ÁLGEBRA LINEAL I Práctica 5
|
|
|
- Elisa Villalba Escobar
- hace 9 años
- Vistas:
Transcripción
1 ÁLGEBRA LINEAL I Práctica 5 Espacios vectoriales (Curso ) 1. En el espacio vectorial real IR 2 consideramos los siguientes subconjuntos: (a) A = {(x y) IR 2 x 2 + y 2 = 1}. (b) B = {(x y) IR 2 x = 3y}. (c) C = {(x y) IR 2 x + y = 1} (d) D = {(x y) IR 2 x = y; e y 0}. (e) E = {(x y) IR 2 x 2 + y 2 0}. - Representarlos gráficamente. - Basándose en su representación gráfica deducir cuales son subespacios vectoriales y cuáles no. - Probarlo. 2. Sea V un espacio vectorial cualquiera. Dados tres subespacios vectoriales A B C estudiar la falsedad o veracidad de las siguientes afirmaciones: (A + B) C (A C) + (B C). (A + B) C (A C) + (B C). (A + B) C (A C) + (B C). (A + B) C = (A C) + (B C). (Primer parcial enero 2007) 3. Consideramos los siguientes subconjuntos de IR 4 : U 1 ={(x y z t) IR 4 x + y + z + t 0} U 2 ={(x y z t) IR 4 x + y = z x + z = t} U 3 =L{( ) ( )} U 4 ={(x y z t) IR 4 x 2 + y 2 = 0} (a) Estudiar cuáles de ellos son subespacios vectoriales. (b) Probar que los vectores de B = {( ) ( ) ( ) ( )} son una base de IR 4. (c) Hallar las ecuaciones paramétricas e implícitas de U 2 U 3 con respecto a la base B. (d) Probar que U 3 y U 4 son subespacios suplementarios. 4. Sea S 2 = M 2 2 (IR) el espacio vectorial de matrices simétricas reales 2 2. Dados los conjuntos: U = {A S 2 traza(a) = 0} W = {A S 2 ( 1 2 ) A = ( 0 0 )}
2 (i) Probar que U y W son subespacios vectoriales de S 2. (ii) Hallar las ecuaciones paramétricas de U y las implícitas de W respecto de la base canónica. (iii) Probar que U y W son subespacios suplementarios y hallar la matriz asociada a la aplicación proyeccción sobre U paralelamante a W respecto de la base canónica. (iv) Hallar la proyección de Id sobre W paralelamente a U. ( ) 1 1 (v) Puede descomponerse la matriz como suma de una matriz de U y otra de W?. 0 1 Razona la respuesta. (Examen final Julio 2013) 5. En el espacio vectorial de polinomios de grado menor o igual que 3 con coeficientes reales P 3 (IR) se consideran los subespacios vectoriales: U = {a 0 + a 1 x + a 2 x 2 + a 3 x 3 P 3 (IR) a 0 + a 1 = 0 a 0 a 1 + a 2 + a 3 = 0} V = L{1 + 2x + x x + x x + x 2 + x 3 } (i) Hallar las ecuaciones implícitas de V respecto de la base canónica. (ii) Hallar las ecuaciones paramétricas e implítas de U V y U + V respecto de la base canónica (iii) Son los subespacios U y V suplementarios?. (iv) Probar que los polinomios B = {1 1 + x x 2 x 2 (1 + x)} son una base de P 3 (IR). (v) Hallar las ecuaciones paramétricas e implícitas de U respecto de la base B. (Examen final Julio 2014) 6. En el espacio vectorial real IR 3 consideramos las siguientes bases: - la base canónica C = {ē 1 ē 2 ē 3 } = {(1 0 0) (0 1 0) (0 0 1)}. - la base B = {ū 1 ū 2 ū 3 } = {(0 1 1) (2 0 0) (1 0 1)}. - la base B = { v 1 v 2 v 3 } = {(1 1 0) (0 0 1) (1 1 1)}. (a) Si (1 3 2) es un vector de IR 3 calcular sus coordenadas en cada una de las bases anteriores. (b) Denotamos por (y 1 y 2 y 3 ) las coordenadas de un vector en la base B. subespacio vectorial dado por la ecuacón: y 1 + 2y 2 y 3 = 0 Consideramos el Calcular las ecuaciones paramétricas y cartesianas de este subespacio con respecto a cada una de las bases dadas. 7. En el espacio vectorial IR 4 se consideran los subespacios vectoriales: U = L{( ) ( ) ( )} V = {(x y z t) IR 4 x + y + z = 0 2x t = 0} W = L{( )} (i) Calcular dim(u) dim(v ) dim(u + V ) dim(u V ).
3 (ii) Hallar una base de U V. (iii) Probar que U y W son suplementarios. (iv) Hallar las ecuaciones implícitas e paramétricas de (W + V ) U. (Examen final enero 2012) 8. En el espacio vectorial de matrices M 2 2 (IR) se consideran los subconjuntos: U = L {( ) ( ) ( )} 0 0. V = {A M (IR) traza(a) = 0 A = A t }. (i) Probar que V es un subespacio vectorial de M 2 2 (IR). (ii) Demostrar que U y V son subespacios suplementarios. (iii) Hallar la proyección de Id sobre U paralelamente a V. (Examen final enero 2014) 9. En el espacio vectorial real V de las funciones continuas de [0 1] en IR se consideran los dos conjuntos siguientes: U 1 = { f V : 1 0 } f(x) dx = 0 U 2 = {f V : f es constante} (a) Comprobar que U 1 y U 2 son subespacios vectoriales de V. (b) Analizar si U 1 y U 2 son subespacios suplementarios de V. (c) Hallar si existe la proyección de h(x) = 1 + 2x sobre U 1 paralelamente a U 2. (Examen final setiembre 2002) 10. En IR 3 y para cada a IR consideramos los subespacios vectoriales: U = L{(a 1 0) (0 a 1) (1 0 1)} V = L{(a 0 1) (a 1 0 2a)}. (a) Hallar la dimensión de U V U + V y U V en función de los valores de a. (b) Para qué valores de a los subespacios U y V son suplementarios?. (c) Para los valores de a para los cuales sea posible calcular la matriz asociada respecto de la base canónica de la aplicación proyección sobre U paralelamente a V. (d) Para a = 0 es posible descomponer el vector (1 1 1) como suma de un vector de U y otro de V?. Si existe es única esta descomposición?. (Primer parcial enero 2009)
4 11. En el espacio vectorial de polinomios con coeficientes reales de grado menor o igual que 4 P 4 (IR) se consideran los subconjuntos: U = {p(x) P 4 (IR) p( 1) + p (0) = 0} V = {p(x) P 4 (IR) p (0) = 0} (i) Probar que son subespacios vectoriales. (ii) Hallar las ecuaciones paramétricas e implícitas de U V U + V U V con respecto a la base canónica. (iii) Son espacios suplementarios?. Notación: p (x) p (x) denotan respectivamente la primera y segunda derivada del polinomio. 12. En IR 4 consideramos los subespacios vectoriales: U = L{(b b 1 1) ( ) ( )} V = L{( ) (0 a 1 1) ( )} (a) Calcular la dimensión de U V en función de a y b. (c) Para a = 1 y b = 0 escribir las ecuaciones implícitas de U V respecto de la base canónica. (Examen final junio 2008) 13. En M 2 2 (IR) se consideran los siguientes subconjuntos: U 1 = {A M 2 2 (IR) A A t = Ω} U 2 = {A M 2 2 (IR) det(a) = 0} U 3 = { A M 2 2 (IR) traza(a + A t ) = 0 } (i) Estudiar cuáles de ellos son subespacios vectoriales de M 2 2 (IR). (ii) Dar un conjunto de matrices que sea una base de U 3. (iii) Hallar las ecuaciones paramétricas e implícitas en la base canónica de U 1 U 3. {( ) ( ) ( ) ( )} (iv) Probar que las matrices B = son una base de M 2 2 (IR). (v) Hallar las ecuaciones paramétricas e implícitas de U 1 U 3 respecto de la base B. (Examen final enero 2012) 14. Sea V un espacio vectorial real y U 1 U 2 U 3 subespacios vectoriales. Razonar la falsedad o veracidad de las siguientes afirmaciones probando aquellas que sean ciertas y descartando con un contraejemplo las falsas. (a) (U 1 + U 2 ) (U 1 + U 3 ) U 1 + (U 2 U 3 ). (b) U 1 + (U 2 U 3 ) (U 1 + U 2 ) (U 1 + U 3 ). (Primer parcial enero 2009)
5 15. Sea P 2 (IR) el espacio vectorial de polinomios de grado menor o igual que 2 con coeficientes reales. Consideramos los subconjuntos: U = {p(x) P 2 (IR) 1 es raíz de p(x)}. W = {p(x) P 2 (IR) grado p(x) 1}. V = {p(x) P 2 (IR) 0 y 1 son raíces de p(x)}. (a) Probar que U V y W son subespacios vectoriales de P 2 (IR). (b) Estudiar si tiene sentido plantear las siguientes proyecciones: - La proyección del polinomio x 2 + x + 1 sobre U paralelamente a V. - La proyección del polinomio x 2 + x + 1 sobre U paralelamente a W. En caso afirmativo calcular dicha proyección. (Primer parcial enero 2007) 16. Sea V un espacio vectorial de dimensión 200. Razonar la veracidad o falsedad de las siguientes afirmaciones: (i) En V pueden existir 201 vectores linealmente independientes. (ii) En V pueden existir 201 vectores formando un sistema generador. (iii) 199 vectores distintos de V siempre son linealmente independientes. (iv) 199 vectores de V nunca son un sistema generador. (Examen final julio 2013)
6 ÁLGEBRA LINEAL I Problemas adicionales Espacios vectoriales (Curso ) I. En el espacio vectorial M 2 2 (IR) se consideran los subconjuntos: {( ) ( ) ( ) ( )} B = { ( ) ( )} U = A M 2 2 (IR) A = {( ) ( ) ( )} V = L S 2 = { A M 2 2 (IR) A = A t }. (i) Probar que los vectores de B forman una base de M 2 2 (IR). (ii) Probar que U es un subespacio vectorial de M 2 2 (IR). (iii) Dar las ecuaciones paramétricas e implícitas de U respecto de la base B. (iv) Escribir un conjunto de matrices linealmente independientes que generen U. (v) Calcular las ecuaciones paramétricas e implícitas de V S 2 respecto de la base canónica. (vi) Probar que los subespacios U y V son suplementarios. (Examen final julio 2012) II. Sea V un espacio vectorial sobre IR. Sea B = { u 1 u 2 u 3 } una base de V. Se consideran los vectores: v 1 = u 1 + u 3 v 2 = u 2 u 3 v 3 = u 1 + u 2 + a u 3. (i) Hallar a para que B = { v 1 v 2 v 3 } sean linealmente dependientes. (ii) Para a = 1 probar que B = { v 1 v 2 v 3 } es una base de V. (iii) Para a = 1 hallar las coordenadas respecto a la base B de la proyección ortogonal de u 1 sobre L{v 1 v 3 } paralelamente a v 2. III. Sea el espacio vectorial sobre IR V = {f : IR IR f continua }. Consideramos el subespacio: W = L{sin 2 (x/2) cos(x) cos( π 2 x) 2} (i) Probar que los vectores de B = {sin(x) cos(x) 1} son un sistema libre. (ii) Probar que B es una base de W. (iii) Fijado a R probar que sin(x + a) W. (iv) Escribir las coordenadas de sin(x + a) respecto de la base B.
7 IV. Sea M n n (IR) el espacio vectorial de las matrices cuadradas de elementos reales y dimensión n. (a) Demostrar que si A M n n (IR) es una matriz fija el conjunto es un subespacio vectorial de M n n (IR). S = {B M n n (IR) : AB = Ω} (b) Si n = 2 y A es de la forma ( ) α 1 β 1 donde α β son números reales calcular en función de α β la dimensión y una base de S y las ecuaciones implícitas de un subespacio suplementario de S. V. En el espacio vectorial real de las matrices simétricas 3 3 con elementos reales S 3 decidir cuáles de los siguientes subconjuntos son subespacios vectoriales y para los que lo sean hallar una base así como unas ecuaciones (paramétricas e implícitas) en la base canónica y en la base B = (a) Matrices regulares. (b) Matrices con traza nula. (c) Matrices cuyas dos primeras filas son iguales. VI. En un espacio vectorial real E de dimensión 4 se consideran dos subespacios vectoriales V y W que con respecto a determinada base de E vienen descritos por las ecuaciones V : { x ay + z + bt = 0 y t = 0 W : { ax y bz + t = 0 x + z = 0 donde a b son dos números reales arbitrarios. En función de a y b calcular las dimensiones de los subespacios V W V W y V + W. (Examen final julio 2002) VII. Sea M 2 2 (IR) el espacio vectorial de matrices reales de dimensión 2 2. Consideramos el conjunto de matrices: {( ) ( ) ( ) ( )} B = (a) Probar que las matrices de B forman una base de M 2 2 (IR). (b) Sea S 2 M 2 2 (IR) el subespacio vectorial de matrices simétricas reales de dimensión 2 2. Escribir las ecuaciones cartesianas de S 2 en la base canónica y en la base B. (c) Definimos el conjunto: W = {A M 2 2 (IR) (1 1)A = (0 0)}.
8 Probar que es un subespacio vectorial. (d) Calcular las ecuaciones paramétricas y cartesianas de W y W S 2 en la base canónica y en la base B. (Primer parcial enero 2005) VIII. En M 2 2 (IR) y fijado k IR se consideran los siguientes subespacios vectoriales: U = L {( ) k ( ) k 0 k 1 ( )} 1 1 V = L 0 2 {( ) k ( )} 1 k (i) Calcular en función de k dim(u) dim(v ) dim(u V ) y dim(u + V ). (ii) Para k = 2 hallar las ecuaciones implícitas y paramétricas de U + V con respecto a la base canónica. IX. Consideremos los subespacios U y W de IR 3 tales que U está generado por los vectores (1 0 1) (0 1 1) (1 1 2) y la ecuación implícita de W es x y + 2z = 0. Se pide: (a) Bases de U W U + W y U W. (b) Ecuaciones implícitas de U W. (c) Base de un subespacio H suplementario de U W. (d) Proyección del vector (2 3 5) sobre el subespacio U W paralelamente a H. (Examen final junio 2006) X. En el espacio vectorial IR 3 dados dos valores reales a b R se definen los subespacios: U = L{(1 a 1) (b 1 a)} V = L{(0 1 1) (a 1 1 b)}. (a) Calcular en función de a y b la dimensión de U V. (b) Calcular los valores de a y b para los cuales los subespacios son suplementarios. (d) Para a = b = 0 calcular las ecuaciones cartesianas y paramétricas de U V. (Examen final septiembre 2008)
Espacios vectoriales (Curso )
ÁLGEBRA Práctica 5 Espacios vectoriales (Curso 2009 2010) 1. En el espacio vectorial real IR 2 consideramos los siguientes subconjuntos: (a) A = {(x, y) IR 2 x 2 + y 2 = 1}. (b) B = {(x, y) IR 2 x = 3y}.
Espacios vectoriales (Curso )
ÁLGEBRA Práctica 5 Espacios vectoriales (Curso 2008 2009) 1. En el espacio vectorial real IR 2 consideramos los siguientes subconjuntos: (a) A = {(x y) IR 2 x 2 + y 2 = 1}. (b) B = {(x y) IR 2 x = 3y}.
Aplicaciones Lineales (Curso )
ÁLGEBRA Práctica 6 Aplicaciones Lineales (Curso 2008 2009) 1. De las siguientes aplicaciones definidas entre espacios vectoriales reales determinar cuáles son homomorfismos monomorfismos epimorfismos o
ÁLGEBRA LINEAL I Práctica 6
ÁLGEBRA LINEAL I Práctica 6 Aplicaciones Lineales (Curso 2016 2017) 1. De las siguientes aplicaciones definidas entre espacios vectoriales reales determinar cuáles son homomorfismos monomorfismos epimorfismos
ESPACIOS VECTORIALES Y APLICACIONES LINEALES
Departamento de Matemática Aplicada II E.E.I. ÁLGEBRA Y ESTADÍSTICA Boletín n o (010-011 ESPACIOS VECTORIALES Y APLICACIONES LINEALES 1. En el espacio vectorial ordinario R 4 estudiar cuáles de los siguientes
ÁLGEBRA LINEAL I Práctica 7
ÁLGEBRA LINEAL I Práctica 7 Endomorfismos (Curso 2015 2016) 1. Dada la matriz: 3 2 0 0 0 1 0 0 0 0 A = 0 0 1 0 0. 0 0 0 1 0 0 0 0 1 1 (a) Estudiar si es triangularizable por semejanza. (b) Hallar sus autovalores
ÁLGEBRA LINEAL I Práctica 7
ÁLGEBRA LINEAL I Práctica 7 Endomorfismos (Curso 2017 2018) 1. Dada la matriz: 3 2 0 0 0 1 0 0 0 0 A = 0 0 1 0 0. 0 0 0 1 0 0 0 0 1 1 (a) Estudiar si es triangularizable por semejanza. (b) Hallar sus autovalores
ÁLGEBRA LINEAL II Práctica
ÁLGEBRA LINEAL II Práctica 2.1-2.2 Espacios Euclídeos. Ortogonalidad (Curso 2011 2012) 1. Se considera un espacio euclídeo de dimensión 3, y en él una base {ē 1, ē 2, ē 3 } tal que el módulo de ē 1 y el
Grado en Ciencias Ambientales. Matemáticas. Curso 11/12
Grado en Ciencias Ambientales. Matemáticas. Curso 11/12 Problemas Tema 1. Espacios Vectoriales. 1 Repaso de Estructuras Algebraicas 1.1. Construye explícitamente el conjunto A B, siendo A = {1, 2, 3},
ÁLGEBRA LINEAL I Práctica 7
ÁLGEBRA LINEAL I Práctica 7 Endomorfismos (Curso 2016 2017) 1. Dada la matriz: 3 2 0 0 0 1 0 0 0 0 A = 0 0 1 0 0 0 0 0 1 0 0 0 0 1 1 (a) Estudiar si es triangularizable por semejanza. (b) Hallar sus autovalores
Álgebra y Álgebra II - Segundo Cuatrimestre 2017 Práctico 4 - Espacios Vectoriales
Álgebra y Álgebra II - Segundo Cuatrimestre 2017 Práctico 4 - Espacios Vectoriales (1) Sea n N. Mostrar que el conjunto de polinomios sobre R de grado menor que n es un subespacio vectorial de R[x]. Este
Aplicaciones lineales (Curso )
ÁLGEBRA Práctica 6 Aplicaciones lineales (Curso 2004 2005) 1. De las siguientes aplicaciones definidas entre espacios vectoriales reales, determinar cuáles son homomorfismos, monomorfismos, epimorfismos
1.5.3 Sistemas, Matrices y Determinantes
1.5.3 Sistemas, Matrices y Determinantes 24. Sean las matrices 3 0 4 1 A= 1 2 B = 0 2 1 1 C = 1 4 2 3 1 5 1 5 2 D = 1 0 1 E = 3 2 4 6 1 3 1 1 2 4 1 3 a Calcular cuando se pueda: 3C D, ABC, ABC, ED, DE,
Ejercicio 3.1 Estudiar si son subespacios vectoriales los siguientes subconjuntos de los espacios R n indicados:
10 Departamento de Álgebra. Universidad de Sevilla Tema 3. Sección 1. Variedades lineales. Definición. Ejercicio 3.1 Estudiar si son subespacios vectoriales los siguientes subconjuntos de los espacios
Matemáticas para la Empresa
Matemáticas para la Empresa 1 o L. A. D. E. Curso 2008/09 Relación 1. Espacios Vectoriales 1. a) En IR 2 se consideran las operaciones habituales: (x, y) + (x, y ) = (x + x, y + y ) λ(x, y) = (λx, λy)
2. Problemas. Espacios Vectoriales. Álgebra Lineal- Propedéutico Mayo de 2012
2. Problemas. Espacios Vectoriales. Álgebra Lineal- Propedéutico Mayo de 2012 1. En R 2 se define la suma: (a 1, b 1 ) + (a 2, b 2 ) = (a 1 + a 2, b 1 + b 2 ) y el producto por un escalar: λ(a, b) = (0,
TEMA V. Espacios vectoriales
TEMA V. Espacios vectoriales 1 1. Demostrar que cada uno de los siguientes conjuntos tiene estructura de espacio vectorial sobre el cuerpo de los reales: a El conjunto (R 2, +,, R. b El conjunto (R 3,
Universidad de Jaén Departamento de Matemáticas Ingeniería Técnica en Informática de Gestión.
Universidad de Jaén Departamento de Matemáticas Ingeniería Técnica en Informática de Gestión. Algebra I I Relación de problemas 3. Espacios vectoriales. 1.-Estudiar si los siguientes conjuntos forman o
Relación 1. Espacios vectoriales
MATEMÁTICAS PARA LA EMPRESA Curso 2007/08 Relación 1. Espacios vectoriales 1. (a) En IR 2 se consideran las operaciones habituales: (x, y) + (x, y ) = (x + x, y + y ) λ(x, y) = (λx, λy) Demuestra que IR
Álgebra Lineal Grupo A Curso 2011/12. Espacios vectoriales. Bases...
Álgebra Lineal Grupo A Curso 2011/12 Espacios vectoriales. Bases 61) Dados los vectores v 1,v 2,...,v n linealmente independientes, probar que también lo son los vectores u 1 = v 1 u 2 = v 1 + v 2... u
Tema 2: Espacios vectoriales
Águeda Mata y Miguel Reyes, Dpto. de Matemática Aplicada, FI-UPM 1 Tema 2: Espacios vectoriales Ejercicios 1. En R 2 se definen las siguientes operaciones: (x 1, y 1 ) + (x 2, y 2 ) = (x 1 + x 2, y 1 +
Hoja de diagonalización MATEMÁTICAS I
Hoja de diagonalización MATEMÁTICAS I 8-9.- En los siguientes casos estudiar si f es una aplicación lineal y en caso afirmativo hallar una matriz A tal que f(x) Ax así como los subespacios vectoriales
Hoja de diagonalización MATEMÁTICAS I
Hoja de diagonalización MATEMÁTICAS I 007-008 1.- En los siguientes casos estudiar si f es una aplicación lineal y en caso afirmativo hallar una matriz A tal que f(x) = Ax, así como los subespacios vectoriales
DIAGONALIZACIÓN DE MATRICES CUADRADAS
DIAGONALIZACIÓN DE MATRICES CUADRADAS.- Considerar los vectores u = (, -, ) y v = (, -, ) de : a) Escribir, si es posible, los vectores (, 7, -4) y (, -5, 4) como combinación lineal de u y v. b) Para qué
CAPÍTULO 4 ESPACIOS VECTORIALES
CAPÍTULO 4 ESPACIOS VECTORIALES 4.1.- Concepto y definición de espacio vectorial. 4.2.- Propiedades de los espacios vectoriales. 4.3.- Subespacios vectoriales. 4.4.- Combinación lineal de vectores. 4.5.-
ETS Arquitectura. UPM Geometría afín y proyectiva. 1. Hoja 1
ETS Arquitectura. UPM Geometría afín y proyectiva. Hoja. Determinar si los siguientes conjuntos son subespacios vectoriales de R 4 A f(x; y; z; t)j 2x + z 0g; B f(x; y; z; t)jx + y 0; z t 0g; C f(x; y;
Álgebra y Álgebra II - Primer Cuatrimestre 2018 Práctico 4 - Espacios Vectoriales
Álgebra y Álgebra II - Primer Cuatrimestre 2018 Práctico 4 - Espacios Vectoriales (1) Decidir si los siguientes conjuntos son R-espacios vectoriales con las operaciones abajo denidas. (a) R n con v w =
PROBLEMAS DE ÁLGEBRA LINEAL INGENIERÍA DE TELECOMUNICACIONES - E.T.S.I.T. CURSO 2005/06
PROBLEMAS DE ÁLGEBRA LINEAL INGENIERÍA DE TELECOMUNICACIONES - E.T.S.I.T. CURSO 200/06 1. Utilizar el método de eliminación de Gauss para resolver el sistema de ecuaciones lineales siguiente: 2 x 1 2 x
ÁLGEBRA LINEAL E.T.S. DE INGENIERÍA INFORMÁTICA INGENIERÍAS TÉCNICAS EN INFORMÁTICA DE SISTEMAS Y GESTIÓN BOLETÍN DE PROBLEMAS DE
E.T.S. DE INGENIERÍA INFORMÁTICA BOLETÍN DE PROBLEMAS DE ÁLGEBRA LINEAL para las titulaciones de INGENIERÍAS TÉCNICAS EN INFORMÁTICA DE SISTEMAS Y GESTIÓN 1. Matrices y determinantes Ejercicio 1.1 Demostrar
Hoja de diagonalización MATEMÁTICAS I
Hoja de diagonalización MATEMÁTICAS I 9- - En los siguientes casos estudiar si f es una aplicación lineal y en caso afirmativo hallar una matriz A tal que f(x) Ax así como los subespacios vectoriales N(f)
Aplicaciones bilineales y formas cuadráticas (Curso )
ÁLGEBRA Práctica 8 Aplicaciones bilineales y formas cuadráticas (Curso 2008 2009) 1. Comprobar si las siguientes aplicaciones son o no bilineales y en las que resulten serlo, dar la matriz que las representa
EJERCICIOS DE ÁLGEBRA LINEAL TEMA 1 ESPACIOS VECTORIALES
EJERCICIOS DE ÁLGEBRA LINEAL TEMA ESPACIOS VECTORIALES Formas reducidas y escalonada de una matriz SISTEMAS DE ECUACIONES LINEALES ) Encuentre una sucesión de matrices elementales E, E,..., E k tal que
GEOMETRÍA AFÍN Y PROYECTIVA Espacios Vectoriales.
Sonia L. Rueda ETS Arquitectura. UPM Año 2016-2017. 1 GEOMETRÍA AFÍN Y PROYECTIVA Espacios Vectoriales. 1. Determinar si los siguientes conjuntos de vectores son subespacios vectoriales de R 4. A = {(x,
Espacios vectoriales.
Unidad docente de Matemáticas Matemáticas (CC. Químicas) Espacios vectoriales. Si detectas cualquier error o errata por favor, comunicaselo al profesor de la asignatura. El subíndice can significa canónica/o..
EJERCICIOS DE ÁLGEBRA LINEAL TEMA 1 ESPACIOS VECTORIALES
EJERCICIOS DE ÁLGEBRA LINEAL TEMA ESPACIOS VECTORIALES MATRICES. SISTEMAS DE ECUACIONES LINEALES Matrices ) Dada la matriz M=, prueba que n n M M, n. ) Demuestra la siguiente implicación: Si I A I AA A
4. Espacios vectoriales
Contents 4 Espacios vectoriales 2 4.1 Dependencia e independencia lineal.................................. 4 4.2 Subespacios vectoriales.............................................. 7 4.3 Bases y dimensión..................................................
EJERCICIOS PAU MATEMÁTICAS II ARAGÓN Autor: Fernando J. Nora Costa-Ribeiro Más ejercicios y soluciones en fisicaymat.wordpress.com
GEOMETRÍA 1- Dados el punto P(1,-1,0) y la recta : 1 0 3 3 0 a) Determine la ecuación general del plano (Ax+By+Cz+D=0) que contiene al punto P y a la recta s. b) Determine el ángulo que forman el plano
Tema 1: Espacios vectoriales
PROBLEMAS DE MATEMÁTICAS Parte I: Álgebra Primero de Químicas FACULTAD DE CIENCIAS QUÍMICAS Departamento de Matemáticas Universidad de Castilla-La Mancha Tema 1: Espacios vectoriales 1 Determina si cada
Tema 1. Espacios Vectoriales Definición de Espacio Vectorial
Tema 1 Espacios Vectoriales. 1.1. Definición de Espacio Vectorial Notas 1.1.1. Denotaremos por N, Z, Q, R, C, a los conjuntos de los números Naturales, Enteros, Racionales, Reales y Complejos, respectivamente.
Ejercicio 2 (Examen de septiembre de 2009) Razona cuáles de los siguientes conjuntos son subespacios vectoriales:
Ejercicio 1 De los siguientes subconjuntos de R 3 decida cuales son subespacios y cuales no: a) U 1 = {(x,y,z) / x = 1 = y+z} b) U 2 = {(x,y,z) / x+3y = 0,z 0} c) U 3 = {(x,y,z) / x+2y+3z= 0 = 2x+y} d)
f(x, y, z, t) = (x + y t, x + 2y z 3t, 3x + 5y 2z 7t).
Universidade de Vigo Departamento de Matemática Aplicada II E.T.S.I. Minas Álgebra Convocatoria de enero de 20 de enero de 20 (2.5 p.) ) Se considera la aplicación lineal f : R 4 R definida por: f(x y
Ejercicios tipo test de las lecciones 1 y El vector e = ( 1, 0, λ) está en el plano generado por los vectores u = (1, 2, 1) y
Álgebra lineal y Geometría I Gloria Serrano Sotelo Departamento de MATEMÁTICAS Ejercicios tipo test de las lecciones 1 y 2. 1. El vector e = ( 1, 0, λ) está en el plano generado por los vectores u = (1,
ÁLGEBRA LINEAL I Práctica 3
ÁLGEBRA LINEAL I Práctica 3 Matrices y determinantes (Curso 2011 2012) 1. En el conjunto de las matrices n n de elementos reales, demostrar que el producto de matrices triangulares inferiores es otra matriz
ALGEBRA LINEAL - Práctica N 1 - Segundo cuatrimestre de 2017 Espacios Vectoriales
Departamento de Matemática - Facultad de Ciencias Exactas y Naturales - UBA 1 ALGEBRA LINEAL - Práctica N 1 - Segundo cuatrimestre de 2017 Espacios Vectoriales Ejercicio 1. Resolver los siguientes sistemas
Tema 1: Espacios vectoriales
PROBLEMAS DE MATEMÁTICAS Parte I: Álgebra Primero de Ingeniería Química FACULTAD DE CIENCIAS QUÍMICAS Departamento de Matemáticas Universidad de Castilla-La Mancha Tema 1: Espacios vectoriales 1 Determina
Ejercicios resueltos de Álgebra, hoja 2. Beatriz Graña Otero
Ejercicios resueltos de Álgebra, hoja 2. Beatriz Graña Otero 11 de Diciembre de 2008 2 B.G.O. 104.- Determina si los siguientes subconjuntos del espacio vectorial correspondiente son subvariedades afines:
1. Espacio vectorial. Subespacios vectoriales
Álgebra lineal y Geometría I Gloria Serrano Sotelo Departamento de MATEMÁTICAS Sea k un cuerpo. 1. Espacio vectorial. Subespacios vectoriales Definición 1.1. Un k-espacio vectorial o espacio vectorial
Problemas de Espacios Vectoriales
Problemas de Espacios Vectoriales Natalia Boal Francisco José Gaspar María Luisa Sein-Echaluce Universidad de Zaragoza 1 En IR 2 se definen las siguientes operaciones + : x, y + x, y = x + x, y + y, IR
Soluciones Hoja Problemas Espacio Vectorial 05-06
Soluciones Hoja Problemas Espacio Vectorial -6.- Se considera R con la suma habitual y con el producto por un escalar que se indica en los casos siguientes. Prueba que en ninguno de ellos, (R,, ) es espacio
ÁLGEBRA LINEAL I Práctica 3
ÁLGEBRA LINEAL I Práctica 3 Matrices y determinantes (Curso 2015 2016) 1. En el conjunto de las matrices n n de elementos reales, demostrar que el producto de matrices triangulares inferiores es otra matriz
1. Efectuar las siguientes operaciones, expresando el resultado en forma binómica: (1 i)(2 i)(i 3) ; 344 ( i) 231 i(1 + i) 5
1.5.1 Complejos 1. Efectuar las siguientes operaciones, expresando el resultado en forma binómica: i 1 ; 2 + i ; 2i 2 i 1 + i +i; 5 (1 i)(2 i)(i 3) ; i344 +( i) 231 ; (1 + i) 5 + 1 (1 i) 5 1 ; 2. Usar,
Universidad Nacional de Colombia Departamento de Matemáticas Álgebra Lineal Básica - Grupo 3 Taller 3
Universidad Nacional de Colombia Departamento de Matemáticas 2015555- Álgebra Lineal Básica - Grupo Taller (1) Es el conjunto de los números reales con las operaciones de suma y multiplicación un R-espacio
CONJUNTO R n. = (5, 2, 10) de 3, son linealmente. = (2,1,3) y v 3. = (0,1, 1) y u 3. = (2,0,3, 1), u 3. = (1,1, 0,m), v 2
CONJUNTO R n.- Considerar los vectores u = (, -3, ) y v = (, -, ) de 3 : a) Escribir, si es posible, los vectores (, 7, -4) y (, -5, 4) como combinación lineal de u y v. b) Para qué valores de x es el
2.10 Ejercicios propuestos
Ejercicios propuestos 99 1 0 0 0 x 1 0 1 0 0 x 2 0 0 1 0 x 3 x 2 0 0 0 1 x 4 + x 1 +4x 2 + x 3 x 2 0 0 0 1 x 5 x 2 1 0 0 0 x 1 0 1 0 0 x 2 0 0 1 0 x 3 x 2 0 0 0 1 x 4 + x 1 +4x 2 + x 3 x 2 0 0 0 0 x 5
Examen Final Soluciones (3 horas) 8 de julio de 2015
Álgebra Lineal I Examen Final Soluciones (3 horas) 8 de julio de 2015 1. Siete personas suben en un ascensor en la planta baja de un edificio de cinco pisos. Cada una de ellas se apea en alguna de las
ÁLGEBRA LINEAL I Práctica 3
ÁLGEBRA LINEAL I Práctica 3 Matrices y determinantes (Curso 2013 2014) 1. En el conjunto de las matrices n n de elementos reales, demostrar que el producto de matrices triangulares inferiores es otra matriz
Lista de problemas de álgebra, 2016
Instituto Politécnico Nacional Escuela Superior de Física y Matemáticas Posgrado en Ciencias Físicomatemáticas Línea de Matemáticas Lista de problemas de álgebra 2016 Egor Maximenko: En mi opinión cualquier
Se pide: (b) Ecuaciones que permiten obtener las coordenadas cartesianas en R en función de las de R.
ÁLGEBRA Práctica 13 Espacios afines E 2 y E 3 (Curso 2004 2005) 1. En un espacio afín real de dimensión 3, se consideran dos sistemas de referencia R = {O, ē 1, ē 2, ē 3 } y R = {P, ū 1, ū 2, ū 3 }, donde
Geometría afín y proyectiva, 2016 SEMANA 2
Geometría afín y proyectiva, 2016 SEMANA 2 Sonia L. Rueda ETS Arquitectura. UPM September 20, 2016 Geometría afín y proyectiva 1. Álgebra Lineal 2. Geometría afín y eucĺıdea 3. Cónicas y cuádricas Álgebra
520142: ALGEBRA y ALGEBRA LINEAL
520142: ALGEBRA y ALGEBRA LINEAL Segundo Semestre 2008, Universidad de Concepción CAPITULO 10: Espacios Vectoriales DEPARTAMENTO DE INGENIERIA MATEMATICA Facultad de Ciencias Físicas y Matemáticas 1 Definición
2 Espacios vectoriales
Águeda Mata y Miguel Reyes, Dpto. de Matemática Aplicada, FI-UPM 1 2 Espacios vectoriales 2.1 Espacio vectorial Un espacio vectorial sobre un cuerpo K (en general R o C) es un conjunto V sobre el que hay
Soluciones a los ejercicios del examen final C =. 1 0
Universidade de Vigo Departamento de Matemática Aplicada II E T S E de Minas Álgebra Lineal Curso 205/6 de enero de 206 Soluciones a los ejercicios del examen final Se considera el subespacio U {X M 2
1.- Definir: Vectores linealmente dependientes y Sistemas ligados.
Prueba de Evaluación Continua Grupo B 23-03-11 1- Definir: Vectores linealmente dependientes Sistemas ligados Demostrar que un conjunto de vectores son linealmente dependientes si sólo si uno de ellos
Equivalencia de matrices. Sistemas de ecuaciones (Curso ) 1. Hallar la forma reducida equivalente por filas de la matriz:
ÁLGEBRA Práctica 4 Equivalencia de matrices. Sistemas de ecuaciones Curso 2008 2009 1. Hallar la forma reducida equivalente por filas de la matriz: 1 0 3 2 2 5 5 6 3 2 1 3 1 3 2. Obtener mediante transformaciones
Problemas de Álgebra Ingeniería Técnica en Informática de Sistemas. Curso 2009/10
Problemas de Álgebra Ingeniería Técnica en Informática de Sistemas Curso 2009/10 Hoja 1 Preliminares 1 Resuelve los siguientes sistemas de ecuaciones de números complejos: { z 1 + iz 2 = 1 i 3z 1 + (1
PRÁCTICO 5. Coordenadas y matriz de cambio de bases
Algebra y Algebra II Segundo Cuatrimestre 2012 PRÁCTICO 5 Coordenadas y matriz de cambio de bases Ejercicio 1. Probar que los vectores α 1 = (1 0 i) α 2 = (1 + i 1 i 1) α 3 = (i i i) forman una base de
A d) Estudiar la diagonalización del endomorfismo T. Es posible encontrar una base de vectores propios de R 2 [x]? Razonar la respuesta.
Universidad de Oviedo Ejercicio.5 puntos Se consideran las aplicaciones lineales T : R [x] R y T : R R [x] de las que se conoce la matriz A asociada a T en las bases canónicas de R [x] y R y la matriz
Problemas de exámenes de Formas Bilineales y Determinantes
1 Problemas de exámenes de Formas Bilineales y Determinantes 1. Sea R 3 con el producto escalar ordinario. Sea f un endomorfismo de R 3 definido por las condiciones: a) La matriz de f respecto de la base
Universidad Nacional de Colombia Departamento de Matemáticas Álgebra Lineal - Grupo 01 Taller 4
Universidad Nacional de Colombia Departamento de Matemáticas - Álgebra Lineal - Grupo Taller () Es el conjunto de los números reales con las operaciones de suma y multiplicación un R-espacio vectorial?
102 EJERCICIOS DE ALGEBRA LINEAL por Francisco Rivero Mendoza Ph.D.
102 EJERCICIOS DE ALGEBRA LINEAL por Francisco Rivero Mendoza Ph.D. Tema 1. Espacios Vectoriales. 1. Dar la definición de cuerpo. Dar tres ejemplos de cuerpos. Dar un ejemplo de un cuerpo finito 2. Defina
ÁLGEBRA LINEAL Y GEOMETRÍA
ÁLGEBRA LINEAL Y GEOMETRÍA Laureano González Vega y Cecilia Valero Revenga Departamento de Matemáticas, Estadística y Computación Universidad de Cantabria Curso 2017 2018 Índice I Lecciones 1 1 Espacios
ÁLGEBRA LINEAL II Práctica
ÁLGEBRA LINEAL II Práctica 3.1-3.2 Geometría afín. (Curso 2016 2017) 1. En el espacio afín IR 3 se considera la referencia canónica R y la referencia R = {(1, 0, 1); (1, 1, 0), (1, 1, 1), (1, 0, 0)}. Denotamos
MATEMÁTICAS II Relación de Ejercicios 1 Espacio Afín.
ETS Arquitectura. UPM Curso 009-010. 1 MATEMÁTICAS II Relación de Ejercicios 1 Espacio Afín. 1. En el espacio afín (R 3 ; R 3 ; ) con : R 3 R 3! R 3 de nida por ((x 1 ; x ; x 3 ); (y 1 ; y ; y 3 )) = (y
Espacios vectoriales reales.
Tema 3 Espacios vectoriales reales. 3.1 Espacios vectoriales. Definición 3.1 Un espacio vectorial real V es un conjunto de elementos denominados vectores, junto con dos operaciones, una que recibe el nombre
Trabajo Práctico N 5: ESPACIOS VECTORIALES
Trabajo Práctico N 5: ESPACIOS VECTORIALES Ejercicio 1: Determine si los siguientes conjuntos con las operaciones definidas en cada caso son o no espacios vectoriales. Para aquellos que no lo sean, indique
N o de examen: ESCRIBIR LAS RESPUESTAS AQUÍ Este examen consta de diez preguntas tipo verdadero/falso y diez ejercicios
N o de examen: NOMBRE: C.I.: Examen de Geometría y Álgebra Lineal 1 22 de julio de 2014 Instituto de Matemática y Estadística Rafael Laguardia Facultad de Ingeniería ESCRIBIR LAS RESPUESTAS AQUÍ 1 2 3
ÁLGEBRA Algunas Soluciones a la Práctica 6
ÁLGEBRA Algunas Soluciones a la Práctica 6 Aplicaciones lineales (Curso 2006 2007) 3. Dada la matriz A = ( 1 0 ) 2 3 2 1 y las bases B 1 = {(2, 1), (1, 1)} en IR 2 y B 2 = {(0, 1, 1), (1, 1, 1), ( 1, 2,
