Álgebra Lineal y Geometría I. Prueba 3. Grupo A. 12 de marzo de (

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Álgebra Lineal y Geometría I. Prueba 3. Grupo A. 12 de marzo de ("

Transcripción

1 Álgebra Lineal y Geometría I. Prueba 3. Grupo A. 2 de marzo de 208. Apellidos: Nombre: DNI: Ejercicio.-(4 puntos) Se considera la matriz siguiente: A = Calcule W = null(a 2I), W 2 = null(a 4I) y W W Pruebe que W W 2 es el subespacio de autovectores asociado a un autovalor de A. 3. Halle una matriz ortogonal Q y una matriz diagonal D tales que D = Q t AQ. 4. Pruebe que la aplicación : R 3 R 3 definida por u v = u t Av para todo u, v R 3 es un producto escalar en R 3. Ejercicio 2.-(3 puntos) Dada la matriz A = ( 2 0. Calcule una base ortonormal B de W = null(a). 2. Amplíe B a una base ortonormal B de R Calcule las coordenadas de u = (,, 4, 2) t respecto de B. 4. Determine la proyección ortogonal w = proy W (u) de u sobre W y obtenga también sus coordenadas [w] B y [w] B. Ejercicio 3.-(3 puntos) Se considera, para cada b R, el homomorfismo f b : R 2 R 2 tal que su matriz M S (f b ) respecto de la base estándar es A b = ( /2 b b /2. Determine los valores de b R para los que f b es una isometría. 2. Pruebe que si b 0 entonces M B (f b ) no es diagonal respecto de ninguna base ortonormal B de R Sea g b : C 2 C 2 tal que M S (g b ) = A b. Razone si existe o no una base ortonormal B de C 2 tal que M B (g b ) sea diagonal. ) ).

2 Algebra Lineal y Geometría I. Grado de Matemáticas 3 de marzo de 208 Prueba 3 Grupo 2 APELLIDOS: NOMBRE: FIRMA: D.N.I.: Ejercicio : (4 puntos) Sea (V, ) un C espacio vectorial de dimensión 4 con producto escalar. Consideramos un conjunto ortonormal T = {v, v 2, v 3, v 4 } dentro de V.. Probar que T es una base de V. 2. Probar que W = v v 3, iv 2 + v 4 v, v 3 está generado por v 2 + iv 4. y calcular una base ortonormal de W. 3. Probar que la aplicación lineal f de V en V definida por f(v ) = v 3, f(v 2 ) = iv 4, f(v 3 ) = v, f(v 4 ) = iv 2 es una isometría. 4. Comprobar que W está contenida en la variedad formada por los autovectores de f de autovalor. 5. Comprobar que f es la identidad en la variedad L = v v 3, iv 2 + v 4 y calcular una base ortonormal de L. 6. Calcular una base ortonormal de autovectores de f. Ejercicio 2: (3 puntos) Sea A una matriz compleja unitaria y hermítica.. Probar que A 2 = Id. 2. Calcular A suponiendo que es semidefinida negativa de rango 3. Es decir, probar que es la única que existe con esas propiedades. 3. Dar dos matrices distintas en las condiciones del enunciado que no sean ni semidefinidas positivas ni semidefinidas negativas. Ejercicio 3: (3 puntos) Sea B la matriz cuyos autovalores son 0 y 6. B = Calcular una matriz ortogonal P y una matriz diagonal D tales que B = P DP t. 2. En el espacio vectorial R 3, consideramos el subespacio W definido por las ecuaciones implícitas {x + 2x 2 x 3 = 0}. Probar que la aplicación φ : W W R, dada por φ(u, v) = u t Bv, define un producto escalar en W. 3. Probar que dos vectores u, v de W son ortogonales para el producto escalar usual de R 3 ( u v = u t v) si y solamente si son ortogonales para el producto escalar φ.,

3 Álgebra Lineal y Geometría I Tercera prueba. Grupo C apellidos D.N.I. nombre Firma Ejercicio. (2,5 puntos) En el espacio vectorial R 3, se consideran el plano W y el vector v siguientes: a) Hallar una base ortonormal de W. b) Hallar la proyección ortogonal proy W (v) W =, 2, v =. 2 0 c) Hallar el ángulo que forman v y W (el ángulo entre un vector y un plano es igual al ángulo entre el vector y su proyección ortogonal sobre el plano). d) Demostrar que, en un espacio euclídeo o unitario V, para todo vector w V y todo subespacio L V se tiene w L si y sólo si proy L (w) = 0. Ejercicio 2. (2,5 puntos) a) Demuestre que toda matriz unitaria es normal. b) Demuestre que el producto de m matrices unitarias n n es una matriz unitaria. c) ¾Existe alguna matriz Hermitiana que no sea nula ni invertible? d) ¾Existe alguna matriz Hermitiana A tal que Av = iv para algún vector v 0? e) Demuestre que una matriz real simétrica denida positiva es invertible. Ejercicio 3. (2,5 puntos) Sea A una matriz real simétrica 3 3, con autovalores y 2. Sabemos que V ( ) =, 0 0 a) Hallar V (2). (Se recuerda que A es real simétrica.) b) Hallar una base ortonormal de R 3 formada por autovectores de A. c) Hallar A. Ejercicio 4. (2,5 puntos) Consideremos la siguiente matriz con coecentes complejos: A = ( 2 ) i i 2 a) Demostrar que A es Hermitiana y denida positiva. b) Hallar una matriz unitaria U tal que U AU sea diagonal. c) Hallar una matriz B tal que A = B B.

4 Álgebra Lineal y Geometría I Prueba 3, grupo D 2 de Marzo de 208 APELLIDOS: NOMBRE: DNI: Ejercicio (4 pt.) En el espacio euclídeo R 4, dotado del producto escalar estándar, se considera la aplicación f : R 4 R 4 tal que f(x) y = x f(y).. Pruebe que la matriz de f respecto de una base ortonormal es antisimétrica. 2. Pruebe que ker(f) = (im(f)). Deduzca que R 4 = im(f) ker(f). 3. Demuestre que los autovalores de f 2 son números reales negativos o nulos. 4. Dados los vectores u, v R 4, pruebe que Ejercicio 2 (3 pt.) Se considera la matriz u f 2 (v) = f 2 (u) v A = 2 cuyos autovalores son λ = y λ 2 =.. Pruebe que A es unitaria. 2. Calcule una matriz ortogonal Q y una matriz diagonal D de forma que Q t AQ = D. 3. Sea u R 4 cuyas coordenadas respecto de la base canónica C son u C = (0,, 2, ) t. Calcule proy V (λ )(u), proyección ortogonal de u sobre el espacio de autovectores V (λ ). Ejercicio 3 (3 pt.) Sean los subespacios vectoriales de R 4, espacio euclídeo dotado del producto escalar estándar: } x W : + x 2 + x 4 = 0 W x 2 x 4 = 0 2 =< (, 0,, 0) t, (,, 0, ) t >. Calcule una base de W y otra de W Compruebe que (W W 2 ) = W + W Demuestre que, en general, dados subespacios vectoriales F y G de un espacio vectorial V de dimensión finita dotado de producto escalar se tiene que (F + G) = F G.

5 Álgebra Lineal y Geometría I Prueba 3, grupo E 4 de marzo de 208 Apellidos: D.N.I.: Nombre: Ejercicio. (4) Consideremos la matriz simétrica real A = 2 5 4, cuyos autovalores son λ = 0, λ 2 = 9.. Pruebe que A es una matriz simétrica semidefinida positiva, pero no es ortogonal. 2. Calcule una matriz Q ortogonal y una matriz diagonal D tales que Q t AQ = D. 3. Sea W = null(a 9I) R 3 y consideremos la aplicación A : W W R dada por u v A = u t Av. Pruebe que es un producto escalar en W. 4. Construya un subespacio vectorial W tal que R 3 = W W y dim(w W ) = 0. Ejercicio 2. (3) En R 4, con el producto escalar estándar, consideramos el subespacio W = w, w 2, donde 2 w =, w 2 =.. Calcule una base de W. 2. Construya una matriz ortogonal Q cuyas dos primeras columnas formen una base de W. 3. A partir de la igualdad null(a) = Col(A t ), encuentre una matriz A 4 4 tal que null(a) = W. Ejercicio 3. (2) Sea V = R 2 y f : V V una isometría cuyo determinante es igual a.. Pruebe que los autovalores de f son y y que ambos son simples. 2. Sean W = ker(f id V ), W 2 = ker(f + id V ). Pruebe que W = W 2 y que V = W W Demuestre que f 2 = id V. 4. Sea h : V V una isometría de determinante igual a. Pruebe que existen f, f 2 : V V isometrías de determinante tales que h = f f 2. Ejercicio 4. () Sea A n n una matriz compleja hermitiana definida positiva. Demuestre que existe una matriz B compleja hermitiana definida positiva tal que B 2 = A.

EJERCICIOS DE ÁLGEBRA LINEAL TEMA 3 ESPACIOS EUCLÍDEOS

EJERCICIOS DE ÁLGEBRA LINEAL TEMA 3 ESPACIOS EUCLÍDEOS EJERCICIOS DE ÁLGEBRA LINEAL TEMA 3 ESPACIOS EUCLÍDEOS ESPACIOS EUCLÍDEOS ) a) Decir cuál de las siguientes aplicaciones de x de no definir un producto escalar comprobar el axioma que falla: a ) x' x,y,

Más detalles

A = En los casos afirmativos, hallar una forma diagonal D y obtener una matriz invertible real P M(3, 3) tal que P 1 AP = D.

A = En los casos afirmativos, hallar una forma diagonal D y obtener una matriz invertible real P M(3, 3) tal que P 1 AP = D. 22 Departamento de Álgebra. Universidad de Sevilla Tema 5. Sección 1. Endomorfismos. Endomorfismos diagonalizables. Ejercicio 5.1 Dadas las matrices complejas: 3 2 0 2 3 0, B = 0 0 5 14 1 12 13 0 12 17

Más detalles

Problemas de exámenes de Formas Bilineales y Determinantes

Problemas de exámenes de Formas Bilineales y Determinantes 1 Problemas de exámenes de Formas Bilineales y Determinantes 1. Sea R 3 con el producto escalar ordinario. Sea f un endomorfismo de R 3 definido por las condiciones: a) La matriz de f respecto de la base

Más detalles

1. ESPACIO EUCLÍDEO. ISOMETRÍAS

1. ESPACIO EUCLÍDEO. ISOMETRÍAS 1 1. ESPACIO EUCLÍDEO. ISOMETRÍAS Muchos de los fenómenos que se investigan en la geometría utilizan nociones como las de longitud de un vector y ángulo entre vectores. Para introducir estos dos conceptos

Más detalles

1 Isometrías vectoriales.

1 Isometrías vectoriales. Eugenia Rosado ETSM Curso 9-. Isometrías vectoriales. Sea E un espacio vectorial euclídeo. De nición Una aplicación f : E! E se dice transformación ortogonal o isometría vectorial si conserva el producto

Más detalles

Tema 1: Espacios vectoriales

Tema 1: Espacios vectoriales PROBLEMAS DE MATEMÁTICAS Parte I: Álgebra Primero de Ingeniería Química FACULTAD DE CIENCIAS QUÍMICAS Departamento de Matemáticas Universidad de Castilla-La Mancha Tema 1: Espacios vectoriales 1 Determina

Más detalles

6.5.7 Orientación de un espacio vectorial eucĺıdeo Producto vectorial Diagonalización de formas bilineales simétricas...

6.5.7 Orientación de un espacio vectorial eucĺıdeo Producto vectorial Diagonalización de formas bilineales simétricas... Contents 6 Formas Bilineales y Producto Escalar 3 6.1 Formas bilineales............................... 3 6.1.1 Matriz de una forma bilineal....................... 4 6.1. Formas bilineales simétricas.......................

Más detalles

1. Determina cuáles de los siguientes conjuntos son subespacios vectoriales. Para aquellos que lo sean, halla una base.

1. Determina cuáles de los siguientes conjuntos son subespacios vectoriales. Para aquellos que lo sean, halla una base. EJERCICIOS PROPUESTOS 1. Espacios vectoriales. Sistemas de ecuaciones. 1. Determina cuáles de los siguientes conjuntos son subespacios vectoriales. Para aquellos que lo sean, halla una base. (a) S = {

Más detalles

ÁLGEBRA LINEAL E.T.S. DE INGENIERÍA INFORMÁTICA INGENIERÍAS TÉCNICAS EN INFORMÁTICA DE SISTEMAS Y GESTIÓN BOLETÍN DE PROBLEMAS DE

ÁLGEBRA LINEAL E.T.S. DE INGENIERÍA INFORMÁTICA INGENIERÍAS TÉCNICAS EN INFORMÁTICA DE SISTEMAS Y GESTIÓN BOLETÍN DE PROBLEMAS DE E.T.S. DE INGENIERÍA INFORMÁTICA BOLETÍN DE PROBLEMAS DE ÁLGEBRA LINEAL para las titulaciones de INGENIERÍAS TÉCNICAS EN INFORMÁTICA DE SISTEMAS Y GESTIÓN 1. Matrices y determinantes Ejercicio 1.1 Demostrar

Más detalles

SOLUCIONES. ÁLGEBRA LINEAL Y GEOMETRÍA (Examen Ordinario : ) Grado en Matemáticas Curso

SOLUCIONES. ÁLGEBRA LINEAL Y GEOMETRÍA (Examen Ordinario : ) Grado en Matemáticas Curso ÁLGEBRA LINEAL Y GEOMETRÍA Eamen Ordinario : 6--7 Grado en Matemáticas Curso 6-7 SOLUCIONES Dados tres puntos distintos alineados A, A, A A R, al número real r tal que A A = r A A lo llamaremos raón simple

Más detalles

ALGEBRA. Escuela Politécnica Superior de Málaga

ALGEBRA. Escuela Politécnica Superior de Málaga ALGEBRA. Escuela Politécnica Superior de Málaga Tema 1. Espacios Vectoriales. Sistemas de ecuaciones. Espacio vectorial. Espacios vectoriales R n. Dependencia e independencia lineal. Base. Matrices y determinantes.

Más detalles

ALGEBRA. Escuela Politécnica Superior de Málaga

ALGEBRA. Escuela Politécnica Superior de Málaga ALGEBRA. Escuela Politécnica Superior de Málaga Tema 1. Espacios Vectoriales. Sistemas de ecuaciones. Espacio vectorial. Espacios vectoriales R n. Dependencia e independencia lineal. Base. Matrices y determinantes.

Más detalles

9. Teoremas espectrales

9. Teoremas espectrales 9 Teoremas espectrales Lema de Schur Ejercicio 9 En los siguientes casos, use el lema de Schur para descomponer, sobre C, la matriz A como producto A = U TU de modo que T sea triangular superior y U unitaria:

Más detalles

1. ESPACIO EUCLÍDEO. ISOMETRÍAS

1. ESPACIO EUCLÍDEO. ISOMETRÍAS . ESPACIO EUCLÍDEO. ISOMETRÍAS. En el espacio euclídeo usual R 4 se consideran los subespacios vectoriales y W = {(x, y, z, t R 4 : x y =, z + t = } Hallar: W 2 = L{(,, 2, 2, (,,, } a Las ecuaciones de

Más detalles

PAIEP. Complemento Ortogonal

PAIEP. Complemento Ortogonal Programa de Acceso Inclusivo, Equidad y Permanencia PAIEP Universidad de Santiago de Chile Complemento Ortogonal Veamos ahora una aplicación de los vectores ortogonales a la caracterización de subespacios

Más detalles

f(x, y, z, t) = (x + y t, x + 2y z 3t, 3x + 5y 2z 7t).

f(x, y, z, t) = (x + y t, x + 2y z 3t, 3x + 5y 2z 7t). Universidade de Vigo Departamento de Matemática Aplicada II E.T.S.I. Minas Álgebra Convocatoria de enero de 20 de enero de 20 (2.5 p.) ) Se considera la aplicación lineal f : R 4 R definida por: f(x y

Más detalles

ESPACIOS VECTORIALES Y APLICACIONES LINEALES

ESPACIOS VECTORIALES Y APLICACIONES LINEALES Departamento de Matemática Aplicada II E.E.I. ÁLGEBRA Y ESTADÍSTICA Boletín n o (010-011 ESPACIOS VECTORIALES Y APLICACIONES LINEALES 1. En el espacio vectorial ordinario R 4 estudiar cuáles de los siguientes

Más detalles

Tema 2. Aplicaciones lineales. Diagonalización de endomorfismos.

Tema 2. Aplicaciones lineales. Diagonalización de endomorfismos. Tema 2. Aplicaciones lineales. Diagonalización de endomorfismos. Álgebra Lineal Escuela Politécnica Superior Universidad de Málaga Emilio Muñoz-Velasco (Basado en los apuntes de Jesús Medina e Inmaculada

Más detalles

Podemos pues formular los dos problemas anteriores en términos de matrices.

Podemos pues formular los dos problemas anteriores en términos de matrices. Tema 5 Diagonalización 51 Introducción Valores y vectores propios 511 Planteamiento del problema Problema general de diagonalización Dado un operador lineal f sobre un espacio vectorial V de dimensión

Más detalles

1. DIAGONALIZACIÓN. FORMAS CANÓNICAS

1. DIAGONALIZACIÓN. FORMAS CANÓNICAS 1 1. DIAGONALIZACIÓN. FORMAS CANÓNICAS 1. Se considera la matriz: A = ( 2 3 4 13 con coeficientes en R. Hallar los valores propios, los vectores propios y una matriz P que permita la diagonalización de

Más detalles

1.- Definir: Vectores linealmente dependientes y Sistemas ligados.

1.- Definir: Vectores linealmente dependientes y Sistemas ligados. Prueba de Evaluación Continua Grupo B 23-03-11 1- Definir: Vectores linealmente dependientes Sistemas ligados Demostrar que un conjunto de vectores son linealmente dependientes si sólo si uno de ellos

Más detalles

Ejercicios resueltos de Álgebra, hoja 3. Beatriz Graña Otero

Ejercicios resueltos de Álgebra, hoja 3. Beatriz Graña Otero Ejercicios resueltos de Álgebra, hoja. Beatriz Graña Otero 5 de Diciembre de 8 B.G.O. 47.- Sobre el R-espacio vectorial E de dimensión 4, sea la métrica cuya matriz asociada a la base B = {e, e, e, e 4

Más detalles

Producto Escalar. AMD Grado en Ingeniería Informática. AMD Grado en Ingeniería Informática (UM) Producto Escalar 1 / 31

Producto Escalar. AMD Grado en Ingeniería Informática. AMD Grado en Ingeniería Informática (UM) Producto Escalar 1 / 31 Producto Escalar AMD Grado en Ingeniería Informática AMD Grado en Ingeniería Informática (UM) Producto Escalar 1 / 31 Objetivos Al finalizar este tema tendrás que: Saber usar el producto escalar. Calcular

Más detalles

7 Aplicaciones ortogonales

7 Aplicaciones ortogonales Águeda Mata y Miguel Reyes, Dpto. de Matemática Aplicada, FI-UPM 1 7 Aplicaciones ortogonales 7.1 Aplicación ortogonal Se llama aplicación ortogonal a un endomorfismo f : V V sobre un espacio vectorial

Más detalles

Guía. Álgebra III. Examen parcial III. Forma canónica de Jordan. Producto interno.

Guía. Álgebra III. Examen parcial III. Forma canónica de Jordan. Producto interno. Guía. Álgebra III. Examen parcial III. Forma canónica de Jordan. Producto interno. Teoremas con demostraciones que se pueden incluir en el examen: 1. Fórmula para f(j m (λ)), donde J m (λ) es el bloque

Más detalles

1. Relación de ejercicios: Espacio Euclídeo

1. Relación de ejercicios: Espacio Euclídeo 1. Relación de ejercicios: Espacio Euclídeo Ejercicio 1.1 Dado un tensor métrico g sobre V (R) y un subespacio vectorial U < V se define la restricción de g a U como la aplicación restringida g U U U U

Más detalles

Grado en Física. Problemas. Temas 1 4

Grado en Física. Problemas. Temas 1 4 Álgebra Lineal y Geometría Grado en Física Problemas. Temas 1 4 Departamento de Álgebra, Universidad de Sevilla 1 El contenido de estas notas ha sido diseñado y redactado por el profesorado de la asignatura

Más detalles

Matrices. Operaciones con matrices.

Matrices. Operaciones con matrices. Matrices. Operaciones con matrices. Ejercicio. Dadas las matrices ( ) ( ) 4 A = B = ( ) C = D = 4 5 ( ) 4 E = F = seleccione las que se pueden sumar y súmelas. Ejercicio. Dadas las matrices ( ) ( ) A =

Más detalles

TEMA III: DIAGONALIZACIÓN.

TEMA III: DIAGONALIZACIÓN. TEMA III: DIAGONALIZACIÓN. OBJETIVOS: Generales: 1. Captar el motivo que justifica el problema de la diagonalización de endomorfismos. 2. Resolver y aplicar dicho problema cuando sea posible. Específicos:

Más detalles

TEMA V. Espacios vectoriales

TEMA V. Espacios vectoriales TEMA V. Espacios vectoriales 1 1. Demostrar que cada uno de los siguientes conjuntos tiene estructura de espacio vectorial sobre el cuerpo de los reales: a El conjunto (R 2, +,, R. b El conjunto (R 3,

Más detalles

ALGEBRA LINEAL Y GEOMETRÍA. REPASO DE ÁLGEBRA LINEAL-2: CAMBIOS DE BASE GRADO DE MATEMÁTICAS. CURSO

ALGEBRA LINEAL Y GEOMETRÍA. REPASO DE ÁLGEBRA LINEAL-2: CAMBIOS DE BASE GRADO DE MATEMÁTICAS. CURSO ALGEBRA LINEAL Y GEOMETRÍA. REPASO DE ÁLGEBRA LINEAL-2: CAMBIOS DE BASE GRADO DE MATEMÁTICAS. CURSO 2012-2013 José García-Cuerva Universidad Autónoma de Madrid 11 de febrero de 2013 JOSÉ GARCÍA-CUERVA

Más detalles

1. DIAGONALIZACIÓN DE ENDOMORFISMOS

1. DIAGONALIZACIÓN DE ENDOMORFISMOS . DIAGONALIZACIÓN DE ENDOMORFISMOS. Se considera la matriz: A ( 2 3 4 3 con coecientes en R. Hallar los valores propios, los vectores propios y una matriz P que permita la diagonalización de A. Calcular

Más detalles

Hoja de diagonalización MATEMÁTICAS I

Hoja de diagonalización MATEMÁTICAS I Hoja de diagonalización MATEMÁTICAS I 8-9.- En los siguientes casos estudiar si f es una aplicación lineal y en caso afirmativo hallar una matriz A tal que f(x) Ax así como los subespacios vectoriales

Más detalles

Universidad Nacional de Colombia Departamento de Matemáticas Álgebra Lineal - Grupo 01 Taller 4

Universidad Nacional de Colombia Departamento de Matemáticas Álgebra Lineal - Grupo 01 Taller 4 Universidad Nacional de Colombia Departamento de Matemáticas - Álgebra Lineal - Grupo Taller () Es el conjunto de los números reales con las operaciones de suma y multiplicación un R-espacio vectorial?

Más detalles

Hoja de diagonalización MATEMÁTICAS I

Hoja de diagonalización MATEMÁTICAS I Hoja de diagonalización MATEMÁTICAS I 007-008 1.- En los siguientes casos estudiar si f es una aplicación lineal y en caso afirmativo hallar una matriz A tal que f(x) = Ax, así como los subespacios vectoriales

Más detalles

Práctica 2. Producto interno

Práctica 2. Producto interno Práctica 2. Producto interno 1. (a) Encontrar las condiciones que deben cumplir los coeficientes a 11, a 12, a 21 y a 22 para que la expresión defina un producto interno en R 2. (u, v) = a 11 u 1 v 1 +

Más detalles

Álgebra Lineal Grupo A Curso 2011/12. Espacios vectoriales. Bases...

Álgebra Lineal Grupo A Curso 2011/12. Espacios vectoriales. Bases... Álgebra Lineal Grupo A Curso 2011/12 Espacios vectoriales. Bases 61) Dados los vectores v 1,v 2,...,v n linealmente independientes, probar que también lo son los vectores u 1 = v 1 u 2 = v 1 + v 2... u

Más detalles

Diagonalización. Tema Valores y vectores propios Planteamiento del problema Valores y vectores propios

Diagonalización. Tema Valores y vectores propios Planteamiento del problema Valores y vectores propios 61 Matemáticas I : Álgebra Lineal Tema 6 Diagonalización 61 Valores y vectores propios 611 Planteamiento del problema Problema general de diagonalización Dado un operador lineal f sobre un espacio vectorial

Más detalles

EJERCICIOS DE ÁLGEBRA LINEAL TEMA 2 APLICACIONES LINEALES

EJERCICIOS DE ÁLGEBRA LINEAL TEMA 2 APLICACIONES LINEALES EJERCICIOS DE TEMA APLICACIONES LINEALES APLICACIONES LINEALES ) Estudiar cuáles de las siguientes aplicaciones son lineales entre los espacios vectoriales dados: x y a) f: f(x, y) = x y x b) f: x f(x)

Más detalles

Transformaciones lineales autoadjuntas (hermíticas)

Transformaciones lineales autoadjuntas (hermíticas) Transformaciones lineales autoadjuntas (hermíticas) Objetivos. Estudiar propiedades elementales de transformaciones lineales autoadjuntas. Demostrar que para toda transformación lineal autoadjunta en un

Más detalles

Aplicaciones lineales.

Aplicaciones lineales. Tema 4 Aplicaciones lineales. Definición 4. Sea f: V W una aplicación entre los espacios vectoriales reales V y W. Se dice que f es una aplicación lineal si: a f(u + v = f(u + f(v; u, v V, b f(ku = kf(u;

Más detalles

Espacios vectoriales (Curso )

Espacios vectoriales (Curso ) ÁLGEBRA Práctica 5 Espacios vectoriales (Curso 2008 2009) 1. En el espacio vectorial real IR 2 consideramos los siguientes subconjuntos: (a) A = {(x y) IR 2 x 2 + y 2 = 1}. (b) B = {(x y) IR 2 x = 3y}.

Más detalles

Aplicaciones bilineales y formas cuadráticas (Curso )

Aplicaciones bilineales y formas cuadráticas (Curso ) ÁLGEBRA Práctica 8 Aplicaciones bilineales y formas cuadráticas (Curso 2008 2009) 1. Comprobar si las siguientes aplicaciones son o no bilineales y en las que resulten serlo, dar la matriz que las representa

Más detalles

Ejercicio 3.1 Estudiar si son subespacios vectoriales los siguientes subconjuntos de los espacios R n indicados:

Ejercicio 3.1 Estudiar si son subespacios vectoriales los siguientes subconjuntos de los espacios R n indicados: 10 Departamento de Álgebra. Universidad de Sevilla Tema 3. Sección 1. Variedades lineales. Definición. Ejercicio 3.1 Estudiar si son subespacios vectoriales los siguientes subconjuntos de los espacios

Más detalles

AP = A p 1 p 2 p n = Ap 1 Ap 2. λ 1 p 21 λ 2 p 22 λ n p 2n. .. = λ 1 p 1 λ 2 p 2

AP = A p 1 p 2 p n = Ap 1 Ap 2. λ 1 p 21 λ 2 p 22 λ n p 2n. .. = λ 1 p 1 λ 2 p 2 Capítulo 6 Diagonalización 6 Valores y vectores propios 6 Planteamiento del problema Problema general de diagonalización Dado un operador lineal f sobre un espacio vectorial V, nos planteamos el problema

Más detalles

ÁLGEBRA LINEAL II Algunas soluciones a la práctica 2.3

ÁLGEBRA LINEAL II Algunas soluciones a la práctica 2.3 ÁLGEBRA LINEAL II Algunas soluciones a la práctica 2. Transformaciones ortogonales (Curso 2010 2011) 1. Se considera el espacio vectorial euclídeo IR referido a una base ortonormal. Obtener la expresión

Más detalles

102 EJERCICIOS DE ALGEBRA LINEAL por Francisco Rivero Mendoza Ph.D.

102 EJERCICIOS DE ALGEBRA LINEAL por Francisco Rivero Mendoza Ph.D. 102 EJERCICIOS DE ALGEBRA LINEAL por Francisco Rivero Mendoza Ph.D. Tema 1. Espacios Vectoriales. 1. Dar la definición de cuerpo. Dar tres ejemplos de cuerpos. Dar un ejemplo de un cuerpo finito 2. Defina

Más detalles

TEMA 11.- VECTORES EN EL ESPACIO

TEMA 11.- VECTORES EN EL ESPACIO TEMA 11.- VECTORES EN EL ESPACIO 1.- INTRODUCCIÓN Un vector fijo AB del espacio (también lo era en el plano) es un segmento orientado que tiene su origen en un punto A y su extremo en otro punto B. Estos

Más detalles

Ejercicios tipo test de las lecciones 1 y El vector e = ( 1, 0, λ) está en el plano generado por los vectores u = (1, 2, 1) y

Ejercicios tipo test de las lecciones 1 y El vector e = ( 1, 0, λ) está en el plano generado por los vectores u = (1, 2, 1) y Álgebra lineal y Geometría I Gloria Serrano Sotelo Departamento de MATEMÁTICAS Ejercicios tipo test de las lecciones 1 y 2. 1. El vector e = ( 1, 0, λ) está en el plano generado por los vectores u = (1,

Más detalles

x, y = x 0 y 0 + x 1 y 1 + x 2 y 2 + x 3 y 3. Es fácil ver que verifica 1. Es simétrica. x, y = y, x para todo x, y R 4.

x, y = x 0 y 0 + x 1 y 1 + x 2 y 2 + x 3 y 3. Es fácil ver que verifica 1. Es simétrica. x, y = y, x para todo x, y R 4. 1 Tema 2. Sección 1. Espacio vectorial de Minkowski. Manuel Gutiérrez. Departamento de Álgebra, Geometría y Topología. Universidad de Málaga. 29071-Málaga. Spain. Abril de 2010. En este capítulo se recordará

Más detalles

GEOMETRÍA AFÍN Y PROYECTIVA Espacios Vectoriales.

GEOMETRÍA AFÍN Y PROYECTIVA Espacios Vectoriales. Sonia L. Rueda ETS Arquitectura. UPM Año 2016-2017. 1 GEOMETRÍA AFÍN Y PROYECTIVA Espacios Vectoriales. 1. Determinar si los siguientes conjuntos de vectores son subespacios vectoriales de R 4. A = {(x,

Más detalles

ÁLGEBRA LINEAL II Práctica

ÁLGEBRA LINEAL II Práctica ÁLGEBRA LINEAL II Práctica 3.1-3.2 Geometría afín. (Curso 2012 2013) 1. En un espacio afín real de dimensión 3, se consideran dos sistemas de referencia R = O, ē 1, ē 2, ē 3 } y R = P, ū 1, ū 2, ū 3 },

Más detalles

2.5 Ejercicios... 59

2.5 Ejercicios... 59 Índice General 1 Espacios vectoriales 1 1.1 Espacios vectoriales y subespacios......................... 1 1.1.1 Preliminares................................. 1 1.1.2 Espacios vectoriales.............................

Más detalles

Álgebra II (61.08, 81.02) Primer cuatrimestre 2018 Práctica 3. Producto interno

Álgebra II (61.08, 81.02) Primer cuatrimestre 2018 Práctica 3. Producto interno Álgebra II (61.08, 81.02) Primer cuatrimestre 2018 Práctica 3. Producto interno Nota: en todos los casos en que no se indique lo contrario, considere el producto interno canónico en K n (K = R o C). 1.

Más detalles

Lista de problemas de álgebra, 2016

Lista de problemas de álgebra, 2016 Instituto Politécnico Nacional Escuela Superior de Física y Matemáticas Posgrado en Ciencias Físicomatemáticas Línea de Matemáticas Lista de problemas de álgebra 2016 Egor Maximenko: En mi opinión cualquier

Más detalles

Matemáticas para la Empresa

Matemáticas para la Empresa Matemáticas para la Empresa 1 o D.C.E. 1 o L.A.D.E. Curso 2008/09 Relación 2. Aplicaciones Lineales. Diagonalización. Formas Cuadráticas 1. Estudia si son lineales las aplicaciones siguientes: a) La aplicación

Más detalles

Álgebra lineal y Geometría II. Métricas y formas cuadráticas. 1. La matriz de la métrica T 2 ((x, y, z), (x, y, z )) = xx + yy + 3zz 2xz 2zx es:

Álgebra lineal y Geometría II. Métricas y formas cuadráticas. 1. La matriz de la métrica T 2 ((x, y, z), (x, y, z )) = xx + yy + 3zz 2xz 2zx es: Álgebra lineal y Geometría II Gloria Serrano Sotelo Departamento de MATEMÁTICAS ÁLGEBRA LINEAL Y GEOMETRÍA. 0 FÍSICAS Métricas y formas cuadráticas.. La matriz de la métrica T ((x, y, z), (x, y, z )) =

Más detalles

En el caso en que el conjunto sea linealmente dependiente, exprese uno de los vectores como combinación lineal de los demás.

En el caso en que el conjunto sea linealmente dependiente, exprese uno de los vectores como combinación lineal de los demás. Depto. de Álgebra curso 7-8 4. Espacio vectorial Estructura Ejercicio 4.. Demuestre que el conjunto M ( R) con la suma de matrices y el producto de matrices por números reales es un R espacio vectorial.

Más detalles

a) (0,5 puntos) Calcula la matriz escalonada reducida de A. Cuál es el rango de A?

a) (0,5 puntos) Calcula la matriz escalonada reducida de A. Cuál es el rango de A? Asignatura: ÁLGEBRA LINEAL Fecha del examen: de Enero de 6 Fecha publicación notas: 9 de Enero de 6 Fecha revisión examen: de Enero de 6 Duración del examen: horas y minutos APELLIDOS: NOMBRE: Titulación:.

Más detalles

Clase 7 Herramientas de Álgebra Lineal

Clase 7 Herramientas de Álgebra Lineal Clase 7 Herramientas de Álgebra Lineal 1 Formas cuadráticas La descomposición en valores singulares 3 Normas de matrices 4 Ejercicios Dada una matriz M R n n, la función escalar x T Mx, donde x R n, es

Más detalles

a) Como mucho puede haber 3 vectores linealmente independientes. 1 2 = 3 x = 1, y = 2 3 No tiene solución, luego no se puede.

a) Como mucho puede haber 3 vectores linealmente independientes. 1 2 = 3 x = 1, y = 2 3 No tiene solución, luego no se puede. Ejercicios y problemas propuestos Página Para practicar Dependencia e independencia lineal. Base y coordenadas Dados estos vectores: u(,, ), v (,, ), w (,, ), z (,, ) a) Cuántos de ellos son linealmente

Más detalles

Espacios vectoriales reales.

Espacios vectoriales reales. Tema 3 Espacios vectoriales reales. 3.1 Espacios vectoriales. Definición 3.1 Un espacio vectorial real V es un conjunto de elementos denominados vectores, junto con dos operaciones, una que recibe el nombre

Más detalles

Grado en Ciencias Ambientales. Matemáticas. Curso 10/11.

Grado en Ciencias Ambientales. Matemáticas. Curso 10/11. Grado en Ciencias Ambientales. Matemáticas. Curso 0/. Problemas Tema 2. Matrices y Determinantes. Matrices.. Determinar dos matrices cuadradas de orden 2, X e Y tales que: 2 2X 5Y = 2 ; X + 2Y = 4.2. Calcular

Más detalles

Material para el examen parcial 1

Material para el examen parcial 1 Algebra Lineal 2, FAMAT-UG, aug-dic, 2009 Material para el examen parcial 1 (17 oct, 2009) Definiciones: Hay que saber las definiciones precisas de todos los siguientes términos, y conocer ejemplos concretos

Más detalles

6.8. Descomposición mediante valores singulares. v 2 =

6.8. Descomposición mediante valores singulares. v 2 = 68 Descomposición mediante valores singulares Los valores singulares de una matriz m n Supongamos que A es una matriz real cualquiera Los autovalores de A T A tienen la siguiente propiedad A T Ax = λx

Más detalles

Espacios vectoriales con producto interno

Espacios vectoriales con producto interno Espacios vectoriales con producto interno Problemas teóricos En todos los problemas relacionados con el caso complejo se supone que el producto interno es lineal con respecto al segundo argumento. Definición

Más detalles

ÁLGEBRA LINEAL I Práctica 5

ÁLGEBRA LINEAL I Práctica 5 ÁLGEBRA LINEAL I Práctica 5 Espacios vectoriales (Curso 2014 2015) 1. En el espacio vectorial real IR 2 consideramos los siguientes subconjuntos: (a) A = {(x y) IR 2 x 2 + y 2 = 1}. (b) B = {(x y) IR 2

Más detalles

Aplicaciones Lineales

Aplicaciones Lineales Capítulo 5 Aplicaciones Lineales 51 Definición y Propiedades Sean V y W dos espacios vectoriales sobre el mismo cuerpo K Definición 511 Se dice que una aplicación f : V W es una aplicación lineal o un

Más detalles

Tema 5: Diagonalización de matrices

Tema 5: Diagonalización de matrices Tema : Diagonalización de matrices La intención en este tema es, dada una matriz cuadrada, ver si existe otra matriz semejante a ella que sea diagonal. Recordemos del Tema 4 que dos matrices cuadradas

Más detalles

Aplicaciones Lineales

Aplicaciones Lineales Capítulo 7 Aplicaciones Lineales 7.1 Definición y Propiedades Sean V y W dos espacios vectoriales sobre el mismo cuerpo K. Definición 7.1.1 Se dice que una aplicación f : V W es una aplicación lineal o

Más detalles

Capítulo V. Valores y vectores propios. Diagonalización de operadores lineales.

Capítulo V. Valores y vectores propios. Diagonalización de operadores lineales. Capítulo V Valores y vectores propios. Diagonalización de operadores lineales. Hemos visto que la aplicaciones lineales de en están definidas a través de una expresión de la forma ; pero esta fórmula puede

Más detalles

Álgebra lineal II Examen Parcial 3

Álgebra lineal II Examen Parcial 3 UNIVERSIDAD DE COSTA RICA ESCUELA DE MATEMATICA Álgebra lineal II Examen Parcial II Semestre 04 Nick Gill Instrucciones: Puede usar cualesquiera de las proposiciones vistas en las lecciones incluidos los

Más detalles

ÁLGEBRA LINEAL II Práctica

ÁLGEBRA LINEAL II Práctica ÁLGEBRA LINEAL II Práctica 3.1-3.2 Geometría afín. (Curso 2013 2014) 1. En un espacio afín real de dimensión 3, se consideran dos sistemas de referencia R = O, ē 1, ē 2, ē 3 } y R = P, ū 1, ū 2, ū 3 },

Más detalles

ÁLGEBRA LINEAL. EXAMEN FINAL 18 de Enero de b) (0, 5 puntos) Estudia si la siguiente afirmación es verdadera o falsa, justificando

ÁLGEBRA LINEAL. EXAMEN FINAL 18 de Enero de b) (0, 5 puntos) Estudia si la siguiente afirmación es verdadera o falsa, justificando ÁLGEBRA LINEAL EXAMEN FINAL 8 de Enero de Apellidos y Nombre: Duración del examen: 3 horas Publicación de notas: enero Revisión de Examen: feb Ejercicio. ( puntos a (, puntos Estudia si la siguiente afirmación

Más detalles

1. Hallar el rango de cada una de las siguientes matrices

1. Hallar el rango de cada una de las siguientes matrices Tarea 5 Hallar el rango de cada una de las siguientes matrices 5 5 a) = 7 6 5 5 b) = 5 8 Solución: a) rang ( ) = b) rang ( ) = Determinar si cada uno de los siguientes conjuntos de vectores es linealmente

Más detalles

Espacios vectoriales con producto escalar

Espacios vectoriales con producto escalar 147 Fundamentos de Matemáticas : Álgebra Lineal Capítulo 10 Espacios vectoriales con producto escalar 10.1 Producto escalar. Norma. Distancia Definición 71.- Un producto escalar o producto interior en

Más detalles

VECTORES EN EL ESPACIO

VECTORES EN EL ESPACIO UNIDAD VECTORES EN EL ESPACIO Página 13 Problema 1 Halla el área de este paralelogramo en función del ángulo α: cm Área = 8 sen α = 40 sen α cm α 8 cm Halla el área de este triángulo en función del ángulo

Más detalles

y cualquier par (x, y) puede escalarse, multiplicarse por un número real s, para obtener otro vector (sx, sy).

y cualquier par (x, y) puede escalarse, multiplicarse por un número real s, para obtener otro vector (sx, sy). UNIDAD II: VECTORES EN DOS Y TRES DIMENSIONES Un espacio vectorial (o espacio lineal) es el objeto básico de estudio en la rama de la matemática llamada álgebra lineal. A los elementos de los espacios

Más detalles

Espacios vectoriales reales.

Espacios vectoriales reales. Capítulo 4 Espacios vectoriales reales. 4.1 Espacios vectoriales. Definición 86.- Un espacio vectorial real V es un conjunto de elementos denominados vectores, junto con dos operaciones, una que recibe

Más detalles

Guía. Álgebra III. Examen parcial I. Determinantes. Formas cuadráticas.

Guía. Álgebra III. Examen parcial I. Determinantes. Formas cuadráticas. Guía. Álgebra III. Examen parcial I. Determinantes. Formas cuadráticas. Teoremas con demostraciones que se pueden incluir en el examen: 1. Teorema del determinante de la matriz transpuesta. 2. Propiedad

Más detalles

ALGEBRA LINEAL Y GEOMETRÍA. ISOMETRÍAS LINEALES EN DIMENSIONES 2 Y 3 GRADO DE MATEMÁTICAS. CURSO

ALGEBRA LINEAL Y GEOMETRÍA. ISOMETRÍAS LINEALES EN DIMENSIONES 2 Y 3 GRADO DE MATEMÁTICAS. CURSO ALGEBRA LINEAL Y GEOMETRÍA. ISOMETRÍAS LINEALES EN DIMENSIONES 2 Y 3 GRADO DE MATEMÁTICAS. CURSO 2012-2013 José García-Cuerva Universidad Autónoma de Madrid 13 de febrero de 2013 JOSÉ GARCÍA-CUERVA (U.A.M.)

Más detalles

AUTOVALORES Y AUTOVECTORES

AUTOVALORES Y AUTOVECTORES 12 de Julio de 2011 AUTOVALORES Y AUTOVECTORES (Clase 01) Departamento de Matemática Aplicada Facultad de Ingeniería Universidad Central de Venezuela 1 Puntos a tratar 1. Valores y vectores propios 2.

Más detalles

Matemáticas. Álgebra lineal (parte final ampliada)

Matemáticas. Álgebra lineal (parte final ampliada) Master en Estadística e Investigación Operativa Matemáticas Álgebra lineal (parte final ampliada) Vera Sacristán Departament de Matemàtica Aplicada II Facultat de Matemàtiques i Estadística Universitat

Más detalles

Tema 3.2. Espacio afín eucĺıdeo. Problemas métricos

Tema 3.2. Espacio afín eucĺıdeo. Problemas métricos Tema 3.2. Espacio afín eucĺıdeo. Problemas métricos Definición: Un espacio afín es una terna A = (P, V, f) en la que P es un conjunto no vacío, V un espacio vectorial de dimensión finita sobre un cuerpo

Más detalles

Geometría afín y proyectiva, 2016 SEMANA 4

Geometría afín y proyectiva, 2016 SEMANA 4 Geometría afín y proyectiva, 2016 SEMANA 4 Sonia L. Rueda ETS Arquitectura. UPM September 30, 2016 Geometría afín y proyectiva 1. Álgebra Lineal 2. Geometría afín y eucĺıdea 3. Cónicas y cuádricas Álgebra

Más detalles

Examen Final - soluciones

Examen Final - soluciones Algebra Lineal 2, FAMAT-UG, agsto-dic, 2009 PARTE A (60 puntos). Cierto o Falso. Examen Final - soluciones 9 dic, 2009 1. Para todo operador ortogonal T en R n, det(t ) = 1. Falso. T : (x 1,..., x n )

Más detalles

1. Espacio vectorial. Subespacios vectoriales

1. Espacio vectorial. Subespacios vectoriales Álgebra lineal y Geometría I Gloria Serrano Sotelo Departamento de MATEMÁTICAS Sea k un cuerpo. 1. Espacio vectorial. Subespacios vectoriales Definición 1.1. Un k-espacio vectorial o espacio vectorial

Más detalles

Tema 11.- Autovalores y Autovectores.

Tema 11.- Autovalores y Autovectores. Álgebra 004-005 Ingenieros Industriales Departamento de Matemática Aplicada II Universidad de Sevilla Tema - Autovalores y Autovectores Definición, propiedades e interpretación geométrica La ecuación característica

Más detalles

Producto escalar. x y. x = x x y cos α =

Producto escalar. x y. x = x x y cos α = resumen06 1 Producto escalar Vectores ortogonales y proyecciones La definición matemática de producto escalar es bastante amplia porque recoge toda expresión bilineal que sirva razonablemente para medir

Más detalles

5. Aplicaciones lineales

5. Aplicaciones lineales 5. Aplicaciones lineales Manuel Palacios Departamento de Matemática Aplicada Centro Politécnico Superior Universidad de Zaragoza Otoño 2010 Contents 5 Aplicaciones lineales 7 5.1 Definición y propiedades..............................

Más detalles

Espacios vectoriales reales

Espacios vectoriales reales 144 Matemáticas 1 : Álgebra Lineal Capítulo 9 Espacios vectoriales reales 9.1 Espacios vectoriales Los conjuntos de vectores del plano, R, y del espacio, R 3, son conocidos y estamos acostumbrados a movernos

Más detalles

AUTÓNOMA DE MADRID. Dpto. Análisis Económico: Economía Cuantitativa UNIVERSIDAD. Soluciones de los ejercicios de Álgebra Lineal.

AUTÓNOMA DE MADRID. Dpto. Análisis Económico: Economía Cuantitativa UNIVERSIDAD. Soluciones de los ejercicios de Álgebra Lineal. Soluciones de los ejercicios de Álgebra Lineal Curso 016/017 Versión 4-1-017 Índice general 1. Espacios vectoriales 1.1. Cuestiones test................................. 1.. Problemas.....................................

Más detalles

Descomposición en valores singulares de una matriz

Descomposición en valores singulares de una matriz Descomposición en valores singulares de una matriz Estas notas están dedicadas a demostrar una extensión del teorema espectral conocida como descomposición en valores singulares (SVD en inglés) de gran

Más detalles

Álgebra Lineal. Tema 12. Geometría de las transformaciones lineales en R

Álgebra Lineal. Tema 12. Geometría de las transformaciones lineales en R Álgebra Lineal Tema 12. Geometría de las transformaciones lineales en R Grado en Ingeniería Informática Doble Grado en Ingeniería Informática y Administración de Empresas AUTORES: J. S ALAS, A. T ORRENTE

Más detalles

Material para el examen final

Material para el examen final Algebra Lineal 2, FAMAT-UG, ene-jun, 2004 Material para el examen final 31 de mayo, 2004 Definiciones: Hay que saber las definiciones precisas de todos los siguientes términos, y conocer ejemplos concretos

Más detalles

Tema 4: Aplicaciones lineales

Tema 4: Aplicaciones lineales Águeda Mata y Miguel Reyes, Dpto de Matemática Aplicada, FI-UPM 1 Tema 4: Aplicaciones lineales Ejercicios 1 Estudia la linealidad de las siguientes aplicaciones: (a) f : R R 3, definida por f(x, y) =

Más detalles

Vectores y Valores Propios

Vectores y Valores Propios Capítulo 11 Vectores y Valores Propios Las ideas de vector y valor propio constituyen conceptos centrales del álgebra lineal y resultan una valiosa herramienta en la solución de numerosos problemas de

Más detalles

como el número real que resulta del producto matricial y se nota por:

como el número real que resulta del producto matricial y se nota por: Espacio euclídeo 2 2. ESPACIO EUCLÍDEO 2.. PRODUCTO ESCALAR En el espacio vectorial se define el producto escalar de dos vectores y como el número real que resulta del producto matricial y se nota por:,

Más detalles

L(a, b, c, d) = (a + c, 2a 2b + 2c + d, a c, 4a 4b + 4c + 2d).

L(a, b, c, d) = (a + c, 2a 2b + 2c + d, a c, 4a 4b + 4c + 2d). Universidade de Vigo Departamento de Matemática Aplicada II E.T.S.I. Minas Álgebra Convocatoria de enero de 1 18 de enero de 1 (5 p. 1 Para cada α R se considera el siguiente subespacio de R 4 : U α =

Más detalles

Bases ortogonales. Profesores Omar Darío Saldarriaga Ortíz. Hernán Giraldo

Bases ortogonales. Profesores Omar Darío Saldarriaga Ortíz. Hernán Giraldo Bases ortogonales Profesores Omar Darío Saldarriaga Ortíz Iván Dario Gómez Hernán Giraldo 9 Definición Sea V un espacio vectorial y {v,..., v n} una base para V. decimos que {v,..., v n} es una base ortogonal

Más detalles