgebra Lineal 2

Segundo Parcial de Geometría y Álgebra Lineal 2 Segundo Parcial de Geometría y Álgebra Lineal Miércoles 3 de Julio de 03 Apellido y Nombre Cédula de Identidad No Parcial La prueba dura 4 horas La prueba consta de 5 ejercicios multiple opción y ejercicio

Más detalles

Geometría afín y proyectiva, 2016 SEMANA 4

Geometría afín y proyectiva, 2016 SEMANA 4 Geometría afín y proyectiva, 2016 SEMANA 4 Sonia L. Rueda ETS Arquitectura. UPM September 30, 2016 Geometría afín y proyectiva 1. Álgebra Lineal 2. Geometría afín y eucĺıdea 3. Cónicas y cuádricas Álgebra

Más detalles

a n1 a n2 a nn x n a ij x i x j = [x] t B A+At ) t = At +(A t ) t = At +A x j x i = s ij x i x j + s ji x j x i 2 x i x j + a ij + a ji

a n1 a n2 a nn x n a ij x i x j = [x] t B A+At ) t = At +(A t ) t = At +A x j x i = s ij x i x j + s ji x j x i 2 x i x j + a ij + a ji 16 Fundamentos de Matemáticas : Álgebra Lineal Capítulo 1 Formas cuadráticas Aunque, pueda parecernos que vamos a estudiar un nuevo concepto, un caso particular de las formas cudráticas ya ha sido estudiado,

Más detalles

Solución de problemas I 1

Solución de problemas I 1 Universidad Autónoma de Madrid Álgebra II. Físicas. Curso 5 6 Solución de problemas I Álgebra II Curso 5-6. Proyecciones en el producto escalar estándar Ejercicio 7.7. (a) Dada la ecuación x + y z, dar

Más detalles

Grado en Edificación MATERIAL DOCENTE: PRESENTACIÓN DEL TEMA III. Ana Isabel Garralda Guillem y Manuel Ruiz Galán

Grado en Edificación MATERIAL DOCENTE: PRESENTACIÓN DEL TEMA III. Ana Isabel Garralda Guillem y Manuel Ruiz Galán MATEMÁTICAS TICAS I Grado en Edificación MATERIAL DOCENTE: PRESENTACIÓN DEL TEMA III Ana Isabel Garralda Guillem y Manuel Ruiz Galán Tema. Diagonalización de matrices.1. Diagonalización de matrices por

Más detalles

1 Isometrías vectoriales.

1 Isometrías vectoriales. Eugenia Rosado ETSM Curso 9-. Isometrías vectoriales. Sea E un espacio vectorial euclídeo. De nición Una aplicación f : E! E se dice transformación ortogonal o isometría vectorial si conserva el producto

Más detalles

Index. Ángulo, 80 entre dos planos, 80 entre dos rectas, 80 entre dos vectores, 59 entre recta y plano, 80

Index. Ángulo, 80 entre dos planos, 80 entre dos rectas, 80 entre dos vectores, 59 entre recta y plano, 80 Index Ángulo, 80 entre dos planos, 80 entre dos rectas, 80 entre dos vectores, 59 entre recta y plano, 80 Adjunto, 14 Aplicación, 2 bilineal, 47 biyectiva, 3 compuesta, 3 identidad, 3 inversa, 3 inyectiva,

Más detalles

Espacios vectoriales reales.

Espacios vectoriales reales. Capítulo 4 Espacios vectoriales reales. 4.1 Espacios vectoriales. Definición 86.- Un espacio vectorial real V es un conjunto de elementos denominados vectores, junto con dos operaciones, una que recibe

Más detalles

Tema 1: Espacios vectoriales

Tema 1: Espacios vectoriales PROBLEMAS DE MATEMÁTICAS Parte I: Álgebra Primero de Químicas FACULTAD DE CIENCIAS QUÍMICAS Departamento de Matemáticas Universidad de Castilla-La Mancha Tema 1: Espacios vectoriales 1 Determina si cada

Más detalles

Álgebra Lineal y Geometría I. Prueba 3. Grupo A. 12 de marzo de (

Álgebra Lineal y Geometría I. Prueba 3. Grupo A. 12 de marzo de ( Álgebra Lineal y Geometría I. Prueba 3. Grupo A. 2 de marzo de 208. Apellidos: Nombre: DNI: Ejercicio.-(4 puntos) Se considera la matriz siguiente: A = 2 0 3 0 2. Calcule W = null(a 2I), W 2 = null(a 4I)

Más detalles

ÁLGEBRA LINEAL. EXAMEN EXTRAORDINARIO 5 de Julio de T (e 1 ) = e 1 e 2 + 2e 3 T (e 2 ) = e 1 + 2e 2 3e 3. [T (e 1 ) T (e 2 )] =

ÁLGEBRA LINEAL. EXAMEN EXTRAORDINARIO 5 de Julio de T (e 1 ) = e 1 e 2 + 2e 3 T (e 2 ) = e 1 + 2e 2 3e 3. [T (e 1 ) T (e 2 )] = ÁLGEBRA LINEAL EXAMEN EXTRAORDINARIO 5 de Julio de Apellidos y Nombre: Ejercicio. Sea T : R R 3 una transformación lineal definida como: T (e ) = e e + e 3 T (e ) = e + e 3e 3 donde {e, e }, {e, e, e 3}

Más detalles

2.5 Ejercicios... 59

2.5 Ejercicios... 59 Índice General 1 Espacios vectoriales 1 1.1 Espacios vectoriales y subespacios......................... 1 1.1.1 Preliminares................................. 1 1.1.2 Espacios vectoriales.............................

Más detalles

Examen Extraordinario de Álgebra III, licenciatura

Examen Extraordinario de Álgebra III, licenciatura Examen Extraordinario de Álgebra III, licenciatura El Examen a Título de Suficiencia de Álgebra III abarca los siguientes temas: 1. Formas bilineales y cuadráticas. 2. Valores y vectores propios. 3. Forma

Más detalles

a n1 a n2 a nn Es decir, una forma cuadrática es un polinomio homogéneo de grado 2 y n variables.

a n1 a n2 a nn Es decir, una forma cuadrática es un polinomio homogéneo de grado 2 y n variables. Capítulo 7 Formas cuadráticas. Aunque, pueda parecernos que vamos a estudiar un nuevo concepto, un caso particular de las formas cudráticas ya ha sido estudiado, pues el cuadrado de la norma de un vector

Más detalles

ÁLGEBRA LINEAL E.T.S. DE INGENIERÍA INFORMÁTICA INGENIERÍAS TÉCNICAS EN INFORMÁTICA DE SISTEMAS Y GESTIÓN BOLETÍN DE PROBLEMAS DE

ÁLGEBRA LINEAL E.T.S. DE INGENIERÍA INFORMÁTICA INGENIERÍAS TÉCNICAS EN INFORMÁTICA DE SISTEMAS Y GESTIÓN BOLETÍN DE PROBLEMAS DE E.T.S. DE INGENIERÍA INFORMÁTICA BOLETÍN DE PROBLEMAS DE ÁLGEBRA LINEAL para las titulaciones de INGENIERÍAS TÉCNICAS EN INFORMÁTICA DE SISTEMAS Y GESTIÓN 1. Matrices y determinantes Ejercicio 1.1 Demostrar

Más detalles

Notas para el curso de Álgebra Lineal II. Centro de Matemática Facultad de Ciencias Universidad de la República. Andrés Abella

Notas para el curso de Álgebra Lineal II. Centro de Matemática Facultad de Ciencias Universidad de la República. Andrés Abella Notas para el curso de Álgebra Lineal II Centro de Matemática Facultad de Ciencias Universidad de la República Andrés Abella 6 de febrero de 2015 Introducción Estas son las notas y ejercicios del curso

Más detalles

TÉCNICA SUPERIOR DE INGENIERÍA INFORMÁTICA

TÉCNICA SUPERIOR DE INGENIERÍA INFORMÁTICA ESCUELA ESTUDIOS DE TÉCNICA SUPERIOR DE INGENIERÍA INFORMÁTICA DEPARTAMENTO DE INGENIERÍA INFORMÁTICA MATEMÁTICA APLICADA I ÁLGERA LINEAL OLETINES DE PROLEMAS Curso 8-9 Sistemas de ecuaciones lineales.

Más detalles

Álgebra lineal II Examen Parcial 3

Álgebra lineal II Examen Parcial 3 UNIVERSIDAD DE COSTA RICA ESCUELA DE MATEMATICA Álgebra lineal II Examen Parcial II Semestre 04 Nick Gill Instrucciones: Puede usar cualesquiera de las proposiciones vistas en las lecciones incluidos los

Más detalles

Ejemplo 1 Sea V un espacio con producto interno sobre un cuerpo K. A las transformaciones lineales T : V K las llamamos funcionales lineales.

Ejemplo 1 Sea V un espacio con producto interno sobre un cuerpo K. A las transformaciones lineales T : V K las llamamos funcionales lineales. Facultad de Ingeniería - IMERL - Geometría y Álgebra Lineal 2 - Curso 2008. 1 Transformaciones lineales en espacios con producto interno Notas para el curso de Geometría y Algebra Lineal 2 de la Facultad

Más detalles

Clase de Álgebra Lineal

Clase de Álgebra Lineal Clase de Álgebra Lineal M.Sc. Carlos Mario De Oro Facultad de Ciencias Básicas Departamento de matemáticas 04.2017 Page 1 Espacios vectoriales Definicion. Espacio Vectorial (E.V.) Un V espacio vectorial

Más detalles

Descomposición en valores singulares de una matriz

Descomposición en valores singulares de una matriz Descomposición en valores singulares de una matriz Estas notas están dedicadas a demostrar una extensión del teorema espectral conocida como descomposición en valores singulares (SVD en inglés) de gran

Más detalles

Universidad Sergio Arboleda Álgebra Lineal 1 (201610) Ejercicios

Universidad Sergio Arboleda Álgebra Lineal 1 (201610) Ejercicios Álgebra Lineal 1 (2161) Prof: Otaivin Martínez Mármol (1) Encuentre el polinomio característico Calcule los valores y vectores propios de las siguientes matrices (a) [ ] 7 5 1 8 (b) [ ] 1 1 (c) 2 1 1 2

Más detalles

Notas para el curso de Álgebra Lineal II. Centro de Matemática Facultad de Ciencias Universidad de la República. Andrés Abella

Notas para el curso de Álgebra Lineal II. Centro de Matemática Facultad de Ciencias Universidad de la República. Andrés Abella Notas para el curso de Álgebra Lineal II Centro de Matemática Facultad de Ciencias Universidad de la República Andrés Abella 5 de febrero de 2014 Introducción Estas son las notas y ejercicios del curso

Más detalles

Material para el examen parcial 1

Material para el examen parcial 1 Algebra Lineal 2, FAMAT-UG, aug-dic, 2009 Material para el examen parcial 1 (17 oct, 2009) Definiciones: Hay que saber las definiciones precisas de todos los siguientes términos, y conocer ejemplos concretos

Más detalles

AUTOVALORES Y AUTOVECTORES

AUTOVALORES Y AUTOVECTORES 12 de Julio de 2011 AUTOVALORES Y AUTOVECTORES (Clase 01) Departamento de Matemática Aplicada Facultad de Ingeniería Universidad Central de Venezuela 1 Puntos a tratar 1. Valores y vectores propios 2.

Más detalles

Material para el examen final

Material para el examen final Algebra Lineal 2, FAMAT-UG, ene-jun, 2004 Material para el examen final 31 de mayo, 2004 Definiciones: Hay que saber las definiciones precisas de todos los siguientes términos, y conocer ejemplos concretos

Más detalles

Álgebra lineal y Geometría II. Métricas y formas cuadráticas. 1. La matriz de la métrica T 2 ((x, y, z), (x, y, z )) = xx + yy + 3zz 2xz 2zx es:

Álgebra lineal y Geometría II. Métricas y formas cuadráticas. 1. La matriz de la métrica T 2 ((x, y, z), (x, y, z )) = xx + yy + 3zz 2xz 2zx es: Álgebra lineal y Geometría II Gloria Serrano Sotelo Departamento de MATEMÁTICAS ÁLGEBRA LINEAL Y GEOMETRÍA. 0 FÍSICAS Métricas y formas cuadráticas.. La matriz de la métrica T ((x, y, z), (x, y, z )) =

Más detalles

Objetivos III.1. NORMA VECTORIAL

Objetivos III.1. NORMA VECTORIAL ema III NORMAS VECORIALES Y PRODUCO ESCALAR Objetivos Generalizar conceptos como el de norma de un vector distancia ortogonalidad ángulo entre dos vectores. En este capítulo el cuerpo K de escalares será

Más detalles

Podemos pues formular los dos problemas anteriores en términos de matrices.

Podemos pues formular los dos problemas anteriores en términos de matrices. Tema 5 Diagonalización 51 Introducción Valores y vectores propios 511 Planteamiento del problema Problema general de diagonalización Dado un operador lineal f sobre un espacio vectorial V de dimensión

Más detalles

Examen Final - soluciones

Examen Final - soluciones Algebra Lineal 2, FAMAT-UG, agsto-dic, 2009 PARTE A (60 puntos). Cierto o Falso. Examen Final - soluciones 9 dic, 2009 1. Para todo operador ortogonal T en R n, det(t ) = 1. Falso. T : (x 1,..., x n )

Más detalles

Tema 3: Espacios eucĺıdeos

Tema 3: Espacios eucĺıdeos Marisa Serrano, Zulima Fernández Universidad de Oviedo 25 de noviembre de 2009 email: mlserrano@uniovi.es Índice 1 2 3.1 V, R espacio vectorial, la aplicación : V V R ( v, u) v u a) v 1, v 2, u V α, β

Más detalles

Tema 4: Endomorfismos

Tema 4: Endomorfismos Marisa Serrano, Zulima Fernández Universidad de Oviedo 11 de enero de 2010 email: mlserrano@uniovi.es Índice 1 2 3 4 en espacios de dimensión dos en espacios eucĺıdeos de dimensión tres Definición Definición

Más detalles

Espacios vectoriales con producto interno

Espacios vectoriales con producto interno Espacios vectoriales con producto interno Mariano Suárez-Alvarez 24 de junio, 2011 1. Espacios con producto interno... 1 2. Normas y distancias... 3 3. Ortogonalidad... 5 4. Proyectores ortogonales...

Más detalles

SEGUNDO PARCIAL - EJERCICIOS DE REPASO

SEGUNDO PARCIAL - EJERCICIOS DE REPASO Algebra y Geometría 28 SEGUNDO PARCIAL - EJERCICIOS DE REPASO 3-6-8 ESPACIOS VECTORIALES. Construya en R 2 un subconjunto que sea: a cerrado para la suma y resta de vectores, pero no para la multiplicacion

Más detalles

EJERCICIOS DE ÁLGEBRA LINEAL TEMA 3 ESPACIOS EUCLÍDEOS

EJERCICIOS DE ÁLGEBRA LINEAL TEMA 3 ESPACIOS EUCLÍDEOS EJERCICIOS DE ÁLGEBRA LINEAL TEMA 3 ESPACIOS EUCLÍDEOS ESPACIOS EUCLÍDEOS ) a) Decir cuál de las siguientes aplicaciones de x de no definir un producto escalar comprobar el axioma que falla: a ) x' x,y,

Más detalles

Espacio vectorial eucĺıdeo

Espacio vectorial eucĺıdeo Espacio vectorial eucĺıdeo José Vicente Romero Bauset ESI-curso 2009/200 José Vicente Romero Bauset ema.- Espacio vectorial eucĺıdeo. Introducción U w U v u V f (x) a n 0 2 + a k coskx + b k senkx k= José

Más detalles

Transformaciones lineales autoadjuntas (hermíticas)

Transformaciones lineales autoadjuntas (hermíticas) Transformaciones lineales autoadjuntas (hermíticas) Objetivos. Estudiar propiedades elementales de transformaciones lineales autoadjuntas. Demostrar que para toda transformación lineal autoadjunta en un

Más detalles

Problemas de exámenes de Formas Bilineales y Determinantes

Problemas de exámenes de Formas Bilineales y Determinantes 1 Problemas de exámenes de Formas Bilineales y Determinantes 1. Sea R 3 con el producto escalar ordinario. Sea f un endomorfismo de R 3 definido por las condiciones: a) La matriz de f respecto de la base

Más detalles

AP = A p 1 p 2 p n = Ap 1 Ap 2. λ 1 p 21 λ 2 p 22 λ n p 2n. .. = λ 1 p 1 λ 2 p 2

AP = A p 1 p 2 p n = Ap 1 Ap 2. λ 1 p 21 λ 2 p 22 λ n p 2n. .. = λ 1 p 1 λ 2 p 2 Capítulo 6 Diagonalización 6 Valores y vectores propios 6 Planteamiento del problema Problema general de diagonalización Dado un operador lineal f sobre un espacio vectorial V, nos planteamos el problema

Más detalles

FACULTAD DE CIENCIAS EXACTAS, INGENIERÍA Y AGRIMENSURA U.N.R.

FACULTAD DE CIENCIAS EXACTAS, INGENIERÍA Y AGRIMENSURA U.N.R. FACULTAD DE CIENCIAS EXACTAS, INGENIERÍA Y AGRIMENSURA U.N.R. PROGRAMA ANALÍTICO DE LA ASIGNATURA: ALGEBRA LINEAL Código L2.07.1 PLAN DE ESTUDIOS: 2002 CARRERA: Licenciatura en Matemática DEPARTAMENTO:

Más detalles

Diagonalización de Endomorfismos

Diagonalización de Endomorfismos Tema 5 Diagonalización de Endomorfismos 5.1 Introducción En este tema estudiaremos la diagonalización de endomorfismos. La idea central de este proceso es determinar, para una aplicación lineal f : E E,

Más detalles

Hoja de diagonalización MATEMÁTICAS I

Hoja de diagonalización MATEMÁTICAS I Hoja de diagonalización MATEMÁTICAS I 8-9.- En los siguientes casos estudiar si f es una aplicación lineal y en caso afirmativo hallar una matriz A tal que f(x) Ax así como los subespacios vectoriales

Más detalles

2.1 Proyección ortogonal sobre un subespacio. El teorema de la proyección ortogonal

2.1 Proyección ortogonal sobre un subespacio. El teorema de la proyección ortogonal Tema 2- Proyecciones, simetrías y giros ÍNDICE 21 Proyección ortogonal sobre un subespacio El teorema de la proyección ortogonal 22 Simétría ortogonal respecto de un subespacio 23 Matrices de Householder

Más detalles

Espacios Vectoriales Euclídeos. Métodos de los mínimos cuadrados

Espacios Vectoriales Euclídeos. Métodos de los mínimos cuadrados Capítulo 5 Espacios Vectoriales Euclídeos. Métodos de los mínimos cuadrados En este tema iniciamos el estudio de los conceptos geométricos de distancia y perpendicularidad en K n. Empezaremos con las definiciones

Más detalles

Hoja de diagonalización MATEMÁTICAS I

Hoja de diagonalización MATEMÁTICAS I Hoja de diagonalización MATEMÁTICAS I 007-008 1.- En los siguientes casos estudiar si f es una aplicación lineal y en caso afirmativo hallar una matriz A tal que f(x) = Ax, así como los subespacios vectoriales

Más detalles

6.6. Diagonalización de matrices simétricas o hermitianas. Ejemplo de una diagonalización de una matriz simétrica

6.6. Diagonalización de matrices simétricas o hermitianas. Ejemplo de una diagonalización de una matriz simétrica 6.6 Diagonalización de matrices simétricas o hermitianas Ejemplo de una diagonalización de una matriz simétrica Matrices hermitianas Los autovalores de las matrices reales simétricas o complejas hermitianas

Más detalles

MATEMÁTICAS I 2º EXAMEN PARCIAL 12 junio de 2009

MATEMÁTICAS I 2º EXAMEN PARCIAL 12 junio de 2009 Sólo una respuesta a cada cuestión es correcta. Respuesta correcta: 0.2 puntos. Respuesta incorrecta: -0.1 puntos Respuesta en blanco: 0 puntos 1.- Un sistema generador G de R 3 : a) Está constituido por

Más detalles

Tema 4: Sistemas de ecuaciones lineales.

Tema 4: Sistemas de ecuaciones lineales. Tema 4: Sistemas de ecuaciones lineales 1 Rango de una matriz Definición Sea A Mat n m (K) Se llama rango de filas de A, y se denota por rg f (A) la dimensión del subespacio vectorial generado por las

Más detalles

Guía. Álgebra III. Examen parcial III. Forma canónica de Jordan. Producto interno.

Guía. Álgebra III. Examen parcial III. Forma canónica de Jordan. Producto interno. Guía. Álgebra III. Examen parcial III. Forma canónica de Jordan. Producto interno. Teoremas con demostraciones que se pueden incluir en el examen: 1. Fórmula para f(j m (λ)), donde J m (λ) es el bloque

Más detalles

Introducción a la Teoría de Códigos

Introducción a la Teoría de Códigos Introducción a la Teoría de Códigos M.A.García, L. Martínez, T.Ramírez Facultad de Ciencia y Tecnología. UPV/EHU Resumen Teórico Tema 1: PRELIMINARES SOBRE ÁLGEBRA LINEAL Mayo de 2017 Tema 1 Preliminares

Más detalles

ALGEBRA. Escuela Politécnica Superior de Málaga

ALGEBRA. Escuela Politécnica Superior de Málaga ALGEBRA. Escuela Politécnica Superior de Málaga Tema 1. Espacios Vectoriales. Sistemas de ecuaciones. Espacio vectorial. Espacios vectoriales R n. Dependencia e independencia lineal. Base. Matrices y determinantes.

Más detalles

Espacios vectoriales reales

Espacios vectoriales reales 144 Matemáticas 1 : Álgebra Lineal Capítulo 9 Espacios vectoriales reales 9.1 Espacios vectoriales Los conjuntos de vectores del plano, R, y del espacio, R 3, son conocidos y estamos acostumbrados a movernos

Más detalles

Algebra lineal II Examen Parcial 2

Algebra lineal II Examen Parcial 2 UNIVERSIDAD DE COSTA RICA ESCUELA DE MATEMATICA Algebra lineal II Examen Parcial 2 II Semestre 2014 Nick Gill Instrucciones: Puede usar cualquiera de las proposiciones o ejercicios vistos en clase. Tenga

Más detalles

2.5 Teorema de Jordan

2.5 Teorema de Jordan Capítulo 2/ Forma canónica de Jordan (Versión 13-03-2015) 15 2.5 Teorema de Jordan En esta sección queremos abordar ya el caso general de un endomorfismo f : V V cualquiera (no necesariamente con un único

Más detalles

OPERADORES LINEALES EN ESPACIOS CON PRODUCTO INTERNO Adjunto de un operador

OPERADORES LINEALES EN ESPACIOS CON PRODUCTO INTERNO Adjunto de un operador OPERADORES LINEALES EN ESPACIOS CON PRODUCTO INTERNO Adjunto de un operador Sea V un espacio con producto interno y sea T : V V un operador lineal. Un operador T * : V V se dice que es un adjunto de T

Más detalles

Tema 1: Espacios vectoriales

Tema 1: Espacios vectoriales PROBLEMAS DE MATEMÁTICAS Parte I: Álgebra Primero de Ingeniería Química FACULTAD DE CIENCIAS QUÍMICAS Departamento de Matemáticas Universidad de Castilla-La Mancha Tema 1: Espacios vectoriales 1 Determina

Más detalles

ALGEBRA LINEAL Y GEOMETRÍA. ISOMETRÍAS LINEALES EN DIMENSIONES 2 Y 3 GRADO DE MATEMÁTICAS. CURSO

ALGEBRA LINEAL Y GEOMETRÍA. ISOMETRÍAS LINEALES EN DIMENSIONES 2 Y 3 GRADO DE MATEMÁTICAS. CURSO ALGEBRA LINEAL Y GEOMETRÍA. ISOMETRÍAS LINEALES EN DIMENSIONES 2 Y 3 GRADO DE MATEMÁTICAS. CURSO 2012-2013 José García-Cuerva Universidad Autónoma de Madrid 13 de febrero de 2013 JOSÉ GARCÍA-CUERVA (U.A.M.)

Más detalles

2. Teorema de las multiplicidades algebraica y geométrica.

2. Teorema de las multiplicidades algebraica y geométrica. Guía. Álgebra III. Examen parcial II. Valores y vectores propios. Forma canónica de Jordan. Teoremas con demostraciones que se pueden incluir en el examen El examen puede incluir una demostración entera

Más detalles

1. ESPACIO EUCLÍDEO. ISOMETRÍAS

1. ESPACIO EUCLÍDEO. ISOMETRÍAS . ESPACIO EUCLÍDEO. ISOMETRÍAS. En el espacio euclídeo usual R 4 se consideran los subespacios vectoriales y W = {(x, y, z, t R 4 : x y =, z + t = } Hallar: W 2 = L{(,, 2, 2, (,,, } a Las ecuaciones de

Más detalles

Capítulo V. T 2 (e, e

Capítulo V. T 2 (e, e Capítulo V Métricas En este capítulo y en los siguientes, el cuerpo base de los espacios vectoriales que se consideren será de característica distinta de 2. Empecemos recordando las nociones básicas que

Más detalles

Universidad de Salamanca

Universidad de Salamanca Universidad de Salamanca Gloria Serrano Sotelo Departamento de MATEMÁTICAS 1. Subespacios invariantes por un endomorfismo Sea E un k-espacio vectorial y T un endomorfismo de E. Un subespacio vectorial

Más detalles

Tema 2. Aplicaciones lineales. Diagonalización de endomorfismos.

Tema 2. Aplicaciones lineales. Diagonalización de endomorfismos. Tema 2. Aplicaciones lineales. Diagonalización de endomorfismos. Álgebra Lineal Escuela Politécnica Superior Universidad de Málaga Emilio Muñoz-Velasco (Basado en los apuntes de Jesús Medina e Inmaculada

Más detalles